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Abstract

We study the stability properties of Rational Expectations equilibria in dynamic models with

incomplete information when the information set of agents is slightly perturbed. We show that

full-information equilibria can be informationally fragile, in the sense that a slight perturbation

in the endogenous information set of the agents along the equilibrium path can lead to a de-

viation from that path. We then construct a class of dynamic rational expectations equilibria

that are informationally stable for the same parameter space where other equilibria are informa-

tionally fragile. We show that an equilibrium that is informationally fragile is not least-squares

learnable, while an equilibrium that is informationally stable always is. We provide two promi-

nent examples of our concept. First, we show that a dynamic model with “news” shocks is

informationally fragile, while removing news from the agents’ information set leads to a stable

equilibrium. We also present an application to a model with productivity shocks and nominal

rigidities under incomplete information and demonstrate that both informationally fragile and

stable equilibria can be obtained, albeit with very different shock propagation properties.
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1 Introduction

In an environment with incomplete information, the equilibrium outcome of a dynamic model pro-

vides valuable information that reduces information incompleteness. The information transmitted

in equilibrium, in turn, affects the equilibrium process itself, requiring the search for a fixed point

in information when solving for a dynamic rational expectations equilibrium. As in any dynamic

process, the equilibrium process generated by the fixed point solution requires initial conditions. In

presence of incomplete information the initial conditions include the initial information available

to the agents. In this paper we study the stability of dynamic rational expectations equilibria with

incomplete information with respect to small perturbations to the initial condition of information.

Within the context of a stylized but quite general model, we show that rational expectations equi-

libria in which the endogenous variables reveal perfectly the unobservable state of the world are

not robust to small perturbations in the information set of the agents.

More precisely, we show that if the information set of the agents is initialized in a neighborhood

around the equilibrium value, the equilibrium dynamics become explosive and any initial pertur-

bation in information accumulates over time without bound. We identify the cause of instability in

the way the history of the equilibrium variable is used to learn about the unobservable state. The

linear combination of past equilibrium outcomes that reveal the state is chosen so to exactly cancel

the dynamics that is responsible for the partial information revelation. While such cancellation

works exactly along the equilibrium path, it also injects what is known as a hidden instability in

the autoregressive dynamics of the system. When information is perturbed the hidden instability

emerges and the process becomes explosive. Our first message is therefore a negative one: rational

expectations equilibria that reveal perfectly the underlying state are fragile to information pertur-

bations. This type of instability is, to our knowledge, novel to the rational expectations literature.

We term such equilibria informationally fragile, to emphasize the idea that the explosive dynamics

are due to the information extrapolation that is performed in equilibrium.

We then move to characterize rational expectations equilibria that are robust to information

perturbations. Our second message is a positive one: when a fully revealing rational expectations

equilibrium is informationally fragile there always exists a rational expectations equilibrium whose

dynamics are stable when information is perturbed. We term such equilibria informationally stable.

Interestingly, the source of stability in this equilibria is the incomplete learning that agents achieve

from taking linear combinations of the equilibrium outcome.

The notion of informational stability is closely related to the learnability of a rational expecta-

tions equilibrium. We show that an equilibrium that is informationally fragile cannot be learned

by a least squares learning algorithm. On the other hand, an informationally stable equilibrium

can always be learned by the least squares algorithm, and it is also E-stable.

Finally, we present two applications of our results. We first examine the theoretical proper-

ties of the burgeoning news-driven business cycle literature.1 We demonstrate that news shocks

1Recent theoretical and empirical contributions includeBeaudry and Portier (2006, 2004), Jaimovich and Rebelo
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are informationally fragile while their incomplete information counterpart are informationally sta-

ble. Second, we analyze a stylized macroeconomic model with nominal rigidities and permanent

productivity shocks as presented in Lorenzoni (2009). We show that the fully revealing rational

expectations equilibrium of that model is informationally fragile when the productivity process

takes the form of an S-shaped diffusion process. We then solve for an incomplete information ratio-

nal expectations equilibrium of the model and show that it is informationally stable. We analyze

the impulse response of output and inflation to productivity innovations and we show that in the

incomplete information equilibrium a positive productivity innovation leads to alternating oscilla-

tions of output, employment and inflation around their respective trends. More specifically, both

output and inflation are above trend and below trend at the same time, so that, conditional on

the productivity innovation output and inflation display a positive correlation over the cycle. In

other words, in the informationally stable equilibrium of the model a positive supply shock (in pro-

ductivity) generates a dynamic response that looks like alternating positive and negative demand

shocks.

The focus on informational stability is important for two reasons: first, equilibria that are

informationally stable have desirable “learnability” properties compared to the informationally

fragile ones; second, informational stability has important consequences for the dynamic properties

of the equilibrium path. We study the connection to learning in Section 5 and we show the

consequences for the equilibrium dynamics in a macroeconomic context in Section 6.

2 Model and Equilibrium

We perform the analysis in the simplest possible setting to make clear the concept of informa-

tional stability.2 In particular, we focus on a univariate model with a representative agent facing

incomplete information about the state of the economy. The equilibrium equation is specified as

yt = κE
[

yt+1|Ωt

]

+ ϕat (2.1)

with |κ| ≤ 1 and ϕ ∈ R. Ωt denotes the information set of the representative agent at time t, to be

specified shortly, and at is an exogenous stochastic process given by

at − ρat−1 = A(L)ut (2.2)

where |ρ| ≤ 1, A(L) is a square summable lag polynomial in non-negative powers of L and ut ∼

N(0, σ2
u). The immediate consequence of working in a linear-quadratic Gaussian setting is that the

expectational operator corresponds to the linear projection operator, a property that will apply to

all results in the paper.

(2009), Christiano, Ilut, Motto, and Rostagno (2010), Fujiwara, Hirose, and Shintani (2011), Barsky and Sims (2011),
Leeper and Walker (2011), Mertens and Ravn (2010, 2011), Schmitt-Grohé and Uribe (2012), Khan and Tsoukalas
(2012).

2Appendix B provides conditions under which the results derived below extend to more complex models.
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An important benchmark for the following analysis is the rational expectations equilibrium of (2.1)

when the representative agent is (exogenously) endowed with the knowledge of the entire history

of shocks up to time t. We refer to this equilibrium as the Full Information equilibrium. Let Vt(x)

denote the smallest closed linear subspace spanned by the infinite history of the random variable

xt up to time t, namely xt ≡ {xt, xt−1, xt−2, ....}. In a full information equilibrium it is assumed

that Ωt = Vt(u). The following proposition states the solution for the full information equilibrium.

Proposition 1. The Full Information equilibrium of (2.1) always exists, is unique and is given by

yt − ρyt−1 =
ϕ

L− κ

(

LA(L)− κA(κ)
(1 − ρL)

(1 − ρκ)

)

ut (2.3)

We would like to work with a notion of rational expectations equilibrium that allows both

exogenous and endogenous information. For this purpose we introduce notation to represent the

exogenous information with which agents are endowed in a model by Ut, for t ∈ Z. Rationality im-

plies that information is not forgotten, formally Ut−1 ⊆ Ut. The endogenous information is instead

represented by whatever information is conveyed by the history of the equilibrium variables, in our

case yt. In addition to the time series properties of yt which are summarize in the equilibrium au-

tocovariance generating function for yt, rational agents also recognize that yt obeys the equilibrium

equation (2.1), which essentially provides a cross-equation restriction, or a structural perspective

on the covariogram of yt. The notation Vt(y) does not adequately capture such cross equation

restrictions and so we follow Rondina and Walker (2012a) in denoting the information coming from

the model by Mt(y). It follows that the combined information in the history of the equilibrium

variable can be expressed as Vt(y)∨Mt(y) where ∨ denotes the smaller subspace containing all the

elements in both spaces. We are now ready to define the notion of rational expectations equilibrium

that we will employ throughout the paper.

