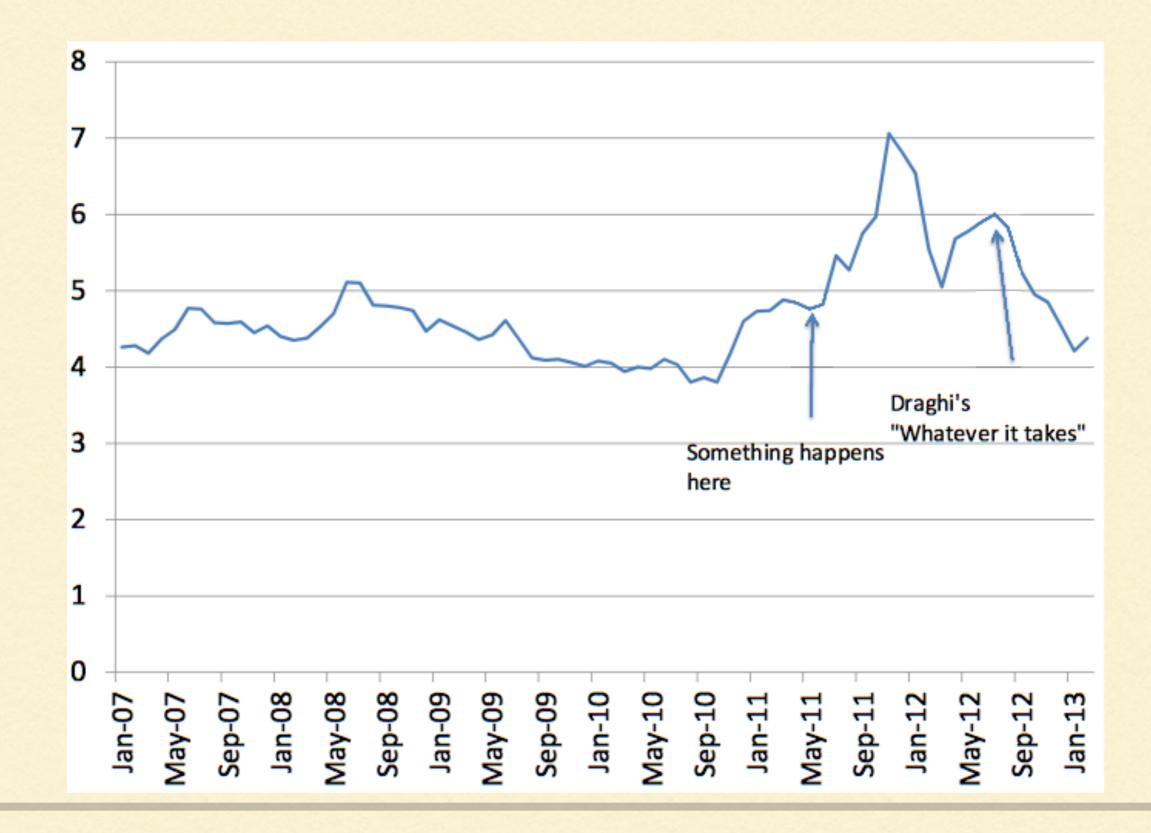
SLOW MOVING DEBT CRISES

Guido Lorenzoni and Ivan Werning

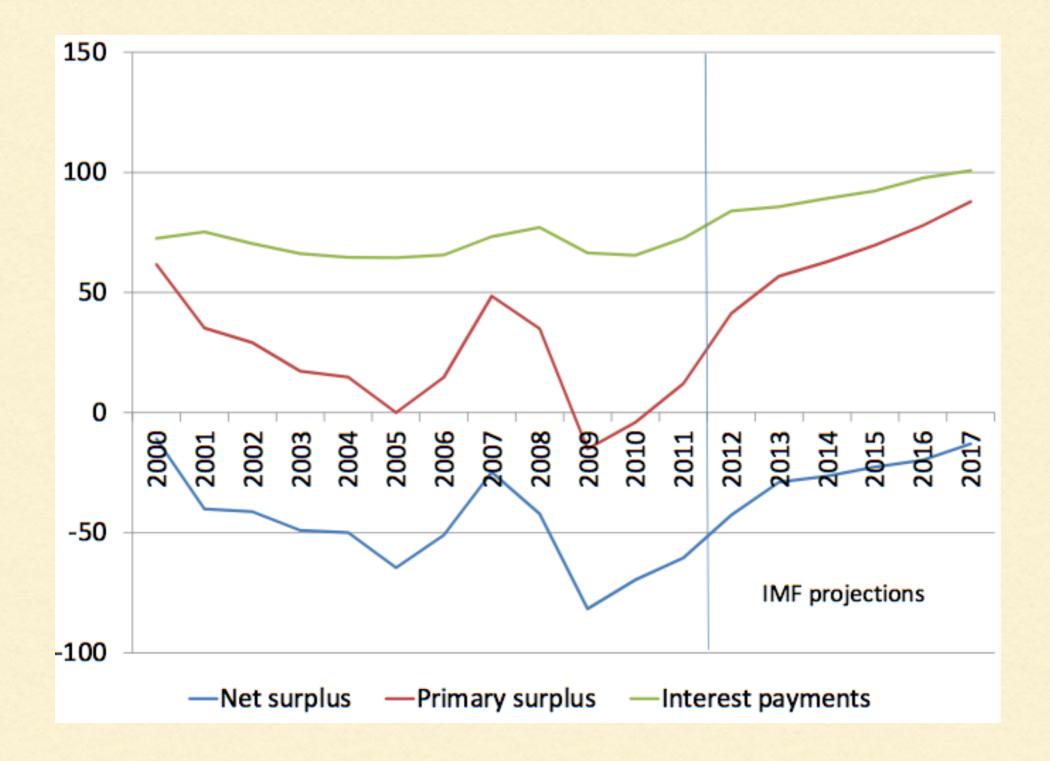
SLOW MOVING CRISES

- Sovereign crises without immediate liquidity concern
 - unexpected sharp increase in spreads
 - treasury auctions keep going ok
 - gradual, but faster accumulation of debt despite efforts at fiscal adjustment
 - investors worry about medium-run debt dynamics
- Recent example: Italy

ITALY: IOYR BONDYIELDS



ITALY: GOVERNMENT BUDGET



THIS PAPER

- Dynamic model of multiple equilibria with a fiscal rule
- Characterize maximum debt and crisis region
- What properties of fiscal rule help prevents crises?
- Also: timing/commitment issues and multiplicity

CONNECTIONS

- Role of expectations: Calvo (1988)
- Liquidity crises: Cole-Kehoe (1998, 2000), Giavazzi-Pagano (1989), Alesina-Prati-Tabellini (1992), Chang-Velasco (1999)
- Related: Navarro, Nicolini, Teles (2014)
- Monetary/fiscal issues: Corsetti-Dedola (2014)

