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Abstract

If rising temperature has a long-run impact on the aggregate economy (i.e., it increases future

volatility or tail risk, or lowers growth), it should be reflected in current equity prices and the

risk-return tradeoff. Our empirical analysis shows that this is indeed the case — the long-run

temperature elasticity of equity valuations is significantly negative and long-run temperature

fluctuations carry a positive risk premium in equity markets. We use our theoretical framework

and capital-market based estimates to provide a semi-parametric estimate of the welfare cost of

carbon emissions. We find that the welfare cost of carbon emissions implied by capital market

expectations is economically large. Overall, our analysis shows that temperature is a source of

long-run economic risks and underscores the importance of forward-looking capital markets for

understanding the impact and cost of climate change.
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Introduction

Climate change and its impact on the macroeconomy is a matter of considerable importance to the

policy debate on the optimal response to global warming (Stern (2007), Nordhaus (2008)). However,

measuring the economic cost of rising temperature presents significant empirical challenges as the

most dire consequences of global warming have not yet been realized and therefore are hard to

identify from the past output or income data. In this paper, we argue that forward-looking equity

prices that reflect expectations about future growth and risk provide important insights into the

economic cost of global warming. Our identification strategy exploits the impact of climate change on

the short-term risk-return tradeoff driven by investors’ concerns about long-run implications of rising

temperature for the aggregate economy. Using capital market data, we establish that low-frequency

variations in temperature have a significant negative effect on asset valuations and carry a positive

risk premium. We use our empirical evidence to provide a semi-parametric capital-market based

estimate of the welfare cost of carbon (i.e., marginal value of reducing emissions).

To understand the economic impact of long-run temperature variations on current asset prices

and expected returns, we present a climate change model that accounts for the interaction between

global warming and economic growth and incorporates (endogenous) risks of damages caused by

global warming.1 In the model, a sustained rise in temperature is anthropogenic, driven by economic

activity. A persistent shock to temperature induces a low-frequency component in the drift and left

tail of future output — i.e., temperature is a source of long-run risk in economic growth and this

risk is impounded in current asset valuations and risk premia.2 To demonstrate explicitly the

implications of temperature risks, we derive analytical solutions for the life-time utility, asset prices,

risk premia, and the welfare cost of carbon.

Our model makes several predictions that guide our empirical work. First, consistent with the

consensus view, in the model, significant effects of global warming are more likely to unfold in the

future and, therefore, are difficult to assess from past growth outcomes that might not yet have

1While climate change has a broader meaning, we use it to refer to anthropogenic global warming due to the
continuing buildup of carbon dioxide in the atmosphere caused by the combustion of fossil fuels, manufacturing of
cement and land use change.

2A summary of the scientific literature exploring the relationship between climate change, extreme weather and
climate-related damages is presented in IPCC (2012).
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been subject to substantial climate risks. However, because rising temperature is expected to affect

future long-term growth and risk, it is reflected in aggregate wealth, current asset valuations and

current returns. Hence, its economic impact can be identified by the price response of long-duration

assets traded in capital markets. Second, under preferences for early resolution of uncertainty,

the model-implied price of low-frequency temperature risks is negative (that is, high temperature

is a state of high marginal utility) and the temperature risk premium is positive. Third, due to

the interaction between economic growth and temperature risks, the cross-sectional variation in

temperature risk is determined endogenously by the cross-sectional differences in long-run growth

risks in assets’ cash flows (dividends). In particular, our model predicts that assets that have high

exposure to persistent growth risks have high (i.e., large negative) exposure to long-run temperature

risks. We test these implications in the data.

In our model, the cross-sectional variation in long-run growth risks in cash flows helps identify the

economic impact of temperature risks. Therefore, our baseline empirical analysis of the U.S. capital

markets is based on ten book-to-market sorted portfolios that are known to feature a significant

dispersion in long-run growth risks (Bansal, Dittmar, and Lundblad (2005), Parker and Julliard

(2005), Hansen, Heaton, and Li (2008), Bansal, Dittmar, and Kiku (2009)).3 We first show that

in the data, the average elasticity of equity valuations to temperature fluctuations is significantly

negative. Importantly, we find that the negative impact of temperature on equity valuations is

particularly strong for low-frequency (i.e., long-run) temperature shifts that correspond to global

warming. On average, a one standard deviation increase in the temperature trend leads to about

3% decline in equity valuations. In contract, the impact of high-frequency temperature fluctuations

that represent transient variations in weather is small and insignificant.

Further, consistent with the cross-sectional implications of our model, we find that in the data,

temperature elasticities mirror equity exposure to long-run growth risks — assets that have relatively

high long-run consumption exposure (such as high book-to-market stocks) also feature relatively

large negative temperature elasticities. Similarly, we show that the temperature beta of equity

returns (i.e., exposure of equity returns to temperature risks), on average, is negative and more so

for portfolios that have high exposure to long-run consumption risks. The cross-sectional variation

3Book-to-market sorted portfolios are commonly used in the asset pricing literature, eg., Fama and French
(1992, 1993), Jagannathan and Wang (1996), Zhang (2005), among many others.
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in temperature betas allows us to measure the price of long-run temperature risks embedded in

current equity prices.

Exploiting the pricing restriction for the cross-section of equity portfolios, we find that the price

of low-frequency temperature risk is significantly negative as predicted by our climate change model.

For example, the price of variations in the five-year moving-average temperature trend is estimated

at −2.7 with a robust t-statistic of −2.76. Because the price of temperature risk and the average

temperature beta are both negative, temperature risk carries a positive premium in equity markets.

The average compensation for low-frequency temperature risks that correspond to global warming

is about 0.8% per annum. This evidence confirms our hypothesis that rising temperature is a source

long-run macroeconomic risks.

We show that our key empirical findings are robust. Using international data on temperature

and equity prices for a cross-section of 48 countries, we show that the temperature elasticity of equity

valuations in global markets is significantly negative, particularly when temperature fluctuations are

measured at low frequencies. We also confirm that our evidence of a negative elasticity of equity

valuations to temperature and a negative price of temperature risk is robust to the exclusion of firms

that could be considered heavy emitters (i.e., those that contribute significantly to air pollution)

and might be subject to environmental regulations.

Our empirical evidence suggests that climate-change risk is already impounded in asset prices,

and therefore, capital markets contain valuable information about the cost of climate change. In the

cost-benefit analysis of environmental regulations, the cost of carbon is measured by the social cost

of carbon and is typically calculated as an output of calibrated integrated assessment models (IAMs)

that are mostly deterministic and do not take into account equity market data (eg., Nordhaus (2008),

Tol (2002a), Hope (2011), Golosov, Hassler, Krusell, and Tsyvinski (2014)).4 Instead, we exploit

information embedded in asset valuations to provide a semi-parametric estimate of the (private)

welfare cost of carbon (WCC) emissions. In particular, we show that the cost of carbon can be

measured using temperature elasticities of equity valuations that we estimate in the data. Note

that in contrast to IAMs, our capital-market based approach takes into account the discount-rate

(i.e., risk) effect of rising temperature and market expectations about future path of emissions,

4An assessment of IAMs for evaluating alternative abatement policies and estimating the social cost of carbon is
provided in Pindyck (2013).
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climate risks and future abatement efforts. Also note that if carbon emissions impose a negative

externality on society, then our WCC estimate provides a lower bound on the social cost of carbon

emissions.

Our capital-market based estimates imply a significant cost of carbon emissions — at the end of

2016, the WCC is measured at about $45 per metric ton of carbon dioxide (CO2), which implies that

society would be willing to give up about 1.4% of world gross domestic product to eliminate all global

industrial emissions produced in the following year. We also show that even after accounting for

sampling variation in the estimated temperature elasticity and uncertainty about climate sensitivity,

the lower bound of the welfare cost of carbon remains economically large. The high estimate of the

WCC suggests that capital markets perceive the unfolding trajectory of global warming to be a

serious concern.