Definition IE. Given the exogenous information specification {Ut}, t ∈ Z, a dynamic rational

expectations Information Equilibrium (IE) is a stochastic process for {yt, t ∈ Z} and a stochastic

process for the information set {Ωt = Ut∨Vt(y)∨Mt(y), t ∈ Z} such that the equilibrium condition

(2.1) holds.

The endogeneity of the information set does not make the Definition IE immediately helpful

in the construction of an equilibrium. One way to proceed is to consider rational expectations

equilibria obtained under different exogenous information assumptions and check whether such

equilibria satisfy the requirements of an information equilibrium. We therefore ask when the Full

Information equilibrium in (2.3) is an Information Equilibrium. It turns out that the answer to this

question depends on the properties of A(L), the exogenous stochastic process, and the structure of

the exogenous information {Ut}, t ∈ Z. In terms of A(L), the key feature will be the invertibility

of the process, that is to say whether the observation of the history of at is able to perfectly reveal

the history of the innovations ut. This property is related to the moving average roots of A(L). If

the roots are all outside the unit circle, then A(L) is said to be invertible in current and past at,

3
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and the history of at reveals perfectly the history of ut. On the other hand, if the at least one root

is inside the unit circle, then A(L) is non-invertible in current and past at, and the history of at is

able to reveal only an imperfect measure of ut.

When A(L) is non-invertible, at can always be written as

at − ρat−1 = Ã(L)

m
∏

i=1

(1 + θiL)ut, |θi| > 1 for i = 1, ..,m, (2.4)

where m > 0 is the number of roots inside the unit circle and Ã(L) is the invertible portion of A(L).

The information contained in the history of at in presence of non-invertibility can be summarized

by its Wold fundamental representation, which is

at − ρat−1 = Ã(L)

m
∏

i=1

(θi + L)ũt, where ũt ≡
m
∏

i=1

(

1 + θiL

θi + L

)

ut. (2.5)

The innovation process ũt is the measure that minimizes the mean squared forecast error in pre-

dicting ut, and thus at+1. The variance of the forecast error under the information measured by

ũt is bigger than the variance of the forecast error under ut. The particular dynamics of at is said

to be “confounding” [cf. Rondina and Walker (2012a)] in the sense that it unfolds in a way that

prevents the full revelation of the innovation process. To clarify the role of confounding dynamics

we consider the evolution of the process at from some initial time t = 1, arbitrarily distant in the

past. To keep things simple in terms of notation we restrict our attention to the case of m = 1,

with θ ≡ θ1 and we set ρ = 0 3. Equation (2.4) can be written as

at + θat−1 + θ2at−2 + ....+ θt−1a1 = ut + θtu0 (2.6)

The process at is invertible when |θ| < 1, which implies that as t grows large (as the initial time

becomes arbitrarily distant in the past), the summation on the left hand side of (2.6) remains well

defined and it becomes exactly equal to ut since the term θtu0 tends to zero for any finite u0. When

at is not invertible |θ| > 1 and so as t grows larger and larger the summation on the left hand side

does not have a well defined limit, which means that it provides a very imprecise measure for ut.

Essentially, if u0 is not observed, which is the assumption under which (2.6) is valid, such ignorance

prevents the exact knowledge of the state ut. In other words, in presence of confounding dynamics

the ignorance about some initial state never disappears because the dynamics of the process are

not able to exactly recover it. In this case, the best prediction is suggested by (2.5) which results

in

at + θ−1at−1 + θ−2at−2 + ....+ θ−t+1a1 = ũt + θ−tu0 (2.7)

In this case, as t becomes arbitrarily large the sum on the left hand side remains well defined and

3Allowing for an arbitrary ρ is immediate, just substitute any instance of at by the quasi-difference at − ρat−1.
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the direct incidence of the initial state u0 disappears. When m > 1 the above argument still applies,

but the initial state—the ignorance upon which matters for prediction—becomes them-dimensional

vector {u0, u−1, ...., u−m+1}.

The relationship between the invertibility of at and the question of whether the full informa-

tion equilibrium is a rational expectations equilibrium is crucial because, in any equilibrium, the

knowledge that yt is generated by (2.1) results in the entire history of at always being part of

the equilibrium information of the representative agent. This is immediately evident by consid-

ering that, along any equilibrium yt, the representative agent also observes her own prediction

E
[

yt+1|Ut ∨Vt(y) ∨Mt(y)
]

and so she must be able to compute

at =
1

ϕ

(

yt − κE
[

yt+1|Ut ∨ Vt(y) ∨Mt(y)
]

)

. (2.8)

The following proposition formalizes the implication of the discussion above.

Proposition 2. If m = 0 (A(L) is invertible), the Full Information equilibrium in (2.3) is always

an Information Equilibrium, independent of the exogenous information structure Ut.

If m > 0 (A(L) is not invertible), the Full Information equilibrium (2.3) is an Information Equi-

librium from time t > 0 onward if {ut−j , ut−j−1, ..., ut−j−m+1} ∈ Ut with 0 < j < ∞. If j = ∞ the

Full Information equilibrium is always an Information Equilibrium.

Proof. See Appendix A.

The statement of the proposition distinguishes the case of an arbitrary long yet finite history,

from the case of a non-finite history. The distinction is relevant because, technically, the argument

that we have used to model confounding dynamics in terms of the ignorance about the initial state

cannot be applied if the initial state does not exist.4 The distinction of whether the Information

Equilibrium is an Information Equilibrium because the initial state is exogenously revealed or

because it is assumed not to exist, however, will not play a substantive role in our analysis of

information fragility and stability, to which we now turn.

3 Informational Fragility

The result in Proposition 2 ensures that a rational expectations equilibrium takes the form of

the Full Information equilibrium (2.3), provided that some mild conditions on A(L) and Ut are

met. For instance, if one were willing to assume that A(L) is always invertible, then one could

directly work under the full information equilibrium characterization. However, the conditions on

the dynamics of A(L) have a structural significance, in the sense that as a modeler one would like

not to restrict a-priori the possible form that the exogenous dynamics of at can take. For instance,

in the context of a dynamic macroeconomic model, if at represents aggregate productivity, by

4We are thankful to Marios Angeletos and Venky Venkateswaran for pointing our attention upon this technical
issue.
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assuming invertibility of A(L) one would prevent the dynamics of productivity from taking an S-

shape form that is typical of diffusion processes, and possibly of how new knowledge is transformed

into increased productivity. More generally, any process that diffuses with a rate distribution that

is non-monotonic can be represented by a non-invertible specification of A(L). In addition, in a

more structural setting the process at might be the outcome of some decision making that takes

place in a different market or technology in the economy. For instance, the one-period time-to-build

assumption in a model of capital accumulation by firms with demand shocks results in a process

for capital that is non-invertible, as in Townsend (1983). To the extent that the process for capital

affects the equilibrium interest rate and this, in turn, the Euler equation for consumption, the

resulting relationship between consumption and interest rate might take the form of (2.1) with a

non-invertible at.
5 Finally as we demonstrate in Section 6, the burgeoning “news” shock literature

is predicated on the assumption that agents have foresight about future technology, government

spending, tax rates, etc., which relies heavily on the non-invertibility of at.

