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Abstract

Using recently developed yield approximation methodology, we estimate a

three-factor Gaussian shadow-rate term structure model of the U.S. Treasury

yield curve on a sample of yields and survey forecasts from 1990 to 2013. For

comparison, we also estimate a standard Gaussian term structure model, both

for the pre-crisis period 1990 to 2008, and for the full sample through 2013. We

�nd that the shadow-rate model performs better along a number of dimensions,

though it still shows some patterns indicative of misspeci�cation.
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1 Introduction

A�ne-Gaussian term structure models are workhorse models that have proved useful

in many applications, ranging from a simple decomposition of yields into expectations

and term premium components (e.g., Kim and Wright, 2005) to analysis of the role

of macroeconomic variables in the yield curve (e.g., Ang and Piazzesi, 2003; Joslin,

Priebsch, and Singleton, 2013). U.S. short-term interest rates have been e�ectively

zero since late 2008, and this has made the use of a�ne-Gaussian models�as well as

other models that do not respect the zero lower bound (ZLB) on nominal yields�

potentially problematic.

Among �ZLB models,� i.e., models that respect the zero lower bound, Black's

(1995) model with a Gaussian shadow-rate process has several conceptually attractive

features. For example, during periods when the short rate is su�ciently above the zero

bound, the shadow-rate model behaves approximately like an a�ne-Gaussian model,

whose empirical properties are well understood. Furthermore, in many scenarios the

FRB/US model used by the Federal Reserve Board for policy rate simulation assumes

a version of the Taylor rule with truncation at the zero bound,1 which intuitively

corresponds to Black-model-type dynamics of the short rate.2

However, there have been relatively few empirical studies with Black's shadow-rate

model. Ichiue and Ueno (2007) and Kim and Singleton (2012) have analyzed Japanese

yield data with two-factor shadow-rate models and obtained encouraging results,

but the case of three factors (which has been a typical dimension of a�ne-Gaussian

models hitherto studied) have only been investigated in recent e�orts by Christensen

and Rudebusch (2013), Bauer and Rudebusch (2013) and Xia (2013). Part of the

1See, for example, Chung, Laforte, Reifschneider, and Williams (2012).
2However, as discussed below, this does not necessarily imply the reverse, namely that the

model-implied shadow rate can be used to gauge the accommodativeness of monetary policy.
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di�culty has been the computational hurdle in obtaining fast and accurate formulas

for bond prices in multi-factor shadow-rate models. Using a new method (proposed

in Priebsch, 2013) that allows accurate and (relatively) fast computation of bond

prices in general N -factor Gaussian shadow-rate models, in this paper we investigate

the empirical performance of a Gaussian shadow-rate model and an a�ne-Gaussian

model as applied to U.S. data, including the post-2008 period. We are particularly

interested in addressing the following questions:

1. Clearly the a�ne-Gaussian model fails to capture the time-varying volatility

of short- and intermediate-term yields induced by the zero bound. Despite

this limitation with the second moment, could it still do a reasonable job of

capturing �rst moment properties, such as the expected path of the short rate

embedded in the yield curve? This question is of practical interest in view of

the a�ne-Gaussian models' tractability and continued widespread use during

the ZLB period (e.g., Li and Wei, 2013).

2. Along what key dimensions does the shadow-rate model improve upon a�ne-

Gaussian models? Does the shadow-rate model perform su�ciently well, or is

there evidence pointing to the need for alternative models of the ZLB, such as

regime-switching models?3 In particular, we discuss the apparent disappear-

ance of the �level� principal component (more precisely, the collapse of �level�

and �slope� principal components into a single factor) during the ZLB period,

and ask whether this represents a nonlinearity that the shadow-rate model can

capture, or a more nontrivial kind of structural break that calls for a di�erent

class of models.

The remainder of this paper is organized as follows. In Section 2 we brie�y describe

3For example, Dai, Singleton, and Yang (2007).
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the model. In Section 3, we discuss our data. As in Kim and Orphanides (2012),

we supplement yield data with survey forecasts of a short-term interest rate in order

to help overcome the small sample problems in estimation with yield data alone.

Principal components analysis of yield data is also discussed there. Section 4 describes

the QML estimation method based on the unscented Kalman �lter used in this paper,

and Section 5 describes our empirical results. Key empirical �ndings are as follows:

1. The standard latent-factor a�ne-Gaussian model (non-ZLB model) with three

factors can �t most of the survey data on short-term rate forecasts reasonably

well. However, in trying to �t the zero-bound related patterns in the near-term

forecasts of the short-term rate, the estimated model loses lot of persistence; as

a result, the model-implied long-horizon forecast of the short-term rate can be

unrealistic. Furthermore, the model can produce unreasonable implications for

variables that are not explicitly �tted, such as the expected path of the 10-year

yield.

2. The estimated shadow-rate (ZLB) model does well in capturing key �rst- and

second-moment properties. It matches survey forecasts of the short-term rate

well, and also captures zero-bound-induced volatility compression features. Fur-

thermore, the ZLB model produces sensible forecasts for longer-maturity yields,

whose survey forecasts were not used in estimation. In addition, the ZLB model

outperforms the a�ne-Gaussian model in one-month-ahead (out-of-sample) fore-

casts during the ZLB period.