Dell, Jones, and Olken (2012), Bansal and Ochoa (2012), and Colacito, Hoffmann, and Phan

(2019) examine the effect of temperature variations on economic growth. In contrast, we focus on

forward-looking equity valuations and asset returns that incorporate the impact of global warming

on risk premia, which cannot be identified from past growth rate data. Our empirical evidence

of a robustly negative temperature elasticity of equity valuations and a positive temperature risk

premium implies a preference for early resolution of uncertainty, and hence, rejects time-separable

power-utility preferences that are commonly assumed in the integrated assessment models. The

implications of risk preferences for the optimal policy response to global warming are explored in

Bansal, Kiku, and Ochoa (2019). Pindyck (2007), Gollier (2012), Lemoine and Traeger (2012), and

Brock and Hansen (2019) discuss the implications of various types of uncertainty in the context of

climate change. Barnett (2018) focuses on the impact of climate policy risks, and Pindyck and Wang

(2013), and Martin and Pindyck (2015) analyze policy implications of catastrophic consequences of

climate change. Recently, Jagannathan, Ravikumar, and Sammon (2018) show that incorporating

environmental concerns in investment portfolio decisions helps reduce exposure to systematic risks,

which corroborates our key argument that climate change is a source of macroeconomic risks.

The rest of the paper is organized as follows. In the next section, we present a model of climate

change and the macroeconomy to establish the link between temperature and asset prices. In

Section 2, we identify the economic impact of temperature risks using capital market data. The
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measurement and the estimates of the welfare cost of carbon are discussed in Section 3. Section 4

provides interpretation of our empirical evidence, and Section 5 concludes.

1 Climate Change and Asset Prices

Figure 1 shows historical and predicted paths of temperature anomaly reported in IPCC (2014).

Note a dramatic rise in temperature post 1970 and a far more significant trend that is predicted in

the coming decades even under most optimistic scenarios. If rising temperature is expected to affect

future growth and/or risk, it ought to be impounded in forward-looking asset prices. In this section,

we present a stylized model of the macroeconomy and climate to illustrate the implications of rising

temperature on asset prices and risk premia. A unique dimension of our model is that it accounts for

the interaction between economic growth and climate change and incorporates (endogenous) risks

of damages caused by global warming.5 The model framework outlined below is a simplified version

of the extended quantitative model presented in the Online Appendix. We intentionally simplify

the dynamics of our stylized economy in order to derive analytical solutions, and hence, provide a

sharp characterization of the welfare and pricing implications of temperature risks.

1.1 Climate Change Economy

We assume that climate change due to rising global temperature has an adverse effect on the

economy.6 In particular, we assume that aggregate economic growth is exposed to risks of

temperature-induced damages (eg., temperature-driven natural disasters):

∆ct+1 = µ+ σηηt+1 +Dt+1 , (1)

5Our model features elements of the long-run risks model of Bansal and Yaron (2004), and rare disaster models of
Rietz (1988), Barro (2009), Bansal, Kiku, and Yaron (2010), Gourio (2012), Wachter (2013), and Barro, Nakamura,
Steinsson, and Ursúa (2013).

6We focus on an exchange economy to maintain tractability.
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where ∆ct+1 ≡ log(Ct+1/Ct) is the log of aggregate consumption growth, ηt+1 ∼ i.i.d. N(0, 1) is

consumption growth innovation, and Dt+1 are climate-change driven damages:

Dt+1 = Nt+1d , (2)

where d < 0 is the temperature-induced decline in consumption growth, and Nt+1 is a Poisson

process with time-varying intensity that increases with temperature:

πt = ℓ0 + ℓ1Tt , (3)

where Tt is global temperature relative to its pre-industrial level (i.e., the global temperature

anomaly), and ℓ0, ℓ1 > 0. The global temperature anomaly is driven by anthropogenic carbon

emissions:7

Tt+1 = χEt+1 , (4)

Et+1 = νEt +Θ(µ+ σηηt+1) + σζζt+1 , (5)

where Et are carbon emissions, ν ∈ (0, 1) determines the persistence of carbon emissions and

temperature, Θ measures carbon intensity of consumption, and χ > 0 is climate sensitivity to

emissions.8 Anthropogenic carbon emissions (and hence, temperature) are driven by two types of

shocks — endogenous industrial emissions that are a by-product of aggregate output (µ + σηηt+1)

and an exogenous innovation ζt ∼ i.i.d. N(0, 1). We assume that Θ > 0; hence, an increase in

economic growth leads to a higher level of emissions, which in turn increases temperature and the

likelihood of climate-related economic damages. This feedback loop — from growth to temperature

and back to growth — is a unique dimension of climate change that, as we show below, has

important implications for asset prices. Figure 2 illustrates the circular link between economic

7This assumption is consistent with the conclusions of the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) that establishes an unequivocal link between the increase in the atmospheric concentration
of greenhouse gasses and the rise in global temperature (IPCC (2013)).

8In the online appendix, we consider a richer specification, where temperature dynamics are driven by the trend in
carbon concentration, emissions are driven by the level of consumption, and the parameter of carbon intensity is time
varying. We simplify these dynamics here without any loss of generality, solely to achieve analytical solutions. For
tractability, we also simplify the mapping from emissions to carbon concentration by assuming that concentration is
proportional to emissions. The implications of the model are unaffected if instead we model concentration by a slow
accumulation of emissions as is typically done in the climate-change literature.
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output, emissions and climate change that is formalized in Equations (1)–(5).

Note that in our model, temperature fluctuations are a source of economic risk — an increase in

temperature raises the likelihood of damages, which if realized, lead to a decline in economic growth.

Further, because emission shocks have a persistent effect on temperature, an increase in current

emissions increases temperature-related risks in the long run. In essence, temperature is a source

of long-run risks in consumption — temperature variations induce a time-varying low-frequency

component in the drift and tail of consumption growth.

Figure 3 illustrates the implications of global warming for the distribution of future consumption

growth. In particular, it presents a side-by-side comparison of the distribution of the normalized

consumption growth in the future when temperature anomaly reaches 2◦C and the corresponding

distribution in the economy without climate change. Because temperature-driven damages represent

tail risks, the distribution of future consumption growth is both negatively skewed and fat-tailed.

As Figure 3 illustrates, a persistent increase in current temperature affects the distribution of future

consumption by inducing long-run tail risks in consumption growth.

Note that the use of a disaster model specification is not critical in itself — as long as temperature

fluctuations affect the distribution of future consumption growth (its level, volatility, skewness, or

higher moments), they represent a long-run risk.

1.2 Preferences

We consider a representative agent with recursive preferences as in Kreps and Porteus (1978),

Epstein and Zin (1989), and Weil (1990). The time-t utility of lifetime consumption is given by the

following recursion,

Ut =

{
(1− δ)C

1− 1
ψ

t + δ
(
Et
[
U1−γ
t+1

]) 1− 1
ψ

1−γ
} 1

1− 1
ψ , (6)

where Ut+1 is the continuation value of a consumption plan starting in t + 1, δ is the rate of time

preference, γ is the coefficient of relative risk aversion, and ψ is the intertemporal elasticity of

substitution (IES).

In contrast to the power-utility formulation that is commonly employed in the integrated
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assessment models of climate change, recursive preferences allow for a separation between willingness

to substitute consumption over time and across different states of nature (i.e., γ ̸= ψ). Recursive

preferences, specifically preferences for early resolution of uncertainty that arise when risk aversion

exceeds the reciprocal of IES (γ > 1
ψ ) are commonly used in the macro-finance literature because, as

shown, they are able to account for the joint dynamics of aggregate cash flows and equity prices and

provide a resolution of the well-known risk-free rate, equity premium and volatility puzzles (Bansal

and Yaron (2004)). Note that under a preference for early resolution of uncertainty, agents are

concerned about variations in future growth and uncertainty, particularly those that persist in the

long run, which climate-change risks represent. Bansal, Kiku, and Ochoa (2019), Daniel, Litterman,

and Wagner (2019), and Cai and Lontzek (2018) explore the implications of risk preferences for the

social cost of carbon and optimal abatement policies.

The log of the intertemporal marginal rate of substitution (IMRS), which determines asset prices

through the Euler condition, is given by:

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 , (7)

where rc,t+1 is the endogenous return on wealth, and θ = 1−γ
1− 1

ψ

. Note that if γ = 1
ψ , then θ = 1

and the IMRS reduces to the one implied by the standard constant relative risk aversion (CRRA)

specification.