Proposition 2 is also useful for thinking about cases in which the state was exactly observed at

some distant point in the past. Interestingly, this corresponds to the approach of “truncating” the

informational incompleteness by assuming the the current state is revealed to the agents at some

point in the future, an assumption that simplifies the characterization of the rational expectations

solution and that is widely used in the incomplete information literature since Townsend (1983)

first proposed it.6

Provided that one does not want to restrict at to be invertible a-priori, but one is willing to

assume that the state is eventually revealed, does Proposition 2 provide a result for safely focusing

on the full information solution (2.3) as the relevant rational expectations equilibrium of model

(2.1)? The answer, remarkably, is no. The reason lies in the inherent fragility of the dynamic

rational expectations equilibrium under the form of the full information solution (2.3) to slight

perturbations in the agents’ information set.

To substantiate this point let us consider a particular example, before stating a more general

result. Suppose that at is specified as

at = ut + θut−1, with |θ| > 1, (3.1)

which corresponds to setting ρ = 0, m = 1 and Ã(L) = 1 in (2.4). Let us assume that the

representative agent is endowed with the knowledge of some state u0, so that u0 ∈ Ut for any t ≥ 0.

Proposition 2 ensures that the full information equilibrium is a rational expectations information

equilibrium. Such equilibrium is therefore obtained from (2.3) as

yt = ϕ(1 + θκ)ut + ϕθut−1. (3.2)

Definition IE requires that the rational expectations equilibrium representation of (3.2) is a lin-

5For more on this example see Rondina and Walker (2012b).
6Recent examples of papers that employ the truncation approach include Angeletos and La’O (2009), Hellwig

(2002), Lorenzoni (2009).
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ear combination of the history of at and yt, as both are elements of the information set of the

representative agent in equilibrium. To obtain such representation we note that (3.2) implies

E
[

yt+1|Ut ∨ Vt(y) ∨ Mt(y)
]

= ϕ−1
E
[

θut|Ut ∨ Vt(y) ∨ Mt(y)
]

. To write the left hand side of this

expression in terms of at’s and yt’s we cannot use (2.8) because that relationship was already used

to argue that at should be part of the information set at time t. However, we can use the same

relationship lagged once to obtain

E
[

θut|Ut ∨ Vt(y) ∨Mt(y)
]

= E
[

θut + θ2ut−1 − θ2ut−1|Ut ∨ Vt(y) ∨Mt(y)
]

= θat − E
[

θ2ut−1|Ut ∨ Vt(y) ∨Mt(y)
]

= θat −
ϕ

κ

(

yt−1 − at−1).

Once substituted into the equilibrium equation one obtains

yt = −θyt−1 + ϕ

(

(1 + θκ) + θL

)

at, (3.3)

which must hold in the full information rational expectations equilibrium (3.2). Note that in this

representation the equilibrium variable yt has an autoregressive root at |θ| > 1 and this root is

explosive, in the sense that any realization of the innovation different from zero would result in

non-stationary behavior of the variable yt. Despite the unstable autoregressive root, however,

yt is still a stationary process, as equation (3.2) clearly shows. The reason that reconciles this

apparent contradiction is that the autoregressive root of yt in (3.3) exactly cancels with the moving

average root of at.: the potential instability that learning from the endogenous variable injects into

the equilibrium representation is exactly defused by the dynamics of at. In the optimal control

literature jargon the representation (3.3) is said to harbor a non-minimum phase zero which can

be canceled with the equivalent pole. Mathematically such cancellation is legitimate, but for the

optimal control problem it creates a “hidden instability”: if the system is slightly misspecified, the

cancellation fails and the hidden pole drives the system to instability.7 To see how the instability

can emerge consider equation (3.3) at time t = 1,

y1 = ϕθa0 − θy0 + ϕ(1 + θκ)a1. (3.4)

The condition for unstable root to be exactly diffused by the root of the at process is that a0 and

y0 must be specified as

ϕa0 − y0 =
κ

θ
u0. (3.5)

In other words, because of the hidden instability, the dynamic equation (3.3) must be initialized

at the initial condition (3.5) in order for it to be stationary. If the initialization is done at a

different point, the unstable root would make the process explosive. For instance, suppose the

7See Skogestad and Postlethwaite (2005) for a textbook analysis of hidden instabilities in dynamic systems.
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initial condition is specified as

ϕa0 − y0 =
κ

θ
u0 + ε. (3.6)

for |ε| > 0, then the dynamic solution to (3.3) would become

yt = ϕ(1 + θκ)ut + ϕθut−1 + θtε (3.7)

which is non-stationary and diverging with respect to (3.2). The perturbation ε can have at least two

different sources. On the one hand, it could be a perturbation to κ, in which case the perturbation

is to the knowledge of the structure of the model. On the other hand, it could be thought as a

perturbation to u0, in which case it corresponds to a perturbation in the information set along

the equilibrium path. Because we assumed at the outset that the structure of the economy is

perfectly known, the second interpretation applies to our setting. However, the first interpretation

is suggestive of a relationship between the informational fragility of an equilibrium and the ability

to learn such equilibrium. We will explore this parallel in Section 5.

The following proposition generalizes the example.

Proposition 3. If m > 0 (A(L) is non-invertible), the rational expectations Information Equilib-

rium represented by the Full Information equilibrium is fragile to small perturbations in the infor-

mation set of the representative agent. If the information set is slightly perturbed the dynamics will

become non-stationary and diverge away from the full information equilibrium.

Proof. See Appendix A.

In dynamic rational expectations models, learning from the endogenous variable is achieved by

combining the available information in a way that can inject a hidden instability in the equilibrium

representation. This observation suggests that any rational expectations equilibrium whose exis-

tence relies on learning from endogenous variables should be tested for informational fragility by

looking for the presence of hidden instabilities.

4 Informational Stability

Proposition 3 casts a serious limit to the use of the closed form solution of the Full Information

equilibrium as the rational expectations predicted outcome of model (2.1) when A(L) is non-

invertible. If the Full Information form is not robust to information perturbation, is there a rational

expectations equilibrium that is informationally stable? In this section we show that the answer

to this question, fortunately, is positive. We begin by stating a result that characterizes a class of

rational expectations equilibria that obeys Definition 2. We then show that equilibria from this

class are informationally stable.

8
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Proposition 4. Suppose the exogenous information is specified as Ut = {∅} for t ∈ Z, and suppose

that A(L) is specified as

at − ρat−1 = Ã(L)

m
∏

i=1

(1 + θiL)ut, where |θi| > 1 for i = 1, ...,m. (4.1)

Then the stochastic process

yt − ρyt−1 =
ϕ

L− κ

{

LA(L)− κA(κ)
(1 − ρL)

(1 − ρκ)

∏m
i=1 Bθi(L)

∏m
i=1 Bθi(κ)

}

ut (4.2)

where

Bθi(L) ≡
1 + θiL

θi + L
,

is a dynamic rational expectations Information Equilibrium of the model (2.1).

Proof. See Appendix A.

The next proposition describes the informational stability properties of the dynamic equation

(4.2).