OUTLINE

- Recursive derivation of debt capacity with short-term debt
- Applications: stationary model
- Microfoundations

SHORT-TERM DEBT

- Time t = 1, ..., T
- Fiscal rule $F(s_t|s_{t-1}, b_t)$
- Zero recovery after default
- Budget constraint

$$q_t b_{t+1} + s_t = b_t$$

repay if $s_T \ge b_T$

repay if $s_T \ge b_T$

 $Q_{T-1}(b_T, s_{T-1}) =$ $\beta \Pr\left(s_T \ge b_T | s_{T-1}, b_T\right)$

repay if $s_T \ge b_T$

 $Q_{T-1}(b_T, s_{T-1}) =$ $\beta \Pr\left(s_T \ge b_T | s_{T-1}, b_T\right)$

 $m_{T-1}(s_{T-1}) = \max_{b'} Q_{T-1}(b', s_{T-1})b'$

repay ifrepay if $b_{T-1} - s_{T-1} \le m_{T-1}(s_{T-1})$ $s_T \ge b_T$

 $Q_{T-1}(b_T, s_{T-1}) =$ $\beta \Pr\left(s_T \ge b_T | s_{T-1}, b_T\right)$

 $m_{T-1}(s_{T-1}) = \max_{b'} Q_{T-1}(b', s_{T-1})b'$

repay if repay if $s_T \ge b_T$ $b_{T-1} - s_{T-1} \le m_{T-1}(s_{T-1})$

 $Q_{T-2}(b_{T-1}, s_{T-2}) =$ $\beta \Pr(s_{T-1} \ge b_{T-1} - m_{T-1}(s_{T-1}) | s_{T-2}, b_{T-1}) \qquad \beta \Pr(s_T \ge b_T | s_{T-1}, b_T)$