The maximized life-time utility in this setting is proportional to the wealth-consumption ratio

provided that ψ ̸= 1. Specifically, the value function normalized by current consumption is given

by:
Ut
Ct

=
[
(1− δ)Zt

] ψ
ψ−1 , (8)

where Zt ≡ Wt
Ct

is the aggregate wealth-consumption ratio.9 Note that aggregate valuation, Zt, is

the (normalized) present value of current and future consumption, and hence, it reflects agents’

expectations about future expected growth, uncertainty, and tail risks that are driven by climate

change.

9If IES equals one, the wealth-consumption ratio is constant and the normalized value function is determined
recursively.
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1.3 Long-Run Temperature Risks and Short-Run Risk-Return Tradeoff

We solve for the equilibrium dynamics of the wealth-consumption ratio, Zt, by exploiting the Euler

equation and the log-linear approximation of the wealth return following the approach of Bansal,

Kiku, and Yaron (2016). As shown in Appendix A, the analytical solution for the log of the

wealth-consumption ratio is given by:

zt = A0 +A1Tt , (9)

where zt ≡ logZt, and the sensitivity of the wealth-consumption ratio to temperature is given by:

A1 =

1
ψ − 1

γ − 1
Φ , (10)

where Φ =
ℓ1

(
e(1−γ)d − 1

)
κ1 − ν

, and κ1 > 1 is determined endogenously by the mean of the

wealth-consumption ratio. Note that for values of risk aversion greater than one (γ > 1), the

term Φ is always positive. Consequently, the (semi) elasticity of the wealth-consumption ratio to

temperature is determined by the magnitude of the IES. In particular, when the representative agent

has a preference for early resolution of uncertainty, namely γ > 1
ψ , the wealth-consumption ratio

declines with temperature. In contrast, in the standard power-utility specification, when 1
ψ = γ, the

wealth-consumption ratio responds positively to temperature fluctuations.

We use the solution for zt to obtain the expression for the IMRS or the stochastic discount factor

(SDF). The innovation into the SDF conditional on time-t information is given by,

mt+1 − Et
[
mt+1

]
= −λησηηt+1 − λζσζζt+1 − λD(Nt+1 − πt) , (11)

where

λη = γ + (1− θ)χΘA1 (12)

λζ = (1− θ)χA1 (13)

λD = γd (14)

9



Notice three effects of temperature risks. First, different from the standard consumption-based

CAPM (C-CAPM), where λη = γ, the SDF exposure to consumption growth shocks is altered

by (1 − θ)χΘA1. This is due to endogenous temperature variations driven by economic growth.

Recall that consumption growth raises temperature, which in turn, feeds back into the economy

by propagating damages. Note that under a preference for early resolution of uncertainty,

(1 − θ)χΘA1 < 0; thus, the impact of growth shocks on marginal utility is partially offset by

the feedback effect of temperature. Intuitively, a positive consumption growth shock carries mixed

signals — it is good news in the short run (as in the standard C-CAPM) but simultaneously, it is

bad news in the long run because an increase in economic growth raises industrial carbon emissions

and temperature and, hence, the likelihood of future damages. Effectively, in Equation (12), γ > 0

represents the price of short-run risk of growth, and (1−θ)χΘA1 < 0 represents the price of long-run

temperature variations endogenously driven by economic growth.

Second, exogenous temperature risks have a separate effect on the stochastic discount factor.

Their impact is similar to that of endogenous variations — provided that γ > 1 and ψ > 1, a

positive exogenous innovation in temperature raises marginal utility and, thus, temperature risks

carry a negative price. Third, temperature variations expose the economy to the risk of damages

and amplify volatility of marginal utility. Note that under CRRA preferences, θ = 1 and the first

two effects are absent — i.e., temperature variations (endogenous and exogenous) are not priced

directly and they affect the SDF only indirectly through the damage channel.

It is important to re-iterate that under a preference for early resolution of uncertainty, an increase

in temperature due to either endogenous or exogenous variations raises marginal utility. That is,

high temperature is a bad state for the economy because, as discussed above, a persistent increase

in current temperature amplifies consumption growth risks in the long run. Note that the response

of marginal utility to temperature variations is non-zero only if climate change has a non-trivial

impact on the distribution of future consumption. If temperature does not affect the likelihood of

future economic damages (i.e., ℓ1 = 0 in Equation (3)) or, more generally, if climate change has

no effect on long-run economic growth, then A1 = 0 and temperature variations have no impact

on marginal utility and, hence, they are not priced. In other words, temperature risks carry risk

premia and affect asset valuations only if they affect on the distribution of future economic growth,
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i.e., if they manifest in long-run consumption risks.

The conditional risk premium of consumption claim is given by:

lnEt
[
Rc,t+1

]
−rf,t = (1 + χΘA1

)(
γ + (1− θ)χΘA1)σ

2
η︸ ︷︷ ︸

Growth Premium

+ (1− θ)(A1χσζ)
2︸ ︷︷ ︸

Temp−Premium

+ γd2(ℓ0 + ℓ1Tt)︸ ︷︷ ︸
Damage−Premium

. (15)

The first term is the risk premium for consumption growth variations. Once again notice that

in addition to the C-CAPM-implied premium of γσ2η, it incorporates the impact of endogenous

temperature risks. The second and third terms represent premia for exogenous temperature

variations and temperature-induced damage risks. As Equation (15) shows, risk premia rise with

temperature — higher temperature makes damages more likely and, hence, leads to an increase

in risk premia. Also, while the damage risk premium is invariant to preferences for the timing of

resolution of uncertainty, the temperature risk premium is not. When γ > 1 and ψ > 1, temperature

risks carry positive risk premia, whereas under CRRA preferences, the temperature risk premium is

zero. Because temperature fluctuations are persistent, an increase in carbon emissions increases risk

of damages in the long run by rising volatility of future consumption and making its distribution more

negatively skewed and leptokurtic. Under a preference for early resolution of uncertainty, agents

have significant concerns about risks that persist and affect the economy long term and, therefore,

they demand positive compensation for exposure to temperature risks. That is, investors’ concerns

about long-run consequences of climate change determine the short-run risk-return tradeoff. Such

long-run concerns are absent under power utility and so is the temperature risk premium.10

The impact of temperature on discount rates is also very different under the two preference

specifications. Under a preference for early resolution of uncertainty, future discount rates increase

due to the increase in risk premia, and consequently, asset valuations decline with temperature.

However, under power utility with γ > 1, rising temperature lowers future discount rates because

the increase in risk premia is dominated by a simultaneous decline in the risk-free rate leading to a

positive temperature elasticity of asset prices.11

10Under power utility, temperature risks still contribute to risk premia through their immediate impact on
consumption damages but temperature variations do not receive a separate premium for their long-run effect on
the economy.

11The solutions for the risk-free rate and the return on wealth are provided in Appendix A.
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From the econometric perspective, Equations (11)–(15) emphasize the importance of controlling

for economic growth in measuring the impact of temperature risks and their premia. Under a

preference for early resolution of uncertainty, an increase in temperature, either endogenous or

exogenous, rises marginal utility. However, the adverse effect of endogenous temperature variations

is confounded by the positive effect of economic growth. Therefore, in order to correctly identify

the distinct negative impact of temperature, it is critical to control for the countervailing impact

of growth variations. Similarly, omitting growth controls may lead to biases in the estimate of the

temperature risk premium.

In our feedback model of climate change, when consumption rises so does temperature, which

raises the likelihood of climate-change induced damages. Hence, on the margin, a climate abatement

policy that mitigates emissions will have a larger benefit in high consumption states.12 Clearly, any

abatement actions that lower the probability of damages will lower the climate-change risk premium.

Indeed, along the future path of the economy, if abatement policies succeed in mitigating climate

risks, then the climate-change risk premium could decline.13 Our focus is on understanding the

impact of rising temperature on asset prices that reflect capital market expectations about the

future, including the anticipated effects of future abatement efforts.

1.4 Long-Run Temperature Risks and the Cross-Sectional Risk-Return Tradeoff

Our empirical identification of the economic impact of climate change exploits the cross-sectional

variation in temperature exposure. What is the source of this cross-sectional variation? Assets differ

in exposure of their dividends to macroeconomic growth risks (i.e., consumption risks). Because

climate change affects consumption dynamics, assets that are highly exposed to consumption growth

risks are consequently highly affected by climate-change risks. We formalize this intuition below.

