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1 Introduction
The United States has had great difficulty developing significant and enduring climate policy. One
major exception has been renewable portfolio standards (RPS) that require a certain percentage of
electricity supply in a state to be met by generation from sources designated as renewable. The
first RPS was passed in Iowa in 1991 and, as of 2015, RPS policies have been enacted in 29
states and the District of Columbia.1 These programs play a central role in existing U.S. climate
policy, currently covering 18% of US CO2 emissions compared to 8.4% for state and regional cap-
and-trade programs. Further, such policies appear set to continue expanding in scale and scope.
For instance, state level RPS programs that initially required the renewable share of electricity to
increase by only a few percentage points have set ambitious 2030 targets of 35% (Massachusetts),
40% (Connecticut), 60% (California), and 70% (New York), and several proposals for national
legislation - including President Biden’s proposal for a clean electricity standard - recommend
policies that expand features of existing RPS programs. There is little, if any, historical precedent
for integrating renewables into the electricity generation system at such scale.

Despite the popularity of these policies, there is little systematic evidence on RPS’ impacts on
electricity prices, carbon emissions, or the cost per ton of avoided CO2 at even the modest lev-
els of stringency that have prevailed to date. Typical of existing work is a recent study that finds
that RPS has increased retail electricity prices by about 2% (Barbose, 2018). However, this study
(and similar research) cautions that it only captures the direct costs of renewable energy produc-
tion. Specifically, it fails to capture several costs that renewables impose on the electricity market
that are socialized and must be borne by some combination of distribution companies, generators,
ratepayers, and potentially taxpayers. These include: the costs associated with renewables’ inter-
mittency that requires other sources to fill in when the sun or wind resources are unavailable;2 the
higher transmission costs associated with transporting renewable electricity from its most advan-
tageous geographic locations to population centers (Mills, Wiser, and Porter, 2009); and payments
to compensate electricity generators that have reduced utilization or are prematurely closed.

This paper estimates the aggregate costs and benefits of RPS by comparing states that did and
did not adopt RPS policies using the most comprehensive panel data set ever compiled on program
characteristics and key outcomes from 1990-2015. Importantly, there is variation in the timing of
adoption of RPS programs across states, which lends itself to powerful event-study style figures
that reveal no meaningful evidence of pre-existing differences in electricity price trends between

1An additional seven states enacted non-binding targets under similar programs.
2On average, utility scale solar plants have a capacity factor (i.e., average power generated divided by its peak potential supply

over the course of a year) of about 25% according to the Energy Information Administration. Wind plants are not much higher at
34%. A frequent solution is that the installation of renewables is paired with the construction of natural gas “peaker” plants that
can quickly and relatively inexpensively cycle up and down, depending on the availability of the intermittent resource.
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adopting and non-adopting states. Further, we collect additional data that allow us to control for
a wide range of potentially confounding electricity policies, including energy efficiency programs
and investments, electricity market restructuring, net metering, green power purchasing programs,
and public benefits funds. We also control for pollution regulations that could have affected costs
faced by electricity producers, including the presence of nitrous oxide trading under the EPA’s Acid
Rain Program (Deschênes, Greenstone, and Shapiro, 2017) and attainment versus non-attainment
designations under the Clean Air Act (Greenstone, 2002). This approach stands in contrast to what
we believe is the nearly impossible task of a complete bottom up approach that separately measures
each of the indirect mechanisms through which renewables affect total system costs, in addition to
the direct differences in generation costs between renewables and other sources of electricity.3

There are four key findings. First, RPS policies’ statutory requirements for renewable gener-
ation frequently overstate their net impact on generation, because they often include generation
that existed at the time of the policy’s passage. For example, seven years after New Hampshire
adopted its RPS policy, its statutory or total requirement was that renewables account for 11.5% of
generation. Yet at the time of adoption, renewables already accounted for 7.5% of generation. So,
its net requirement in this year was 4.0%. Our best estimates are that 7 years after adoption the
average adopting state’s net requirement was 2.2% of generation and 12 years after it was 5.0%.

Second, electricity prices increase substantially after RPS adoption. The estimates indicate that
in the 7th year after passage, average retail electricity prices are 1.2 cents per kWh or 11% higher,
totaling about $30 billion of annual additional costs to consumers in RPS states. Twelve years
later they are 1.9 cents, or 17%, higher. These estimates are statistically significant at the 5% level
and robust to a variety of specification checks including: controlling for local shocks to electricity
costs in a variety of ways, including in specifications with region-by-year fixed effects that com-
pare states to only their closest geographic neighbors (e.g., to account for differences in access to
inexpensive shale gas); the application of a synthetic controls estimator that matches RPS states
with non-RPS states based on ex ante characteristics (Ben-Michael, Feller, and Rothstein, 2021);
and the implementation of the Abraham and Sun (2019) method to account for the challenges
with staggered treatment timing in the presence of heterogeneeous treatment effects. Further, we
find evidence that suggests that higher transmission and distribution costs account for a substantial
portion of the increase in electricity prices in RPS states.

Third, the estimates indicate that passage of RPS programs substantially reduces carbon emis-
sions. Depending on the specification, we find that CO2 emissions fall by 10-25% in the seventh
year after RPS passage, and 23-36% in the 12th year after passage. Importantly, these estimates
are obtained from specifications that attempt to account for cross-state spillovers in generation. It

3For instance, Gowrisankaran, Reynolds, and Samano (2016) measure the intermittency costs of solar energy in Arizona.
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is noteworthy that the estimated reductions in CO2 are two to six times larger than would be sug-
gested by renewable sources one-for-one displacing coal generation. The analysis indicates that
this discrepancy is because RPS adoption is associated with steep declines in coal and petroleum’s
share of electricity generation, suggesting that RPS polices have indirect effects on the broader
“merit order” and which sources operate in periods when renewables are not operating.

Fourth, we put together the findings on electricity prices and emissions to calculate the implied
cost of CO2 abatement. Point estimates suggest that the cost to consumers per metric ton of CO2

reduced ranges from $60 to $300, depending on specification, though confidence intervals cannot
rule out substantially lower or higher abatement costs. For context, these estimates are higher than
permit prices in existing carbon markets, but lower than abatement costs estimated for some other
carbon policies (see, for instance, Fowlie, Greenstone, and Wolfram (2018), Holland, Hughes, and
Knittel (2009), and the Gillingham and Stock (2018) survey). For additional context, the Biden
Administration set the social cost of carbon at $51 per ton on an interim basis, although it was
estimated at $125 per ton in recent work (Carleton and Greenstone, 2021). Finally, it is worth
noting that these cost per ton of CO2 estimates do not account for the possibility of future cost
reductions in renewables due to RPS-induced technological progress.

This paper builds on a range of research on renewable energy and RPS programs. A substantial
body of work focuses on assessing individual components of the indirect costs of renewable grid
integration (Denholm and Margolis, 2007; Borenstein, 2008; Lamont, 2008; Joskow, 2011; Milli-
gan et al., 2011; Cullen, 2013; Jacobson et al., 2015; Gowrisankaran et al., 2016). The literature
on RPS program impacts in particular has primarily consisted of qualitative evaluations (Fischer,
2010; Schmalensee, 2012) and prospective evaluations that project minimal impacts on electric-
ity prices, some of which have been commissioned by states considering adoption (Chen, Wiser,
and Bolinger, 2007). A limited body of post-implementation work has found that RPS adoption
increases electricity prices by roughly 2-4% (Heeter et al., 2014; Tuerck et al., 2013), although
this literature has largely taken place outside peer-reviewed journals and does not account for all
the indirect ways that these programs can affect system costs.4 An important exception is Upton
and Snyder (2017), who find that RPS programs substantially raise electricity prices and mod-
estly reduce emissions, but do not account for cross-state spillovers in electricity trade and RPS
compliance, the temporal pattern of RPS impacts on prices, and adjustments for a wide range of
potentially confounding policies.

The paper proceeds as follows. Section 2 provides background on RPS policies and their typical

4Other papers focusing on specific aspects of RPS include Hollingsworth and Rudik (2019), which examines the effects of
RPS on renewable generation in neighboring states, Johnson (2014) and Carley et al. (2018), which measure the effects of RPS on
renewable generation and the elasticity of supply, Barbose et al. (2016), which uses modeling approaches to estimate the effects
of RPS on emissions and economic activity, and Bento, Garg, and Kaffine (2018), which uses a calibrated model to analyze the
general equilibrium effects of RPS.
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implementation. Section 3 sets out a model that identifies the channels through which integrating
renewable generation can raise electricity costs. Section 4 outlines our data sources and presents
summary statistics on the electricity sector prior to RPS passage. Section 5 describes the empirical
strategy, and Section 6 presents and discusses the results. The paper then finishes with Interpreta-
tion and Conclusion sections.

2 Renewable Portfolio Standards
By 2009, 29 states and the District of Columbia had adopted mandatory portfolio standards, while
an additional seven states had passed optional standards.5 While only Iowa, Nevada, and Con-
necticut passed RPS between 1990 and 1998, 27 states followed suit over the next 11 years and
these programs now cover 62% of electricity generation in the US.6 Figure 1 contains a map of the
United States that indicates which states have enacted RPS programs, with the colors indicating
the years of enactment.

Figure 2 plots the number of RPS programs passed into law in each year (left y-axis) and the
real national average retail electricity price (right y-axis). The plot shows that the majority of RPS
programs were enacted after 2000, loosely corresponding with a break in the trend of national
electricity prices, which declined from about 12 cents per kWh to 10 cents per kWh from 1990
through 2002 but returned to 12 cents per kWh by the end of the sample in 2015.7 In the sections
that follow, we will examine whether RPS policies contributed to this trend.

Most RPS programs require that retail electricity suppliers meet a percentage of demand with
energy from renewable sources.8 Once in place, the standard typically increases along a predefined
schedule until a specified fraction of renewable generation is achieved. For example, California’s
policy specifies a goal of 33% retail sales from renewables by 2020, with interim targets of 20%
by 2013 and 25% by 2016. While the standards sometimes exempt certain providers, most often
smaller municipal or cooperative suppliers, they cover 82% of electric load in a state on average.9

The key feature of RPS programs is that compliance requires production from a set of desig-
nated technologies. In practice, the list always includes wind and solar, but the full list of tech-

5West Virginia also passed an Alternative and Renewable Energy Portfolio Standard in 2009 with characteristics similar to an
RPS but which we do not consider. While renewables received some preference in this program, a much broader set of generation
sources qualified, including “Advanced Coal Technology,” and there was no guaranteed compliance from renewable sources. This
program was also repealed before its first binding requirement came into effect.

6Iowa was the first state to establish a binding standard in 1991, requiring the states’s two investor-owned utilities to build or
contract for 105 MW of renewable capacity. Although Iowa originally enacted an Alternative Energy Law in 1983, the program
wasn’t given a concrete goal or made compulsory until a revision in 1991, so we consider that the first year of passage.

7All monetary figures are reported in January 2019 dollars.
8Our data classify qualifying generation as one of wind, solar, biomass, geothermal, landfill gas, or ocean power, with some

states also allowing small hydroelectric.
9The statistic on load covered comes from the North Carolina Clean Energy Center’s Database of State Incentives for Renew-

ables & Efficiency (DSIRE).
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nologies included differs from state to state. Electricity providers must demonstrate compliance
with the program through possession of Renewable Energy Credits, or RECs, each of which cer-
tifies that a given unit of electricity production qualifies to meet a given standard. Most RECs
are awarded by various regional authorities encompassing several states, which issue unique serial
numbers for every megawatt-hour of generation produced by registered generators. The approxi-
mate coverage of these REC tracking systems is shown in Appendix Figure A.1. This independent
tracking seeks to prevent double counting of generation used for RPS compliance. While there
is some scope for transferring RECs between regional systems, in practice most RPS compliance
occurs within a tracking region, a fact that we will return to later on when considering the impact
of RPS on generation outcomes and emissions.

Once awarded, credits can be sold separately from the underlying electricity, enabling flexi-
ble transfer of the rights to environmental benefits and providing additional revenue to renewable
suppliers.10 In most cases, individual generators must be further approved by the state office ad-
ministering the RPS to ensure that they comply with the specific requirements for generators set
forth by that state. In restructured markets, retail providers then purchase RECs generated by these
approved facilities, either via brokers or directly through individual contracts. In non-restructured
markets, retail providers may also use RECs generated by their own renewable facilities. The se-
rial numbers of the RECs obtained are filed for compliance and their retirement verified with the
relevant tracking system. Depending on program rules, excess RECs may also be “banked” for use
in later years, though there are typically vintage restrictions requiring that relatively recent credits
be used. Therefore, REC prices reflect the marginal costs of producing electricity from one of
the designated technologies, relative to the least expensive alternative, but they do not capture the
systemwide costs of supplying that electricity, which additionally reflect the costs associated with
intermittency, transmission, and compensating owners of stranded assets.

Most RPS programs enforce compliance using a system of Alternative Compliance Payments
(ACPs), which effectively fine retail providers for failing to acquire sufficient RECs to cover their
sales. These payments are large, averaging about $50 per MWh.11 Such penalties are substan-
tial, representing about half of the average revenue per MWh observed in 2011. In addition to a
penalty, ACPs also provide an effective cost-ceiling for the REC market, as they provide an out-
side option for compliance. While in practice few retail suppliers fulfill their requirements through
ACP payments, REC markets in some states have periodically traded at the ACP level, suggesting
that marginal sources of compliance can be relatively high cost.

10A minority of RPS programs have the more stringent requirement that credits be “bundled” with electricity delivered into the
state, as demonstrated by transmission to a state balancing authority.

11In the case of mandates for generation specifically from solar energy, they can climb even higher, sometimes exceeding $400
per MWh.
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While statutory requirements like Maine’s 29% target appear quite large, they often ramp up
gradually from lower levels and may not reflect the amount of marginal generation actually man-
dated by RPS policies. Intuitively, if an RPS requirement were entirely covered by existing sources
at its inception, in a competitive market we would expect producers to bid down the price of RECs
to zero. Distinguishing the amount of new renewable generation required to comply with RPS
policy is quite difficult in practice, since covered sources of generation vary from state to state
even within narrowly defined categories. For instance, some states allow small-scale hydropower
but not large-scale hydropower to qualify for their RPS. Further, six states, including Maine, ex-
plicitly mandate that part of their RPS be met using newly constructed renewable capacity. We
measure the “net” requirement imposed by RPS policies using data from the Lawrence Berkeley
National Laboratory (LBNL) compiled by Barbose (2018) that takes the gross MWh required for
RPS compliance and subtracts existing generation from eligible sources in the year prior to RPS
passage.