 $Q_{T-1}(b_T, s_{T-1}) =$

 $m_{T-1}(s_{T-1}) =$ $\max_{b'} Q_{T-1}(b', s_{T-1})b'$

repay if repay if $s_T \ge b_T$ $b_{T-1} - s_{T-1} \le m_{T-1}(s_{T-1})$

 $Q_{T-2}(b_{T-1}, s_{T-2}) =$ $\beta \Pr(s_{T-1} \ge b_{T-1} - m_{T-1}(s_{T-1}) | s_{T-2}, b_{T-1}) \qquad \beta \Pr(s_T \ge b_T | s_{T-1}, b_T)$

 $m_{T-2}(s_{T-2}) =$ $\max_{b'} Q_{T-2}(b', s^{T-2})b'$ $Q_{T-1}(b_T, s_{T-1}) =$

 $m_{T-1}(s_{T-1}) =$ $\max_{b'} Q_{T-1}(b', s_{T-1})b'$

repay if	repay if	repay if
$b_{T-2} - s_{T-2} \le m_{T-2}(s_{T-2})$	$b_{T-1} - s_{T-1} \le m_{T-1}(s_{T-1})$	$s_T \ge b_T$

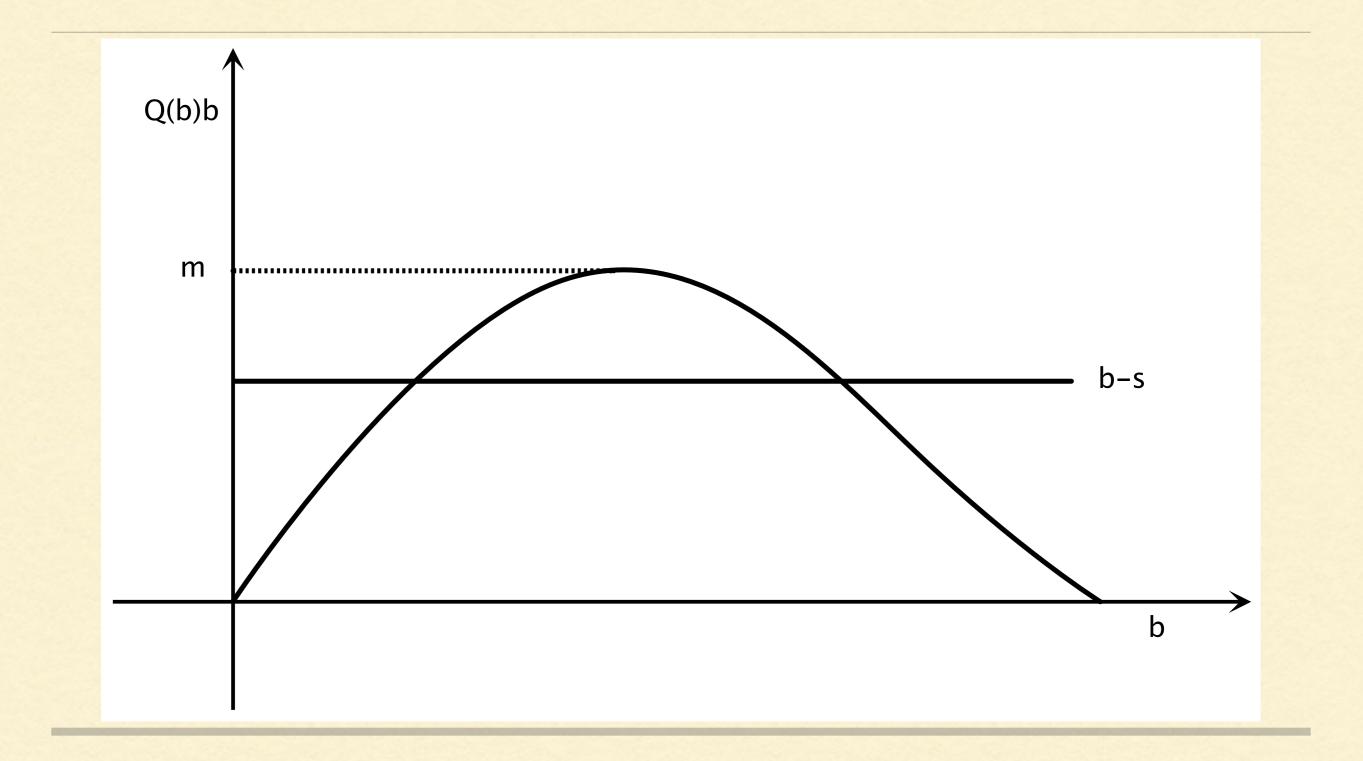
 $Q_{T-2}(b_{T-1}, s_{T-2}) =$ $\beta \Pr(s_{T-1} \ge b_{T-1} - m_{T-1}(s_{T-1}) | s_{T-2}, b_{T-1}) \qquad \beta \Pr(s_T \ge b_T | s_{T-1}, b_T)$