In particular, we show that cross-sectional differences in consumption risks in assets’ dividends

translate into cross-sectional differences in temperature risks in assets’ returns.

Consider a cross-section of equity securities, indexed by i, that feature heterogenous exposure

12In the language of Dietz, Gollier, and Kessler (2018), the climate sensitivity of abatement benefits with respect to
consumption is positive.

13Giglio, Maggiori, Rao, Stroebel, and Weber (2015) seem to argue that the climate risk reflected in really long
horizon real-estate discount may be reflecting the abatements that may come about in the future.
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to consumption risks:

∆di,t+1 = φi∆ct+1 + σiui,t+1 (16)

= φi
(
µ+ σηηt+1 +Dt+1

)
+ σiui,t+1 , (17)

where φi is the measure of long-run risk in dividends, which we refer to as dividend beta, and

ui,t+1 ∼ i.i.d. N(0, 1) is the asset-specific dividend shock. From the Euler equation, it follows that

the risk premium of asset i is given by:

lnEt
[
Ri,t+1

]
− rf,t = βi,ηλησ

2
η + βi,ζλζσ

2
ζ + βi,DλD(ℓ0 + ℓ1Tt) , (18)

where asset exposure to the three sources of risks (i.e., beta) is given by:

βi,η = φi + κi,1χΘBi,1 , (19)

βi,ζ = κi,1χBi,1 , (20)

βi,D = φid , (21)

where κi,1 < 1 is the constant of log-linearizaion, and Bi,1 is the (semi) elasticity of the price-dividend

ratio of asset i to temperature fluctuations that is derived in Appendix A. Note that Bi,1 is the

asset-specific counterpart to A1, which measures temperature (semi) elasticity of aggregate wealth.

As Equation (19) shows, return exposure to consumption growth risks is determined by dividend beta

φi (as in a standard consumption-based framework) and, in addition, by κi,1χΘBi,1 that accounts for

exposure to endogenous temperature variations. Return exposure to exogenous temperature risks is

measured by βi,ζ and we refer to it as the temperature beta of asset i. The cross-sectional variation

in temperature beta is determined by the cross-sectional dispersion in temperature elasticity that

declines in dividend beta:
∂Bi,1
∂φi

< 0, as shown in the appendix.

The cross-sectional variation in temperature elasticity (Bi,1) is illustrated in Figure 4. The figure

is constructed from a model calibration based on a preference for early resolution of uncertainty and

is designed to roughly match the dynamics of annual consumption and temperature. As the figure

shows, while the relationship between dividend betas and temperature elasticities is non-linear,
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it is strongly negative. Similarly, temperature betas are inversely related to dividend betas, i.e.,

Corr(βi,ζ , φi) ≪ 0. Assets that have a negative or relatively low dividend beta have positive

temperature elasticity and temperature beta. Such assets provide insurance against temperature

risks — they pay off in bad times of high temperature. In contrast, assets that feature high dividend

exposure have negative temperature elasticity and temperature beta — these assets are highly

sensitive to damage risks, consequently, when temperature rises and the likelihood of economic

damages increases, their prices and returns fall. Recall that when γ > 1 and ψ > 1, the price of

temperature risk is negative; thus, negative temperature beta assets carry a positive temperature

risk premium.

To summarize, because temperature risks affect the economy through their impact on future

growth, the cross-sectional variation in temperature risks is governed by the cross-sectional variation

in consumption risks — the higher the dividend beta is, the higher (more negative) the temperature

beta is. Our model’s falsifiable prediction is that these two relatively independent measures of

risks in the cross section, dividend beta and temperature beta, should be negatively correlated if

temperature is a source of future macroeconomic risk.

2 Temperature and Asset Prices: Empirical Evidence

The analysis of the climate change economy in Section 1 shows that forward-looking equity

prices reflect expectations about the impact of rising temperature on the macroeconomy. A

risk-averse investor with preferences for early resolution of uncertainty experiences a decline in

wealth when temperature rises and requires a positive premium for assets that covary negatively

with temperature. Furthermore, even if the most significant effects of rising temperature have not

yet been realized, the anticipated impact of global warming on the future economy is embedded in

current asset prices and returns.

Motivated by these implications, we exploit capital market data to quantify the economic cost of

persistent variations in temperature. In contrast to the empirical economic literature that measures

the impact of global warming on the macroeconomy by looking at the historical (backward-looking)

relationship between temperature and national income (eg., Nordhaus (2006), Dell, Jones, and Olken
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(2012)), our approach relies on forward-looking information from capital markets — information that

may not be captured by income measures.

2.1 Data

We obtain time series of temperature for the U.S. from 1970 through 2016.14 Figure 5 displays the

annual average temperature in the U.S. along with its five-year moving average trend. While there

are large fluctuations in temperature year-over-year, the long-run trend is unambiguously increasing.

Since 1970, there has been an increase in temperature of about 1.5◦C.

Guided by the intuition of our model economy, in our empirical analysis of the U.S. capital

markets, we exploit portfolios that are known to feature robustly different exposure to persistent

macroeconomic growth risks, in particular, we use ten portfolios sorted on book equity to market

equity ratio (BM). As documented in Bansal, Dittmar, and Lundblad (2005), and Hansen, Heaton,

and Li (2008), high BM stocks have much higher sensitivity to long-run growth risks relative to

low BM stocks. We exploit the well-established measurable differences in long-run growth risks

across BM portfolios to test our hypothesis that climate change affects the economy through the

long-run growth-risk channel. In addition to the benchmark book-to-market portfolios, in the

robustness section, we also consider portfolios double sorted on book-to-market ratio and market

capitalization.15 For each equity portfolio, we collect data on its price to dividend ratio (valuation

ratio) and returns. A more detailed description of the data is provided in Appendix B.

Our main focus is on the economic implications of long-run variations in temperature that

are associated with global warming rather than short-run variations that represent fluctuations in

weather. The low-frequency component in temperature can be extracted by taking a trailing average

of temperature. However, as Figure 5 shows, long-horizon moving-averages of temperature reflect

global warming and, hence, feature trending behavior. To avoid econometric issues that might arise

due to trending dynamics, in our empirical work we focus on long-run shifts (shocks) in temperature

14We choose to start the sample in 1970 because beginning in the 1970s, there was a major increase in social
concern about environmental problems. For example, in the early 1970s, the U.S. and other developed countries
established national-level environmental agencies, and international environmental agreements led to the creation of
the UN Environment Programme.

15We thank Kenneth R. French for making these and other portfolio data available online at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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that we measure by the difference in temperature at different frequencies. To explore and highlight

any differences between short- and long-run temperature shocks, we consider different horizons,

K’s, ranging from one to five years. Let Tt denote annual temperature; when K = 1, ∆1T ≡ ∆T

corresponds to annual (short-run) fluctuations in weather; when K ≫ 1, ∆KT ≡ Tt − Tt−K

represents long-run temperature risks that corresponds to global warming. The standard deviation

of temperature shocks per unit of time at the one-, three-, and five-year horizon is 0.57, 0.20, and

0.12, respectively. In essence, by averaging temperature variations over time, we filter out short-run

fluctuations and isolate the low-frequency component in temperature (i.e., temperature trend).16

Because the post 1970 sample is relatively short, the number of independent observations shrinks

rapidly with the horizon. For this reason, we do not consider horizons beyond five years.

2.2 Temperature and Long-Run Growth Risks

We measure temperature risk in equity returns (i.e., temperature beta) by their exposure to

temperature variations. Specifically, for each BM portfolio we run the following regression,

Rei,K,t = ai + βi,T ∆KTt + βi,mR
e
m,K,t + βi,c∆Kct + ui,K,t , (22)

where Rei,K,t is the K-period cumulative excess return of portfolio i, ∆KTt is the K-year change in

temperature, Rem,K,t is the cumulative excess return of the aggregate market portfolio, and ∆Kct is

the cumulative log growth of aggregate consumption.17 To facilitate the comparison across various

horizons, in this and other regressions, temperature series are normalized to have zero mean and

unit standard deviation. Our controls for sources of risk other than temperature are motivated by

our model economy and, more generally, by the consumption-based CAPM of Sharpe (1964), Lucas

(1978), and Breeden (1979).