Figure 3 reports each state’s total and net requirements as of seven years after passage of RPS
legislation, ordering states by the calendar year in which they first adopted an RPS. While these
numbers do not fully account for the complications described above, they do show a clear pattern
of statutory requirements overstating the amount actually necessary to achieve compliance. For
instance, seven event years after passage, the gross requirement in Michigan is 5.8%, but the
net requirement after subtracting existing generation in the year of passage is only 2.2%. On
average, seven event years after RPS passage, RPS states have a total requirement of 5.6%, but a
substantially lower net requirement of 2.2%. In the remainder of the paper, we primarily focus on
estimates of net requirements, described in greater detail in Section 4.1.

3 Conceptual Framework
Standard “levelized cost of electricity” (LCOE) estimates capturing the direct capital and mainte-
nance costs of various generation sources provide an incomplete measure of the impact of transi-
tioning electricity production to renewable sources on consumer prices. We set out a simplified
model of the decision-making process of a retail electricity provider to illustrate the mechanisms
through which renewable integration can affect system costs, and consequently retail prices. The
model demonstrates how intermittency, transmission, and the displacement of existing capacity
infrastructure interact to raise total costs. Notably, the model highlights the wide range of param-
eters and nontransparent data inputs that would be required to calculate these costs directly. The
paper’s empirical procedure sidesteps this difficulty by summarizing the aggregate effect of these
mechanisms through the reduced-form impact of RPS programs on retail electricity prices.

For simplicity, the model assumes a vertically integrated setting with a single utility respon-
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sible for both power capacity and retail provision. The intuition from this framework translates
straightforwardly to a deregulated setting with a retail provider purchasing electricity from com-
peting generators, except for the assumption that ratepayers always pay the full cost of installed
capacity. As discussed below, the extent to which owners of capital bear the losses from excess ca-
pacity stranded by integrating renewable sources is one factor that contributes to the overall effect
on retail prices.

3.1 Representative Utility Model

A representative utility chooses capacity investments and daily generation sources to fulfill two
requirements: ensuring that they meet the full electricity demand of their customers every hour
and that their annual electricity production meets the RPS requirement. Utilities have three types
of production capacity available with which to meet hourly electricity demand: renewables, R,
baseload power, B, and dispatchable “peaker” plants, D, the latter two of which we assume come
from non-renewable sources. Baseload generation produces a constant hourly amount, Bh, gov-
erned by annual capacity, Bt , and cannot be adjusted in response to hourly demand. Renewable
generation is stochastic and drawn from a distribution F(R), with mean, R̃, standard deviation, σR,
and support [R, R]. F(R) is a function of installed renewable capacity, Rt . The hourly demand
for electricity is also drawn from a distribution, G(E), with mean Ẽ, standard deviation σE , and
support [E, E]. So given the available capacity of Bt , Rt , and Dt in year t, the utility observes the
hourly draws of Eh and Rh and chooses the level of dispatchable power, Dh, to satisfy customer
demand.

Eh = Bh +Rh +Dh, (1)

Eh ∼ G(Et), Rh ∼ F(Rt).

With knowledge of this hourly optimization problem, the utility chooses investment in new
capacity at the beginning of each year. Total capacity of each type in period t consists of the de-
preciated capital from last period plus new investments in each of the three categories of electricity
sources, denoted by IB, IR, and ID. The equations of motion are as follows:

Bt = Bt−1(1−δB)+ IBt ,

Rt = Rt−1(1−δR)+ IRt , (2)

Dt = Dt−1(1−δD)+ IDt .

The utility chooses annual investments in new capacity to fulfill its two primary requirements.
First, the RPS requirement dictates the proportion of annual electricity production that must come
from renewables. For mandated renewable percentage, M, the utility must satisfy the following
condition aggregated across all 8760 hours in a year:
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∑
8760
h=1 Rh

∑
8760
h=1 Eh

≥M. (3)

Under RPS requirements, failure to meet this condition will cost the utility a per-unit fine, f ,
for the amount by which renewable generation falls below the threshold. To avoid paying the fine,
utilities must have enough installed renewable capacity, Rt , to produce enough electricity from
renewables to meet this requirement. Determining what constitutes enough renewable capacity
also may not be straightforward. If draws from the F(R) distribution are correlated across days,
simply ensuring that E[Rh]

E[Eh]
= M might not be sufficient to ensure compliance with the RPS mandate

in a year with systematically low realizations for renewable generation. The utility will trade off the
cost of increasing renewable capacity, Rt , with investments, IR, against the fine for noncompliance
when choosing the optimal Rt .

Second, the utility must ensure it can supply enough energy every hour of the year. We assume
there is an infinite penalty for failing to meet demand. Since both energy demand and renewable
production are stochastic, the utility must have enough dispatchable generation available to fill
the largest possible hourly need. In particular, the utility chooses Dt such that it can meet total
electricity needs in a hypothetical hour with the highest possible demand draw, E, and the lowest
possible renewable generation draw, R.

Dt = E−Bt−R (4)

In addition to choosing investment, the utility also has the option to prematurely retire capacity
at the beginning of each year. The carrying costs of retired capacity are lower and for simplicity
we assume that capacity that has not been retired will be run. Under certain conditions, they may
choose to retire baseload capacity because too much baseload generation could prevent the utility
from meeting the RPS requirement. If Bt

E[Eh]
> 1−M, for instance, then renewable production

would be expected not to meet its mandate even without any dispatchable production. To ensure
compliance with the RPS mandate, the utility must estimate the amount of dispatchable production
necessary during the year and then scale back Bt such that the expected sum of baseload and
dispatchable generation does not exceed 1−M as a proportion of all production.

Total costs for the utility include the fixed costs of installed capacity, associated transmission
and distribution requirements, and the variable costs associated with each type of power. The
utility finances new investments such that they make a constant annual payment over a horizon of
T years. The annualized prices of installed capacity, pB, pR, and pD, incorporate differences in
the cost per MWh for baseload, renewable, and dispatchable sources, as well as any differences
in financing costs or investment tax incentives. New transmission investments in each period,
which are also financed over a T -year horizon with annualized payment pT , are a function of new
installations across the three categories and depreciation of the existing transmission capital stock,
with geographically dispersed renewable installations such as wind and solar likely having greater

8



associated requirements. We represent these costs in the function, Tr(), that models transmission
costs as a function of capacity investments. Since renewables require no fuel inputs, they incur no
variable costs whereas baseload and dispatchable power have average costs acB and acD for each
unit generated. For the purposes of this model, these average costs capture not only the cost of fuel
inputs, but also any startup and shutdown costs associated with the operation of these generating
sources. Thus, the utility’s total costs in period t are as follows:

TCt =
t

∑
k=t−T

pBkIBk +
t

∑
k=t−T

pDkIDk +
t

∑
k=t−T

pRkIRk

+
t

∑
k=t−T

pT kTr(IRk, IBk, IDk)+8760BtacB +
8760

∑
h=1

DhacD. (5)

The retail rate is given by total costs in year t divided by total kilowatt-hours of energy produced
plus a markup, µ , assigned by the regulator. Thus:

Retail Rate in Year t = (1+µ)
TCt

∑
8760
h=1 Eht

. (6)

3.2 Empirical Requirements for Estimating the Full Costs of RPS

This framework illustrates the major practical difficulties involved in measuring the costs of RPS
programs piece-by-piece. Specifically, even if renewable and non-renewable production have the
same LCOE, defined by the prices of installed capacity and fuel inputs, transitioning a mature grid
infrastructure could increase costs through a wide variety of channels. The list of excess costs
includes:

• investments in new dispatchable capacity to protect against shortfalls of intermittent renew-
able generation,

• investments in new transmission infrastructure to accommodate the geographic locations of
new renewable capacity,

• premature retirements of baseload capacity and/or transmission infrastructure that serves non-
renewables to reduce non-renewable production to meet RPS mandates, which could also be
achieved in some cases through further investments to convert baseload sources to dispatch-
able sources.

Note that the model does not explicitly incorporate the retirement decisions comprising this last
category, though their importance is implied by need to meet the RPS mandate and reliably meet
demand. Further, the incidence of this last category between ratepayers and owners of capital is
unclear ex ante, although ratepayers seem more likely to bear the costs in traditionally regulated
“cost-plus” markets, compared to restructured ones. However, it is worth noting that this last
category differs from the others in two important ways. First, the social planner would not consider
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the continued need for financing irreversible past investments in a cost-benefit analysis since these
are sunk costs at the time of policy implementation. Second, these costs are transitional in nature,
while the first two are permanent features of increasing renewables’ share of production.

It is instructive to consider the challenges with constructing a bottom-up or structural estimate
of the costs of an RPS policy. First, it would require data or estimates of several moments from the
distributions of hourly energy demand, G(Et), and hourly renewable generation, F(Rt), the pre-
existing level of installed capacity by generation type, Bt ,Dt ,Rt , the respective depreciation rates,
investment prices, and fuel input prices for each of these three energy categories, and the transmis-
sion investments necessary to incorporate renewable capacity. Second, the estimates would need to
make a series of assumptions for how utilities project electricity demand, renewable intermittency,
and the need for dispatchable generation to protect against insufficient or excess supply, as well as
decision criteria for retiring baseload generation. Third, estimating the model would require go-
ing beyond the representative utility setup and incorporating interactions between heterogeneous
generators and retail providers in restructured and non-restructured markets. These interactions
have proven to be quite complex to model as they also involve questions of market power. Fourth,
the incidence of these costs between ratepayers, owners of capital, and even taxpayers, is also a
complicated question and, as we noted above, is likely affected by the regulatory environment.

Recent work has made important progress on structurally estimating the indirect costs of re-
newable energy in specific settings. For instance, Gowrisankaran, Reynolds, and Samano (2016)
use granular data on generating units and hourly load to estimate a model that quantifies the costs
of intermittency for solar energy in southeastern Arizona. While this structural approach advances
understanding, it examines just one of the channels through which RPS policies may influence
electricity market equilibria in one location, leaving unanswered questions about the average costs
and benefits of RPS policies. As an alternative, our empirical approach circumvents the complex
interplay of underlying mechanisms with a reduced-form approach that captures costs borne by
ratepayers due to all potential mechanisms, as well as the effect on CO2 emissions.

4 Data Sources and Summary Statistics
In order to assess the impacts of RPS programs, we construct an annual state level panel from 1990
to 2015 with data on RPS programs, electricity prices, other electricity market and environmental
policies, electricity generation, and emissions of CO2 and other pollutants. We believe this is the
most comprehensive data set ever compiled on RPS program characteristics, potential outcomes,
and confounders. This section describes each data source and presents some summary statistics
describing the context of the policy.
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4.1 RPS Program Data

Since 1990, 29 states and the District of Columbia have adopted RPS programs. We construct
indicators for the year in which rules for a mandatory RPS program were first adopted in each
state, compiled using state legislative documents, state government websites, and summaries from
the U.S. Department of Energy.12 While there is typically a few years of lag between policy en-
actment and the onset of binding mandates for renewable generation, costs to electricity providers,
and consequently customers, are likely to begin accruing when market participants start planning
for and investing in the required future capacity. Data from the Lawrence Berkeley National Lab-
oratory (LBNL) also include information about qualifying renewable sources under each program,
including whether there are specific requirements for solar generation.

To better characterize each state’s implementation, we also collect more detailed information
on year-by-year requirements. Most RPS programs require an increasing percentage of electricity
sales to come from renewable sources, leading to increased stringency over time. However, as
mentioned earlier, the statutory percentage requirement may overstate the additional generation
required if a large number of existing generators are eligible for compliance. To account for this, we
use data from LBNL constructed by Barbose (2018) that calculates the RPS net requirement as the
difference between statutory requirements and qualified pre-existing renewable generation. This
measure of net requirements represents the total amount of new renewable generation necessary
to comply with the policy, accounting for any regulations that require RPS compliance to be with
new capacity and, where possible, for qualified pre-existing out-of-state generation that could be
used to comply. Recall, Figure 3 highlights the substantial differences between the total and net
requirements.

In addition to data on RPS programs, we also collect information on the presence of a wide
variety of other programs and policies that may influence the amount of renewable generation and
the retail price of electricity. In particular, we have data on the implementation dates of five types
of electricity sector programs: electricity market restructuring, defined as retail market access for
non-utility-owned generation plants, energy efficiency resource standards, which mandate utili-
ties to achieve specified levels of energy savings through demand-side management programs, net
metering, which pays consumers for electricity that they add to the grid with distributed genera-
tion such as solar PV, green power purchasing, which requires government-affiliated consumers to
source a minimum amount of their power from renewables, and public benefits funds, which place
a surcharge on retail electricity prices to fund programs such as research and development, energy
education, and energy assistance for low-income households. The data on electricity market re-

12For example, Massachusetts passed legislation in 1997 creating a framework for establishing an RPS but did not adopt manda-
tory regulations until 2002. We use 2002 as our year of passage.
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structuring comes from Fabrizio, Rose, and Wolfram (2007) and data for the other programs comes
from the American Council for an Energy-Efficient Economy’s State and Local Policy Database
and the North Carolina Clean Energy Center’s Database of State Incentives for Renewables &
Efficiency (DSIRE) (Barnes, 2014). This data allows us to construct indicator variables for the
presence of other programs as well as a continuous measure of energy efficiency expenditures. In
addition to electricity market programs, we also collect information from the EPA on implemen-
tation dates for the Nitrogen Oxides Budget Program and the percentage of counties in each state
designated as non-attainment under the Clean Air Act. We construct a state level control variable
for the Clean Air Act attainment designation by taking the county level average of a binary measure
of attainment versus non-attainment status across pollutants, and then averaging across counties to
the state level weighting by county level fossil fuel capacity. We use this information on electricity
market and environmental policies to control for the presence of potentially confounding programs.

4.2 Electricity Sector

Information on electricity sector variables is drawn from Energy Information Administration (EIA)
survey forms. Electricity prices are computed from EIA Form 861, a mandatory census of retail
sales by electric power industry participants.13 Respondents report sales and revenues separately
for commercial, industrial, and residential sectors. Price is then taken to be the average revenue
per megawatt-hour sold for each category. This comprehensive measure should capture all direct
and indirect costs associated with renewables, although their separate impacts cannot be isolated.

Electricity generation by state and fuel source is compiled from EIA Forms 906, 920, and 923,
which concern power plant operations. This data is broken down by fuel type, ensuring plants with
multiple fuel sources are accurately reflected in aggregate numbers. We also compile information
on interstate and international electricity imports and exports as well as estimated electricity losses
calculated by the EIA using Forms 111, 860, 861, and 923. In addition, we use data on electricity
transmission and distribution capital, operations, and maintenance expenditures by investor-owned
utilities from FERC Form 1, sourced from the data set in Fares and King (2017).

To measure CO2 emissions, we use estimates derived by the EIA from power plant operations
data taken from Forms 767, 906, and 923. Their estimation process involves converting fuel use to
BTUs to provide a common comparison measure. Next, fuel uses that do not generate emissions
are subtracted out. Finally, source-specific carbon emission coefficients are used to convert to
metric tons of carbon.14 The result is a yearly panel of state emissions from electricity generation.