3. If the shadow-rate model is well-speci�ed, the implied VAR(1) dynamics of the

factors driving the shadow rate process should not exhibit a structural break,

even with the ZLB period included. In order to investigate this, we analyze

the �ltered state variables and examine whether they are consistent with the
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estimated dynamics. We �nd that the innovation vectors implied by the �ltered

state variables in the shadow-rate model display non-i.i.d. patterns during the

ZLB period, suggesting that potential misspeci�cation remains in the shadow-

rate model.

2 Methodology

2.1 Model

We work within the standard, continuous-time setup with N latent Gaussian factors,

though we consider two di�erent speci�cations for the short rate (the instantaneous

interest rate): The usual a�ne-Gaussian speci�cation, and the shadow-rate speci�-

cation that respects the ZLB.

Let W P
t be N -dimensional standard Brownian motion on a complete probability

space (Ω,F ,P) with canonical �ltration {Ft}t≥0. Assume there is a pricing measure

Q on (Ω,F) that is equivalent to P, and denote by WQ
t Brownian motion under Q as

derived from Girsanov's Theorem (Karatzas and Shreve, 1991). Suppose the factors

(or states) representing uncertainty underlying term-structure securities follow the

multivariate Ornstein-Uhlenbeck process

dXt = (Kµ
0 +Kµ

1Xt)dt+ ΣdW µ
t (1)

were µ ∈ {P,Q}. Let the Gaussian short rate be

st = ρ0 + ρ1 ·Xt. (2)

Since Xt is a Gaussian process (Karatzas and Shreve, 1991), it follows from (2) that
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the short rate st takes on strictly negative values with strictly positive probability. To

modify the model in a way that accounts for the zero lower bound on nominal yields,

Black (1995) proposes to think of st as a shadow short rate and de�ne the observed

ZLB short rate as the shadow rate censored at zero:4

rt = max{ρ0 + ρ1 ·Xt, 0} = max{st, 0}. (3)

The arbitrage-free time t price of a zero-coupon bond maturing at time T is given

by

P T
t = EQ

t

[
exp

(
−
∫ T

t

qu du

)]
(4)

where q is either the Gaussian short rate s or the ZLB short rate r. The associated

zero-coupon bond yield is de�ned as

yTt = − logP T
t

T − t
. (5)

Bond prices (and hence yields) can equivalently be expressed in terms of forward

rates:

P T
t = exp

(
−
∫ T

t

f st ds

)
⇔ fTt = − d

dT
logP T

t (6)

where fTt denotes the instantaneous time T forward rate e�ective at time t.

4For simplicity of exposition, in this section we follow Black (1995) and set the lower bound
equal to zero. In practice, the empirical lower bound may be a small (negative or positive number),
say rmin. All derivations below are easily modi�ed to accommodate a non-zero lower bound (see
Priebsch, 2013), and in Section 4 we treat rmin as a free parameter.
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2.2 Bond Pricing

In the Gaussian model, zero-coupon bond prices take on the standard exponential

a�ne form,

P T
t = eA(T−t)+B(T−t)·Xt

where A and B follow a system of ordinary di�erential equations in terms of the model

parameters (see Du�e and Kan, 1996). By (5), Gaussian yields are a�ne functions

of the states Xt, with loadings depending only on time to maturity T − t and the

model parameters.

In the ZLB shadow-rate model, yields are nonlinear functions of Xt, and no

equally convenient expressions for bond prices and yields exist. Several approxi-

mation schemes have been proposed: Gorovoi and Linetsky (2004) show that in a

one-factor model, yields can be computed by an eigenfunction expansion, but this

method does not generalize to multiple factors. Ichiue and Ueno (2007) approximate

bond prices by a variant of the binomial tree familiar from option pricing, and Kim

and Singleton (2012) numerically solve a partial di�erential equation in terms of t

and x ∈ RN , but both approaches are subject to the curse of dimensionality so that

these studies consider models with no more than N = 2 factors. Christensen and

Rudebusch (2013) estimate three-factor Nelson-Siegel models using a yield formula

proposed by Krippner (2012) based on an approximate forward rate and (6), but

Priebsch (2013) shows that this method can give yields that deviate from arbitrage-

free yields by more than �ve basis points in a realistic empirical setting, and the

approximation error is largest precisely when the ZLB is a binding constraint. Prieb-

sch (2013) proposes a method to approximate arbitrage-free yields in the Gaussian

shadow-rate model by a second-order cumulant-generating-function expansion.5 He

5Independently, Ichiue and Ueno (2013) propose a method equivalent to a �rst-order variant of
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demonstrates that this method is accurate to approximately one half of a basis point,

both during normal times and when the ZLB is binding, and that it is su�ciently

fast to be computationally feasible in estimation. We use this method to approximate

ZLB yields below.