The five-year temperature betas are reported in Table I. Note first that on average, temperature

beta is negative. Further, high BM portfolios (the top two portfolios) have significantly negative

exposure to temperature risks, that is, they tend to perform poorly when temperature rises. In

16Our evidence remains virtually unchanged if we use innovations in the long-run change of temperature instead
of first differences. The advantage of using first differences is that they are observable and, thus, are not subject to
estimation errors.

17To simplify the notation, we suppress the dependance of all regression coefficients on K.
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contrast, low BM portfolios (the bottom two portfolios) feature positive temperature betas. A similar

cross-sectional pattern holds when temperature fluctuations are measured at other frequencies —

across all horizons (K = 1, ..., 5), temperature betas feature an almost monotonic decline across BM

portfolios.

What drives the cross-sectional variation in temperature betas? Recall that high economic

growth leads to climate change due to high carbon emissions and temperature, which in its turn

magnifies economic risks in the future by raising the likelihood of future damages. Consequently, as

discussed in Section 1.4, asset exposure to temperature risk is determined endogenously by asset’s

dividend exposure to macroeconomic risk (measured by dividend beta). High dividend beta reflects

high low-frequency consumption risk and translates into high (negative) temperature elasticity and

high (negative) temperature beta.

We explore the cross-sectional relationship between dividend and temperature betas in Table I.

The dividend beta of each portfolio (βi,LR) is measured by regressing log level of portfolio dividends

(di,t) on the log-level of consumption (ct), specifically,
18

di,t = d̄i + βi,LRct + wi,t . (23)

Consistent with the evidence in Hansen, Heaton, and Li (2008), and Bansal, Dittmar, and Kiku

(2009), we find that dividend betas increase with book-to-market characteristic. The estimated

dividend beta of the high BM portfolio is 2.27 (SE=0.21) and that of the low BM portfolio is

0.38 (SE=0.15) that reflect significant differences in their exposure to low-frequency variations in

consumption.19 Importantly, notice that temperature betas mirror the cross-sectional pattern in

dividend betas.

Figure 6 presents a scatter plot of five-year temperature betas against dividend betas for ten

book-to-market portfolios. In the cross-section, temperature risk is strongly inversely related to

long-run growth risk — the cross-sectional correlation between dividend beta and the return-based

temperature beta, that is, corr(βi,LR, βi,T ), is −65%, −88%, and −79% at the one-, three- and

18Because establishing and estimating a cointegration relation requires a long span of data, we measure dividend
betas using data from 1940 to 2016. The pre-1940 data are excluded due to zero dividend records.

19The growth-based measure of long-run consumption risks in dividends as in Bansal, Dittmar, and Lundblad (2005),
and Hansen, Heaton, and Li (2008) yields similar evidence and, therefore, is not reported.
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five-year horizon, respectively. The significant negative correlation between dividend beta and

temperature beta is consistent with the prediction of our model. Note also that temperature betas

mirror variation in risk premia across assets — the cross-sectional correlation between the risk

premium and temperature beta at one-, three-, and five-year horizon is −75%, −91% and −0.88%,

respectively. The strong correlation of temperature betas with dividend betas and risk premia that

we document suggests that temperature is a priced source of long-run macroeconomic risk.

2.3 Temperature Elasticity of Equity Valuations

The (semi) elasticity of equity prices to temperature variations provide important information about

the welfare cost of carbon as we show below. To quantify the response of equity prices to temperature

fluctuations we estimate the following panel regression specification,

vi,t = v̄i + ϕK ∆KTt + ϱi vi,t−1 + αi vt + εi,t , (24)

where vi,t is the log of the price-dividend ratio of portfolio i = 1, . . . , N , v̄i is a portfolio-specific fixed

effect, ∆KTt is the K-year change in U.S. temperature, vt is the price-dividend ratio of the market

portfolio, and εi,t is an error term. To capture heterogeneity across portfolios, we allow the estimated

parameters on the lagged price-dividend ratio and on the market price-dividend ratio to vary with

the portfolio’s average book-to-market ratio (bmi), namely, ϱi = ϱ+ ϱbbmi and αi = α+ αbbmi.

Table II shows the estimates of the (semi) elasticity of the price-dividend ratio to temperature

variations, ϕK , over one-, three- and five-year horizons.20 T-statistics reported in parenthesis

are based on standard errors clustered by portfolio and time using the Newey and West (1987)

estimator with three lags.21 Our results show that, on average, the price-dividend ratio falls when

temperature rises and that the negative effect of persistent temperature fluctuations is statistically

and economically significant. In particular, a standard deviation increase in temperature over three

and five years leads to a decline in equity valuations by 2.7% (SE=1.29%) and 3.7% (SE=1.25%),

respectively. Note that t-statistics tend to increase with the horizon suggesting that the impact of

20The panel regression is estimated by ordinary least squares; the weighted least squares estimates are similar in
magnitude and their significance.

21The robust standard errors that account for correlations across portfolios and time are constructed using the
approach developed in Thompson (2011).
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temperature on equity valuations is more significant when temperature risks are measured at low

frequencies that correspond to climate change.

To examine the cross-sectional variation in temperature exposure, we estimate temperature

elasticities by running a similar regression separately for each portfolio, i.e.,

vi,t = v̄i + ϕi,K ∆KTt + ϱi vi,t−1 + αi vt + εi,t . (25)

where the regression coefficients are all asset specific. Table I that shows the estimated response of

equity valuations to the five-year change in temperature reveals a strong cross-sectional variation in

temperature elasticities. We find that temperature elasticities decline almost monotonically across

portfolios: low book-to-market assets have a slightly positive (insignificant) exposure to temperature

fluctuations whereas high book-to-market assets feature a significantly negative exposure. Also,

consistent with the prediction of our model (see Equation (A.11) in the appendix), assets with high

dividend betas have large negative elasticities to temperature risks. The cross-sectional correlation

between dividend beta and five-year temperature elasticity is −0.58.

To further corroborate the cross-sectional implications of our theoretical framework, in Table

III, we explicitly impose the model’s restrictions on the cross-sectional variation in temperature

elasticities. Specifically, we consider the following scaled panel regression specification:

vi,t = v̄i + (ϕK · βi,LR)∆KTt + ϱi vi,t−1 + αi vt + εi,t , (26)

∆di,t = µi + βi,LR∆ct + wi,t , (27)

where temperature elasticities, (ϕK · βi,LR), are forced to vary with consumption risks, βi,LR. Table

III shows the estimated scaled elasticities of equity valuations with respect to one-, three- and

five-year variation in temperature.22 If the cross-sectional variation in temperature elasticities were

not related to the cross-sectional dispersion in dividend betas, the slope coefficient ϕK in Equation

(26) would be zero. Instead, we find that for low-frequency temperature fluctuations, the estimated

coefficients are negative and statistically significant — that is, in the data, assets that are highly

22Although the model-implied cross-sectional relationship between temperature risks and consumption risks is
nonlinear, a linear approximation should provide a reasonably good approximation as Figure 4 shows.
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exposed to long-run consumption risks are also highly (negatively) exposed to long-run temperature

risks. This evidence provides a strong support to our view that rising temperature is expected to

affect the distribution of future economic growth, and therefore, asset exposure to temperature risks

is governed by its exposure to long-run growth risks.

2.4 Temperature Risk and Risk Premia

Figure 7 presents a scatter plot of average excess returns and five-year temperature betas. In the

data, risk premia increase with book-to-market and temperature betas decline with book-to-market

characteristic. The inverse relationship between temperature betas and average returns suggests

that the market price of temperature risk is negative as predicted by our model. We exploit the

Euler condition to obtain an estimate of the market price of temperature risks. In particular, we

consider the following linear factor model,

E
[
Rei,K,t(1 +MK,t)

]
= 0 , for i = 1, . . . , N , (28)

MK,t = −λ∆T
[
∆KTt − µT

]
− λm

[
Rem,K,t − µm

]
− λc

[
∆Kct − µc

]
,

where Rei,K,t is the K-period cumulative return of portfolio i in excess of the risk-free rate; MK,t

is the stochastic discount factor that is driven by the K-year change in temperature (∆KTt), the

cumulative excess return of the market portfolio (Rem,K,t), and the cumulative consumption growth

(∆Kct); µ’s denote the means of the corresponding factors.23 The estimation of the market prices

of risks (λ’s) is carried out in one step using the efficient GMM estimator of Hansen (1982) and the

standard errors are constructed using the heteroscedasticity and autocovariance consistent (HAC)

estimator based on the Newey and West (1987) kernel with K lags.