13The 3,300 respondents cover essentially the universe of retail suppliers, including electric utilities, energy service providers,
power marketers, and other electric power suppliers.

14More details on this process, including the conversion factors used, can be found in “Methodology and Sources” section of the
Monthly Electric Review published by the EIA.
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Finally, we collect information on the geographic boundaries of REC regions for RPS com-
pliance by manually compiling information from the websites and documentation associated with
each REC tracking system. This information allows us to account for cross-state spillovers in the
impact of RPS caused by compliance through out-of-state REC purchases. Appendix Figure A.1
shows an approximate outline of the REC regions and Data Appendix Section 12.2 contains full
details on the mapping of states to REC regions.

If RPS programs do in fact raise electricity prices, there may be downstream impacts on in-
dustries for which energy is a major input to production. To assess this, we construct a panel of
employment in each state by industry code using data from the County Business Patterns (CBP)
and calculate total and manufacturing employment for each state in each year. 15

4.3 Summary Statistics

Before describing our empirical approach in detail, we briefly present some summary statistics
from the data and report on some comparisons of treatment and control states in the year prior to
RPS passage. Table 1 presents summary statistics for RPS states and control states. “Mean RPS”
states in Column (1) refers to treatment states in the year prior to RPS legislation passage, “Mean
Control” states in Column (2) covers the full set of control states, which consist of non-RPS states
and RPS states that had not yet passed RPS by that year, and “Mean Non-RPS” states in Column
(3) refers to the subset of control states that never pass RPS. The summary statistics for non-RPS
states and control states are averaged across the set of states in each category corresponding to each
RPS state’s year of passage.

The statistics in Table 1 show some level differences between RPS states and control states in
the year prior to legislation. RPS states tend to have more expensive electricity – 11.4 cents per
kWh versus 9.4 in control states – larger populations, and better resources for producing solar and
wind energy. The patterns are very similar when comparing RPS states to the full set of control
states in Column (2) and to those that never adopt RPS in Column (3). The RPS states in our
analysis are also more likely to have other simultaneous programs affecting electricity markets,
including public benefits funds, net metering, green power purchasing programs, NOx trading, and
the percent of counties designated as non-attainment under the Clean Air Act. We control for
the time-varying passage of these programs, along with energy efficiency resource standards and
electricity market restructuring, at the state-by-year level in our analysis.

15One issue with these data is that employment statistics are often suppressed when the industry code and establishment size
potentially disclose information about a specific business. Following previous papers, we apply an imputation procedure to estimate
employment for these cells, using the national average for the industry in that cell size. To allow comparisons across years,
we recode NAICS industry codes used in later years to SIC industry codes, redistributing employment proportionally based on
concordances provided by the Census. For further details, and code used, see Autor et al. (2013) and the accompanying data
files. For 2012 and 2013, where official concordances are unavailable, we allocate employment proportionally based on 2011
employment using the official code mapping 2012 to 2007 NAICS.
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It is apparent that there are meaningful level differences between RPS adopters and non-adopters.
These differences are not a source of bias in our difference-in-differences research design, but this
design would be compromised by differences in trends. It is therefore reassuring that electricity
prices rose by statistically equivalent amounts in all three sets of states in the 7 years preceeding
adoption. Nevertheless, our main specification also adjusts the estimates for differences in pre-RPS
trends in electricity prices.

5 Empirical Strategy
Our empirical approach begins with an event-study style equation:

yst = α + ∑
τ∈{−19,...,18}\{−1}

στDτ,st +Xst + γs +µt + εst , (7)

where yst is an outcome of interest in state s in year t. We include state fixed effects, γs, to control
for any permanent, unobserved differences across states. Year fixed effects, µt , non-parametrically
control for national trends in the outcome of interest. Xst includes time-varying indicators for
the presence of energy efficiency resource standards, restructuring, net metering programs, green
power purchasing programs, public benefits funds, and NOx trading programs, along with the
continuous control variable measuring the intensity of Clean Air Act regulation. The variables
Dτ,st are separate indicators for each year τ relative to the passage of an RPS law, where τ is
normalized to equal zero in the year that the program passed; they range from -19 through 18,
which covers the full range of τ values.16 For states that never adopt an RPS program, all Dτ,st are
set equal to zero. As non-adopters, they do not play a role in the estimation of the στ ’s but they aid
in the estimation of the year fixed effects, µt , as well as the constant, α .

The στ ’s are the parameters of interest as they report the annual mean of the outcome variable
in event time, after adjusting for state and year fixed effects, and the wide set of controls. An
appealing feature of this design is that, because states passed RPS programs into law in different
calendar years, it is possible to separately identify the στ ’s and the year fixed effects µt . In the
remainder of the analysis, we will particularly focus on the στ ’s that range from -7 through 6. This
is the maximum range for which the στ ’s can all be estimated from all 30 RPS states.17 Restricting
the treatment period in this way holds the advantage of eliminating questions about the role played
by differences in the composition of states identifying the various στ ’s.

We will present event-study figures that plot the estimated στ ’s against τ . These figures provide
an opportunity to visually assess whether there are differential trends in the outcome variables prior

16Iowa adopted an RPS in 1991, which means that only one pre-RPS year is available. Consequently, we drop Iowa from the
primary sample although its inclusion does not alter the qualitative findings.

17This range is determined by Nevada, which passed its law in 1997 on one side of the range, and Kansas, which passed its law
in 2009 on the other side of the range.

14



to RPS passage, which helps to assess the validity of the difference-in-differences identification
strategy. The event-study figures also demonstrate whether any impact on the outcome emerges
immediately or over time, which informs the choice of specification to summarize the average
effect of RPS policies.

Given that most RPS programs have requirements that increase gradually over time after legis-
lation is passed, it is likely that the impact on electricity prices and other outcomes will increase
correspondingly. Therefore, we summarize the event study estimates using a trend-break model
that allows the effect of RPS programs to grow over time. A further appeal of this model is that
detrended difference-in-differences specifications that allow for the possibility of differences in
pre-adoption trends require weaker assumptions to produce valid estimates of the impact of RPS
programs. For these reasons, we fit the following equation that allows for differential trends before
and after RPS program passage:

yst = (δ0 +β0τst)+(δ1 +β1τst)∗1(−19≤ τ ≤−8)st ∗1(RPS = 1)s

+(δ2 +β2τst)∗1(7≤ τ ≤ 18)st ∗1(RPS = 1)s

+(δ3 +β3τst)∗1(0≤ τ ≤ 6)st ∗1(RPS = 1)s

+Xst + γs +µt + εst . (8)

To summarize the policy’s effects, we calculate and report the impact seven years after RPS
passage, which is given by δ3 +6β3. This is the longest period for which our data contains a bal-
anced sample. To allow for the possibility that the longer term effects of RPS differ, we will also
estimate a version of this equation that allows for estimating the effect of RPS 12 years after pas-
sage, though this can only be done with an unbalanced sample as only 16 states had a RPS policy
in place for 12 years by 2015. In these specifications we adjust Equation (8) correspondingly, so
that δ3 and β3 apply to the period from τ = 0 to τ = 11 and comparison is between prices in the
12 years after passage with the same 7 years prior to passage. Finally, we report standard errors
that are clustered by state from the estimation of Equation (8) to allow for correlation in the errors
within state over time.

6 Results

6.1 Net RPS Requirements and Retail Electricity Prices

We begin with an examination of the net RPS requirements. Figure 4a plots the event year means
of net RPS requirements against τ . Event time is normalized so that the program passage year
occurs at τ = 0 and the vertical line at τ = −1 indicates the last year before program passage.
It is apparent that the RPS programs’ passage into law leads to increases in the required use of
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renewable technologies that begin almost immediately and continue over time. Seven years after
passage, the average RPS state’s net requirement is 2.2 percentage points of sales. It is noteworthy
that this is substantially smaller than the increase in the total gross requirement, which is 5.6%
through the end of the balanced sample (at τ = 6).

Figure 4b reports on the estimation of Equation (7) for average retail price, where prices are
normalized so that they equal zero at τ = −1. Recall, the estimated στ ’s are adjusted for state
and year fixed effects and a wide variety of other policies that might influence retail rates. There
are two primary points that emerge. First, there is no evidence of a meaningful difference in
price trends, either upwards or downwards, among adopting states in the six years preceding RPS
program passages, from τ = −7 to τ = −1. Thus, for example, there doesn’t appear to be any
evidence that prior to RPS passage, adopting states were differentially passing unobserved policies
that influence electricity prices positively or negatively or facing differential cost shocks. More
broadly, this figure supports the validity of the difference-in-differences research design.

Second, it is apparent that retail prices increased after program passages, but not all at once; the
figure suggests that a model that allows for a trend-break describes the data well. It is striking that
the trend in prices appears to very closely shadow the trend in net RPS requirements.

Column (1) in Panel A of Table 2 presents results from the estimation of Equation (8) that
confirms the visual impression that retail electricity prices increase after RPS program passage.
The estimates indicate that retail prices are higher in RPS states post-passage, and rise by roughly
0.14 cents each year, with statistically insignificant pre-trends.18 We focus on the effect seven
years after RPS passage, which is calculated as the combination of the mean-shift and trend-break
coefficients, δ3 +6β3.

Overall, the estimates from this regression suggest that RPS policies have increased retail elec-
tricity prices by about 1.2 cents per kWh seven years after passage. This increase is statistically
significant and economically substantial, representing an increase of about 11% over the mean
retail price at τ = −1. Such a large increase in the retail price of electricity is striking, given the
modest net requirements 7 years after passage. Further, these estimates are much larger than LCOE
differences alone would indicate, suggesting that the indirect costs of RPS mandates are an impor-
tant component of their total costs. Overall, multiplying the estimated impact of RPS on prices
by the total amount of electricity consumed in RPS states suggests that the policies increased total
costs to consumers by about $30 billion in the seventh year after passage, or approximately $140
per person in additional annual electricity costs.

The appeal of the Panel A results is that there is a balanced sample for all event years, but
this sample restriction limits the number of post-years. In Panel B, we extend the post-period

18We estimate a β0 of -0.006 with a standard error of 0.06.

16



through τ = 11 which allows us to estimate the effect of the RPS programs through 12 years after
passage. The Panel B Column (1) results tell much the same story of prices increasing over time.
As RPS programs are in force for longer here, their net requirements increase and their impact on
electricity prices increases. The Column (1b) estimates indicate that at twelve years after passage,
the average retail price has increased by 1.9 cents per kWh, or 17%, for a 5.0 percentage point
net RPS requirement at that point (gross or total RPS requirements are higher at 10.7 percentage
points).

6.2 Robustness

Columns (2)-(7) of Table 2 explore the robustness of the main results from Column (1) to a variety
of changes in Equation (8). In Column (2) we replace the binary measure of the presence of a
state level energy efficiency program with a continuous measure of energy efficiency expenditures
reported by utilities. In Column (3) we drop Hawaii due to its unique geography. The estimates
in these two columns are qualitatively unchanged from the baseline specification for the balanced
sample, and somewhat smaller, though still statistically significant and economically meaningful,
for the longer event window in Panel B.

The next two columns adjust for the possibility of local shocks to electricity prices that might
confound the adoption of RPS programs. Specifically, Columns (4) and (5) include Census region
by year and Census division by year fixed effects, respectively. There are four Census regions
and nine Census divisions. The estimated increases in electricity prices are modestly smaller here
than in Column (1), but these differences seem statistically unimportant in light of the standard
errors. These specifications suggest that the estimated effects of RPS on prices are not driven by
time-varying regional differences, such as changes in local fuel prices (i.e., shale gas) caused by
the fracking revolution. Overall, we conclude that flexibly controlling for local shocks leaves the
qualitative findings unchanged.

Next, we seek to test for the possibility of spillovers in the costs of RPS by aggregating retail
price observations to the wholesale market level. To do so, we sum the utility level data on rev-
enues and sales to the level of each balancing authority (BA) listed in the EIA Form 861 data set.
For example, an Indepedendent System Operator such as PJM or MISO counts as one balancing
authority unit, with each covering multiple states in this specification. Price is calculated as rev-
enue divided by sales at the BA level and the RPS indicator is calculated as the weighted average
of whether RPS was in effect in each state in the BA where the weights are the MWh of sales in
that state. This approach seeks to account for the fact that electricity is traded across state borders
and that RPS policies in one state can affect the costs faced by consumers in neighboring states
with common electricity markets. We chose the balancing authority as the unit of analysis because
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that is the level at which markets clear and wholesale market auctions take place, ensuring scope
for substantial tradability of electricity within each grouping of utilities.19

Columns (6) and (7) of Table 2 report the results for the effects of the RPS policy at the whole-
sale market (i.e. BA) level under two different weighting schemes. In Column (6), we weight each
BA by sales and in Column (7), we weight by each BA’s number of states such that the result can be
interpreted as the effect on the average state, in line with how we interpret our main specification.20

The Panel A results show that the positive, statistically and economically significant effect of RPS
on retail prices seven years after passage is robust to accounting for wholesale market spillovers
under either weighting scheme. The point estimates in Panel B for the unbalanced sample 12 years
after passage are qualitatively similar, though with larger standard errors. To assess whether the
spillovers on neighboring states within a wholesale market are positive or negative on net, we can
compare the coefficients in Columns (6) and (7) to that of the main result in Column (1), which
shows that prices increased by 1.2 cents per kWh seven years after RPS passage. The similarity
of the (6) and (7) point estimates with that of Column (1) suggest that any cross-state impacts on
prices are modest in magnitude, though we lack the precision to draw definitive conclusions.

As a further robustness check, we employ a synthetic controls estimator to compare RPS states
to non-adopting states with similar ex ante characteristics. While the trend break model in our
main specification controls for both level differences across states and differences in pre-trends,
the synthetic controls approach helps further correct for selection into the policy based on factors
that may be correlated with future changes in electricity prices. In particular, we reproduce the
difference-in-differences analysis using a control group comprised of a weighted average of non-
RPS states, constructed to match RPS states as closely as possible in terms of electricity prices,
solar and wind potential, electricity sector CO2 intensity, the percent of preexisting RPS-eligible
generation, and the percent of coal and natural gas generation. Appendix Table A.1 shows that the
control group in this specification resembles RPS states more closely along these dimensions in
levels than the original control group of states shown in Table 1.

Figure 5a displays the results for the estimation of the primary synthetic controls specification.
The “Pooled” specification weights control states to minimize the pre-treatment imbalance for the
average of the treated units, whereas “Separate” estimates weights for the control states to sepa-
rately minimize the pre-treatment imbalance for each treated unit. The “Partially Pooled” speci-

19In practice, multi-state ISOs such as MISO have expanded greatly over the period covered by our sample. We assign utilities to
the balancing authority listed in the final year of the sample, 2015, since ISOs often formed across regions that were already trading
electricity prior to the formal designation. We choose the balancing authority rather than the North American Electric Reliability
Corporation (NERC) region as the unit of analysis, because utilities in a shared NERC region coordinate on developing regulatory
standards, rather than any particular mechanism for trading electricity.