3 Data

3.1 Yields

We use end-of-month zero-coupon U.S. Treasury yields from January 1990 through

June 2013, for maturities of six months, one to �ve, seven, and 10 years. Zero yields

are extracted from Treasury bills and coupon-bearing notes and bonds in the CRSP

U.S. Treasury Database, using the unsmoothed Fama and Bliss (1987) methodology.6

We do not include yields at the very short end of the yield curve as these tend to

be heavily in�uenced by idiosyncratic money-market factors (see Du�ee, 1996). For

illustration, Figure 1 plots raw quotes on o�-the-run Treasury securities for August

16, 2013. The blue line corresponds to the level of the ZLB estimated by our shadow-

rate model below (see Table 3), which falls roughly in the middle of the current

federal funds rate target range of 0 to 25 basis points. Yields at maturities exceeding

six months appear to line up along a smooth curve roughly asymptoting towards

the level of the ZLB we estimate. In contrast, yields at the very short end appear

disconnected from this curve and notably more dispersed.

Table 1 displays the loadings on yields in the construction of their �rst three prin-

cipal components (PCs), as well as the percentage of total sample variation in yields

explained by each principal component. Principal components are constructed sep-

the same approach.
6We are grateful to Anh Le for providing the code for this procedure.
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Figure 1: Raw quotes on o�-the-run Treasury securities for August 16, 2013. The
blue line corresponds to the level of the ZLB estimated by our shadow-rate model.

PC1 PC2 PC3

6m 0.3817 −0.5075 0.5046

1y 0.3937 −0.4240 0.1291

2y 0.3900 −0.1580 −0.3475
3y 0.3715 0.0189 −0.3885
4y 0.3556 0.1601 −0.3032
5y 0.3381 0.2688 −0.1608
7y 0.3079 0.4071 0.1484

10y 0.2715 0.5231 0.5632

% Var 93.4877 6.1775 0.2587

(a) Sub-sample January 1990 to November 2008

PC1 PC2 PC3

6m 0.0346 −0.1225 0.3665

1y 0.0729 −0.1948 0.4811

2y 0.1743 −0.4953 0.1813

3y 0.2831 −0.4484 0.2605

4y 0.3671 −0.3357 −0.1925
5y 0.4313 −0.1227 −0.4484
7y 0.5122 0.1690 −0.2807
10y 0.5476 0.5868 0.4653

% Var 97.3202 1.5236 0.9203

(b) Sub-sample December 2008 to June 2013

Table 1: Loadings on yields in the construction of their �rst three principal compo-
nents (PCs), as well as the the percentage of the total yield variation explained by
each principal component.
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arately for two sub-sample periods: January 1990 to November 2008 (a period with

interest rates at �normal� levels), and December 2008 to June 2013 (when short-term

yields were constrained by the ZLB). As Table 1a shows, in normal times the �rst

three principal component loadings take their usual �level,� �slope,� and �curvature�

form (see Litterman and Scheinkman, 1991). The three principal components explain

successively smaller fractions of the total variance in yields, and together account for

over 99.9 percent of yield variation. In contrast, the loadings in the ZLB period (Ta-

ble 1b) look notably di�erent. The �rst principal component looks more like a slope

factor, whereas the second and third principal components both have curvature qual-

ities, with humps at di�erent maturities. At �rst sight, the apparent disappearance of

a level factor in the ZLB period might suggest that yield variation can be adequately

captured by only two factors (see Ichiue and Ueno (2013) for an argument along these

lines). However, Table 1b also shows that the �rst two principal components account

for only 98.8 percent of total yield variation, and that all three principal components

are still needed to explain a similar fraction as in normal times (in fact, in the ZLB

period the third principal component explains a notably larger share of yield variation

than in normal times).

In addition, the substantial shift in the pattern of principal component loadings in

Table 1 suggests that a linear factor model (such as an a�ne-Gaussian term structure

model) will have a hard time adequately capturing yield behavior in the normal and

ZLB periods simultaneously. Table 2 shows the sub-sample correlation matrix for the

ZLB period of the �rst three principal component scores constructed over the entire

sample period. By construction, principal component scores are uncorrelated over

their full sample. However, as Table 2 shows, over the ZLB sub-sample period, there

is substantial correlation between principal component scores, especially between the

�rst and second PCs. This suggests that the level and slope factors indeed largely

10



PC1 PC2 PC3

PC1 1.0000 0.9780 0.4345

PC2 0.9780 1.0000 0.5220

PC3 0.4345 0.5220 1.0000

Table 2: Sub-sample correlation for December 2008 to June 2013 of the �rst three
principal component scores, constructed over the entire sample (January 1990 to June
2013).

collapse into a single factor during the ZLB period (although recall from the discussion

above that this does not imply that fewer factors are su�cient to adequately capture

yield variation near the ZLB).

3.2 Surveys

We augment the yield data with survey forecasts from Blue Chip, interpolated to

constant horizons of one to four quarters (available monthly), as well as annually out

to �ve years and for �ve-to-10 years (available every six months). As discussed by

Kim and Orphanides (2012), this potentially leads to more precise estimates of the

parameters governing the data-generating distribution P. Survey forecasts are subject

to the same lower-bound constraint as yields,7 but model-implied survey forecasts are

substantially simpler to compute than yields, as forecasters report their expectation

of the arithmetic mean of future observed short rates, while yields are computed as

a geometric mean due to the e�ect of compounding. For details, we refer to Priebsch

(2013).