Table IV reports the GMM estimates of the price of temperature, market and consumption risks

— λ∆T , λm, λc, respectively, and the corresponding t-statistics that account for the estimation

error in the factor means. Consistent with the prediction of our model, we find that the price of

temperature risks is negative and statistically significant when temperature variations are measured

23We remove the mean of the SDF that determines the price of the risk-free asset because it is not identified in the
cross section of excess returns. Once again, we suppress the dependance of all parameters on horizon K to simplify
the notation.
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at low frequencies. For example, variations in temperature over the five-year horizon have a market

price of risk of −2.68 with a robust t-statistic of −2.76. Because, on average, equity portfolios

have negative temperature betas, temperature risks carry a positive premium in equity markets.

In particular, on average across book-market sorted portfolios, the premium for five-year variations

in temperature is about 0.8% per annum.24 The temperature premium varies substantially in the

cross section — assets with high exposure to temperature risks, such as high book-to-market firms,

carry large temperature risk premium. As the bottom panel of Table IV shows, our linear model

specification is not rejected by the χ2-test of overidentifying restrictions.

It is important to note that temperature fluctuations are exogenous relative to a long list of

reduced-form return-based factors that are popular in empirical asset pricing. Therefore, while we

control for market and economic growth risks (as motivated by the theory), we do not include any

ad-hoc empirical factors. Further, to ensure that our evidence is not simply due to a lucky draw, we

run the following simulation experiment. We generate temperature shocks of the sample size that

matches the data by randomly sampling from the observed temperature series and then re-estimate

the price of temperature risks using simulated temperature as we do in the actual data. We run

this simulation exercise 10,000 times and construct Monte Carlo distributions of t-statistics under

the null that temperature variations carry a zero price.25 We find that at long horizons, sample

t-statistics for the estimate of the price of temperature risks are in the bottom fifth percentile of

the null distribution. In particular, under the null that temperature risk has no effect on prices,

the probability of observing sample-based t-statistics is 0.003 and 0.039 at the three- and five-year

horizon, respectively. That is, if temperature were an ad-hoc spurious factor, it would be highly

unlikely to find that it carries a significant price.

2.5 Long-Run vs. Short-Run Temperature Risks

The evidence presented above shows that only low-frequency temperature variations have a

significant impact on asset prices and returns. To explore more formally if short-run variations

24The temperature risk premium for a given portfolio is computed as a product of its temperature beta and the
cross-sectional price of temperature risk implied by the GMM estimates (in particular, the implied cross-sectional
price of five-year variations in temperature is −2.5.)

25We focus on the distribution of test statistics because t-statistics are pivotal quantities.
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in temperature have any incremental impact, we consider the following panel regression:

vi,t = v̄i + ϕLRK LRKt + ϕSRK SRKt + ϱi vi,t−1 + αi vt + εi,t , (29)

where vi,t is the log of the price-dividend ratio of portfolio i, LRKt ≡ ∆KTt represents low-frequency

fluctuations in temperature measured by the three- or five-year change in temperature, SRKt ≡

∆Tt ⊥ ∆KTt represents short-run temperature fluctuations measured by changes in annual

temperature that are orthogonal to long-run fluctuations, and vt is the price-dividend ratio of the

market portfolio.26 As in Equation (24), the coefficients on the lagged price-dividend ratio and on

the market price-dividend ratio are a function of the portfolio’s average book-to-market ratio.

Table V presents the estimated slope coefficients, ϕLR and ϕSR, along with the corresponding

t-statistics. We find a negative and statistically significant response of equity valuations to

low-frequency fluctuations in temperature and a statistically insignificant response to short-run

fluctuations. Further, comparing the estimates in Tables II and V, we find that the magnitude

of the long-run temperature elasticities is unaffected by the inclusion of short-run temperature

risks. In unreported results, we also estimate exposure of equity returns to long- and short-run

temperature fluctuations and find similar results. Thus, our evidence suggests that the negative

impact of temperature on the economy is mostly driven by its low-frequency component that is

associated with global warming.

2.6 Robustness of the Empirical Evidence

This section summarizes additional tests that we carry out to confirm the robustness of our empirical

evidence.

Data Sample: Table VI presents temperature elasticities of equity valuations estimated using

the pre-1970 sample. We find that in the early sample, when carbon emissions had not yet reached

a critical mass to trigger climate change, temperature variations had no effect on asset prices — all

estimates of temperature elasticities are insignificantly different from zero.

26We orthogonalize short-run temperature risks to identify their separate impact; our evidence remains virtually
unchanged if instead we simply include ∆Tt alongside ∆KTt.
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Data Frequency: We re-estimate temperature elasticities, betas and the compensation for

temperature risk using quarterly U.S. data and confirm that the frequency of the data does not

affect our empirical evidence. Consistent with the evidence based on the annual data, we find that

temperature betas feature a strong cross-sectional variation across book-to-market sorted portfolios,

which mirrors variation in long-run growth risks and risk premia. As Table A.I shows, in the

quarterly data, temperature carries a negative and statistically significant price of risk. Overall, the

magnitude and significance of the quarterly estimates are consistent with the evidence based on the

annual data.

Asset Menu: As discussed earlier, we choose ten BM portfolios because they feature significant

differences in long-run dividend betas. We exploit this heterogeneity to identify the climate

risk channel. Portfolios sorted on other firm characteristics do not feature such a pronounced

cross-sectional variation in macroeconomic growth risks, and therefore, may not be informative

about the growth-risk channel of rising temperature. Hence, to verify the robustness of our evidence,

we confine our attention to BM sorted portfolios but expand their number by slicing them by size.

In particular, we consider a set of 25 portfolios double sorted on book-to-market ratio and market

capitalization. Consistent with the evidence that we report above, we find that in a larger cross

section, temperature elasticities are significantly negative and more so when temperature risks are

measured at low frequencies. In particular, in the cross section of 25 portfolios, (semi) elasticities

of equity valuations to variations in temperature at one-, three-, five-year horizons are estimated

at −0.032, −0.037, −0.053 and with robust t-statistics of −1.85, −2.05, and −3.89, respectively

(see Panel A of Table A.II). Further, we also find that the variation in temperature risks across

25 portfolios mirrors the cross-sectional variation in long-run consumption risks. Panel B of Table

A.II presents the estimates of temperature elasticities scaled by dividend betas and confirms that

low-frequency temperature risks affect equity valuation through their impact on long-run growth.

Similar to our baseline evidence, we also find that the market price of temperature risk estimated

using size and book-to-market sorted portfolios is significantly negative when temperature risks are

measured at low frequencies (this evidence is available upon request).

Environmental Regulation Risk: We verify that our empirical evidence is robust to excluding

firms that could be the target of environmental regulations. Following Greenstone (2002), we
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identify firms that account for an important share of industrial emissions and, therefore, are very

likely subject to significant regulatory oversight, and we exclude these firms from our sample. In

essence, by removing firms considered heavy-emitters from our test portfolios we remove the effect

of regulatory risk that might be driven by climate change. Using 25 size and book-to-market

sorted portfolios composed of non-emitters only, we re-estimate the sensitivity of the price-dividend

ratio to temperature as in Section 2.3. As Table A.III shows, we find that the price-dividend

ratio of non-emitters falls when temperature rises, and the magnitude and significance of the

estimated temperature elasticities are virtually unaffected by the exclusion of regulated firms. As

further discussed in Appendix C, these results are robust to different thresholds that are used to

determine the emitter status. In sum, our empirical evidence suggests that the economic impact of

climate-change risks is different from and is not driven by environmental regulations.