Proposition 5. The dynamic rational expectations equilibrium represented by the stochastic process

(4.2) is informationally stable, in the sense that, if the information set of the representative agent

is slightly perturbed, the dynamics of the perturbed system revert back to the original dynamics.

The proof of the proposition for the general case of m > 0 is reported in the Appendix, here we

focus on a simple example as we did in Section 3. When m = 1 and ρ = 0 the equilibrium of

Proposition 4 becomes

yt = ϕ
(

θ + κ)ũt + ϕũt−1 where ũt ≡

(

1 + θL

θ + L

)

ut. (4.3)

The Definition 2 implies that there must exists a representation of this equilibrium in terms of the

history of yt and at. Proceeding similarly to the previous section one can show that in this case

such representation is

yt = −
1

θ
yt−1 +

ϕ

θ

(

θ + κ+ L

)

at (4.4)

The equilibrium process yt has an auto-regressive representation, as in (3.3), but the autoregressive

root is now stationary, since |1θ | < 1. In other words, the rational expectations equilibria that take

the form (4.2) do not harbor hidden instabilities.

Consider the equation (4.4) at time t = 1,

y1 =
1

θ

(

ϕa0 − y0
)

+ ϕ

(

θ + κ

θ

)

a1 (4.5)

9
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In this case, to ensure that y1 is exactly equal to the equilibrium level after an arbitrary history of

innovations ut’s the initial condition should be specified as

ϕa0 − y0 = ϕκũ0 (4.6)

The second equality in this expression is intuitive: in the same way as the initial condition of the

Full Information equilibrium was a linear function of u0, the initial condition for the equilibrium

in Proposition 4 is a linear function of ũ0, the innovation to the most precise information that the

representative agent can learn from the equilibrium in Proposition 4. Suppose now that the initial

condition is perturbed by |ε| > 0, which we interpret as a perturbation to the information ũ0, so

that

ϕa0 − y0 = ϕκũ0 + ε, (4.7)

then it can be showed that the dynamic solution to (4.4) is

yt = ϕ
(

θ + κ+ L
)

ũt +
1

θt
ε. (4.8)

Since |1θ | < 1 the accumulated effect of the perturbation disappears as t grows larger and the

perturbed equilibrium converges back to the original equilibrium (4.3). Hence, the equilibrium in

Proposition 4 is informationally stable.

5 Informational Fragility and Learning

The notions of informational fragility and stability are relevant also because they have implications

for the learnability of a rational expectations equilibrium. Within the context of the simple MA(1)

example, we study whether the Full Information equilibrium is least-squares learnable under infor-

mational fragility. We will show that the equilibrium cannot be learned. On the other hand, the

informationally stable equilibrium of Proposition 4 is always least-square learnable.

Our learning analysis follows the methods and the notation of Chapter 6 in Evans and Honkapo-

hja (2001). The first step in the learning analysis is to recast the equilibrium relationships in terms

of a bi-variate process for the equilibrium outcome yt and the implied forecast errors, which we will

denote by et.
8 Formally, for any rational expectations information equilibrium define the forecast

error process as

et ≡ yt − E
[

yt|Vt−1(p) ∨ Vt−1(p) ∨ Ut−1

]

. (5.1)

Throughout the analysis we will focus on the case of at = ut + θut−1 with θ > 1; the case

of negative θ follows the same steps but it would make notation more burdensome. Under this

8We are thankful to Pierre-Olivier Weill for suggesting to us to work within the bi-variate representation that
includes the process of forecast errors.
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specification for at the rational expectations equilibrium can be then represented as

yt = κηet + ϕat (5.2)

et = yt − ηet−1 (5.3)

where the coefficient η will take a different form depending on the equilibrium we are considering.

More precisely, denote by η̂ the coefficient for Full Information equilibrium and by η∗ the coefficient

for the Information Equilibrium of proposition 4, with

η̂ =
κ

1 + κθ
and η∗ =

1

κ+ θ
. (5.4)

The rational expectations equilibrium taking the form of the Full Information equilibrium (3.2)

can be represented as the bivariate system (5.2)-(5.3) with η = η̂, while the equilibrium (4.3) would

specify η = η∗. We focus on least-squares learning of the parameter η, and so we specify the

learning algorithm following Evans and Honkapohja (2001)

yt = κηt−1et + ϕat (5.5)

et = yt − ηt−1et−1 (5.6)

ηt =
1
t

∑t
s=1 yses−1

1
t

∑t
s=1 e

2
s−1

, (5.7)

with η0 and e0 given. This learning system can be written in recursive form as follows

et =
ηt−1

1− κηt−1
et−1 +

ϕ

1− κηt−1

(

ut + θut−1

)

(5.8)

ηt = ηt−1 +
1

t
S−1
t−1etet−1 (5.9)

St = St−1 +
1

t

(

e2t − St−1

)

+
1

t2
−t

t+ 1

(

e2t − St−1

)

(5.10)

where St represents the time-t estimate of the variance-covariance matrix of the process for the

forecast errors. To apply the formal results of Chapter 6 in Evans and Honkapohja (2001) it is

useful to represent the system in compact notation, so we define

Xt =







et

et−1

ut






and λt =

(

ηt

St

)

. (5.11)

In the two equilibria that we are considering the vector λ takes the form

λ̂ =

(

η̂

ϕ2(1 + κθ)2

)

and λ∗ =

(

η∗

ϕ2(κ+ θ)2

)

(5.12)

11
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The learning algorithm can then be written as

Xt = G(λt−1)Xt−1 + F (λt−1)ut (5.13)

λt = λt−1 + γtH(λt−1,Xt) + γ2t ρt(λt−1,Xt) (5.14)

where

G(λt−1) ≡







− ηt−1

1−κηt−1
0 θϕ

1−κηt−1

1 0 0

0 0 0






, F (λt−1) ≡







ϕ
1−κηt−1

0

1






,

γt =
1

t
, H(λt−1,Xt) =

(

S−1
t−1etet−1

e2t − St−1

)

, ρt(λt−1,Xt) =

(

0
−t
t+1

(

e2t − St−1

)

)

.

An equilibrium λ can be learned if the above dynamic system converges to λ as t → ∞ for λ0

in a neighborhood of λ. For such convergence to happen several properties of the components of

the dynamic system have to be checked. A necessary condition for convergence is that the process

for Xt is stationary in a neighborhood of λ, which corresponds to the Eigenvalues of G(λ) to have

modulus smaller than one. The following proposition shows that this necessary condition is not

met by the Full Information equilibrium.

Proposition 6. The Full Information rational expectations equilibrium λ̂ cannot be learned by the

least squares algorithm (5.5)-(5.7) for any λ0 in a neighborhood of λ̂.

The proof of the proposition consists in computing the Eigenvalues of the matrix G(λ̂). It is

immediate to see that they are given by the vector (−θ, 0, 0). Since we have assumed that θ > 1 and

G(λ) is continuous, it follows that the process Xt is non-stationary in a neighborhood of λ̂, hence

the equilibrium cannot be learned by least squares methods. The reason behind this result lies in

the structure of the dynamic process for the forecast errors et, which contain a hidden instability

inherited from the equilibrium learning described in Section 3. At the equilibrium value η̂ this

process contains an explosive root which exactly cancels with the zero in the moving average of at.