7This follows from equivalence of the measures P and Q, and more fundamentally from the
absence of arbitrage.
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4 Estimation

While the statistical properties of the term structure model laid out in Section 2

are formulated in terms of the latent state vector Xt, the data actually observed

by the econometrician consist of yields, yt, and survey expectations, zt (see Sec-

tion 3). To bridge this gap and obtain estimates of the model's parameters θ =

(KP
0 , K

P
1 , K

Q
0 , K

Q
1 , ρ0, ρ1,Σ), the term-structure literature has pursued two conceptu-

ally related but computationally distinct estimation strategies.

The �rst, attributed to Chen and Scott (1993), is to make Xt e�ectively observable

by assuming that an invertible function of yields and survey forecasts can be observed

by the econometrician without error. Commonly, a subset of yields, or certain linear

combinations of yields (such as low-order principal components), are assumed to be

perfectly observable. Under this assumption, we can back out the implied state vector

Xt, and compute the model-implied conditional distribution of all yields and survey

expectations through a change of variables. The model parameters θ can then be

estimated by maximum likelihood or a similar method.

The second estimation strategy, is to assume all yields and survey expectations

are subject to some measurement error. As a result, Xt cannot be perfectly inferred

from observables but must be �ltered. The parameters θ are then estimated as part

of a joint estimation and �ltering problem.8

Selecting between the two estimation strategies is often a matter of convenience.

The �rst method�inverting the mapping between state vector and observables�

has computational advantages when the term structure model is a�ne, and a linear

combination of yields is assumed perfectly observable. In this case, only a single ma-

trix needs to be inverted. Moreover, linear combinations of yields (such as principal

8An early reference discussing this approach is Duan and Simonato (1999).
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components) may e�ectively �diversify away� most measurement error, so that the

assumption of perfect observability is empirically tenable (see Joslin, Le, and Single-

ton, 2013). On the other hand, when the mapping between states and observables

is nonlinear�as in the case of a shadow-rate model�, numerical inversion is compu-

tationally more costly. Moreover, the assumption that a given linear combination of

yields can be observed without error is more di�cult to justify. For instance, when the

shadow rate is close to zero or negative, model-implied short-term yields are substan-

tially less sensitive to changes in Xt than longer-term yields. Consequently, intuition

suggests that shorter-term yields have a lower signal-to-noise ratio and might be less

informative about Xt. The small loadings on short-term yields in the �rst principal

component in Table 1b is an empirical manifestation of this phenomenon.

Both arguments set forth in the previous paragraph�computational complexity

and signal-to-noise ratio�favor the �ltering approach for estimation during the ZLB

period. We therefore pursue this approach below.

When discretely sampled at intervals ∆t > 0, the state vector X follows a �rst-

order Gaussian vector autoregression,

Xt+∆t = m0,∆t +m1,∆tXt + εt (7)

where εt ∼ N(0,Ω∆t), and m0,∆t, m1,∆t, and Ω∆t can be computed analytically as

functions of the model parameters. Equation (7) represents the transition equation

of the �ltering problem.

Next, denote by Hy : RN ×Θ 7→ RMY
+ the mapping from states X and parameters

θ to model-implied yields y, and by Hz : RN × Θ 7→ RMZ
+ the analogous mapping

from states and parameters to model-implied survey forecasts z. To simplify notation,

denote the stacked mapping
(
H>y , H

>
z

)>
by H. In the Gaussian model, the mapping
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H is linear, while in the ZLB shadow-rate model, it is nonlinear (see Section 2). If

we assume that all yields and survey expectations are observed with i.i.d. additive

Gaussian errors, we obtain the observation equation

yt
zt

 = H(Xt) + et. (8)

Together, equations (7) and (8) form a non-linear �ltering problem.

The simple (linear) Kalman �lter�optimal when measurement and observation

equation are linear and all shocks are Gaussian�has been modi�ed in a number of

ways to accommodate nonlinearity. Adapted to the present problem, the challenge

lies in e�ciently computing a forecast and forecast error for (yt, zt) given a forecast

of Xt.
9 Previous studies of zero-bound term structure models (Kim and Singleton,

2012; Christensen and Rudebusch, 2013; Ichiue and Ueno, 2007) have relied on the

extended Kalman �lter, in which the observation equation (8) is linearized by a �rst-

order Taylor expansion around the conditional mean of Xt:
10

yt
zt

 ≈ H(Et−1[Xt]) +H ′(Et−1[Xt]) · (Xt − Et−1[Xt]) + et. (9)

The conditional moments of (yt, zt) can then be approximated easily based on (9)

and the conditional moments of Xt. However, due to the linear approximation (which

e�ectively treats (yt, zt) as conditionally Gaussian random vectors), the extended

Kalman �lter can be numerically unstable and may fail to converge.

The unscented Kalman �lter, proposed by Julier, Uhlmann, and Durrant-Whyte

9The forecast of (yt, zt) is then compared to the observed value, and this information is used to
�update� the �ltered value of Xt.