20In Column (7) of Table 2 we sum observations for multiple balancing authorities within the same state to the state level. For
multi-state BAs that cover only parts of some states, the state count variable sums that BA’s proportion of state level sales in each
state. So a BA that covered all of Indiana and 30% of the sales in Illinois would receive a weight of 1.3.
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fication minimizes a weighted average of the two imbalances, as recommended by Ben-Michael,
Feller, and Rothstein (2021).21

Figure 5a finds that the results from the synthetic control estimation approaches are very similar
to those from the main specification in Figure 4b, though the standard errors in this approach are
modestly larger. Further, Figure A.2 reports on a series of alternative synthetic control approaches
and they too are generally similar to the results from the paper’s main specification, providing
further support for a causal interpretation of the results from the estimation of Equation (8).

Finally, we note that difference-in-differences models with staggered treatment timing face a
potential challenge due to endogeneity arising from heterogeneity in treatment effects across pe-
riods. As an additional robustness check, we reproduce the event-study style analysis using the
interaction-weighted estimator recommended by Abraham and Sun (2019) to address this concern.
Specifically, this approach takes the event study specification from Equation (7) and fully interacts
the στ ’s with indicators for each cohort-year of RPS adoption. This provides a separate estimate
of στ,e for each cohort of RPS states that pass the policy in year e, and στ ’s are calculated as the
weighted average across στ,e’s, where the weights are the number of states in each passage year
cohort. Figure 5b reports the results from this estimation, which are also very similar to those from
the main specification.

6.3 Mechanisms

This section tests for evidence of the three mechanisms proposed in Section 3 by which RPS
can increase systemwide costs in the electricity sector – transmission, intermittency, and excess
capacity. We start by examining the impact of RPS on utility level transmission and distribution
expenditures. Panel A of Table 3 displays the results from estimating Equation (8) with annual
capital, operations, and maintenance costs for transmission, distribution, and the sum of the two,
as the dependent variables.

The estimates suggest that RPS led to a large increase in transmission and distribution expen-
ditures. The point estimate in Column (1) of Panel A indicates a large increase in transmission
costs of 70 log points seven years after RPS passage that would be judged statistically significant
at the 10% level. The result for the sum of transmission and distribution costs in Panel A Column
(3) is modestly less precise, but the point estimate indicates a 47 log point increase or 0.9 cents

21In addition, Figure A.2 reproduces the synthetic control results under a variety of different specifications. The top two panels
labeled “Balancing on Dependent Variable” construct a control group to match only the dependent variable, retail electricity prices,
in the pre-policy period, whereas the panels labeled “Balancing on Dependent Variable and Independent Variables” use a control
group constructed as described above. The left two panels of Figure A.2 exclude the fixed effects in the specification that control
for remaining level differences between RPS states and their synthetic controls. The bottom right panel of Figure A.2 reproduces
the primary synthetic control specification from Figure 5a that balances on both the dependent variable and the chosen independent
variables and includes fixed effects.
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per kWh on a baseline average of 1.7 cents per kWh in the year before RPS passage. Overall, we
conclude that these results are consistent with the conventional wisdom that renewables require
higher transmissions and distribution costs and that these costs explain a meaingful portion of the
increase in electricity prices in RPS states that was documented in Table 2.

Next, we consider the effects of RPS on capacity and generation. The model in Section 3
shows that mandated increases in renewable generation and the increased availability of readily
dispatchable generation they require can cause the early retirement or decreased utilization of
existing baseload generation. Although we do not have data on the many forms of opaque payments
to the owners of displaced generation that can ultimately be passed on to consumers, we can
examine the effects of RPS on capacity directly.

Table 3 Panel B Column (1) displays the results from estimating Equation (8) with total state
level nameplate capacity across all sources as the dependent variable. The estimate indicates a
noisy, but large, 8 log point increase in total GW available. It is striking, then, that Panel B Column
(2) finds little evidence of a change in capacity factor (generation divided by capacity), with the
imprecise point estimate actually suggesting an increase. This seeming mystery is explained by
Column (3), which reveals that the capacity factor did not fall in RPS states because generation
rose along with capacity; the point estimate suggests a 20 log point increase seven years after RPS
passage. Finally, Panel B Column (4) documents that there was no impact of RPS on electricity
sales, consistent with inelastic demand for electricity.

The Panel B Column (3) – (4) results are puzzling. Generation increased in RPS states but
sales remained constant, implying that RPS policies led states to produce more electricity without
consuming more electricity. Panel C provides a potential explanation: Column (1) shows that
excess generation (i.e. the difference between generation and sales divided by sales) increased by
about 9.4 percentage points and Column (2) suggests that the entire increase in excess generation
is explained by sales to other states and countries (i.e. Canada or Mexico), though both estimates
are imprecise.22 Together, the Panel B and C results suggest that RPS policies led to capacity
expansions, generation increases, and exporting of the additional electricity to other states and
countries.

The possibility that RPS policies affected non-RPS states would complicate our difference-in-
differences strategy. This concern appears not to be a meaningful problem with respect to the price
regressions, because the balancing authority level regressions give similar results to the state level
ones. However, the possibility that non-RPS states were affected will be a focus of our efforts to
estimate the impacts of RPS on CO2 emissions.

22The corresponding event study graph in Appendix Figure A.7 visually confirms the substantial increase in excess generation
after RPS passage, with no discernible pre-trend.
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The final mechanism we proposed for RPS costs, intermittency, is difficult to test directly. One
way to accommodate increased intermittency is to construct additional natural gas peaker plants
that are able to ramp production up and down quickly. While we cannot observe generation from
peaker plants specifically, we can observe total generation from both peaker and non-peaker natural
gas plants. Appendix Table A.5 reveals some evidence of an increase in natural gas generation in
Column (4), though this result is sensitive to specification.

6.4 Heterogeneity in RPS Price Effects and Impacts on Economic Activity

Appendix Table A.2 considers whether RPS policies exhibit heterogeneous effects, by the cate-
gory of customer. The EIA divides retail sales among three sectors: residential, commercial, and
industrial, that together account for total retail sales. According to the EIA, the residential sector
covers “living quarters for private households,” the commercial sector covers “service-providing
facilities and equipment of businesses; Federal, State, and local governments; and other private
and public organizations,” and the industrial sector covers “all facilities and equipment used for
producing, processing, or assembling goods.”23 Residential is the largest sector for most years
in our data, comprising about 37% of sales in 2015, while commercial and industrial account for
36% and 26% in that year.24 As noted in Table 1, retail rates also vary among these groups, with
residential customers paying the highest rates while industrial customers pay the lowest. This dif-
ferentiated pricing may reflect demand elasticities that are correlated with usage, leading utilities
to price discriminate by charging lower prices to their most intensive, and therefore price sensitive,
customers (Bjørner et al., 2001).

The event-study figures derived from the fitting of Equation (7) for these outcomes are presented
in Appendix Figure A.4. There is little evidence of difference in trends between adopting and non-
adopting states prior to RPS passage. Industrial prices appear to shift upward substantially in
the first year after passage, while the commercial and residential sectors adjust more gradually.
Overall, changes by sector track closely with net requirement changes, though perhaps with a
slight lag. The statistical sectoral price analyses from estimating Equation (8) for the balanced
sample are reported in Columns (2) through (4) of Panel A in Table A.2. In all three sectors, the
point estimates represent substantial price increases in the first 7 years after RPS passage; they are
11.2% for residential, 7.8% for commercial, and 10.5% for industrial.

Appendix Table A.3 tests for heterogeneity in the effect of RPS on electricity prices across
different groups of states. In particular, these estimates take the main specification (i.e., Equation
(8)) and fully interact it with an indicator for membership in a subsample of interest. The results
in Table A.3 report the main estimate for RPS states not in the given subsample, and a second

23For complete definitions, see the EIA’s Electric Power Monthly.
24Authors’ calculation, from the EIA Electricity Data Browser.
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coefficient that measures whether the seven year effect differs in the subgroup of interest. The full
effect for the subgroup is the sum of the two reported estimates.

It is apparent that splitting the RPS states in these ways is demanding of the data. The results in
Panel A show little evidence that the impact of RPS differed for those states that adopted the policy
after 2004, the median year of passage in the data. Thus, the declines in renewables’ cost of gener-
ation do not appear to reduce the costs of RPS, perhaps a further indication that the indirect costs
are the primary drivers. The estimates in Panels B, C, and D suggest that the costs of RPS were
lower in states that restructured their electricity market, higher in states that set specific require-
ments for solar generation, and higher in states with above median percentage of coal generation,
though all these results are imprecise.

Since the estimates suggest that RPS programs lead to substantial increases in electricity prices,
it is natural to examine whether there are impacts on the real economy. Appendix Table A.4 reports
results for estimating Equation (8) for total employment and manufacturing employment. Energy
costs are a relatively high share of total costs in manufacturing. There is little evidence of a decline
in overall employment as would be expected. In the case of manufacturing employment, the point
estimate suggests a 4% decline, but it would not be judged statistically significant by standard
criteria.

6.5 Emissions

This section examines the impact of RPS on CO2 emissions. We start by estimating the main
specification from Equation (8) with state level log CO2 emissions as the dependent variable. This
estimate, displayed in Table 4 Panel A Column (1a), suggests that RPS caused only a modest and
imprecisely estimated 3 log point reduction in emissions seven years after passage, qualitatively
consistent with the findings of other work in the literature such as Upton and Snyder (2017).

However, the remainder of this subsection demonstrates that this specification leads to the
wrong conclusion about the impact of RPS on emissions because it fails to account for two types
of cross-state spillovers, both of which suggest the need for alternative specifications that address
possible violations of SUTVA. First, most RPS states allow compliance through out-of-state REC
purchases, thus diverting some of the emissions reductions to nearby states within the same REC
region. This complication can be handled in a straightforward way: we account for the purchase
of out-of-state RECs by aggregating our data to the REC region level. In practice, we calculate
REC region level electricity generation and emissions as the sum across all states within a REC
region and whether an RPS program was in force as the weighted average of the state level RPS
indicators, where the weight is the state level MWh of generation in the year before RPS was first
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passed in any state in a given region.25

Second, the results presented in Table 3 suggest that RPS states increased net electricity exports
to non-RPS states in response to the policy. This finding implies that increased generation in RPS
states displaced production in neighboring states, creating spillover effects on emissions in non-
RPS states and causing RPS states to record increased emissions associated with exports, rather
than local consumption. We previously accounted for such wholesale market spillovers in our
estimates of RPS effects on electricity prices by aggregating our data to the balancing authority
level. Those results, presented in Columns (6) and (7) of Table 2, show an effect of RPS on prices
that is qualitatively similar to the state level specification. However, such a strategy is not available
to us in the case of emissions for two reasons. First, about 32% of the balancing authorities in
our data cross over REC region boundaries, eliminating any possibility of an aggregation that
captures both dimensions of spillovers.26 Second, our data contains information on emissions only
at the state level, which does not allow us to aggregate this variable by balancing authority since
balancing authorities frequently cover incomplete portions of states.

With these challenges in mind, we motivate our choice of specifications by first defining the
ideal measure of RPS policies’ effect on total national emissions in the presence of cross-state
spillovers. Let total emissions, E, be the product of electricity generation, G, and emissions inten-
sity, I, in RPS states and their geographic neighbors (denoted by RPS-N):

E = GRPS× IRPS +GRPS−N× IRPS−N (9)

We are interested in measuring the impact of RPS on national emissions, ∆E = ER=1−ER=0,
where R represents the RPS policy applied in RPS states. Taking the difference of Equation (9)
and rearranging generates the following decomposition of the elements of ∆E :

∆E = ∆IRPS
(

GRPS +∆GRPS
)

︸ ︷︷ ︸
1

+ IRPS×∆GRPS︸ ︷︷ ︸
2

+∆GRPS−N
(

IRPS−N +∆IRPS−N
)

︸ ︷︷ ︸
3

+GRPS−N×∆IRPS−N︸ ︷︷ ︸
4

(10)

where ∆G = GR=1−GR=0 and ∆I = IR=1− IR=0.

The four terms in Equation (10) represent distinct channels through which an RPS policy could

25For REC regions that never pass REC policies, we use 1990 MWh of generation to weight states. An approximate outline of
REC region borders is shown in Appendix Figure A.1 and Data Appendix Section 12.2 details the full allocation of states to REC
regions. Appendix Table A.7 shows that our CO2 results are robust to alternative classifications of states with multiple or partial
REC region affiliations.

26For balancing authorities that span multiple REC regions, any aggregation that captures the full balancing authority region in
an observation will include multiple REC regions, and any aggregation that correctly defines REC region boundaries will split the
balancing authority. Thus, there is no set of boundaries that can capture both types of spillovers.
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affect national emissions. Term (1) captures the primary direct effect of RPS on emissions in
RPS states. RPS policies require the use of renewable technologies, likely reducing the emissions
intensity in participating states (∆IRPS). Multiplying this change in emissions intensity by total
generation in RPS states captures the tons reduced by RPS requirements for cleaner production in
RPS states. Term (2) captures the change in emissions due to changes in generation in RPS states
evaluated with the pre-RPS emissions intensity. Term (3) represents changes in RPS-neighbor
state emissions caused by changes in their generation. If RPS policies cause implementing states
to export more electricity, as suggested by Table 3, then we expect that term (2) will be positive
and term (3) will be negative as the policy shifts production and corresponding emissions from
neighboring states to RPS states. Since the increase in RPS regions must be offset by generation
reductions in non-RPS states (except for international imports/exports), these two terms will ap-
proximately cancel each other out if the emissions intensity is equal in RPS regions and non-RPS
states and emissions intensities in non-RPS states are unaffected by RPS adoption. The data fail
to contradict the former condition and without data on the “merit order” in non-adopting states
the latter is difficult to sign, though seems likely to be small.27 Finally, term (4) represents any
potential change in emissions due to changes in emissions intensity in neighboring states evaluated
at the pre-RPS generation level, which we noted is of uncertain sign and seems likely to be small.

Guided by the framework laid out in Equation (10), we estimate two specifications for the
impact of RPS on REC region level emissions and characterize the assumptions under which each
allows us to recover the true effect on national emissions, ∆E. First, in Column (1a) of Table 4
Panel B, we report the estimated impact of RPS on the log of CO2 emissions. In Column (1b) we
calculate the reduction in CO2 emissions implied by this specification, which represents the sum
of terms (1) and (2) at the REC region level and can be interpreted as the true impact on national
emissions if terms (3) and (4) sum to zero. A sufficient condition for this assumption to hold would
be that all cross-state spillovers take place within REC regions so that RPS causes no changes in
generation or emissions intensity outside of REC regions. If this assumption fails to hold then the
sign of the bias is unclear.