If the forecast error process is not initialized at the equilibrium value the explosive root will not

cancel with the zero and the initial misalignment would grow indefinitely. In the learning algorithm

the forecast error is not initialized at the equilibrium value, unless one happens to start learning

exactly from the equilibrium point, and so the explosive root prevents the convergence of the

learning algorithm. In other words, the informational fragility of the Full Information equilibrium

affects the learning process by making it non-convergent.

We turn now to the analysis of the learning of the information equilibrium λ∗. The following

proposition summarizes our result.

Proposition 7. The rational expectations equilibrium λ∗ can always be learned by the least squares

algorithm (5.5)-(5.7) for λ0 in a neighborhood of λ∗.

12
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The first step in proving this result is to check for the stationarity of the process Xt in a

neighborhood of λ∗. The Eigenvalues of the matrix G(λ∗) in this case are given by the vector

(−1
θ , 0, 0), where | − 1/θ| < 1 which, together with the continuity of G(λ), provides the desired

result. The second and sufficient step in the proof is to show the E-stability of the learning

algorithm. This is done by analyzing the limiting mapping T (λ) defined as

T (λ) ≡ lim
t→∞

E
(

H(λ,Xt(λ))
)

=

(

S−1σ1

σ0 − S

)

(5.15)

where σi is the auto-covariance of order i of the forecast errors process et under λ. E-stability is

verified by studying the stability of the differential equation

dλ

dτ
= T (λ)− λ (5.16)

in the neighborhood of λ∗. It is possible to show that λ∗ is a stationary point of the above ordinary

differential equation and that such stationary point is stable. This last property is obtained by

deriving the partial derivatives matrix of T (λ) evaluated at λ∗, which is

DT (λ∗) =

(

− (θ+κ)2

θ 0

τSη(θ) −1

)

. (5.17)

where τSη(θ) is a function whose form is not influential for the stability analysis. The Eigenvalues

of DT (λ∗) must be all negative for the stationary point to be stable. Note that this is verified

under our maintained assumption θ > 1. Hence, the Information Equilibrium λ∗ can be learned by

the least square algorithm (5.5)-(5.7).

6 Applications

In this section we apply our results to two prominent examples. The first is a stylized model with

news shocks. Many recent papers document the importance of news shocks from an empirical

and theoretical viewpoint for understanding business cycle dynamics and changes in fiscal policy

[Beaudry and Portier (2006, 2004), Jaimovich and Rebelo (2009), Christiano, Ilut, Motto, and Ros-

tagno (2010), Fujiwara, Hirose, and Shintani (2011), Barsky and Sims (2011), Leeper and Walker

(2011), Mertens and Ravn (2010, 2011), Schmitt-Grohé and Uribe (2012), Khan and Tsoukalas

(2012)]. We demonstrate that news shocks, as they are typically modeled, result in equilibria that

are informationally fragile. We also demonstrate this result in an incomplete information model

with nominal rigidities and productivity shocks taken from Lorenzoni (2009). It represents an

instance of the class of monetary models popularized by Clarida, Gali, and Gertler (1999) and

Woodford (2003), among others.

6.1 News Shocks We examine the informational fragility of news shocks in the setup of Leeper

and Walker (2011). While the model is quite stylized, the results readily extend to more com-
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plex settings [e.g., Jaimovich and Rebelo (2009), Christiano, Ilut, Motto, and Rostagno (2010),

Mertens and Ravn (2011), Schmitt-Grohé and Uribe (2012), Khan and Tsoukalas (2012)].9 Con-

sider a standard growth model with a representative household that maximizes expected log utility,

E0
∑∞

t=0 β
t log(Ct), subject to Ct+Kt ≤ AtK

α
t−1, where Ct, Kt, and Yt denote time-t consumption,

capital, and output, respectively, and At is an exogenous technology shock. As usual, 0 < α < 1

and 0 < β < 1. Labor is supplied inelastically. The equilibrium conditions are well known and

given by

1

Ct
= αβEt

[

1

Ct+1

Yt+1

Kt

]

(6.1)

Ct +Kt = Yt = AtK
α
t−1. (6.2)

Let A denote the steady state value of technology. The steady state capital stock isK = [αβA]1/(1−α).

Let lower case letters denote percentage deviations from steady state values, kt = log(Kt)− log(K)

and at = log(At) − log(A). Log linearizing (6.1)–(6.2) yields an equilibrium that is characterized

by a second-order difference equation in capital

αβEtkt+1 − (1 + α2β)kt + αkt−1 = αβEt(at+1) (6.3)

If we assume that at = A(L)εt, where A(·) satisfies square summability, and {εt−j}
∞
j=0 ∈ Ut

then by Proposition 2, the solution to (6.3) is the Full Information equilibrium and given by

kt =

[

A(L)−A(̟)

(1− αL)(̟ − L)

]

εt (6.4)

where ̟ = αβ.

Consider the following moving-average representation for the technology process

at = εt + θεt−1 (6.5)

which is identical to (2.4). In order for (6.5) to be labeled a “news shock”, θ must be larger than

one. This implies (6.5) is a non-fundamental moving-average representation, and the space spanned

by current and past technology, {at−j}
∞
j=0, is smaller than the space spanned by the structural

innovations, {εt−j}
∞
j=0.

10 The variance of the one-step-ahead forecast error for agents conditioning

on structural innovations is smaller than the forecast error variance for agents conditioning only

on current and past at. To show this analytically, we must derive the Wold representation of (6.5),

9Appendix B gives conditions under which a more complex model with news shocks would be informationally
fragile.

10Other papers have assumed an i.i.d. process for news (e.g., at = ε1,t−1−θε2,t, where ε1,t−1 and ε2,t are orthogonal
at all leads and lags). Leeper and Walker (2011) derive a mapping between i.i.d. news and the news structure given
by (6.5). Once this mapping is taken into consideration, it is straightforward to extend to our results to models with
i.i.d. news shocks.
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which comes from flipping the root, θ−1, outside of the unit circle

at = θε̃t + ε̃t−1, ε̃t =

[

1 + θL

L+ θ

]

εt (6.6)

Representation (6.6) is the Wold representation where ε̃t is the one-step-ahead forecast error as-

sociated with forecasting at conditional on {at−j}
∞
j=1. This representation shows that current and

past at span an equivalent space to current and past ε̃t, which is a strictly smaller space than εt.

Optimal prediction formulas yield the variance of the one-step-ahead forecast error using (6.6)

E{at+1 − E[at+1|{at−j}
∞
j=0]}

2 = E{(1− θL)εt+1 − L−1[(L− θ) + θ]ε̃t}
2

= E{(1− θL)εt+1 − (1− θL)εt+1 − θε̃t+1}
2

= θ2var(ε̃t+1) = θ2σ2
ε , (6.7)

where the last equality follows because the term, (1+ θL)/(L+ θ), known as a Blaschke factor, has

a covariance generating function of one and hence var(εt)=var(ε̃) = σ2
ε .

If agents condition on current and past structural innovations directly, then (6.5) can be used

to forecast next period’s technology process. The variance of the forecast error is given by

E{at+1 − E[at+1|{εt−j}
∞
j=0]}

2 = E{(1− θL)εt+1 − L−1[(1− θL)− 1]εt}
2

= E{εt+1}
2 = σ2

ε (6.8)

Comparing this forecast error variance with (6.7) shows that the moving-average coefficient, θ,

determines the degree to which agents conditioning on the structural shocks are better informed.