10Note this method is exact, and reduces to the standard linear Kalman �lter, when H is a linear
transformation.
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(1995), aims to deliver improved accuracy and numerical stability relative to the ex-

tended Kalman �lter, without substantially increasing the computational burden.11

Instead of linearizing equation (8) as in (9), the unscented Kalman �lter uses the �un-

scented transformation� (Julier and Uhlmann, 1996) to approximate the conditional

moments of H(Xt) directly. Once the conditional moments of H(Xt) are known, com-

puting conditional moments of (yt, zt) is trivial (since et is assumed to be i.i.d.). The

unscented transformation involves a general three-step procedure for computing the

moments of an arbitrary nonlinear transformation H of a random variable X: First, a

set of 2N + 1 sample points (called �sigma points�) around the mean of X is selected.

Second, each sigma point is transformed under H. Third, the moments of H(X)

are computed as weighted sample moments of the transformed sigma points. The

sigma points as well as weights are chosen carefully to ensure that the approximate

moments of H(X) are accurate to third order when X is Gaussian, and accurate to

second order otherwise.12 The order of accuracy does not depend on the nature of

the nonlinearity in the transformation H.

The numerical complexity of the extended Kalman �lter and the unscented Kalman

�lter is indeed comparable: The unscented �lter requires evaluating H at a number

of sigma points that is O(N), while computation of H ′(X) by �nite di�erences in the

extended Kalman �lter also requires evaluation of H at a number of points that is

O(N).13,14

In light of its superior accuracy at similar computational cost, we use the unscented

11A detailed treatment of the unscented Kalman �lter, and a comparison to the extended Kalman
�lter, can be found in Wan and van der Merwe (2001).

12Note in this regard the unscented transformation is closely related to the numerical evaluation
of an integral by Gaussian quadrature.

13The complexity of the extended �lter may be lower when H ′ is known analytically.
14This argument also establishes that �ltering states in a nonlinear setup (whether by extended or

unscented Kalman �lter) is typically computationally simpler than inverting the mapping H under
the assumption that some pricing errors are zero. This is because numerical inversion of H by a
method such as Newton-Raphson requires repeated computation of H ′.
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Kalman �lter rather than the extended Kalman �lter to estimate our shadow-rate

model.15 The algorithm is described in detail in Wan and van der Merwe (2001). As

a by-product of the �ltering procedure, it conveniently produces estimates of the mean

and covariance matrix of (yt, zt) conditional on the econometrician's information set

as of time t−1. We use these to set up a quasi�maximum likelihood function based on

(8),16 which we then maximize numerically to obtain estimates of the parameters θ as

well as their asymptotic standard errors (following Bollerslev and Wooldridge, 1992).

For the a�ne-Gaussian model, the unscented Kalman �lter reduces to the usual

linear Kalman �lter, and the QML problem becomes regular maximum-likelihood

estimation.

5 Estimation Results

Without further restrictions, the parameters θ are not econometrically identi�ed.

Invariant transformations can be applied to the latent state vector Xt, resulting in

observationally equivalent models with di�erent parameters (Dai and Singleton, 2000;

Joslin, Singleton, and Zhu, 2011). To achieve identi�cation, we impose the normal-

izations ρ1 ≥ 0, Σ = 0.1IN , K
P
0 = 0, KP

1 is lower triangular.

We estimate the Gaussian and shadow-rate models on the data set described in

Section 3, using the (quasi-)maximum likelihood procedure discussed in Section 4.

Table 3 displays the estimated model parameters θ̂ for the shadow-rate model,

as well as their asymptotic standard errors. Note the estimate of rmin, the lower

bound on the observed short rate and hence nominal yields, is 14 basis points. 17

15Christo�ersen, Dorion, Jacobs, and Karoui (2012) and Wu (2010) con�rm that the unscented
Kalman �lter performs better than the extended Kalman �lter in the speci�c setting of term structure
model estimation.

16This estimation approach is described and analyzed in Lund (1997).
17This does not rule out observed yields below 14 basis points, but the model would attribute
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ρ0 0.0455 rmin 0.0014

(0.0015) (0.0001)

ρ1 0.0304 KP
1 −0.1597

(0.0098) (0.0520)

0.0461 0.6437 −0.9358
(0.0083) (0.1845) (0.0619)

0.0665 −1.1104 1.8746 −0.9358
(0.0051) (0.4253) (0.2979) (0.0619)

KQ
0 0.0075 KQ

1 −0.4930 0.8345 −0.4706
(0.0073) (0.2026) (0.2169) (0.1208)

−0.0099 −0.0308 0.4340 −0.4814
(0.0070) (0.1446) (0.1251) (0.0799)

−0.0389 −0.7702 1.9466 −1.3221
(0.0167) (0.3271) (0.3168) (0.1325)

Maturity σY

6m 0.0015

1y 0.0013

2y 0.0005

3y 0.0003

4y 0.0004

5y 0.0003

7y 0.0006

10y 0.0015

Average 0.0008

Maturity σZ

1q 0.0013

2q 0.0005

3q 0.0010

4q 0.0015

2y 0.0027

3y 0.0025

4y 0.0026

5y 0.0030

5y�10y 0.0038

Average 0.0021

Table 3: Quasi�maximum likelihood parameter estimates (asymptotic standard er-
rors) for the three-factor ZLB shadow-rate model (top table), and estimated standard
deviations of observation errors in yields, σY , and survey forecasts, σZ (bottom ta-
bles).
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ρ0 0.0416