 $m_{T-2}(s_{T-2}) =$ $\max_{b'} Q_{T-2}(b', s^{T-2})b'$ $Q_{T-1}(b_T, s_{T-1}) =$

 $m_{T-1}(s_{T-1}) =$ $\max_{b'} Q_{T-1}(b', s_{T-1})b'$

- Result: Maximal debt and price schedules uniquely defined
- Multiple equilibria?
 - Yes
 - $Q_t(b_{t+1}, s_t)b_{t+1}$ not monotone
 - Laffer curve

LAFFER CURVE



A STATIONARY EXAMPLE

- Continuous time
- With Poisson probability λ uncertainty is realized
- At that point surplus S drawn from CDF F(S)
- If default, recover fraction of surplus
- Price at the Poisson event is

$$\Psi(b) = 1 - F(b) + \phi \frac{1}{b} \int_{\underline{S}}^{b} SdF(s)$$

ODE

Fiscal rule, increasing, bounded above

$$s = h(b)$$

Budget constraint

$$q(\dot{b} + \delta b) + s = \kappa b$$

Pricing condition

$$rq = \kappa - \delta q + \lambda(\Psi(b) - q) + \dot{q}$$

• ODEs in *b*,*q*

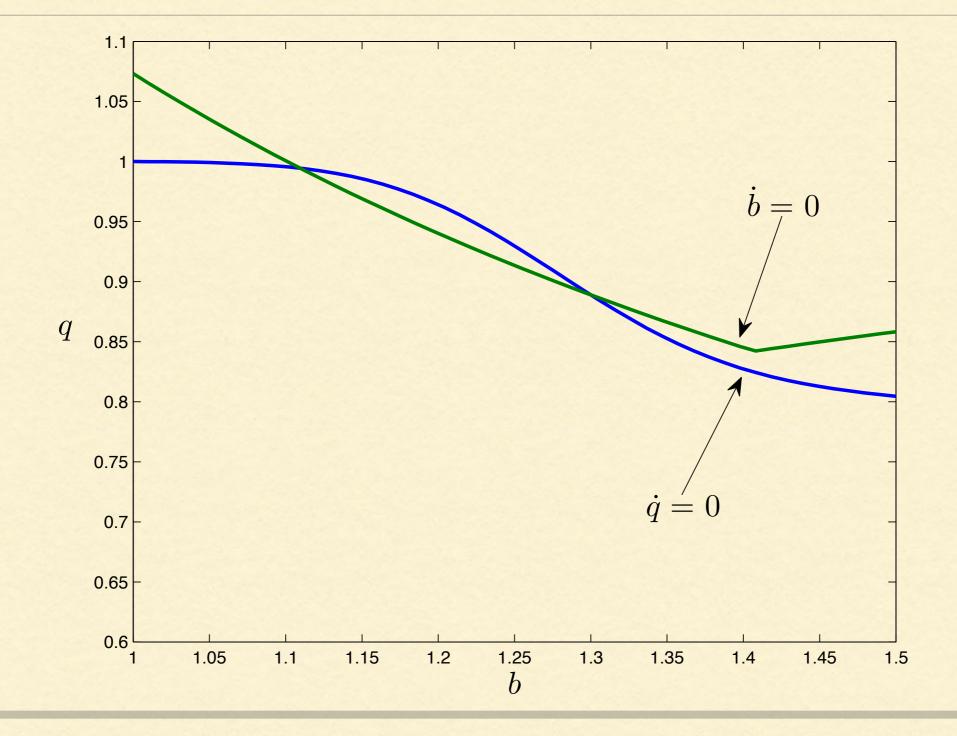
TERMINAL CONDITIONS

- An equilibrium satisfies the ODE and a terminal condition:
 - Possibility I: b and q converge to a steady state
 - Possibility 2:

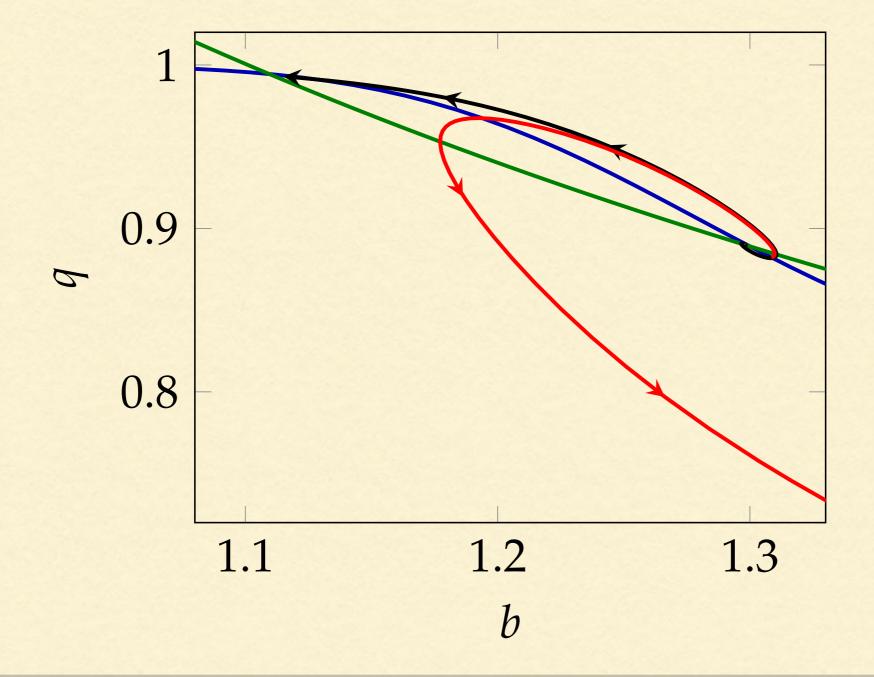
$$b \to \infty, q \to 0$$

Possibility 2 leads to default in finite time and constant debt value for b large enough

MULTIPLE STEADY STATES



MULTIPLE EQUILIBRIA



STABILITY

With no default risk ODE boils down to

 $\dot{b} = rb - h(b)$

Stability condition (Leeper, 1991)