Macro Factors: We evaluate if macro factors that are known to be priced in equity markets are

collinear with temperature. As Table A.IV shows, we find that the correlation between temperature

and a set of factors that are commonly used in the macro asset pricing literature is low, generally close

to zero. We also find that adding any of these factors in our panel regressions or GMM estimation

does not alter the magnitude of temperature elasticities or the significance of temperature risk in

pricing the cross-section of asset returns. This evidence shows that temperature is a distinct source

of risk in capital markets.

Evidence from Global Financial Markets: In Appendix D, we evaluate the impact of

temperature fluctuations on equity valuations using information from global financial markets. Our

analysis exploits data on the country-level temperature and price-dividend ratio for a panel of 48

countries. A detailed description of the data is provided in Appendix B. As Tables A.VII and

A.VIII show, we find that the temperature elasticity of equity valuations in global capital markets

is significantly negative, particularly when temperature fluctuations are measured at low frequencies.

In sum, in the U.S. and consistently in global capital markets, a persistent rise in temperature

leads to an economically and statistically significant decline in equity valuations. This evidence

suggests that rising temperature is expected to affect economic growth in the long run. As discussed

in Section 1, temperature risk manifests in current asset prices and short-run risk-return tradeoff

only if it affects future consumption, i.e., only if it contributes to long-run risks in aggregate growth.
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3 The Welfare Cost of Carbon Based on Asset Prices

Our empirical evidence suggests that climate risk is embedded in asset prices, and hence, asset prices

provide valuable information about the cost of climate change. We measure economic implications

of rising temperature by the welfare cost of carbon emissions (WCC) that is defined by the marginal

utility of emissions:

WCCt = −∂Ut
∂Et

/∂Ut
∂Ct

, (30)

where Ut is the life-time utility of the agent; the scaling by the marginal utility of consumption

allows us to express the cost in units of current consumption goods (time-t dollars). A marginal

increase in current emissions affects temperature into the future and rises future damages and risks

in the economy. The WCC measures by how much the current level of consumption should rise to

compensate for the ensuing future losses.

In economic literature and policy analysis, the cost of carbon (defined as the social cost of

carbon emissions) is typically measured using integrated assessment models (IAMs). For example,

the federal Interagency Working Group on the Social Cost of Greenhouse Gases that operated over

the 2009–2017 period calculated the social cost of carbon based on the output of three IAMs: the

DICE model of Nordhaus (2008, 2010), the FUND model of Tol (2002a, 2002b) and Anthoff and

Tol (2013), and the PAGE model of Hope (2011). The output of the models is based on a number

of assumptions about socioeconomic trends and future emissions, climate sensitivity, benefits and

damages of climate change, and discount rates, all of which are highly uncertain and, thus, are hard

to calibrate.

Instead, we compute the cost of carbon directly from the observed capital market data. As

we show below, the WCC is determined by the temperature (semi) elasticity of asset valuations

that we estimate in the data. Because our measurement is based on forward-looking asset prices,

our estimate reflects the discount rates prevailing in capital markets and market expectations of

the future path of emissions and economic losses as well as future abetment efforts and future

technological progress in combating climate change. We refer to our approach as semi-parametric

because relative to the IAM-based measurement it is much less reliant on parametric modeling

assumptions about the macroeconomy and climate dynamics. Note that if carbon emissions impose
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a negative externality, then the social cost of carbon exceeds the private cost; in this case, our WCC

estimate sets a lower bound on the social cost of carbon.

As shown in Equation (8), the life-time utility is a function of the wealth-consumption ratio;

hence, the welfare cost of carbon emissions is determined by the elasticity of aggregate wealth to

emissions. Specifically, taking the derivative of Equation (8), obtain:27

WCCt =
ψ

ψ − 1

−∂Zt
∂Et

Ct
Zt
. (31)

As we show in Appendix A.5, the marginal impact of emissions of the wealth-consumption ratio(
−∂Zt
∂Et

)
is determined by the present value of marginal damages in future consumption and their

impact on continuation utility. Consequently,

WCCt =

∞∑
j=0

Et

[
− ∂Ct+j

∂Et Mt→t+j

]
Wt

Ct + Qt , (32)

where
∂Ct+j
∂Et is the loss in time t+j consumption induced by a marginal increase in current emissions

and Mt→t+j is the stochastic discount factor. The first term in Equation (32) is the present value

of damages in future consumption stream due to an increase in current emissions (as a fraction

of current wealth, Wt), and the second term measures the marginal impact of emissions on future

utility (which is shown in the appendix). Note that under time-separable expected utility, the term

Qt is absent and the WCC equals the present value of damages. In our analysis below, we compute

the WCC by estimating directly the elasticity of the wealth-consumption ratio, −∂Zt
∂Et , using capital

market data.

In particular, as Equation (31) shows, the welfare cost of carbon emissions can be measured

in the data by the (semi) elasticity of asset prices to temperature. Factoring out the impact of a

marginal change in current emissions on time-t temperature, obtain:

WCCt =
ψ

ψ − 1

−∂ logZt
∂Tt

∂Tt
∂Et

Ct . (33)

27When IES is equal to one, then the wealth-consumption ratio is constant, and the welfare cost of carbon is
computed directly using Equation (30).
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Although aggregate wealth is not observable, its dynamics can be measured using equity securities

that are traded in capital markets. Similar to wealth, equities are long-duration assets and hence,

their prices reflect expectations and concerns about the impact of climate change on the future

economic growth and risk. Thus, we can learn about the welfare implications of temperature

fluctuations from their impact on equity valuations. Note that by using forward-looking information

in equity prices, we effectively let capital markets reveal the cost of carbon emissions.

To compute the welfare cost of carbon, we set ∂Tt
∂Et = 1.72◦C per trillion tonnes of carbon to

match the mean value of temperature sensitivity to carbon emissions estimated in MacDougall,

Swart, and Knutti (2017) based on the carbon-climate response established in Matthews, Gillett,

Stott, and Zickfeld (2009).28 Because aggregate wealth is a value of current and future consumption,

we measure its exposure to temperature risks by the response of an equity portfolio that has unit

exposure to long-run consumption risks, i.e., unit cointegration with consumption. In particular, we

set −∂ logZt
∂Tt

= −0.266 — the point estimate of the semi-elasticity to five-year temperature variations

(per unit temperature) from Table III. Recall that the estimates reported in Table III measure the

response of equity valuations to standardized temperature variations. Hence, the semi-elasticity of

aggregate valuations to a unit change in temperature is obtained by dividing the reported point

estimate, −0.032, by the standard deviation of variations in the five-year temperature trend, which

is equal to 0.121. Finally, we set ψ = 1.5. Note that our empirical evidence rules out values of

the IES parameter less than one — if ψ < 1, the temperature elasticity of equity valuations would

be positive for any γ > 1, which is inconsistent with the data (see Equation (10)).29 Importantly,

because we use equity valuations to measure the WCC, we choose the value of IES that is consistent

with key features of capital market data such as the observed level and dynamics of the risk-free

rate, equity prices and equity risk premia.

Table VII presents our semi-parametric capital-market based estimate of the welfare cost of

carbon. The WCC is measured in 2016 international dollars of world gross domestic product per

28In the scientific climate literature, the climate sensitivity parameter is known as transient climate response to
cumulative CO2 emissions (TCRE); see also MacDougall (2016), Millar and Friedlingstein (2018), and Rogelj, Forster,
Kriegler, Smith, and Séférian (2019).

29Equivalently, if we assume that IES is less than one, then the welfare cost of carbon implied by Equation (33)
would be negative.
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metric ton of CO2 (Panel A) and in equivalent dollars per gallon of gasoline (Panel B).30 The

WCC implied by capital market data (highlighted in bold) is economically large of about $45 per

metric ton of carbon dioxide, which is equivalent to about 40 cents per gallon of gasoline. To better

understand the magnitude of the WCC, in Table VIII we show how much society would be willing

to give up to eliminate the 2017 volume of global industrial emissions. In particular, we compute:

(−∂Ut
/
∂Et) E∗

t

(∂Ut
/
∂Ct)Ct

, (34)

which measures the fraction of time-t consumption that society is willing to forgo (permanently)

to eliminate E∗
t units of carbon emissions. We set E∗

t = 36.2 gigatonnes of carbon dioxide that

correspond to total industrial emissions in 2017. Our WCC estimate implies that the cost of 2017

emissions amounts to a sizable 1.4% of world GDP.