(0.0053)

ρ1 0.0419 KP
1 −0.0615

(0.0106) (0.0295)

0.0142 0.3623 −1.1091
(0.0083) (0.1277) (0.0774)

0.0825 −0.7910 2.3179 −1.1091
(0.0061) (0.3267) (0.3075) (0.0774)

KQ
0 -0.0322 KQ

1 −0.3920 1.5884 −1.1900
(0.0252) (0.2521) (0.2896) (0.2062)

−0.0419 −0.0258 0.5843 −0.7268
(0.0317) (0.1421) (0.1510) (0.1274)

−0.0976 −0.4598 2.3148 −1.8670
(0.0565) (0.3407) (0.3313) (0.1747)

Maturity σY

6m 0.0015

1y 0.0014

2y 0.0005

3y 0.0002

4y 0.0003

5y 0.0003

7y 0.0006

10y 0.0011

Average 0.0007

Maturity σZ

1q 0.0013

2q 0.0005

3q 0.0011

4q 0.0015

2y 0.0027

3y 0.0026

4y 0.0028

5y 0.0029

5y�10y 0.0030

Average 0.0020

Table 4: Maximum likelihood parameter estimates (asymptotic standard errors) for
the three-factor Gaussian model estimated through October 2008 (top table) and
estimated standard deviations of observation errors in yields, σY , and survey forecasts,
σZ (bottom tables).

18



ρ0 0.0467

(0.0010)

ρ1 0.0020 KP
1 −0.9396

(0.0074) (0.1016)

0.0181 −1.4181 −0.9396
(0.0099) (0.2320) (0.1016)

0.0713 1.2217 1.3721 −0.4303
(0.0040) (0.1972) (0.1647) (0.1066)

KQ
0 0.034822 KQ

1 −0.1704 0.1381 0.1096

(0.0416) (0.1239) (0.1081) (0.0795)

−0.5224 −1.5047 −1.5580 −1.0965
(0.1731) (1.0370) (0.5770) (0.3525)

0.2305 −0.3141 0.5786 0.3501

(0.0889) (0.3661) (0.2789) (0.1439)

Maturity σY

6m 0.0009

1y 0.0010

2y 0.0012

3y 0.0010

4y 0.0006

5y 0.0000

7y 0.0011

10y 0.0023

Average 0.0010

Maturity σZ

1q 0.0012

2q 0.0005

3q 0.0005

4q 0.0005

2y 0.0026

3y 0.0037

4y 0.0040

5y 0.0041

5y�10y 0.0056

Average 0.0025

Table 5: Maximum likelihood parameter estimates (asymptotic standard errors) for
the three-factor Gaussian model estimated through June 2013 (top table) and esti-
mated standard deviations of observation errors in yields, σY , and survey forecasts,
σZ (bottom tables).
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Figure 2: Model-implied and survey forecasts for the short rate as of November 2012.

The bottom tables in Table 3 show the QML-estimated standard deviations of the

measurement errors in yields and survey variables (et in equation (8)). The average

yield error is 8 basis points, and the average error in surveys is 21 basis points. For

both yields and surveys, errors follow a roughly U-shaped pattern, being largest at

the short and long ends.

We estimate the a�ne-Gaussian model both for pre-crisis sub-sample (G2008,

Table 4), and for the full sample (G2013, Table 5). One notable di�erence between

the two estimates is the much higher degree of mean reversion of the states Xt under

P in G2013. To �t the ZLB features of the data (re�ected, for instance, in near-term

survey forecasts), the model is sacri�cing persistence to a point at which the half life

of the most persistent factor is less than two years.

any violation of this lower bound to observation error as opposed to fundamental drivers.
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Figure 3: Model-implied and survey forecasts for the short rate �ve to 10 years ahead.
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Figure 2 shows short-rate forecasts implied by all three of our estimated models,

as well as surveys, as of November 2012. The pre-ZLB Gaussian model G2008 �ts

these out-of-sample surveys poorly. In particular, it predicts too fast a return to

higher interest rates. In contrast, both the full-sample Gaussian model G2013 and

the shadow-rate model capture the shape and level of the term structure of survey

forecasts well.

However, when we look at the time series of long-term short-rate forecasts (Figure

3), it becomes apparent that G2013 is not able to generate the same degree of vari-

ability as G2008, the shadow-rate model, and surveys. This translates into a notably

larger estimated �tting error as shown in the bottom right table of Table 5.

5.1 Term Premiums

The poor performance of the G2008 model in predicting the near-term path of short

rates during the ZLB period (Figure 2) means that the short-horizon term premium

estimates based on this model are unreliable. This can be seen from the fact that in

the time series of two-year yield term premiums (top panel of Figure 4), the G2008

version is showing unreasonably negative two-year term premiums in the last two

years of the sample. Conversely, the 10-year yield term premium estimates based on

all three models�shadow-rate, G2013, and G2008�are quite similar, especially so

for the shadow-rate and G2008 models. This suggests that long-horizon yield term

premium estimates for the ZLB period generated by a Gaussian model estimated on

a pre-ZLB sample of yields (such as the model estimated in Kim and Wright (2005))

appear to be more reliable than similarly generated short-horizon yield term premium

estimates.
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Figure 4: Model-implied yield term premiums.