h'(b) > r

Increase surplus faster than debt service

STABILITY

Steady state saddle path stable if

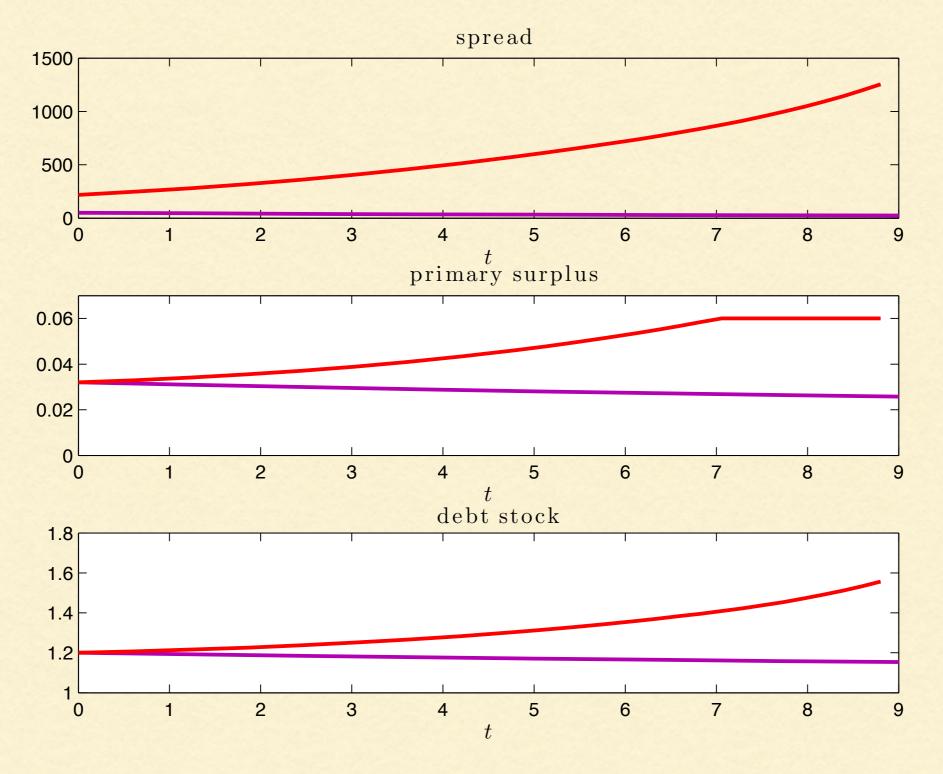
$$h'(b) > \kappa - \delta q - \frac{\delta \lambda}{r + \delta + \lambda} \Psi'(b)b$$

This is stronger than

h'(b) > r

Result: If h function bounded and there is a stable s.s., there must also be another s.s. with higher debt