As θ becomes “large”, the news shock has a more significant impact and agents who observe the

structural innovations have a much more precise one-step-ahead forecast. As θ → 1 from above,

the information sets and the variance of forecast errors converge, which eliminates the news shock.

Equations (6.7) and (6.8) demonstrate that if the process for technology follows (6.5) with

|θ| > 1, the one-step-ahead forecast for technology and capital of (6.3) will be quite different for

news shocks [i.e., {εt−j}
∞
j=1 ∈ Ut] relative to the equilibrium that does not assume news shocks

[i.e., {∅} ∈ Ut]. The news shock equilibrium corresponds to the Full Information Equilibrium and

is given by

kt = αkt−1 + θεt =

(

θ

(1− αL)(1 + θL)

)

at (6.9)

In contrast to the “news” shocks, an alternative equilibrium assumes that agents must learn the

underlying structural shocks. Using Proposition 4, the Information Equilibrium assuming {∅} ∈ Ut

is given by

kt = αkt−1 + ε̃t =

(

θ−1

(1− αL)(1 + θ−1L)

)

at (6.10)

15



Rondina & Walker: Informational Fragility

Following the results in Sections 3 and 4, we have established the following corollary.

Corollary 1. The “News Shock” equilibrium (6.9) is informationally fragile, while the Information

Equilibrium (6.10) is informationally stable.

Proof. Follows directly from Propositions 3 and 5.

6.2 Productivity Shocks with Nominal Rigidities The model is an incomplete information

version of a monetary equilibrium model with nominal rigidities driven by productivity shocks. The

version of the model is taken from Lorenzoni (2009) and it represents an instance of the class of

models popularized by Clarida, Gali, and Gertler (1999) and Woodford (2003), among others. The

linearized economy is fully described by an output equation, an inflation equation and a monetary

policy rule as

yt = E(yt+1|Ωt)− it + E(πt+1|Ωt) (6.11)

πt = α(yt − at) + βE(πt+1|Ωt) (6.12)

it = φπt (6.13)

where all the constants have been dropped for convenience and Ωt represents the information set of

the representative agent, to be specified shortly. The variable at represents the exogenous process

for aggregate productivity in the economy, the term yt − at is a measure of the real marginal costs

in the economy along the labor market equilibrium. We follow Lorenzoni (2009) in specifying the

process for aggregate productivity as having a stochastic trend, but we also allow a richer moving

average structure, more specifically we let

at = at−1 + ut + θut−1, (6.14)

with ut ∼ N (0, σ2
u). For the moment we do not impose any restriction on the value of θ, we only

notice that the permanent component of productivity can be modeled as a diffusion process with

a typical S-shape behavior if one allows θ > 1. In such case the innovation to productivity at time

t, ut, can be interpreted as the amount of new knowledge available at that time, which results in

higher productivity only gradually over time, with an initial low diffusion at time t, a subsequent

steep increase in diffusion at time t + 1, and a leveling-off phase afterwards, from t + 2 onward.

Arguably, such dynamic behavior may adequately capture episodes of innovations to productivity

that have permanent effects (cf. Canova (2003)).

Our objective is to characterize the dynamic rational expectations Information Equilibrium as

defined in Definition 2. To that end we assume, for simplicity, that the initial time is not specified,

we let Ut = 0 for all t’s and define the information set as

Ωt ≡ Vt(y, π) ∨Mt(y, π). (6.15)

The knowledge of the model in this setting always reveals the realization for aggregate productivity
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at, and so in any equilibrium we will have Vt(a) ⊆ Mt(y, π). In addition, we follow Lorenzoni

(2009) and conjecture that E(yt+1|Ωt) = E(at+1|Ωt), which implies E(πt+1|Ωt) = 0.11 Substituting

the interest rate rule into the output equation and the inflation equation under the above conjecture

the equilibrium condition reduces to

yt = κE
[

yt+1|Ωt

]

+ (1− κ)at, (6.16)

where κ ≡ 1
1+αφ ∈ (0, 1). The equilibrium equation we want to study is thus of the form (2.1) with

ϕ = (1 − κ). Once the solution for yt is obtained, the solution for πt immediately follows. At this

point one might think that there is really no fixed point problem to solve for in this setting since

our conjecture already implies E(yt+1|Ωt) = E(at+1|Ωt). Note, however, that such conjecture does

not pin down the equilibrium information set Ωt, which remains to be determined. Equation (6.16)

imposes a fixed point condition through the specification of the information set Ωt as containing the

current and past equilibrium variables yt and πt. To simplify matters we note that the knowledge

of the variable πt corresponds to the knowledge of the variables yt and at, therefore in what follows

we proceed by working with the information set Ωt = Vt(y)∨Vt(a) without loss of generality. The

equilibrium equation we want to solve for is then

yt = κE
[

xt+1|Vt(y) ∨ Vt(a)
]

+ (1− κ)at. (6.17)

The Full Information equilibrium of (6.17) is a straightforward application of Proposition 1 and

it is given by the ARMA(1, 1) process

ỹt − ỹt−1 = (1 + θκ)ut + θ(1− κ)ut−1. (6.18)

We know from Proposition 2 that the Full Information equilibrium (6.18) is a legitimate ratio-

nal expectations Information Equilibrium. The representation of the equilibrium in terms of the

components of the information set is

ỹt − ỹt−1 = −θ(ỹt−1 − ỹt−2) + θ(1− κ)(at − at−1). (6.19)

The autoregressive root −θ, which is the result of learning from the endogenous variable, dictates

the informational stability of the equilibrium. If θ ≤ 1 the equilibrium is informationally stable,

while for θ > 1 the equilibrium is informationally fragile. Therefore, if the modeler was interested

in allowing the productivity process to display an S-shaped diffusion pattern, i.e. allowing θ > 1,

focusing on the equilibrium (6.18) would be a choice that is not robust to the information set

initialization. In addition, we know from Section 5 that such equilibrium cannot possibly by

justified by least squares learning convergence.

The key message underscoring this example is that when solving incomplete information rational

11To see this just lead the inflation equation forward one period and apply the expectational operator on both sides
taking into account the conjecture for the expectations of output and aggregate productivity.
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equilibrium models, the sole fact that a guess on the expectations in equilibrium (which corresponds

to a guess of the equilibrium information) satisfies the fixed point equilibrium condition, does not

guarantee that the resulting equilibrium is robust to information perturbation.

To conclude our application we compute the rational expectations equilibrium for (6.17) that is

suggested by Proposition 4 when θ > 1, and which is, therefore, informationally stable. Application

of the proposition shows that the equilibrium is given by an ARMA(2, 2) of the form

y∗t −
θ − 1

θ
y∗t−1 −

1

θ
y∗t−2 =

θ + κ

θ
ut +

(

1− κ

θ
+ θ + κ

)

ut−1 + (1− κ)ut−2. (6.20)

The equilibrium process contains a unit root, but the learning from the endogenous variable yt is

now stable, which corresponds to an additional stable auto-regressive root in the output process

at 1
θ . This additional persistence combines with the additional moving average component and it

results in a different dynamic response compared to the full information counterpart.