5.2 Yield Forecasts

Although the Gaussian model G2013 produces yield term premiums that agree rea-

sonably well with those from the shadow-rate model, this is partly due to the discipline

imposed on the model by the survey forecasts of the short rate. If we look at other

model implications not similarly disciplined, we �nd substantial di�erences between

the shadow-rate model and the Gaussian model. For example, the forecast of the 10-

year yield as of June 2013 (our last sample date) are quite di�erent between the two

models. In the recent episode of rising long-term rates, the G2013 model produces

an unrealistic near-term projection of the 10-year rate, and a very large rise in the

10-year yield over the longer term, as can be seen in �gure (Figure 5). Similarly, the

G2008 model also implies a very unrealistically �at path of the 10-year yield. The

di�erence between the models also show up in the time series of 10-year yield forecasts
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Figure 5: Model-implied forecasts of the 10-year yield as of June 2013.

during the ZLB period, as can be seen in Figure 6.

Table 6 allows more systematic comparison of the forecasting performance during

the ZLB period of Gaussian and shadow-rate models. It suggests that in-sample, the

Gaussian model is at least as good as the shadow-rate model, and sometimes even

better. However, the out-of-sample forecasts (based on estimation up to Oct 2008)

show that the shadow-rate model produces smaller forecasting errors for short- and

intermediate maturity yields.

5.3 Results Speci�c to Shadow-Rate Model

The shadow-rate model produces quantities of interest with no (or only trivial) coun-

terpart in the Gaussian model.
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Figure 6: Model-implied forecasts of the 10-year yield one year ahead.

6m 1y 2y 3y 4y 5y 7y 10y

Shadow-Rate 8 11 20 28 33 34 37 38

Gaussian 7 12 17 22 23 25 30 36

(a) In-sample

6m 1y 2y 3y 4y 5y 7y 10y

Shadow-Rate 8 11 21 31 37 39 39 38

Gaussian 16 14 26 38 43 42 40 39

(b) Out-of-sample

Table 6: Root-mean-square forecasting errors (in basis points) for di�erent yields at
a one-month forecasting horizon.
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Figure 7: ZLB model-implied shadow short rate st based on smoothed states Xt|T .

5.3.1 Shadow Rate

Figure 7 plots the model-implied shadow short rate st over the sample period, based on

the states implied by the Kalman smoother (that is, incorporating all information up

to June 2013, the end of the sample). The shadow rate turned negative in December

2008, after the FOMC established a target federal funds rate range of 0 to 0.25 percent

and the e�ective lower bound became binding, and has stayed negative through the

end of the sample.

While, by de�nition, the shadow rate is equal to the observed short rate when

the ZLB is not binding, we do not give a structural interpretation to the shadow rate

when it is negative. Since it is unobservable, the level of the shadow rate is model

speci�c, and under di�erent modeling assumptions, di�erent levels of the shadow rate

may imply (close to) observationally equivalent yield curves.

Figure 8 projects the path of the short rate going forward as of June 2013, under
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Figure 8: ZLB model-implied short rate as of June 2013. The �gure shows the
expected path of the shadow rate, as well as the expected and most likely paths of
the observed short rate.

the shadow-rate model. The dashed line depicts the expected future shadow rate,

ET [sT+u]. Since the shadow rate is Gaussian, this is also the most likely (or modal)

path of the shadow rate. The solid black line shows the expected path of the observed

future short rate, ET [rT+u]. Finally, the solid gray line represents the most likely path

of the observed short rate. Initially, there is little di�erence between the expected

and the most likely projected paths of the observed short rate. Eventually, as the

forecast horizon increases, uncertainty drives a wedge between the two�at the ZLB,

all risk is upside risk. Therefore, even though the most likely short rate path remains

at the ZLB for more than a year, the expected path slowly increases, and exceeds 25

basis points by June 2014.
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5.3.2 Second Moments

While (1) implies that the latent factors Xt are conditionally homoskedastic, and the

linear mapping from factors to yields in the Gaussian model preserves this property,

the nonlinear relationship between factors and yields in the ZLB shadow-rate model

endogenously generates conditional heteroskedasticity in yields. To see this, note that

Xt+∆t −Xt√
∆t

→ N(0,ΣΣ>)

in distribution, as ∆t → 0, conditional on Ft. Therefore, by an application of the

Delta method,

yT+∆t
t+∆t − yTt√

∆t
→ N

(
0,
dyTt
dX>t

ΣΣ>
dyTt
dXt

)
. (10)

Since dyTt /dXt is not constant in the shadow-rate model, the instantaneous model-

implied yield volatility varies depending on the current state vector Xt. Figure 9

plots the model-implied instantaneous volatility for changes in the two-year yield,

as well as an empirical counterpart, the annualized realized daily volatility over the

following month, from 2000 onwards. Prior to 2008, the model-implied volatility is

constant with the exception of a minor dip in 2003. This is another manifestation

of the fact that the ZLB model behaves like a Gaussian model (in which conditional

yield volatility is constant) when the ZLB is not binding. On the other hand, from

late 2008 onwards, the model-implied yield volatility shows substantial time variation

due to proximity to the ZLB, and the realized volatility follows the model-implied

pattern closely.
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Figure 10: Posterior precision of �ltered state variables, as implied by the unscented
Kalman Filter.

