Synchronization and Bias in a Simple
Macroeconomic Model

Assaf Patir

San Francisco, May 2015



Strategic Uncertainty and Belief Synchronization

» In models with strategic uncertainty, there are often equilibria
where agents coordinate on a sunspot process. This requires
agents to “learn” to play the correct equilibrium.



Strategic Uncertainty and Belief Synchronization

» In models with strategic uncertainty, there are often equilibria
where agents coordinate on a sunspot process. This requires
agents to “learn” to play the correct equilibrium.

» Questions that were already answered:

» Are rational expectations equilibria learnable?
» Are rational expectations equilibria with sunspots learnable?



Strategic Uncertainty and Belief Synchronization

» In models with strategic uncertainty, there are often equilibria
where agents coordinate on a sunspot process. This requires
agents to “learn” to play the correct equilibrium.

» Questions that were already answered:

» Are rational expectations equilibria learnable?
» Are rational expectations equilibria with sunspots learnable?

» | study an environment where agents must learn to use the
correct sunspot out of infinitely many options.



Strategic Uncertainty and Belief Synchronization

» In models with strategic uncertainty, there are often equilibria
where agents coordinate on a sunspot process. This requires
agents to “learn” to play the correct equilibrium.

» Questions that were already answered:

» Are rational expectations equilibria learnable?
» Are rational expectations equilibria with sunspots learnable?

» | study an environment where agents must learn to use the
correct sunspot out of infinitely many options.

» Added ingredient: agents have some innate bias in predicting
output (some are inherently optimistic, while others are
pessimistic). There is no aggregate bias.



cont.

» This gives rise to complicated dynamics that can lead to:

» Full Synchronization (all agents converge on playing a
particular equilibrium).

» Incoherence (the agents do not converge on an equilibrium)

» Partial Synchronization (most agents converge on playing a
particular equilibrium while others drift incoherently)
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» This gives rise to complicated dynamics that can lead to:

» Full Synchronization (all agents converge on playing a
particular equilibrium).

» Incoherence (the agents do not converge on an equilibrium)

» Partial Synchronization (most agents converge on playing a
particular equilibrium while others drift incoherently)

» Additionally, the system can fluctuate between synchronization
and incoherence, spending long periods of time in one and
then quickly switching to another.

» Metronomes: http://youtu.be/Aaxw4zbULMs


http://youtu.be/Aaxw4zbULMs

The Kuramoto Model

» The Kuramoto model describes synchronization phenomena.



The Kuramoto Model

» The Kuramoto model describes synchronization phenomena.

> It describes N oscillators whose phases i

(i=1,...,ny € [—m,7]), are coupled as described by the
equation:

d . . K S
dtw;—w'—N;sin(w;—Wt), i=1,-- N



The Kuramoto Model
» The Kuramoto model describes synchronization phenomena.

> It describes N oscillators whose phases i
(i=1,...,ny € [—m,7]), are coupled as described by the
equation:

d . . K S
dtw;—w'—N;sin(w;—Wt), i=1,-- N

» w' € R is the natural frequency of the oscillator, K > 0 is the
strength of the coupling.



The Kuramoto Model
» The Kuramoto model describes synchronization phenomena.

> It describes N oscillators whose phases i
(i=1,...,ny € [—m,7]), are coupled as described by the
equation:

d . . K S
dtw;—w'—N;sin(w;—Wt), i=1,-- N

» w' € R is the natural frequency of the oscillator, K > 0 is the
strength of the coupling.

» By defining R.e'¥t = % Z,’V:l et the equations take the
more convenient form:

d .. L
a’l/)i. = w' — RtK sm(zbt — ’l/)t)



The Kuramoto Model

>

>

The Kuramoto model describes synchronization phenomena.

It describes N oscillators whose phases i
(i=1,...,ny € [—m,7]), are coupled as described by the
equation:

d . . K S
dtw;—w'—N;sin(zp;—Wt), i=1,-- N

w' € R is the natural frequency of the oscillator, K > 0 is the
strength of the coupling.

By defining Rye/¥t = % Z,’V:l et the equations take the
more convenient form:

d .. L
ET/J; = w' — RtK sm(zbt — ’l/]t)

R: € [0,1] is a measure of the synchronization of the system
(the order parameter). R; = 0 is incoherence and Ry = 1 is full
synchronization.