To see this we consider the dynamic response of the equilibrium variables to a unit (standard

deviation) increase in the structural innovations ut. The impulse response of productivity is given

by

dat
dut

= 1 and
dat+τ

dut
= 1 + θ, for τ > 0. (6.21)

A unit innovation of ut has a permanent effect on aggregate productivity of 1 + θ which is reached

in part at impact, and then in full from t + 1 onward. In the Full Information equilibrium the

impulse response of output is given by

dỹt
dut

= 1 + θκ and
dỹt+τ

dut
= 1 + θ, for τ > 0, (6.22)

and the impulse response of employment ñt by

dñt

dut
= θκ and

dñt+τ

dut
= 0, for τ > 0, (6.23)

The permanent increase in productivity is not completely realized at t, but it is entirely anticipated

and so output increases by more at impact. This generates a temporary boom in employment and

a temporary spike in inflation, since π̃t = κñt. Once productivity reaches the new permanent level

at t + 1, employment is back to normal (or trend), and so is inflation. In the full information

equilibrium a permanent increase in productivity generates a one-period above-trend reaction for

employment and inflation as output climbs to a new higher permanent level.

The impulse responses in the Information Equilibrium (6.20) are quite different. At impact the

representative agent does not know exactly the extent of the innovation ut and so she is unable

to exactly forecast the permanent effect on productivity. This will result in an under-reaction

of output and employment to the innovation, compared to the Full Information case. In turn,

the under-reaction will make learning from the equilibrium variables imprecise and result in an
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overestimation of the innovation in the subsequent period. The overestimation generates a an

over-reaction in output and employment, compared to the full information case. The over-reaction

will then result in an underestimation of the innovation in the subsequent period, with an under-

reaction of output and employment and so on. The impulse response for output in this case is given

by

dy∗t
dut

= 1 +
κ

θ
and

dy∗t+τ

dut
= 1 + θ +

(

−
1

θ

)τ−1

κ

(

1−
1

θ2

)

, for τ > 0, (6.24)

and the impulse response of employment n∗
t by

dn∗
t

dut
=

κ

θ
and

dn∗
t+τ

dut
=

(

−
1

θ

)τ−1

κ

(

1−
1

θ2

)

for τ > 0. (6.25)

The uncertainty about the extent of the permanent innovation at impact results in a smaller

increase in output, the bigger is θ. Note that θ was playing exactly the opposite role in the

Full Information case. The increase in output is still higher than the increase in productivity at

impact, which generates an increase in employment of κ
θ , which is smaller than the Full Information

case. Overall, the reaction at impact under y∗t is similar in quality to the reaction under ỹt, but

the overall magnitude is smaller because of the incomplete information about the extent of the

permanent innovation. In the subsequent periods output oscillates around the permanent steady

state increase 1 + θ by a factor k
(

1 − 1
θ2

)

. The second term is the unconditional forecast error

due to the non-invertibility of the productivity process, the first term represents how relevant is

the forecast of future output for today’s decisions. As periods unfold there is also an additional

effect due to θ that dampens the oscillations, the bigger is θ. This effects comes from the signal

extraction problem of the representative agent: the higher is θ, the noisier is yt, and thus the less

useful to predict future output, the smaller the effect of noise on the prediction, the smaller the

resulting misalignment of output with productivity.

Figure 1 plots the impulse responses for productivity at (dotted line), the informationally fragile

solution (black dashed line) and the informationally stable solution (blue solid line) for both output

and employment, to a one time standard deviation increase in ut. The parameters values are

α = .05, β = .7, φ = 1.5, ρ = 1 and θ = 2. Looking at the left side panel, in the fragile solution

output increases at impact almost at the new permanent level as the extent of the innovation

is fully anticipated. The increase in productivity is limited at impact because of the initial slow

diffusion. This creates the need for higher employment in order to increase output at impact. In the

subsequent period productivity reaches the new permanent level, so does output, and employment

goes back to the long run trend. In the stable solution the initial reaction of output is positive,

but is around only 50% of the new higher trend. This level is still higher than the increase in

productivity and so employment increases at impact, but only by a 25% of the increase in the

fragile case. One period from impact agents learn that the permanent increase in productivity

might actually be higher than previously thought and output overshoots the trend by around a
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20% margin. Productivity is now at the new higher level, but the overshooting in output requires

a higher employment to be achieved, which means that employment is still above trend one period

after impact, and even higher than the level at impact. The subsequent period agents realize that

the innovation might have been smaller than they thought, which creates a drop in output below

trend, and a drop in employment below trend. In other words, two periods after the onset of the

productivity innovation and a gradual boom in output and employment, the economy experiences

a recession. The same type of oscillation then repeats itself with a smaller and smaller magnitude,

until the economy finally settles on the new higher trend.
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Figure 1: Impulse Response of Output and Employment to Innovation in Productivity

In summary, applying our stability analysis to the equilibrium of the stylized monetary model

(6.11)-(6.13) when the productivity process at displays a diffusion-type dynamics, results in a

rational expectations equilibrium with several differences compared to the equilibrium on which

a researcher unaware of our analysis would focus. From a normative perspective, the equilibrium

(6.20) is robust to perturbations in the information set and is least-squares learnable, two conditions

that would make it preferable to equilibrium (6.19). From a positive perspective, the equilibrium

(6.20) displays a rich propagation dynamic that not only generates a demand-shock like response

at impact, which is qualitatively similar to what happens in equilibrium (6.19), but also generates

a longer expansion of employment over trend, and, remarkably, a subsequent recession in both

output and employment (both below trend), followed by a smaller expansion, and so on. This all

in response to a permanent positive productivity shock that diffuses only gradually in the economy.

7 Conclusion

In this paper we studied the stability properties of Rational Expectations equilibria in dynamic

models with incomplete information when the information set of agents is slightly perturbed. We

showed that equilibria where the endogenous variables resolve the information incompleteness can
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be informationally fragile, in the sense that a slight perturbation in the endogenous information

set of the agents along the equilibrium path can lead to a break-down of the equilibrium dynamics.

We then presented a class of dynamic rational expectations equilibria that are informationally

stable for the same parameter space where other equilibria are informationally fragile. We also

showed that an equilibrium that is informationally fragile is not least-squares learnable, while an

equilibrium that is informationally stable always is. We concluded by presenting two applications

from established literatures.
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A Appendix A: Proofs

Proof of Proposition 2 The Information Equilibrium will be a Full Information Equilibrium

if the Hilbert space generated by Ωt, as defined in Definition 2, spans the space as the sequence

of underlying structural shocks, {ut−j}
∞
j=0. The first two cases are straightforward: [i.] If m = 0,

then knowledge of the model and (2.8) implies that {at−j}
∞
j=0 spans the same space as {ut−j}

∞
j=0

because at is fundamental for ut. Therefore even if the exogenous information Ut is the empty

set, the Information Equilibrium will be the Full Information Equilibrium. [ii.] If m > 0 and

Ut = {ut−j}
∞
j=0, then the Information Equilibrium will be a Full Information Equilibrium because

the agents observe the entire sequence of current and past shocks by assumption. [iii.] If m > 0,

then {at−j}
∞
j=0 spans {ut−j}

∞
j=0 if dimUt ≥ m, which is the condition given in Proposition 2. As an

example, suppose a moving average representation has two distinct zeros, xt = (L− λ1)(L− λ2)εt

with |λ1| < 1, |λ2| < 1. If agents observe εt−1 and εt−2 directly, then we may write the moving

average as xt − εt−2 + (λ1 + λ2)εt−1 = λ1λ2εt, which is always invertible.