In our second specification in Column (2a) of Panel B, CO2 intensity is the dependent variable.
This allows us to calculate the value of term (1) from Equation (10) at the REC region level, which
equals ∆E under the assumption that terms (2), (3), and (4) collectively sum to zero. Column (2b)
provides an estimate of the change in CO2 emissions calculated as the product of the estimated
impact in (2a) and the relevant year’s generation. As we noted above, it seems plausible that terms
(2) and (3) cancel each other out and term (4) is small in magnitude, but it remains difficult to
judge whether this assumption holds in practice.

27The relevant summary statistic in Table 1 shows that emissions intensity in control states the year before RPS passage is only
0.2% higher than that of RPS states (p-value = 0.98).
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The results in Table 4 suggest that RPS caused substantial declines in national emissions that
are much larger than implied by specifications that fail to account for cross-state spillovers. The
estimates in Panel B Column (1a) show large declines in CO2 emissions of 10 to 15 log points
seven years after a state’s passage of an RPS. The estimates for twelve years after passage are
more than twice as large, and would be judged statistically significant at conventional levels.

Table 4 Panel B reports estimates derived from REC region level regressions for both an un-
weighted regression and a version that weights observations by the number of states in a REC
region. The case for the unweighted regression is that the data generating process takes place at
the REC region level, whereas the case for weighting by the number of states is that the result can
be interpreted as the effect on the average state, analogous to the main specification for the impact
of RPS on prices. Column (1b) of Panel B shows that these specifications imply that RPS policies
reduced emissions by 141 to 213 million metric tons (10-14%) across the 29 participating states in
the seventh year after passage, compared with only 38 million in the state level specification.

In Column (2a) of Table 4 Panel B, we present results for the impact of RPS on CO2 intensity.
Depending on weighting scheme, the estimates suggest that RPS passage reduced emissions inten-
sity by 82 to 170 metric tons per GWh. This effect is larger (175 to 267 metric tons per GWh) 12
years after RPS passage. Column (2b) suggests that total emissions were 203 to 419 million metric
tons (14-25%) lower in RPS states in the seventh year after passage, a substantially larger decrease
than the corresponding estimates for the log CO2 specification in Column (1b).28

An important feature of the results is that the magnitude of the measured reductions in CO2

is large relative to the scale of the policy. While we previously reported that RPS raised the net
requirement for renewables by 2.2 percentage points seven years after passage, the results in Table
4 indicate that the policies reduced emissions by 10-25% in the same time frame, depending on
specification. For context, if the estimated 2.2 percentage point renewable net requirement had
one-for-one displaced coal generation in RPS states the reduction in emissions would have been
about 4%, making our estimated reduction in emissions two to six times larger than the direct effect
of the policy.

While our reduced form estimates do not allow for a full accounting of the mechanisms by
which RPS reduced emissions, we explore whether the integration of additional renewable gener-
ation affected the relative utilization of fossil fuels with differing fuel intensities. Appendix Table
A.5 details the estimated impact of RPS on various forms of generation using REC region level
versions of Equation (8), just as in Panel B of Table 4. The striking result here is that RPS adop-
tion is associated with sharp declines in the share of generation from coal and petroleum with

28Figure A.8 reveals that there is a relative upward pre-trend in CO2 emissions in adopting states, underscoring the importance
of the trend break specification for this outcome.
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some evidence of increases in natural gas, which has about half the carbon intensity of both coal
and petroleum. These results suggest that RPS policies have a general equilibrium-style influence
by affecting the broader “merit order,” which is determined by sources’ cost functions (including
start-up and shutdown costs) and ultimately dictates which sources operate, even in periods when
renewables are not operating.

Given the findings on CO2 emissions, it is natural to examine whether RPS also had an im-
pact on other pollutants. Table A.6 reports the impact of RPS on several measures of local air
pollution using the same specifications as the CO2 regressions in Table 4. The results show some
evidence that RPS reduced SO2 emissions and emissions intensity. However, there is little evi-
dence of a change in PM2.5 concentrations, which is the primary mechanism through which local
air pollution affects human health; the results for the monitor and satellite measures of PM2.5 con-
centrations (see Columns (1a) and (1b) respectively) are of opposite sign and neither would be
judged statistically significant by conventional criteria.

7 Interpretation
Our estimates suggest that RPS programs have had substantial effects on both electricity prices
and CO2 emissions. To make this concrete, we calculate the implied total costs to consumers and
avoided CO2 emissions in the 29 RPS states in the seventh year after passage. We calculate the
increase in electricity payments by consumers as the product of the estimated increase in prices
(from the fitting of Equation (8)) and total electricity consumption in the 29 RPS states in the
analysis and the reduction in CO2 emissions using the results from the log CO2 emissions and
CO2 intensity specifications as described in Section 6.5.

A natural summary statistic of RPS programs’ efficacy is the cost per metric ton of CO2 abated.
Figure 6 uses this paper’s estimates to develop a range of estimates of this measure. We have
presented several specifications of the effect of RPS on both prices and CO2 emissions that differ
in terms of the level of aggregation and the weighting scheme: REC region (weighted and un-
weighted) estimates of log CO2 emissions and CO2 intensity for emissions, and balancing author-
ity (weighted and unweighted) and state level estimates for electricity prices. To avoid imposing
any arbitrary choices on the results, we show the cost per ton for all permutations of specifications
of the price and emissions regressions in Figure 6.

The point estimates for the cost per ton abated range from $58 to $298.29 Depending on the
chosen specification, the estimates suggest that RPS programs reduced emissions by 142 to 419
million metric tons at a total cost to consumers of $14 to $34 billion in the seventh year after
passage. To characterize the range of uncertainty around the cost per ton estimates, we employ a

29Appendix Figure A.9 shows the corresponding estimates of cost per ton for the 12th year after passage.
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seemingly unrelated regressions estimation approach by “stacking” and fully interacting the price
and CO2 emissions regressions. This approach allows us to use the delta method to calculate the
variance of the ratio of the impact of RPS on costs to consumers and on emissions reductions.
Specifically, we use the coefficients from the stacked regression to calculate the impact of RPS on
prices, as in Table 2, and the impact on CO2 emissions, as in Table 4, and then plot the interquartile
range of the cost per ton in Figure 6. The uncertainty around these estimates reflects the challenge
inherent in taking the ratio of two functions of coefficients from different regressions estimated at
different spatial units.

It is useful to put the estimated abatement costs in context by comparing them to a range of other
climate policies, and to the estimated benefits of emissions mitigation. Our point estimates for the
cost per ton of CO2 abatement from RPS are substantially higher than the price of a permit to emit
a ton of CO2 in major carbon markets. For example, the current prices in the California/Quebec,
Regional Greenhouse Gas Initiative, and European Union ETS markets are about $18, $8, and $63,
respectively. On the other hand, other studies have found that abatement costs from policies such
as home weatherization investments or low-carbon fuel standards can be several hundred dollars
per ton of CO2 (Fowlie, Greenstone, and Wolfram, 2018; Holland, Hughes, and Knittel, 2009). In
terms of comparing the costs of abatement from RPS to the benefits of emissions reductions, it
is also worth noting that the Obama Administration (and the Biden Administration on an interim
basis) set the social cost of carbon (i.e., the monetized damages from the release of an additional
ton of CO2) at $51 per ton, although it was estimated at $125 per ton in recent work (Greenstone,
Kopits, and Wolverton, 2013; Carleton and Greenstone, 2021). These estimates of the benefits of
carbon mitigation are generally at the lower end of the range of point estimates of the abatement
costs of RPS, though again we note the imprecision which makes definitive statements about net
benefits challenging.

There are several caveats and implications of the paper’s results that bear noting. First, the
analysis is “reduced form” so we cannot assign precise shares of the RPS programs’ full costs to
differences in generation costs, intermittency, transmission, and stranded assets. Furthermore, it
seems reasonable to assume that these shares vary over time and in ways that further complicate
attempts to get at their magnitudes. For example, it seems plausible that any stranded asset costs
decline over time while intermittency costs increase as net requirements grow. Similarly, the data
requirements necessary to unpack the sources of RPS’ impacts on costs with a structural analysis
are extraordinary, starting with the cost functions of all current and potential electricity generators,
their current and potential locations, and the resulting merit orders at each pricing node within the
relevant balancing authorities and REC regions; we are unaware of the availability of such a data
set.
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Second, it is often claimed that renewable policies provide an external benefit by reducing the
costs of future renewable generation in a way that is generic (e.g., learning-by-doing) and cannot
be fully appropriated by the firm undertaking the activities. If there are such spillovers or positive
externalities that occur outside our data, then our estimates of the costs per metric ton of abatement
will be systematically too high because they do not account for the benefits received by future
customers. In principle, these benefits could be global and thus quite substantial. The coincidence
of the global proliferation of policies that support renewable energy and the decline in solar and
wind prices over the last decade is consistent with the possibility of such spillovers. However,
research that isolates the magnitude of any such spillovers from other factors is probably best
described as emerging, making this a rich area for future research (Gillingham and Stock, 2018).

Third, more broadly, a randomized controlled trial is unavailable here, so we cannot rule out the
possibility of a form of unobserved heterogeneity that explains the results without RPS programs
playing a causal role. This is a particular challenge for inference on policies that apply at states or
higher levels of aggregation as RPS programs do.

8 Conclusion
This paper has provided the first comprehensive evaluation of the impacts of RPS programs, which
are the most popular and prevalent carbon policy in the United States, and has several main find-
ings. First, these programs mandate increases in renewable generation that are often smaller than
advertised. Seven years after passage, RPS programs require a 2.2 percentage point increase in
renewables’ share of generation, and 12 years after they require a 5.0 percentage point increase.
Second, RPS program passage leads to substantial increases in electricity prices that mirror the
program’s increasing stringency over time. Seven years after passage, we estimate that average
retail prices are 1.2 cents per kWh, or 11%, higher than they otherwise would be, with over half
the increase due to increased transmission and distribution costs. The corresponding effect twelve
years after passage is 1.9 cents per kWh, or 17%, higher. Third, the estimates indicate that RPS
programs lead to CO2 emissions reductions of 10% to 25% seven years after passage (23% to 36%
12 years after passage). Putting the results together, the cost per metric ton of CO2 abated in the
seventh year after RPS passage ranges from $60-$300 with confidence intervals that cannot rule
out substantially smaller or larger abatement costs.

A particularly striking finding is that RPS programs meaningfully alter electricity market equi-
libria. This effect, which has not been possible to comprehensively measure to date, appears to
account for the majority of RPS program costs and benefits. A recent study suggests that the direct
costs of RPS increase retail electricity prices by 2% (Barbose, 2018), which is substantially smaller
than our estimates that prices are about 11% higher seven years after passage. Although there are
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several differences between these two studies, it seems likely that the indirect costs, including in-
termittency, transmission, and stranded asset payments, account for a substantial fraction of RPS
program costs. This finding means that caution is warranted in extrapolating declines in the direct
generation costs of renewable energy to its overall impact on electricity prices. Further, it raises the
possibility that indirect costs associated with grid integration could represent the more important
barrier to substantially increasing renewables’ share of generation.

Similarly, the estimated reductions in carbon emissions are larger than the effect of swapping
increased renewable generation for even the most carbon intensive forms of electricity generation
production like coal and petroleum. This finding underscores that projecting the carbon impacts
of the coming years’ legally mandated increases in RPS stringency will require projecting the
resulting “merit orders” at all pricing nodes in the relevant balancing authorities and REC regions.

Renewable Portfolio Standards have been the most prevalent form of climate policy in the
U.S. to date. Existing legislation requires these policies to continue expanding in scale and reach
unprecedented levels of stringency in the coming years. Any projection of the effects of future
policy will require uncertain assumptions about factors that go beyond what can be learned from
historical data, such as the pace of technological innovation or the effects of renewable energy
integration at levels of penetration beyond the range of past experience. Perhaps this paper’s central
contribution to projecting the costs and benefits of future policy is to highlight the importance of
understanding the indirect effects of renewable energy and the viability of mechanisms to facilitate
their grid integration. These are important topics for future research.
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9 Figures

Figure 1: RPS Passage by State

Notes: States that have adopted any RPS policy are colored according to the year in which the RPS legislation was first passed. We gather this information from a combination of state legislative documents,
state government websites, and summaries from the U.S. Department of Energy.
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Figure 2: Number of RPS Programs Newly Passed into Law, by Year
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Figure 3: RPS Total and Net Requirements, by State
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Figure 4: Estimated Effects of RPS Programs on Net Renewable Requirements and Retail Elec-
tricity Prices

(a) Net RPS Requirements

(b) Retail Prices

Notes: Graph (a) shows the mean net RPS requirement percentage for event years τ = -7 to τ = 11. Graph (b) shows
coefficients for στ for τ = -7 to τ = 11 from the event study specification in Equation (7) for retail electricity prices
regressed on indicator variables for years relative to program passage, controlling for state and year fixed effects, and
indicators for other programs listed in Table 1. Blue lines show the point estimates and shaded areas represent the 95%
confidence intervals. We take net RPS requirement data from the LBNL as constructed by Barbose (2018). Electricity
price data are from the EIA. RPS program passage dates are from a combination of state legislative documents, state
government websites, and summaries from the U.S. Department of Energy. Standard errors are clustered at the state
level.
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Figure 5: Estimated Effects of RPS Programs on Retail Electricity Prices, Robustness Checks

(a) Synthetic Control Method

Notes: Lines show estimates from synthetic control method specifications as recommended by Ben-
Michael, Feller, and Rothstein (2021) for event years τ = -7 to τ = 11, and shaded area represent 95%
confidence intervals. Each specification includes state fixed-effects and balances on electricity price
as the dependent variable, and solar and wind potential, CO2 intensity, percent RPS-eligible genera-
tion, and percent coal and natural gas generation as independent variables. Appendix Table A.1 shows
summary statistics for the weighted sample of synthetic control states, as compared to RPS states and
control states in the main specification. Appendix Table A.2 shows additional synthetic control method
specifications.