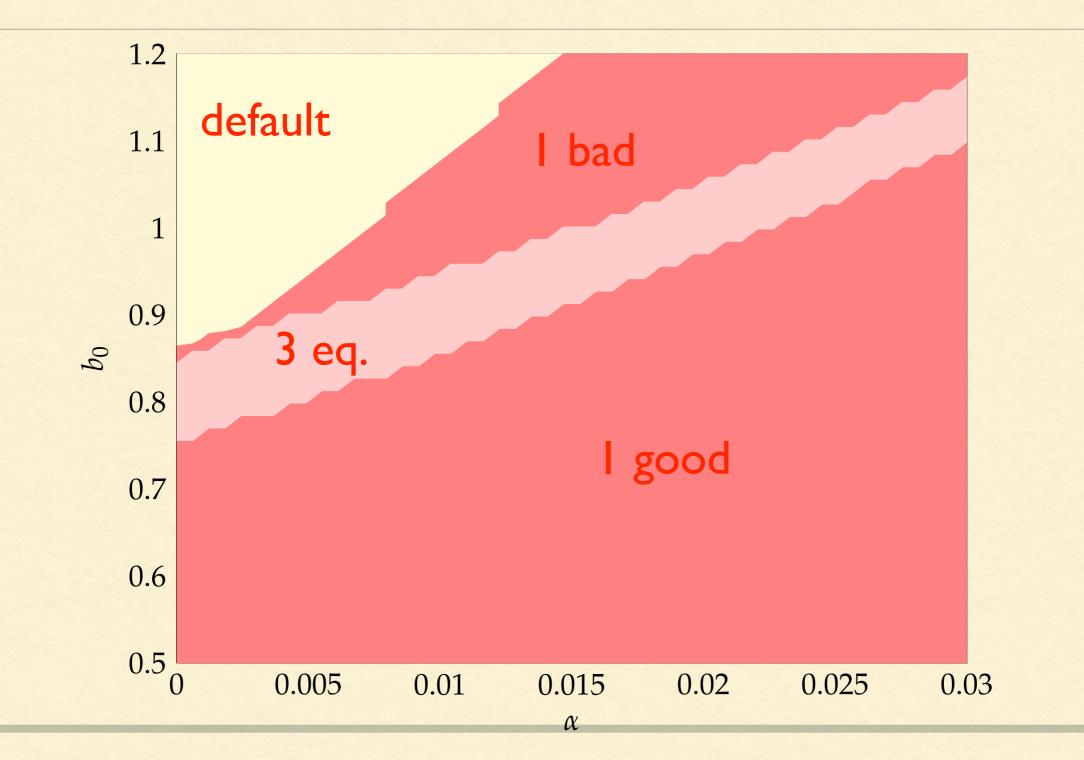
A SLOW MOVING CRISIS



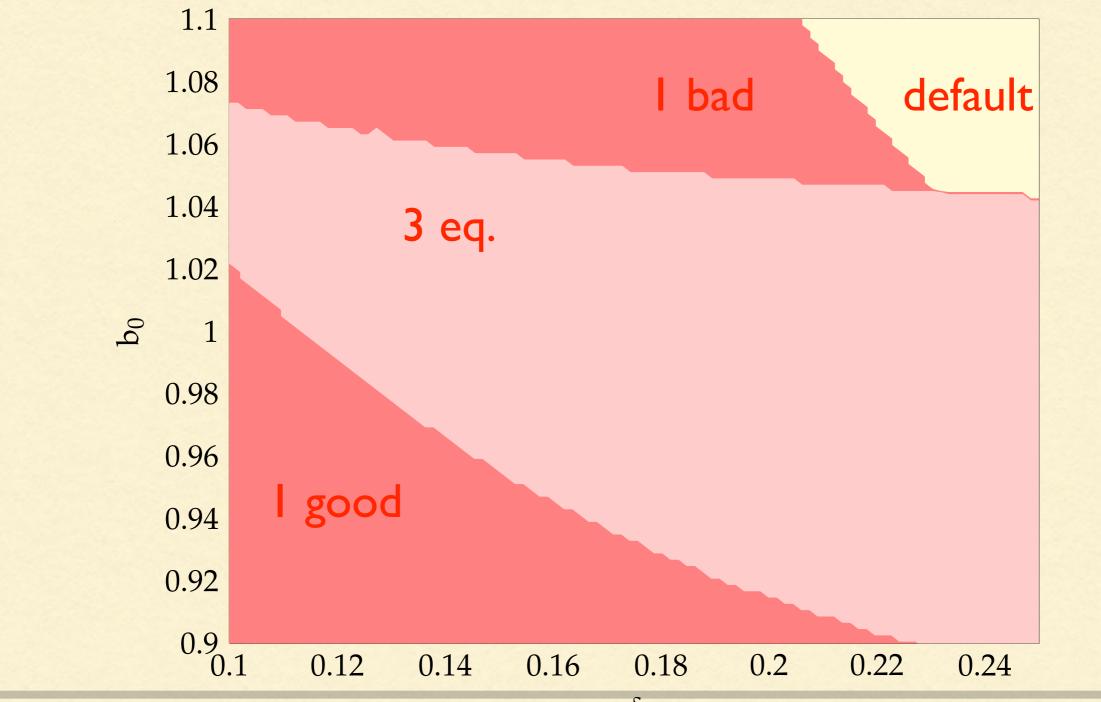
SUMMING UP

- Conditions for "sustainability" are tighter than under risk-free debt
- Even if sustainability condition satisfied, basin of attraction is not necessarily safe
- Equilibrium is eventually unique

REGIONS: RULE



REGIONS: MATURITY



MICROFOUNDATIONS

Goal

- write down a "game"
- government chooses debt...
- ... but cannot commit to not go back
- solve it and show "Calvo outcome"