5.3.3 Precision of Filtered State Variables

In the shadow-rate model, the mapping between states Xt and observables (yields

yt and survey forecasts zt) is nonlinear. As discussed in Section 4, this leads to

time variation in the signal-to-noise ratio of observables, and by implication in the

econometrician's ability to infer states from observables.

Figure 10 plots a measure of relative posterior precision of �ltered states, de�ned

as

‖VarP(Xt)‖F
‖VarP(Xt|y1, z1, . . . , yt, zt)‖F

.

Relative precision will be equal to 1 if observables up to time t contain no relevant

information whatsoever, so that the posterior variance of Xt is equal to the uncon-

ditional variance. On the other hand, as the posterior variance of Xt goes to zero,
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relative precision will go to in�nity. The �gure shows near-constant precision through

the end of 2008 (the pronounced seasonality pattern is driven by the availability of

long-term surveys). In late-2008, the zero lower bound becomes binding, and yields

and survey forecasts become dramatically less informative about the state variables.

5.4 Diagnostics

In Gaussian shadow-rate models, the yields are nonlinear functions of the state vari-

ables, but the state variables themselves follow a relatively simple process, namely the

multivariate Ornstein-Uhlenbeck process, which, sampled in discrete time, is simply a

VAR(1) process (see (7)). Checking whether the �ltered state variables are consistent

with VAR(1)-dynamics may therefore be a useful diagnostic. An analogue in the lit-

erature is Du�e and Singleton (1997), who examine a two-factor CIR model for swap

yields. According to the model, the factors are supposed to be independent, but the

actual factors implied by the model and the data turn out to be highly correlated,

pointing to misspeci�cation. We also made a similar argument in Section 3 above,

when we showed in Table 2 the high degree of correlation of yield PCs during the

ZLB period.

While in our normalization, factors are conditionally uncorrelated (Σ is diagonal),

feedback through KP
1 accommodates a general unconditional correlation structure.

Thus, nonzero correlation between model-implied factors is not in itself an indication

of misspeci�cation. However, a �collapsing� of factors during the ZLB period, as de-

scribed in Section 3, might be cause for concern. Table 7 shows the sample correlation

of �ltered states for models G2013 and the shadow-rate model, both for the entire

sample period and for the ZLB sub-sample.

In both models, the correlation structure between states seems to change during
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Full Sample ZLB Period

1.0000 −0.5062 0.0406 1.0000 −0.9167 0.8467

−0.5062 1.0000 0.6929 −0.9167 1.0000 −0.9682

0.0406 0.6929 1.0000 0.8467 −0.9682 1.0000

(a) Gaussian model G2013.

Full Sample ZLB Period

1.0000 0.7925 0.5633 1.0000 0.7519 −0.2262

0.7925 1.0000 0.8994 0.7519 1.0000 −0.2136

0.5633 0.8994 1.0000 −0.2262 −0.2136 1.0000

(b) Shadow-rate model.

Table 7: Sample correlation of �ltered states Xt|t.

the ZLB period, suggestive of a potential structural break, even after accounting for

ZLB e�ects. Furthermore, in the Gaussian model, the states become close to perfectly

correlated during the ZLB period, resulting in reduced �exibility in �tting the shape

of the yield curve.

For a cleaner reading, note that the standardized innovation vector

ηt = Ω
−1/2
∆t εt (11)

implied by the model and data should be independent. That is, using the estimated

model parameters, �ltered states, and (7) as well as (11), we can compute a time

series of implied innovations that should be i.i.d. N(0, IN). In particular, if our

shadow-rate model is well speci�ed, this should hold even when the sample includes

a period of zero interest rates. Therefore, the examination of the innovation vectors

ηt's can reveal how structurally stable the speci�cation is.

In general, if ηt are i.i.d. normal with zero mean and identity covariance matrix,
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it follows from the Central Limit Theorem for random vectors that

T

(
1

2

∥∥∥∥ 1

T

∑
t
ηtη
>
t − I

∥∥∥∥2

F

+
∑J

j=1

∥∥∥∥ 1

T

∑
t
ηtη
>
t−j

∥∥∥∥2

F

)
→ χ2

[(2J+1)N2+N ]/2

in distribution as T → ∞, so that this can serve as a test statistic against devia-

tions in scale, location, and correlation structure (between elements of ηt as well as

across time). This statistic also has the desirable property that it is invariant to

orthogonal transformations applied to ηt (since the Frobenius norm is invariant to or-

thogonal transformations), and hence to invariant transformations of the underlying

state vector.

While our analysis of the properties of the implied innovation vectors is ongoing,

preliminary results indicate a departure from independence during the ZLB period

both for the Gaussian model G2013 and the shadow-rate model. Hence, this sug-

gests that even after accounting for ZLB e�ects, the recent episode is potentially

characterized by a structural break.
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