(b) Comparing Baseline and Abraham and Sun (2019) Approach

Notes: The red line displays coefficients for an alternative specification that uses an “interaction-
weighted” estimator proposed by Abraham and Sun (2019) for difference-in-differences estimation with
staggered treatment timing, while the blue line displays coefficients from the event study specification
as shown in Figure 4b. The red line corresponds to στ for τ = -7 to τ = 11 with a modified version of the
event study specification in Equation (7) that allows for cohort-year interactions with the στ ’s. More
specifically, the estimating equation is: yst = α +∑e ∑τ στ,e∈E ∗ I{Es = e}∗Dτ,st +Xst + γs +µt + εst ,
where Es denotes the RPS passage year of state s and E denotes the set of all years in which at least
one state passed an RPS program. To aggregate the στ,e’s to στ , we take a weighted average across
cohort-years. For example, given τ = 1, suppose we have a total of 3 observations in our data set, of
which 2 are for states whose RPS was passed in 1998 and 1 is for a state whose RPS was passed in
2001. Then στ=1 =

2
3 ∗στ=1,e=1998 +

1
3 ∗στ=1,e=2001. The shaded area represents the 95% confidence

interval. Electricity price data are from the EIA. RPS program passage dates are from a combination
of state legislative documents, state government websites, and summaries from the U.S. Department of
Energy. Standard errors are clustered at the state level.
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Figure 6: Cost per Ton of CO2 Abatement

Notes: Each red line displays the cost per ton of CO2 corresponding to a particular combination of specifications for estimating the impact of RPS on CO2 reductions
and retail electricity costs in the 7th year post RPS passage. For example, the second column value of $298 corresponds to using a REC region regression with no
regression weight for measuring CO2 reductions and using a balancing authority level regression with state count regression weights for measuring price changes.
The “State” specification for price comes from Column (1) of Table 2. The “BA Aggregation (Sales Weighted)” specification for price comes from Column (6) of
Table 2. The “BA Aggregation (State-Count Weighted)” specification for price comes from Column (7) of Table 2. The “log(CO2)” specification for CO2 comes
from Column (1a) of Table 4 Panel B. The “CO2 Intensity” specification for CO2 comes from Column (2a) of Table 4 Panel B. We calculate standard errors by
stacking the specifications using a seemingly unrelated regressions procedure, and the black boxes display the interquartile range of the estimates.
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10 Tables

Table 1: Summary Statistics

Mean
RPS

Mean
Control

Mean
Non-RPS

P-value
RPS vs
Control

P-value
RPS vs

Non-RPS
(1) (2) (3) (4) (5)

Price (2018 Cents/kWh)
Total 11.4 9.4 8.9 0.00 0.00
Residential 13.4 11.3 10.8 0.01 0.00
Commercial 11.8 9.8 9.4 0.00 0.00
Industrial 8.5 6.9 6.5 0.01 0.00

Price Change in 7 Years Preceding RPS Adoption -0.6 -0.6 -0.5 0.89 0.62

Total Sales (TWh) 76.2 64.3 59.4 0.39 0.23
Population (Millions) 7.0 4.7 3.9 0.11 0.03
CO2 Emissions (Million mt) 48.0 49.2 49.0 0.90 0.91
CO2 Emissions Intensity (mt per GWh) 654.5 655.9 655.8 0.98 0.98

Renewable Potential (PWh)
Solar 9.1 6.6 6.2 0.34 0.26
Wind 1.1 0.9 0.8 0.40 0.19

Generation
Total (TWh) 80.5 73.3 70.0 0.64 0.49
RPS Eligible (TWh) 8.9 5.9 4.0 0.37 0.13
RPS Eligible (% of Total) 13.5 13.0 12.9 0.89 0.87

Generating Capacity
Total (GW) 20.3 18.4 17.4 0.60 0.43
RPS Eligible (GW) 2.5 1.6 1.2 0.36 0.16
RPS Eligible (% of Total) 14.2 14.3 14.2 0.99 1.00

Other Programs (%)
Public Benefits Fund 0.66 0.45 0.40 0.03 0.01
Net Metering 0.07 0.02 0.00 0.30 0.16
Green Power Purchasing 0.03 0.03 0.04 0.91 0.89
Energy Efficiency 0.59 0.25 0.12 0.00 0.00
Has Restructured 0.38 0.18 0.16 0.03 0.02
Has NOx Trading 0.15 0.06 0.03 0.00 0.00
% of Counties Clean Air Act Non-Attainment 0.07 0.03 0.02 0.02 0.01

Energy Efficiency Expenditure (2018 Cents/kWh) 0.41 0.11 0.02 0.00 0.00
Number of Observations 29 29 29

Notes: “Mean RPS” refers to RPS states in the year prior to RPS passage. A control is defined for each RPS state as the mean across non-RPS
states and RPS states that have yet to pass RPS in the year prior to the reference RPS state’s RPS passage. “Mean Control” is the average
across these controls. “Mean Non-RPS” refers to the corresponding average restricting to the subset of control states that never implement
RPS. Column (4) reports p-values from a paired two-sample t-test between Columns (1) and (2) that allows for unequal variances across
groups. Iowa is excluded from these summary statistics due to the particularly early passage of its RPS that precludes pre-passage data
availability.
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Table 2: RPS Impact on Retail Electricity Prices

Dependent Variable: Retail Electricity Prices

Balancing Authority
Aggregation

Base
Specification

Continuous
control for

energy
efficiency

Exclude
Hawaii

Year-
Region

Fixed Effect

Year-
Division

Fixed Effect

Sales-
weighted

State-count-
weighted

(1) (2) (3) (4) (5) (6) (7)

Panel A: 7 Post-Passage Years, Balanced Sample
Mean Shift (δ3) 0.36 0.39∗ 0.28 0.49∗ 0.43 0.51 0.32

(0.23) (0.22) (0.24) (0.25) (0.26) (0.62) (0.59)
Trend Break (β3) 0.14∗ 0.16∗ 0.16∗ 0.10 0.09 0.09 0.25∗

(0.09) (0.09) (0.09) (0.08) (0.08) (0.16) (0.14)
Effect of RPS 7 years after passage 1.22∗∗ 1.37∗∗ 1.23∗ 1.11∗∗ 0.99∗ 1.04∗ 1.82∗∗

(6β3 +δ3) (0.58) (0.60) (0.61) (0.51) (0.52) (0.56) (0.89)

Panel B: 12 Post-Passage Years, Unbalanced Sample
Mean Shift (δ3) 0.39 0.42 0.38 0.50∗ 0.34 0.61 0.48

(0.28) (0.27) (0.30) (0.28) (0.27) (0.52) (0.51)
Trend Break (β3) 0.14∗∗ 0.16∗∗ 0.12∗∗ 0.11∗ 0.14 0.03 0.17∗

(0.07) (0.07) (0.06) (0.06) (0.09) (0.11) (0.09)
Effect of RPS 12 years after passage 1.91∗∗ 1.38∗∗∗ 1.08∗∗ 1.14∗∗ 1.18∗∗ 0.97 2.38∗

(11β3 +δ3) (0.77) (0.49) (0.46) (0.46) (0.54) (0.83) (1.19)

Other Programs X X X X X X
Other Programs and Energy Eff. Expenditures X
Exclude Hawaii X
State Fixed Effect X X X X X
Balancing Authority Fixed Effect X X
Year Fixed Effect X X X X X
Year-Census Region Fixed Effect X
Year-Census Division Fixed Effect X
Number of Observations 1300 1200 1274 1300 1300 1558 1558

Notes: The columns report estimates for the impact of RPS on retail electricity prices using the specification from Equation (8). All specifications control for year and either state
or balancing authority fixed effects, as well as indicators for the other programs listed in Table 1. Column (1) is our base specification. Column (2) replaces the indicator variable
for energy efficiency programs with a continuous measure for energy efficiency program costs in the set of controls. Our continuous measure of energy efficiency expenditures
is not available before 1992 so this specification covers a slightly reduced sample of years. Running our main specification with an energy efficiency indicator on this modified
sample produces an estimate that RPS raises costs by 1.37 cents 7 years after passage, identical to the 1.37 cents estimate shown here with the continuous energy efficiency control.
Column (3) excludes Hawaii due to its geographic isolation. Columns (4) and (5) add more stringent fixed effects to control for regional shocks such as differential fuel price
changes and local economic fluctuations. There are four Census regions and nine Census divisions. Columns (6) and (7) account for cross-state wholesale market spillovers by
aggregating observations to the balancing authority level using data from EIA Form 861. More details on this procedure can be found in the Data Appendix 12.1. Standard errors
are clustered at either the state level or the balancing authority level with statistical significance indicated by ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 3: Mechanisms

Panel A: Transmission and Distribution Costs

log(Transmission Costs) log(Distribution Costs) log(Transmission and Distribution
Costs)

(1) (2) (3)

Mean Shift (δ3) 0.32∗ 0.14 0.24∗

(0.18) (0.09) (0.14)
Trend Break (β3) 0.06 0.02 0.04

(0.04) (0.02) (0.03)
Effect of RPS 7 years after passage 0.70∗ 0.27 0.47
(6β3 +δ3) (0.40) (0.19) (0.31)

Implied Change in Costs 0.52 ¢/kWh 0.34 ¢/kWh 0.91 ¢/kWh

Mean at τ =−1 0.5 ¢/kWh 1.2 ¢/kWh 1.7 ¢/kWh
State Fixed Effect Yes Yes Yes
Year Fixed Effect Yes Yes Yes
Other Programs Yes Yes Yes
Number of Observations 1060 1059 1060

Panel B: Electricity Production and Consumption

log(Capacity) Capacity Factor log(Generation) log(Sales)
(1) (2) (3) (4)

Mean Shift (δ3) 0.02 0.97 0.08∗∗ 0.00
(0.02) (0.82) (0.04) (0.01)

Trend Break (β3) 0.01 0.27 0.02 0.00
(0.01) (0.47) (0.02) (0.00)

Effect of RPS 7 years after passage 0.08 2.57 0.20 0.01
(6β3 +δ3) (0.06) (3.32) (0.12) (0.04)

Mean at τ =−1 20.3 GW 42.9 80.5 TWh 76.2 TWh
State Fixed Effect Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes
Other Programs Yes Yes Yes Yes
Number of Observations 1300 1300 1300 1300

Panel C: Excess Generation Accounting

Excess Generation Electricity Net Exports
(1) (2)

Mean Shift (δ3) 3.67 3.98
(2.76) (2.75)

Trend Break (β3) 0.96 0.99
(1.18) (1.19)

Effect of RPS 7 years after passage 9.42 9.93
(6β3 +δ3) (9.17) (9.21)

Mean at τ =−1 5.8 pp -5.1 pp
State Fixed Effect Yes Yes
Year Fixed Effect Yes Yes
Other Programs Yes Yes
Number of Observations 1300 1300

Notes: Each column in each panel shows an estimate using Equation (8) for the given depen-
dent variable. Panel A and B columns are in logs, except for capacity factor which is shown
in percentage points. Data on transmission and distribution costs come from FERC Form 1
as compiled by Fares and King (2017). This data has fewer observations because it begins
in 1994 and does not include Nebraska, which has no investor-owned utilities. In addition,
taking logs results in dropping a small number of observations listed as zero, which we inter-
pret as missing data since it is not feasible for transmission and distribution infrastructure to
require no operating and maintenance costs for a full year. Data on capacity, capacity factor,
generation, sales, and electricity net exports come from EIA Forms 860, 861, 867, 906, 920,
and 923. Using Equation (8) notation, the effect of RPS 7 years after passage is 6β3 +δ3. All
specifications control for state and year fixed effects, and indicators for the other programs
listed in Table 1. Standard errors are clustered at the state level with statistical significance
indicated by ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 4: Estimates of RPS Impact on CO2 Emissions

Panel A: State-Level Observations

log(CO2 Emissions)

Regression Estimates
from Equation (8)

Implied Change in CO2
Emissions (Million mt)

(1a) (1b)

7 Post-Passage Years
Mean Shift (δ3) 0.04

(0.03)
Trend Break (β3) −0.01

(0.01)
Effect of RPS 7 years after passage −0.03 −1.3

(0.11)
12 Post-Passage Years

Mean Shift (δ3) 0.05
(0.04)

Trend Break (β3) −0.02
(0.01)

Effect of RPS 12 years after passage −0.13 −3.2
(0.14)

Mean at τ =−1 48.0 Million mt
State Fixed Effect Yes Yes
Year Fixed Effect Yes Yes
Other Programs Yes Yes
Number of Observations 1300 1300

Panel B: REC Region-Level Observations

log(CO2 Emissions) CO2 Intensity (mt/GWh)

Regression Estimates
from Equation (8)

Implied Change in CO2
Emissions (Million mt)

Regression Estimates
from Equation (8)

Implied Change in CO2
Emissions (Million mt)

(1a) (1b) (2a) (2b)

Unweighted (7 Post-Passage Years)
Mean Shift (δ3) 0.04 13.2

(0.04) (17.7)
Trend Break (β3) −0.02∗∗ −15.9∗∗∗

(0.01) (4.3)
Effect of RPS 7 years after passage −0.10 −4.9 −82.1∗ −7.0

(0.06) (37.9)
Weighted (7 Post-Passage Years)

Mean Shift (δ3) −0.02 −26.7
(0.05) (22.5)

Trend Break (β3) −0.02∗∗ −23.8∗∗

(0.01) (8.9)
Effect of RPS 7 years after passage −0.15 −7.3 −169.5∗∗ −14.4

(0.09) (71.8)
Unweighted (12 Post-Passage Years)

Mean Shift (δ3) 0.05 19.3
(0.04) (20.1)

Trend Break (β3) −0.03∗∗∗ −17.6∗∗∗

(0.01) (4.3)
Effect of RPS 12 years after passage −0.26∗∗ −7.0 −174.8∗∗ −8.8

(0.11) (56.8)
Weighted (12 Post-Passage Years)

Mean Shift (δ3) 0.00 −31.0
(0.07) (28.6)

Trend Break (β3) −0.03∗∗ −21.5∗∗

(0.01) (7.2)
Effect of RPS 12 years after passage −0.32∗∗ −8.9 −267.2∗∗ −13.5

(0.12) (98.9)

Mean at τ =−1 95.3 Million mt 596.0 mt/GWh
Region Fixed Effect Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes
Other Programs Yes Yes Yes Yes
Number of Observations 312 312 312 312

Notes: (a)-columns display estimates from Equation (8), while (b)-columns display the corresponding implied changes in CO2
emissions on average for RPS states. Using Equation (8) notation, the effect of RPS 7 years after passage is 6β3 +δ3, and the effect
of RPS 12 years after passage is 11β3 + δ3. Panel A contains state level regressions. Panel B contains specifications run at the
REC region level aggregating observations using the generation-weighted average of states in the region; the weighted specification
further weights each observation by the count of states in the region. All specifications control for state (or REC region) and year
fixed effects, and indicators for the other programs listed in Table 1. Standard errors are clustered at either the state level or the
REC region level with statistical significance indicated by ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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11 Appendix (For Online Publication)

Figure A.1: REC Tracking Markets

Notes: We compile these boundaries using REC region tracking system websites. Portions of some states qualify for multiple REC regions. We
show robustness of our main CO2 results to alternative classifications for these few states in Appendix Table A.7.
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Figure A.2: Estimated Effects of RPS Programs on Retail Electricity Prices, Synthetic Control Method

Notes: Graphs show estimates from a range of specifications employing synthetic controls methods, as recommended by Ben-Michael, Feller, and Rothstein (2021) for event years τ

= -7 to τ = 11. For specifications that construct synthetic controls by targeting balance on independent variables, we use solar and wind potential, CO2 intensity, percent RPS-eligible
generation, and percent coal and natural gas generation as the independent variables of interest. Appendix Table A.1 shows summary statistics for the weighted sample of synthetic
control states, as compared to RPS states and control states in the main specification. Electricity price data are from the EIA. RPS program passage dates are from a combination of
state legislative documents, state government websites, and summaries from the U.S. Department of Energy. Standard errors are clustered at the state level.
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Figure A.3: Estimated Effects of RPS Programs on Gross Renewable Requirements (Extended
Post Period)