The Kuramoto Model - continuum limit

» For N — o0, the system has an incoherent solution where the
oscillators are uniformly spread around the circle, each moving
with ¢; = ¢y + w't.
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The Kuramoto Model - continuum limit

» For N — o0, the system has an incoherent solution where the
oscillators are uniformly spread around the circle, each moving
with ¢; = ¢y + w't.

» The incoherent solution is stable when the coupling constant is
below some critical value K < K.

» There is also a fully synchronized solution: )i = &t + ¢/,

N iz 1

1 : . w' =@ _
D = — ! i 12_7 R:—
w E w',sin ¢ , N

» This solution requires that the natural frequencies not be too
dispersed (|w' — ©| < K). Otherwise, there is a partially
synchronized solution.
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The Kuramoto Model - Stability

» For K > K. (strong coupling) with N = oo, the incoherent
solution is not stable, and the system tends (at t — o0)
toward one of the synchronized solutions.

> In the finite N case, the system oscillates between the
synchronized and the incoherent solution.

» Some common modifications of this model include:

» Adding a stochastic term.
» Allowing the coupling K; j to depend on |i — j|.



Related Literature

» The model that | use today is based on Behanbib, Wang, Wen
(2013);

» The approach to learning follows Marcet and Sargent (1989),
see also Evans and Honkapohja (2012)

» Learning with multiple equilibria/sunspots Woodford (1990);
Guesnerie and Woodford (1990); Evans et al. (1994); Evans
and Honkapohja (2003*2); Honkapohja and Mitra (2004)...

» Synchronization phenomena: Kuramoto (1975), Strogatz
(1994,2000), Acebrn et al. (2005).



Households

» Households maximize

max Ey )  B'[log(Ct) — ¢/Ny]

t=0

subject to:
W, M,
G < —N; + —
£ p N + P,

» The first order conditions are:



Final Good Producers

» Competitive final goods producers:

1

oo T
Ye= U tYie dJ}
0

» Profit maximization implies

where €, are iid.

Yie = (Pe/Pie)" e Y,

and
Pt :/Eﬁ’Djltl/adj-



Intermediate Good Producers

> Intermediate good producers use labor only: Yj; = ANj:.

» They must make decisions before observing ¢j;, based on a
signal generated from market research s;;.

» After the intermediate firms produce, prices of their goods are
set to clear the market (as in a Cournot competition).

Sjt]

Sjt} }1/0

» The intermediate firm’s problem is

W
e b [(P - A) Vi

Jjt

» Solved by:

ve={0-0) 5 [l ve




Intermediate Good Producers - cont.

» Without loss of generality, choose A, such that

le = Et |:6_]et Ytail

5jti| = Ei[exp(Oeje — (1 — 0)ytlsji]

> where €j; and y; are the logs of €j; and Y; respectively.

» Notice that firms are targeting:

)A/jt = 9€jt - (1 - G)Yt-
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Forecasters

» There is a large number of forecasters that get to observe two
random variables z{,i = 1,2; z; ~ N(0,1) iid.
» Forecaster i believes that output is related to these variables:
ye=9¢' +¢ -z
> Basically, we limit the belief space to (¢',¢') € R3.

» The firms get a signal that is a linear combination of their
specific shock and the average forecast:

s =Aeje + (1= A) ((¢0) + (€0 - z2) . A€ (0,1).

» Also, each firm believes y; = ¢/ + & - z,.
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Learning

» Firms and forecasters behave at period as if their point
estimates in the belief space are perfectly accurate.

» Both update their beliefs using an OLS estimator that can be
written recursively:

(8)-(4) e (2)orres-a-g

> | omit the var-covar matrix because it converges to unity
uniformly.

> g: is the gain sequence (1/t for OLS)

» A is the persistent bias term, that is assumed to average to
Zero across agents.



The firm's decision

> Recall that firms want to know xj; = fejr — (1 — 0)(y: — o).
» Assume ¢jr ~ N(0,02) iid across firms and time.
> Then, xzlsic ~ N(m(|&/[?)(s — (1 — \)o), £(]12)), where

OXo? — (1 —0)(1 — \)&?
m(fz) = 3203(+ (1 E(A)2£2) )

(6 + X\ — 201)2¢252
X202+ (1— N)2E2

2 =



Output

» Firm’s decision is
SN e T P
o= (=040 (125 (1= 06 + 55 (1€
» Integrating over all firms, we get

1 .
(1—0)y: = log / cF I+ - DAm(E )2
0

e A=O{(1-071) ¢ +07H(1-N)m(||¢|)((¢)) ~ ¢/ +(¢)-ze)+ 5 (1€ M gj



REE without bias

» Set A¢' =0, and let all agents have common beliefs.