Proof of Proposition 3

The proof of the proposition consists in expressing the Full Information equilibrium in terms of the

information set of the rational expectations equilibrium, similarly to (3.3) and then argue that the

expression is fragile to the initialization of the information set. The Full Information equilibrium

for m > 0 can be expressed as

(yt − ρyt−1)

m
∏

i=1

(1 + θiL) = ϕ

(

LA(L)(1 − ρκ)− κA(κ)(1 − ρL)

)

(L− κ)(1− ρκ)Ã(L)
(at − ρat−1). (A.1)

The lag polynomial on the right hand side has a zero at κ by construction that cancels with the root

at the denominator. It follows that the polynomial is stationary. On the other hand, the equilibrium

representation for yt has an AR(m+1) component, where m of the roots are inside the unit circle.

Unless the initial conditions on the information set (y0, y−1, ....., y−m) and (a0, a−1, ....., a−m) are

chosen to exactly cancel the explosive roots, the equilibrium dynamics will diverge.

Proof of Proposition 4

We begin by guessing a functional form for the equilibrium price as

yt = Q(L)

m
∏

i=1

(1− λiz)ũt (A.2)

with

ũt =

m
∏

i=1

Bλi
(L). (A.3)
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and

Bλi
(L) ≡

1− λiL

λi − L
. (A.4)

Under such guess one can derive the conditional expectation for future productivity and substitute

it into the equilibrium equation (2.1) and get the following z-transform expression

Q(z)

m
∏

i=1

(z − λi) = κz−1[Q(z)

m
∏

i=1

(1− λiz)−Q0]

m
∏

i=1

Bλi
(z) + ϕA(z)

= κz−1[Q(z)
m
∏

i=1

(z − λi)−Q0

m
∏

i=1

Bλi
(z)] + ϕA(z)

Working out the algebra yields

Q(z)(z − κ)

m
∏

i=1

(z − λi) = ϕzA(z) −Q0

m
∏

i=1

Bλi
(z) (A.5)

For |κ| < 1, stationarity requires the Q(·) process to be analytic inside the unit circle, which will

not be the case unless the process vanishes at the poles z = {λi, κ} for every i. For simplicity, we

assume λi 6= λj for any i 6= j, however this restriction can be relaxed [see, Whiteman (1983)].

Evaluating at z = λi provides a restriction on the A(·) process,

A(λi) = 0 for i = 1, ...,m, (A.6)

which implies that λi = −1/θi for all i. By Proposition 10.4 of Conway (1991), this restriction

guarantees that the knowledge of the model does not reveal any additional information than the

posited price sequence. Finally, evaluating (A.5) at z = κ gives

Q0 =
κA(κ)

∏m
i=1 Bλi

(κ)
(A.7)

Substituting this into (A.5) and rearranging the algebra returns expression (4.2).

Proof of Proposition 7

We need to evaluate the stability of the mapping

T

(

η

S

)

=

(

Tη(η, S)

TS(η, S)

)

=

(

S−1σ1(η)

σ0(η) − S

)

(A.8)

where the two covariances are given by

σ0(η) =
ϕ2

(1− ηκ)2 − η2

(

1−
2η

1− ηκ
θ + θ2

)

(A.9)

σ1(η) =
ϕ2

(1− ηκ)2 − η2

(

θ −
η

1− ηκ

)(

1−
ηθ

1− ηκ

)

(A.10)
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We use these expressions to compute the matrix of partial derivatives

DT

(

η

S

)

=

(

DTη(η, S)

DTη(η, S)

)

=

(

dTη

dη (η, S)
dTη

dS (η, S)
dTS

dη (η, S) dTS

dS (η, S)

)

(A.11)

evaluated at η = η∗ = 1
θ+κ and S = S∗ = ϕ2(θ + κ)2. Proceeding with the algebra one obtains

matrix (5.17), and the least squares learning convergence immediately follows.

B Appendix B: Multivariate Extension

We now extend the results of Sections 3 and 4 to a more general setting and show that our results

apply to a larger class of models. Consider the generic multivariate rational expectations model

Γ0yt = Γ1yt−1 +Ψzt +Πηt, (B.1)

where yt is an n × 1 vector of endogenous variables, zt is an m × 1 vector of exogenous random

shocks, η is a k × 1 vector of expectation errors, which satisfy Etηt+1 = 0 for all t. Γ0 and Γ1

are n × n coefficient matrices, along with Ψ (n × m) and Π (n × k). The model collapses to the

univariate setting of Section 2 when zt = ut + θut−1 and

Klein (2000) and Sims (2002) use a generalized Schur decomposition of Γ0 and Γ1 to show that

there exist matrices such that Q′ΛZ ′ = Γ0, Q
′ΩZ ′ = Γ1, Q

′Q = Z ′Z = In×n, where Λ and Ω

are upper-triangular. The ratios of the diagonal elements of Ω and Λ, ωii/λii, are the generalized

eigenvalues. Defining wt = Z ′yt and pre-multiplying (B.1) by Q, yields the decomposition

[

Λ11 Λ12

0 Λ22

] [

w1,t

w2,t

]

=

[

Ω11 Ω12

0 Ω22

][

w1,t−1

w2,t−1

]

+

[

Q1

Q2

]

(Ψzt +Πηt) (B.2)

The system is partitioned so that the generalized eigenvalues imply an explosive path for w2,t and

a stable path for w1,t. To ensure stability of the system, w2,t must be solved forward. Sims shows

that the forward solution of (B.1) is

yt = Θ1yt−1 +Θ0zt +Θy

∞
∑

s=1

Θs−1
f ΘzEtzt+s (B.3)

where H = Z

[

Λ−1
11 −Λ−1

11 (Λ12 − ΦΛ22)

0 I

]

, Θ0 = H

[

Q1 − ΦQ2

0

]

Ψ

and Θy = −H2, Θ1 = Z1Λ
−1
11 [Ω11(Ω12 −ΘΩ22)]Z, Θf = Ω−1

22 Λ22, and Θz = Ω−1
22 Q2Ψ.12

The most basic informational assumption that will deliver non-invertibility is zt = ǫi,t−q for

some i, which is non-invertible because the moving average has a zero inside the unit circle at

L = 0. If the agents do not observe the structural shocks, ǫit, (i.e., Ut = {0} for t ∈ Z) then the

12We assume that the conditions necessary for a unique solution to exist hold. Specifically that the row space of
Q1Π be contained in that of Q2Π [See Sims (2002, Section 4)].
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last term in (B.3) drops out of the solution. Under this information structure, the solution (B.3)

emits a stable vector-autoregression representation in current and past observables. Thus there are

no hidden instabilities in the model.

However, if the agents observe the structural shocks directly (i.e., Ut = {ǫi,t−j}
∞
j=0 for i =

1, ...,m), the equilibrium is given by

yt = Θ1yt−1 +Θ0ǫt−q +ΘyΘz[ǫt−q+1 +Θf ǫt−q+2 + · · · +Θq−1
f ǫt] (B.4)

which is the multivariate analog of (3.2). The term Θf is the multivariate analog to θ−1 in Sections

3 and 4. In order to apply Proposition 3, we must show that the equilibrium is non-invertible

in current and past yt. Writing the equilibrium as a moving average, yt = A(L)ǫt, a sufficient

condition for non-inveritiblity is for detA(L) to have a zero inside the unit circle. This will, of

course, depend upon the model itself and parameterization of the model. In Section 6 we show

that this condition holds in models with “news” shocks and in an incomplete information monetary

model.
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