Notes: The graph shows the mean gross RPS requirement percentage for event years τ = -7 to τ = 11. We take gross
RPS requirement data from the LBNL as constructed by Barbose (2018). Electricity price data are from the EIA.
RPS program passage dates and requirements are from a combination of state legislative documents, state government
websites, and summaries from the U.S. Department of Energy.
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Figure A.4: Electricity Prices Before and After RPS Passage, by Sector

Notes: Graphs show coefficients for στ for τ = -7 to τ = 11 from the event study specification in Equation (7) that regresses the dependent variable - retail electricity prices - on indicator
variables for years relative to program passage, controlling for state and year fixed effects, and indicators for the other programs listed in Table 1. Blue lines show the point estimates and
shaded areas represent the 95% confidence intervals. Sectoral electricity price data are from the EIA. RPS program passage dates are from a combination of state legislative documents,
state government websites, and summaries from the U.S. Department of Energy. Standard errors are clustered at the state level.
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Figure A.5: Transmission and Distribution Costs Before and After RPS Passage

Notes: Graphs show coefficients for στ for τ = -7 to τ = 6 from the event study specification in Equation (7) that regresses the dependent variable - transmission and distribution costs -
on indicator variables for years relative to program passage, controlling for state and year fixed effects, and indicators for the other programs listed in Table 1. Blue lines show the point
estimates and shaded areas represent the 95% confidence intervals. Data on transmission and distribution costs are from the FERC. RPS program passage dates are from a combination
of state legislative documents, state government websites, and summaries from the U.S. Department of Energy. Standard errors are clustered at the state level.
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Figure A.6: Electricity Production and Consumption Before and After RPS Passage

Notes: Graphs show coefficients for στ for τ = -7 to τ = 6 from the event study specification in Equation (7) that regresses the dependent variable - capacity, capacity factor, generation,
and sales - on indicator variables for years relative to program passage, controlling for state and year fixed effects, and indicators for the other programs listed in Table 1. Blue lines
show the point estimates and shaded areas represent the 95% confidence intervals. Data on capacity, capacity factor, generation, and sales are from the EIA. RPS program passage dates
are from a combination of state legislative documents, state government websites, and summaries from the U.S. Department of Energy. Standard errors are clustered at the state level.
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Figure A.7: Excess Generation Before and After RPS Passage

Notes: Graphs show coefficients for στ for τ = -7 to τ = 6 from the event study specification in Equation (7) that
regresses the dependent variable - excess generation and electricity net exports - on indicator variables for years
relative to program passage, controlling for state and year fixed effects, and indicators for the other programs listed
in Table 1. Blue lines show the point estimates and shaded areas represent the 95% confidence intervals. Data on
excess generation and electricity net exports are from the EIA. RPS program passage dates are from a combination of
state legislative documents, state government websites, and summaries from the U.S. Department of Energy. Standard
errors are clustered at the state level.
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Figure A.8: CO2 Emissions Before and After RPS Passage

Notes: Graphs show coefficients for στ for τ = -7 to τ = 6 from the event study specification in Equation (7) that regresses the dependent variable - CO2 emissions and CO2 intensity -
on indicator variables for years relative to program passage, controlling for state and year fixed effects, and indicators for the other programs listed in Table 1. Blue lines show the point
estimates and shaded areas represent the 95% confidence intervals. Data on CO2 emissions and CO2 intensity are from the EIA. RPS program passage dates are from a combination of
state legislative documents, state government websites, and summaries from the U.S. Department of Energy. Standard errors are clustered at the state level.
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Figure A.9: Cost per Ton of CO2 Abatement, 12 Years Post-Passage

Notes: Each red line displays the cost per ton of CO2 corresponding to a particular combination of specifications for estimating the impact of RPS on CO2 reductions
and retail electricity costs, in the 12th year post RPS passage. For example, the second column value of $167 corresponds to using a REC region regression with no
regression weight for measuring CO2 reductions and using a balancing authority level regression with state count regression weights for measuring price changes.
The “State” specification for price comes from Column (1) of Table 2. The “BA Aggregation (Sales Weighted)” specification for price comes from Column (6) of
Table 2. The “BA Aggregation (State-Count Weighted)” specification for price comes from Column (7) of Table 2. The “log(CO2)” specification for CO2 comes
from Column (1a) of Table 4 Panel B. The “CO2 Intensity” specification for CO2 comes from Column (2a) of Table 4 Panel B. We calculate standard errors by
stacking the specifications using a seemingly unrelated regressions procedure, and the black boxes display the interquartile range of the estimates.
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Table A.1: Summary Statistics, Synthetic Control Method

Mean RPS
Mean SCM

Control
P-value RPS vs
SCM Control

(1) (2) (3)

Price (2018 Cents/kWh)
Total 11.4 9.7 0.00
Residential 13.4 11.6 0.00
Commercial 11.8 9.8 0.00
Industrial 8.5 7.1 0.00

Price Change in 7 Years Preceding RPS Adoption -0.6 -0.6 0.97
Total Sales (TWh) 76.2 57.3 0.27
Population (Millions) 7.0 4.3 0.11
CO2 Emissions (Million mt) 48.0 42.3 0.62
CO2 Emissions Intensity (mt per GWh) 654.5 611.3 0.30

Renewable Potential (PWh)
Solar 9.1 8.5 0.80
Wind 1.1 1.1 0.96

Generation
Total (TWh) 80.5 61.9 0.31
RPS Eligible (TWh) 8.9 3.0 0.06
RPS Eligible (% of Total) 13.5 14.4 0.55

Generating Capacity
Total (GW) 20.3 15.8 0.32
RPS Eligible (GW) 2.5 0.9 0.07
RPS Eligible (% of Total) 14.2 15.5 0.47

Other Programs (%)
Public Benefits Fund 0.66 0.41 0.04
Net Metering 0.07 0.00 0.16
Green Power Purchasing 0.03 0.07 0.36
Energy Efficiency 0.59 0.14 0.00
Has Restructured 0.38 0.03 0.00
Has NOx Trading 0.15 0.03 0.00
% of Counties Clean Air Act Non-Attainment 0.07 0.03 0.02

Energy Efficiency Expenditure (2018 Cents/kWh) 0.41 0.04 0.00
Number of Observations 29 29

Notes: “Mean RPS” is for RPS states in the year prior to RPS passage. A SCM control is defined for each RPS state as the
synthetic control weighted average across non-RPS states, in the year prior to the reference RPS state’s RPS passage. “Mean
SCM Control” is the average across these controls. Column (3) reports p-values from a paired two-sample t-test between
Columns (1) and (2) that allows for unequal variances across groups. Iowa is excluded from these summary statistics due to
the particularly early passage of its RPS that precludes pre-passage data availability.
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Table A.2: Estimates of RPS Impact on Retail Electricity Prices

Dependent Variable: Sectoral Retail Electricity Price

Total Residential Commercial Industrial
(1) (2) (3) (4)

Panel A: 7 Post-Passage Years, Balanced Sample
Mean Shift (δ3) 0.36 0.21 0.39∗ 0.80∗

(0.23) (0.23) (0.22) (0.46)
Trend Break (β3) 0.14∗ 0.22∗∗ 0.09 0.01

(0.09) (0.09) (0.09) (0.09)
Effect of RPS 7 years after passage 1.22∗∗ 1.51∗∗ 0.92 0.89∗

(6β3 +δ3) (0.58) (0.62) (0.60) (0.49)

Panel B: 12 Post-Passage Years, Unbalanced Sample
Mean Shift (δ3) 0.39 0.27 0.40 0.68∗

(0.28) (0.28) (0.27) (0.40)
Trend Break (β3) 0.14∗∗ 0.19∗∗ 0.09 0.07

(0.07) (0.07) (0.08) (0.08)
Effect of RPS 12 years after passage 1.91∗∗ 2.41∗∗∗ 1.39 1.46∗

(11β3 +δ3) (0.77) (0.87) (0.87) (0.80)

Mean at τ =−1 11.4 13.4 11.8 8.5
State Fixed Effect Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes
Other Programs Yes Yes Yes Yes
Number of Observations 1300 1300 1300 1300

Notes: Columns (1) through (4) show estimates from Equation (8), with total retail electricity price and sector-specific retail electricity prices as the
dependent variables. Using Equation (8) notation, the effect of RPS 7 years after passage is 6β3 + δ3, and the effect of RPS 12 years after passage
is 11β3 + δ3. All specifications control for state and year fixed effects, and indicators for the other programs listed in Table 1. Standard errors are
clustered at the state level with statistical significance indicated by ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table A.3: Heterogeneous Effects of RPS Programs on Retail Electricity Prices

Dependent Variable: Sectoral Retail Electricity Price

Total Residential

Panel A: Late Adopters
Mean Shift (δ3) 0.45 0.23

(0.35) (0.35)
Trend Break (β3) 0.11 0.18

(0.12) (0.13)
Effect of RPS 7 years after passage (6β3 +δ3) 1.13 1.33

(0.75) (0.86)
(Effect of RPS 7 years after passage) * (Late) −0.10 0.25

(1.42) (1.43)

Panel B: Ever Restructured
Mean Shift (δ3) 0.19 0.20

(0.37) (0.40)
Trend Break (β3) 0.30∗∗ 0.35∗∗

(0.14) (0.14)
Effect of RPS 7 years after passage (6β3 +δ3) 1.98∗ 2.31∗

(1.12) (1.16)
(Effect of RPS 7 years after passage) * (Restructured) −0.82 −0.80

(1.33) (1.40)

Panel C: Has Solar Set-Aside
Mean Shift (δ3) 0.47 0.37

(0.33) (0.33)
Trend Break (β3) 0.06 0.13

(0.10) (0.12)
Effect of RPS 7 years after passage (6β3 +δ3) 0.85 1.13

(0.77) (0.95)
(Effect of RPS 7 years after passage) * (Solar Set-Aside) 1.06 1.13

(1.23) (1.26)

Panel D: Heavy Coal States
Mean Shift (δ3) 0.61 0.42

(0.41) (0.40)
Trend Break (β3) 0.04 0.14

(0.11) (0.13)
Effect of RPS 7 years after passage (6β3 +δ3) 0.85 1.26

(0.86) (1.00)
(Effect of RPS 7 years after passage) * (Heavy Coal) 0.77 0.59

(1.27) (1.36)

State Fixed Effect Yes Yes
Year Fixed Effect Yes Yes
Other Programs Yes Yes
Number of Observations 1300 1300

Notes: The coefficients give the aggregate effect of RPS programs on total and residential retail prices 7 years after passage estimated from the trend-
break model in Equation (8). The top row in each panel shows the coefficient for the subset of states not in the given category and the bottom row shows
the difference in the coefficient for the given subset. Using Equation (8) notation, the effect of RPS 7 years after passage is 6β3 +δ3. All specifications
control for state and year fixed effects, and indicators for the other programs listed in Table 1. Standard errors are clustered at the state level with
statistical significance indicated by ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table A.4: RPS Impact on Employment

Employment

Total Manufacturing
(1) (2)

Mean Shift (δ3) 0.003 −0.008
(0.008) (0.014)

Trend Break (β3) 0.003 −0.006
(0.003) (0.005)

Effect of RPS 7 years after passage 0.023 −0.043
(6β3 +δ3) (0.024) (0.037)

State Fixed Effect Yes Yes
Year Fixed Effect Yes Yes
Other Programs Yes Yes
Number of Observations 1200 1200

Notes: The dependent variable in Column (1) is the log of total employment in each
state; in Column (2) it is log manufacturing employment. Columns report estimates
from the trend-break model given by Equation (8). Using Equation (8) notation, the
effect of RPS 7 years after passage is 6β3 + δ3. All specifications control for state
and year fixed effects, and indicators for the other programs listed in Table 1. Standard
errors are clustered at the state level with statistical significance indicated by ∗p< 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01.
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Table A.5: RPS Impact on Generation

Generation

Renewables
Hydro &
Nuclear

Coal &
Petroleum

Natural Gas

(1) (2) (3) (4)

Unweighted (7 Post-Passage Years)
Mean Shift (δ3) −0.17 0.12 3.46 −3.45

(0.46) (1.60) (3.97) (4.29)
Trend Break (β3) −0.19 0.24 −3.08∗∗∗ 3.10∗∗∗

(0.22) (0.46) (0.64) (0.78)
Effect of RPS 7 years after passage −1.32 1.58 −15.03∗∗ 15.15∗∗

(6β3 +δ3) (1.61) (3.63) (6.73) (6.25)

Weighted (7 Post-Passage Years)
Mean Shift (δ3) −0.71 2.01 −2.93 1.36

(0.59) (2.10) (3.28) (3.42)
Trend Break (β3) −0.27 2.23∗ −2.41∗∗∗ 0.45

(0.24) (1.09) (0.77) (1.18)
Effect of RPS 7 years after passage −2.30 15.36∗ −17.37∗∗ 4.03
(6β3 +δ3) (1.86) (7.96) (6.09) (6.79)

Unweighted (12 Post-Passage Years)
Mean Shift (δ3) −0.40 0.28 3.89 −3.90

(0.50) (1.46) (5.11) (5.54)
Trend Break (β3) −0.14 0.15 −3.20∗∗∗ 3.28∗∗∗

(0.20) (0.46) (0.62) (0.90)
Effect of RPS 12 years after passage −1.95 1.94 −31.26∗∗∗ 32.22∗∗∗

(11β3 +δ3) (2.62) (5.80) (8.14) (8.81)

Weighted (12 Post-Passage Years)
Mean Shift (δ3) −1.14 2.33 −3.66 2.13

(0.77) (2.40) (4.37) (4.23)
Trend Break (β3) −0.11 2.04∗ −2.05∗ 0.15

(0.21) (0.97) (0.95) (1.54)
Effect of RPS 12 years after passage −2.39 24.72∗ −26.21∗∗ 3.82
(11β3 +δ3) (2.78) (12.16) (9.79) (15.00)

Mean at τ =−1 2.35 30.27 47.73 19.25
Region Fixed Effect Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes
Other Programs Yes Yes Yes Yes
Number of Observations 312 312 312 312

Notes: Columns (1) through (4) show estimates from the trend-break specification Equation (8), each with a specific gen-
eration source (in units of percentage points of total generation). “Renewables” includes wind, solar, geothermal, other
biomass, wood, and wood-derived fuels. Using Equation (8) notation, the effect of RPS 7 years after passage is 6β3 + δ3.
The unweighted specification is run at the REC region level aggregating observations using the generation-weighted average
of states in the region; the weighted specification further weights each observation by the count of states in the region. All
specifications control for REC region and year fixed effects, and indicators for the other programs listed in Table 1. Standard
errors are clustered at the REC region level with statistical significance indicated by ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table A.6: RPS Impact on Other Pollutants