MODEL

- Three periods
- Bonds only pay in 3
- Objective of borrower is $U(c_0, c_1, c_2)$
- Issue bonds at t=0 and t=1: $c_0 = q_0 b_0$ $c_1 = q_1 (b_1 b_0)$
- Repayment at t=2 depends on bonds issued and shock

MULTIPLICITY ATT=I

Best response

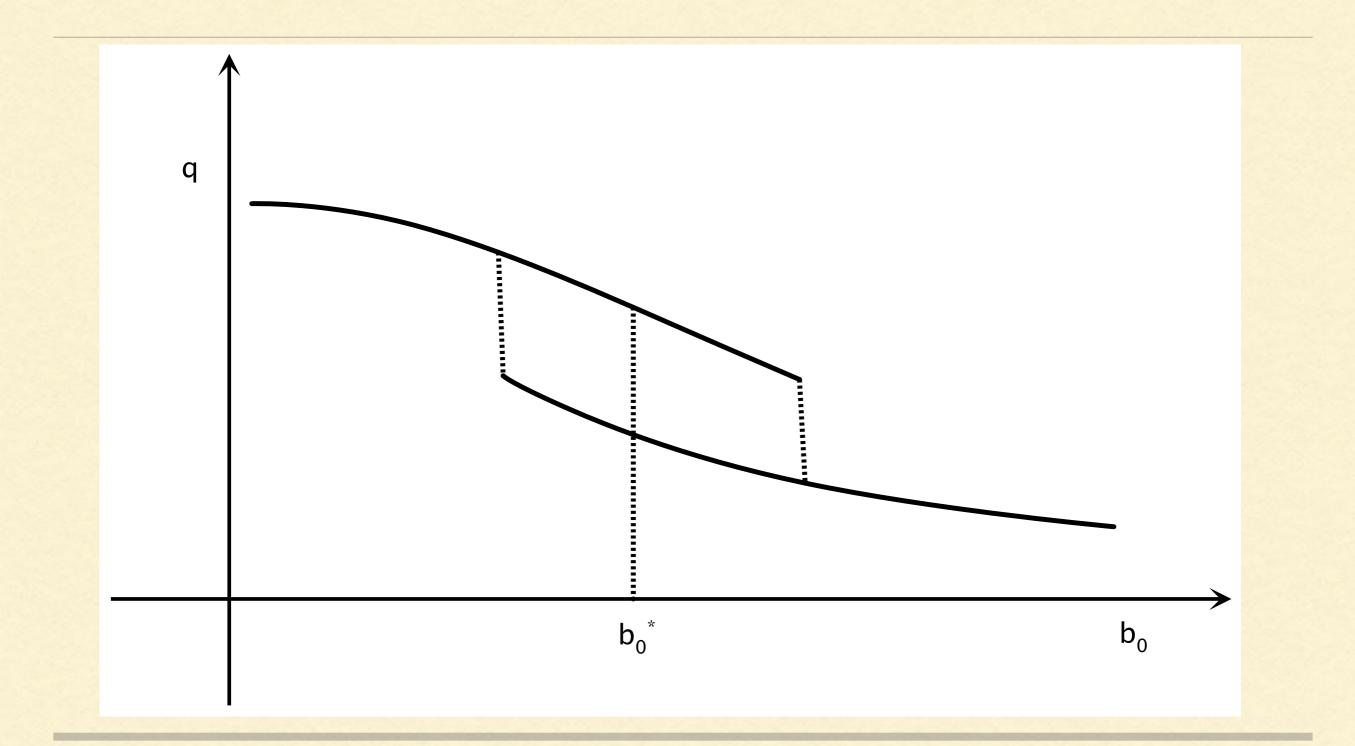
 $B_1(b_0,q_0)$

Rational expectations

$$q_0 = 1 - F(B_1(b_0, q_0))$$

 Multiplicity possible if preferences non-separable: low resources raised in 0 increase incentive to borrow at 1

DO WE GETTHERE?



FINAL REMARKS

- Slow Moving Crises
 - dynamic Calvo
 - different from liquidity crisis a la Cole-Kehoe

- Tipping points and tipping regions
- Local/global properties of fiscal rule