» The last equation defines a mapping from perceived to actual
law of motion
1
a0

6+ S EIR) + [0+ (6 ;(;)fvé)\su MPa?

: %%m(ll&llz)(l ~ e



REE without bias

» The mapping has two types of fixed points:

1. A deterministic equilibrium:

c_ bo? c_

2. A circle of stochastic equilibria, only when A < 1/2

¢5:¢C <1_(1_9)(1_2)\)>’ ”55”2:M 2

1-\ 1-r2 7=

» Note that the stochastic equilibrium is Pareto inferior.



Stability

» Locally, stability has to do with the eigenvalues of the
Jacobian matrix of the mapping PLM—ALM.

» Stability under RLS with g = 1/t, is equivalent to the
eigenvalues having real parts smaller than 1.
» Theorem: For A > 1/2 only the deterministic equilibrium exists

and it is stable under OLS learning. For A < 1/2, both
equilibria exist but only the stochastic ones are stable.

» With constant gains the situation is more complicated. The
eigenvalues also need to be larger than -1, for there to be
stability with any gain value. This results are depicted in the
following graph.



Stability with const. gains
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Full Simulation
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Simulations - Results

» For large enough V(A¢'), the system does not converge, but
does not diverge either.

» Coordination builds up slowly and falls abruptly.

» With small bias, |A¢/| < ¢°, the system quickly converges
and stays near R, = £°. Output in the latter case is symmetric
and mesokurtic.

» With high bias the system stays near R; = 0 and the resulting
time series for output, y;, is right-skewed and heavy tailed.

» Non-intuitive: the economy is more volatile when beliefs are
better synchronized!
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Learning about phases only

» To better understand the results, consider a version of the
model where all agents share the beliefs: ¢ = ¢ and
1€]| = £°, and are only trying to learn about the phases, i.e.:

¢ =¢°, & =¢(cosil,sin ).

> Agents continue using the RLS, but override the results they
get for ¢, ||£]| (consistent).

» Also define z; = ri(cos (¢, sin ().

» The actual law of motion is

1 )
vi = 65 + - Iog/ e(1—9)£5rrc05(W—Cr)dj,
- 0



cont.

» The evolution is
Zb{+1 = — % sin(¥} — ¢)x
% (gsrt{ {cos(1hk — ¢1))" — cos(ih — Ct)} + A¢’)

1
log / Q(L-0)E recos(u —C) g

K * _ ;
(cos(vs = ¢e)) (1—6)(&Sr) 0



cont.

» When the 9¥’s are not too dispersed, we can further
approximate and get
Ay

w{:—&-l _M_gtrtSin(wjt._Ct)[Sin(w]t._Ct)/O Sin(zb{—q/;f)dk—}—g—s



cont.

» When the 9¥’s are not too dispersed, we can further
approximate and get

Wlia = v gmsin(vh ) sintvt <o) [ 1sm<1%—wt>dk+§ﬂ

» Compare:

77Z}Jt+1 =] — gt[ /Si”(@b{—wﬁ)dk‘ij]-
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cont.

» When the 9¥’s are not too dispersed, we can further
approximate and get

Wlia = v gmsin(vh ) sintvt <o) [ 1sm<wi—wt>dk+Asﬂ

» Compare:
Vi =Vl — g [ /sin(w{ —wf)dk+wf] .

» Our system is like a Kuramoto equation with stochastic
coefficients: the first sin(vy} — (;)? is always positive, and pulls
the phases together.

» The second: _sin(z/f{ — (t)A¢/ creates dispersion, since
empirically p(¢}, A¢/) is almost always near +1.



Summary

v

A simple macro model where volatility changes dynamically as
agents’ beliefs synchronize and de-synchronize.

v

Heavy-tailed growth series.

v

Volatility is inversely related to belief-dispersion.

v

A connection to the Kuramoto model.
Demonstration: http://youtu.be/tIR1Ksv6cul

v


http://youtu.be/tlR1Ksv6cuI

Future research

» Understanding the stochastic coupling.
» Adding persistence (tricky).

» Exploring alternative couplings K; ;.
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