Monitor PM2.5
Concentration

Satellite PM2.5
Concentration log(SO2 Emissions) SO2 Intensity log(NOx Emissions) NOx Intensity

(1a) (1b) (2a) (2b) (3a) (3b)

Unweighted (7 Post-Passage Years)
Mean Shift (δ3) 0.61 −0.21 0.03 −0.15 0.03 0.09

(1.38) (0.55) (0.13) (0.27) (0.20) (0.25)
Trend Break (β3) 0.48 −0.34 −0.12∗∗ −0.23 −0.06 −0.05

(0.58) (0.21) (0.05) (0.14) (0.03) (0.06)
Effect of RPS 7 years after passage 3.47 −2.23 −0.66∗ −1.55∗ −0.31 −0.23
(6β3 +δ3) (4.66) (1.31) (0.34) (0.86) (0.31) (0.56)

Weighted (7 Post-Passage Years)
Mean Shift (δ3) 0.84 −0.01 −0.16 −0.11 −0.04 0.04

(0.87) (0.50) (0.13) (0.42) (0.13) (0.12)
Trend Break (β3) 0.25 −0.13 −0.03 −0.38∗ −0.05∗ −0.13∗

(0.47) (0.34) (0.05) (0.19) (0.03) (0.06)
Effect of RPS 7 years after passage 2.35 −0.80 −0.34 −2.42∗∗ −0.34 −0.74
(6β3 +δ3) (3.49) (1.95) (0.30) (1.03) (0.19) (0.45)

Unweighted (12 Post-Passage Years)
Mean Shift (δ3) 0.92 −0.31 0.09 −0.23 0.03 0.10

(1.63) (0.62) (0.19) (0.31) (0.18) (0.25)
Trend Break (β3) 0.34 −0.31 −0.14∗∗∗ −0.21 −0.05∗ −0.06

(0.48) (0.21) (0.04) (0.12) (0.03) (0.05)
Effect of RPS 12 years after passage 4.67 −3.75 −1.43∗∗ −2.56∗ −0.57 −0.51
(11β3 +δ3) (6.67) (2.27) (0.48) (1.39) (0.45) (0.79)

Weighted (12 Post-Passage Years)
Mean Shift (δ3) 0.74 −0.07 −0.13 −0.29 −0.10 −0.02

(1.09) (0.55) (0.18) (0.44) (0.13) (0.13)
Trend Break (β3) 0.27 −0.12 −0.04 −0.32 −0.02 −0.10∗

(0.38) (0.29) (0.07) (0.19) (0.02) (0.05)
Effect of RPS 12 years after passage 3.69 −1.36 −0.60 −3.77∗ −0.35 −1.14
(11β3 +δ3) (4.98) (3.14) (0.67) (1.93) (0.26) (0.67)

Mean at τ =−1 11.64 11.71 12.20 2.39 11.65 1.05
Region Fixed Effect Yes Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes Yes
Other Programs Yes Yes Yes Yes Yes Yes
Number of Observations 311 216 312 312 312 312

Notes: Each column shows the estimated impact of RPS on a different measure of pollution, shown in units of metric tons per GWh for SO2 Intensity and NOx
Intensity, and micrograms per cubic meter for PM2.5 Concentration. Using Equation (8) notation, the effect of RPS 7 years after passage is 6β3 +δ3, and the effect of
RPS 12 years after passage is 11β3 +δ3. The unweighted specification is run at the REC region level aggregating observations using the generation-weighted average
of states in the region; the weighted specification further weights each observation by the count of states in the region. All specifications control for REC region and
year fixed effects, and indicators for the other programs listed in Table 1. Standard errors are clustered at the REC region level with statistical significance indicated by
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table A.7: Robustness Checks for RPS Impact on CO2 Emissions

Robust 1
(Trend Break)

Robust 2
(Trend Break)

Robust 3
(Trend Break)

Robust 4
(Trend Break)

Robust 5
(Trend Break)

log(CO2
Emissions) CO2 Intensity log(CO2

Emissions) CO2 Intensity log(CO2
Emissions) CO2 Intensity log(CO2

Emissions) CO2 Intensity log(CO2
Emissions) CO2 Intensity

(1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) (5a) (5b)

Unweighted (7 Post-Passage Years)
Mean Shift (δ3) 0.04 15.2 0.05 14.8 0.04 13.2 0.07 21.8 0.04 10.1

(0.04) (17.1) (0.04) (17.6) (0.04) (17.8) (0.06) (24.3) (0.03) (12.7)
Trend Break (β3) −0.02∗∗∗ −15.2∗∗∗ −0.03∗∗ −14.6∗∗∗ −0.02∗∗ −15.9∗∗∗ −0.03∗∗ −15.4∗∗ −0.01∗ −7.7∗

(0.01) (4.4) (0.01) (4.6) (0.01) (4.4) (0.01) (5.8) (0.01) (4.2)
Effect of RPS 7 years after passage −0.11 −76.1∗ −0.11 −72.8∗ −0.10 −82.5∗ −0.11 −70.8 −0.03 −36.2
(6β3 +δ3) (0.06) (38.1) (0.07) (39.3) (0.06) (38.1) (0.09) (51.1) (0.05) (33.7)

Weighted (7 Post-Passage Years)
Mean Shift (δ3) −0.01 −14.8 −0.00 −20.5 −0.02 −26.7 −0.02 −36.2 −0.01 −22.1

(0.04) (19.5) (0.06) (20.9) (0.05) (22.7) (0.07) (26.9) (0.04) (17.4)
Trend Break (β3) −0.02∗∗ −21.6∗∗ −0.02∗∗ −19.4∗∗ −0.02∗∗ −24.5∗∗ −0.03∗∗∗ −26.0∗∗ −0.02∗∗ −20.6∗∗

(0.01) (8.2) (0.01) (8.8) (0.01) (9.3) (0.01) (10.0) (0.01) (7.9)
Effect of RPS 7 years after passage −0.15∗ −144.3∗∗ −0.12 −137.1∗ −0.16 −173.9∗∗ −0.18∗ −192.2∗∗ −0.13 −145.7∗∗

(6β3 +δ3) (0.08) (65.0) (0.09) (69.4) (0.09) (74.0) (0.10) (82.7) (0.08) (61.9)

Unweighted (12 Post-Passage Years)
Mean Shift (δ3) 0.05 21.5 0.06 20.6 0.05 19.4 0.08 26.2 0.05 8.0

(0.04) (19.7) (0.04) (20.1) (0.04) (20.1) (0.06) (28.3) (0.03) (16.9)
Trend Break (β3) −0.03∗∗∗ −17.1∗∗∗ −0.03∗∗ −16.4∗∗∗ −0.03∗∗∗ −17.8∗∗∗ −0.03∗∗∗ −17.1∗∗∗ −0.01 −6.7

(0.01) (4.2) (0.01) (4.5) (0.01) (4.3) (0.01) (4.7) (0.01) (4.2)
Effect of RPS 12 years after passage −0.26∗∗ −166.7∗∗ −0.27∗∗ −159.4∗∗ −0.26∗∗ −176.0∗∗ −0.30∗ −162.0∗∗ −0.10 −65.4
(11β3 +δ3) (0.10) (56.4) (0.12) (59.5) (0.11) (57.1) (0.14) (67.7) (0.09) (50.3)

Weighted (12 Post-Passage Years)
Mean Shift (δ3) 0.01 −17.6 0.02 −25.7 −0.00 −31.0 −0.00 −42.9 0.00 −30.4

(0.06) (26.1) (0.08) (28.9) (0.07) (28.7) (0.09) (35.3) (0.06) (22.8)
Trend Break (β3) −0.03∗∗ −19.9∗∗ −0.03∗∗ −17.3∗∗ −0.03∗∗ −22.2∗∗ −0.03∗∗∗ −22.9∗∗ −0.02∗∗ −17.0∗∗

(0.01) (6.5) (0.01) (6.4) (0.01) (7.5) (0.01) (7.4) (0.01) (6.3)
Effect of RPS 12 years after passage −0.31∗∗ −236.9∗∗ −0.28∗∗ −215.8∗∗ −0.32∗∗ −275.2∗∗ −0.37∗∗∗ −295.1∗∗ −0.27∗∗ −217.3∗∗

(11β3 +δ3) (0.11) (88.9) (0.11) (91.9) (0.12) (103.0) (0.09) (107.1) (0.10) (86.9)

Mean at τ =−1 19.2 641.0 19.2 644.2 19.2 643.4 19.4 638.3 18.6 655.0
Region Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Other Programs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Number of Observations 312 312 312 312 312 312 260 260 494 494

Notes: The (a)-columns show the impact of RPS on log(CO2 emissions) while the (b)-columns show the impact of RPS on CO2 emissions intensity in units of metric tons per GWh. Using
Equation (8) notation, the effect of RPS 7 years after passage is 6β3 +δ3. The unweighted specification is run at the REC region level aggregating observations using the generation-weighted
average of states in the region; the weighted specification further weights each observation by the count of states in the region. Each pair of columns differs in terms of how states are
assigned to REC regions, relative to our preferred specification in Table 4. Robust 1 assigns Ohio to M-RETS. Robust 2 assigns Illinois, Indiana, and Kentucky to PJM. Robust 3 assigns
South Dakota to WREGIS. Robust 4 assigns Alaska and Hawaii to NARR. Robust 5 assigns all states that are assigned to NARR in our preferred specification to its own region. More details
on REC region construction can be found in the Data Appendix 12.2. Standard errors are clustered at the REC region level with statistical significance indicated by ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.
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12 Data Appendix

12.1 Balancing Authority Data Set Construction

We construct a version of our electricity price data set at the balancing authority (BA) level to
test whether state level RPS policies have spillover effects on out-of-state consumers in wholesale
markets that cross state boundaries. The results from this estimation are shown in Table 2, Column
(6) and (7). We assemble this data as follows. First, we assign utilities to BAs using EIA Form
861 data. The most recent data reports sales at the utility-BA level, allowing us to apportion
utilities that operate across multiple BAs by their share of sales in each. For utilities that do not
appear in the most recent year of data, we use the latest year of data in which their BA mapping is
reported. Prior to aggregating utility level sales and revenue to the BA level, we drop non-utility
observations and account for mergers and acquisitions using a manually compiled data set. If a
utility is acquired by another utility during our sample period, we recode the former to the latter
for all years for consistency of measurement. After making these adjustments, we sum reported
utility level sales and revenues to the BA level (apportioning utility revenues across multiple BAs
by each one’s share of sales). Electricity price is given by revenue divided by sales. Note that other
state level variables, such as our indicators for RPS or other programs, are also aggregated to the
BA level using sales weighting. For example, if a BA has 40% of its sales in Indiana and 60% in
Illinois, then its value for the RPS indicator variable will be 0.4 * 1{RPS in Illinois}+ 0.6 * 1{RPS
in Illinois}.

12.2 REC Region Data Set Construction

We construct a version of our data set at the REC region level to account for interstate purchases
of Renewable Energy Credits to comply with RPS. We use the REC region level data to estimate
the effects of RPS on pollution in Table 4 and Appendix Tables A.6 and A.7, and on generation
in Appendix Table A.5. We assign states to REC regions by manually compiling information on
included entities from the website and documentation associated with each tracking system. Once
assigned, we take the generation weighted average of the state level variables to aggregate to the
REC region. Portions of some states qualify for multiple REC regions, though our data for these
dependent variables is only at the state level. In our baseline specification, we assign the state to
that REC region which contains the largest share of its sales. For several states, we also show
robustness to an alternative classification. Using 2015 sales, about 20.4% of Indiana, 29.1% of
Kentucky, and 46.4% of Illinois qualify for the PJM REC Region, and 24.5% of South Dakota
qualifies for the WREGIS REC Region. In addition, the state of Ohio fully qualifies in both M-
RETS and PJM.
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Our main specification assigns states to REC regions as follows:

• WREGIS – Arizona, California, Colorado, Idaho, Montana, New Mexico, Oregon, Utah,
Washington, Wyoming

• M-RETS – Arkansas, Illinois, Indiana, Iowa, Kentucky, Louisiana, Minnesota, Mississippi,
Missouri, North Dakota, South Dakota, Wisconsin

• NE-POOL – Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont

• PJM – Delaware, District of Columbia, Maryland, New Jersey, Ohio, Pennsylvania, Virginia,
West Virginia

• ERCOT – Texas

• MIRECS – Michigan

• NC-RETS – North Carolina

• NYGATS – New York

• NVTREC – Nevada

• NARR – Alabama, Florida, Georgia, Kansas, Nebraska, Oklahoma, South Carolina, Ten-
nessee

Our robustness checks make the following adjustments to the main classifications:

Table A.8: Robustness Check of REC Definitions

States Base Robustness 1 Robustness 2 Robustness 3 Robustness 4 Robustness 5

Ohio PJM M-RETS No change No change No change No change
Illinois M-RETS No change PJM No change No change No change
Indiana M-RETS No change PJM No change No change No change
Kentucky M-RETS No change PJM No change No change No change
South Dakota M-RETS No change No change WREGIS No change Own region
Hawaii Own region No change No change No change NARR No change
Alaska Own region No change No change No change NARR No change
NARR States NARR No change No change No change No change Own region

12.3 Continuous Control for Energy Efficiency Expenditures

In addition to our binary control variable for energy efficiency resource standards in our main
specification, we also run a robustness check controlling for a continuous measure of utility invest-
ments in energy efficiency. We construct this measure using data from EIA Form 861 on utility
level expenditures on energy efficiency. We aggregate from the utility to the state level appor-
tioning expenditures for multi-state utilities by each state’s share of that utility’s sales, as with the
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balancing authority aggregation. In addition, the data reporting format for energy efficiency ex-
penditures changes across years in our sample. We standardize this data across years by isolating
the energy efficiency component of reported demand side management expenditures.

12.4 Transmission and Distribution Expenditures Data Set Construction

To construct a measure of transmission and distribution expenditures, we use data compiled by the
UT Austin Energy Institute (https://openei.org/datasets/dataset/ferc-form-1-electric-utility-cost-energy-
sales-peak-demand-and-customer-count-data-1994-2016). This data contains expenditures on cap-
ital, operations, and maintenance costs for transmission and distribution data for over 200 investor-
owned utilities from their FERC Form 1 submissions for 1994-2016. We use our EIA Form 861
data to manually map each utility to the set of states in which it operates (again using sales to
apportion) using the most recent year in which the mapping exists. For a small subset of utilities
that we could not map using EIA 861 data (which only contains this mapping for the later years
in our sample), we manually looked up the utility’s information. If the utility predominantly or
entirely operates in a single state, we map it to that state; otherwise, we drop it from the data set
rather than risk mistaken state mapping. Note also that Nebraska does not have any investor-owned
utilities and thus does not enter this data set. Overall, investor-owned utilities accounted for 72% of
US electricity sales in 2017 according to the EIA, allowing us to interpret these results as broadly
representative.
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