To account for uncertainty about the climate sensitivity parameter and sampling variation in

the estimate of temperature elasticity of equity prices, we also compute the 5th to 95th percentile

range of the welfare cost of carbon.31 As Tables VII and VIII show, while the potential range of the

WCC is quite wide, even at its lowest end, the welfare cost of carbon remains quantitatively large

of about $13 per metric ton of CO2 or 12 cents per gallon of gasoline, which translates into a total

cost of 2017 carbon emissions of about 0.4% of world GDP.

4 The Climate Risk Channel

Our empirical analysis of capital markets shows that (i) a persistent increase in temperature leads

in a decline in asset valuations and returns; (ii) assets with high exposure to long-run growth risks

are highly affected by low-frequency variations in temperature; and (iii) the price of temperature

risk is negative (hence, temperature risk carries a positive premium). Taken together, our empirical

evidence suggests that climate change is a source of long-run economic growth risk.

30We use the World Bank value of the gross domestic product (GDP) that is converted into international dollars
using purchasing power parity rates, which at the end of 2016 is estimated at about 121.4 trillion. The WCC per
metric ton of carbon can be computed by multiplying the CO2-based cost by 3.67.

31The 5th and 95th quantiles of the climate sensitivity reported in MacDougall, Swart, and Knutti (2017) are 0.88
and 2.52, respectively. The 5%–95% confidence interval of the estimated elasticity of equity prices to variations in the
five-year temperature trend is [−0.38; −0.15].
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The impact of rising temperature can be understood through the lens of our stylized economy.

In the model, high current growth leads to high industrial emissions and high temperature. Rising

temperature increases the likelihood of damages in future output and consumption, i.e., it amplifies

economic risks in the long run. The asset pricing and welfare implications of climate change, thus,

depend on how much markets care about future risks. In particular, if they are concerned about

long-run growth, then high temperature raises marginal utility and lowers assets’ valuations and

more so of cash flows that are highly exposed to long-run growth risks. These predictions all bear

out in the data.

Table IX illustrates the qualitative implications of climate change under alternative specifications

of preferences. Two salient results stand out. First, only the configurations where IES and risk

aversion are larger than one are consistent with the negative temperature elasticity of equity

valuations and the negative market price of temperature risk documented in the data. Recall that

γ > 1 and ψ > 1 imply that investors are concerned about long-run growth, and hence, they require

compensation for long-run risks driven by temperature. In contrast, under CRRA preferences, asset

valuations feature a positive response to temperature and climate-change risks carry a zero premium.

Second, the welfare cost of carbon increases with both risk aversion and IES. The model solution

for the WCC, derived in the appendix, is given by:

WCCt =
ψ

ψ − 1

(
−A1

)
χCt =

Φ

γ − 1
χCt , (35)

where A1 is the temperature (semi) elasticity of the wealth-consumption ratio given in Equation

(10). To understand the distinct impact of preference parameters, in Appendix A.5, we show that

the WCC can be expressed as a weighted sum of horizon-specific marginal costs. In particular,

WCCt =

[ ∞∑
n=1

wn · wcc(n)t

]
Ct , (36)

where wcc
(n)
t is the horizon-specific cost (i.e., the n-period WCC strip) expressed as a fraction of

current consumption, and wn is the value-weight of the n-period strip. The term structure of WCC

strips and weights is illustrated in Figure 8. The magnitude of cost strips (across all maturities)

increases with risk aversion but is invariant to IES. Further, because temperature is long-run risk
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and has a larger impact on more distant consumption, the term structure of marginal costs is upward

sloping. How much each horizon contributes to the overall WCC is largely determined by IES. When

IES is low, the risk-free rate and therefore discount rates are high; hence, relatively distant welfare

losses are heavily discounted and the welfare cost of carbon is low. As IES increases, the risk-free

rate and discount rates decline, and thus, the contribution of long-horizon climate costs increases

and so is the WCC.

Our empirical evidence of the robustly negative response of equity valuations to rising

temperature and the negative price of temperature risk suggests that capital markets are indeed

concerned about long-run economic prospects and the potential impact of climate change on

long-term growth and risk. These concerns are reflected in a significant cost of carbon emissions

implied by capital market data.

5 Conclusion

We show analytically that investors concerns about the impact of rising temperature on long-run

economic growth and risk should be reflected in current equity prices and short-run risk-return

tradeoff. Guided by the model’s predictions, we exploit the forward-looking information in

capital markets to measure the economic cost of rising temperature. Our empirical work shows

that in both U.S. and global capital markets, the temperature elasticity of equity valuations is

significantly negative, particularly when temperature fluctuations are measured at low frequencies

that correspond to global warming. We also find that long-run temperature fluctuations carry a

significantly positive risk premium in equity markets. This evidence suggests that climate risk is

impounded in asset prices, which therefore contain valuable information about the costs of climate

change. We use our empirical evidence to provide a semi-parametric capital-market based estimate

of the welfare cost of carbon emissions. We find that concerns about the potential impact of

climate change on long-term economic growth and risk imply a significant welfare cost. Our analysis

underscores the importance of forward-looking information embedded in asset prices for identifying

the impact and cost of rising temperature.
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Table I

Long-run Growth Risk and Temperature Risk

Portfolio Premia Long-Run Growth Risk Temperature Risk

Dividend Beta PD-elasticity Return Beta

BM1 0.052 0.38 ( 2.61) 0.003 ( 0.17 ) 0.0092 ( 2.11 )

BM2 0.071 0.83 ( 5.22) 0.032 ( 1.31 ) 0.0054 ( 1.84 )

BM3 0.080 0.60 ( 3.33) −0.058 (−3.22) −0.0021 (−0.96)

BM4 0.075 0.63 ( 5.84) −0.031 (−1.71) −0.0039 (−0.97)

BM5 0.074 0.85 ( 6.05) −0.051 (−2.30) −0.0037 (−1.02)

BM6 0.086 1.26 (11.51) −0.025 (−1.57) −0.0028 (−1.12)

BM7 0.083 0.88 (13.51) −0.052 (−2.55) −0.0044 (−0.95)

BM8 0.088 1.56 ( 9.33) −0.034 (−1.53) −0.0080 (−1.73)

BM9 0.111 2.03 (13.88) −0.058 (−3.33) −0.0101 (−4.23)

BM10 0.117 2.27 (10.81) −0.093 (−2.37) −0.0105 (−1.91)

Table I shows the average excess return, long-run cash-flow risk, and temperature risk for ten portfolios sorted

by book-to-market. Long-run risk is measured by cointegration between log portfolio dividends and log aggregate

consumption. The elasticity of the price-dividend ratios to temperature is measured by regressing valuation ratios on

the standardized five-year change in temperature controlling for the market price-dividend ratio and lagged valuation

ratio of the corresponding portfolio. Temperature return beta of a portfolio is estimated by regressing five-year

cumulative excess return on the standardized five-year change in temperature controlling for cumulative market and

consumption growth risks. T-statistics (in parenthesis) are based on the Newey and West (1987) estimator of the

variance-covariance matrix with five lags. The data are annual; the cointegrating parameters are estimated using the

1940-2018 sample, all other statistics are estimated using the 1970-2016 sample.
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Table II

Elasticity of Equity Prices to Temperature Variations

Horizon (K)

1-year 3-year 5-year

ϕK −0.013 −0.027 −0.037

(−1.15) (−2.12) (−2.99)

Table II reports the response of equity valuations to temperature fluctuations based on the following panel regression
specification,

vi,t = v̄i + ϕK ∆KTt + ϱi vi,t−1 + αi vt + εi,t ,

where vi,t is the log of the price-dividend ratio of portfolio i, v̄i is a portfolio-specific fixed effect, ∆KTt is the

standardized K-year change in U.S. temperature, vt is the price-dividend ratio of the market portfolio. The coefficients

on the lagged price-dividend ratio and on the market price-dividend ratio are a function of the portfolio’s average

book-to-market characteristic (bmi), namely, ϱi = ϱ+ ϱbbmi, and αi = α+αbbmi. The table shows (semi) elasticities

of price-dividend ratios to temperature variations, ϕK , and the corresponding t-statistics (in parenthesis) that are

based on standard errors clustered by portfolio and time using the Newey and West (1987) estimator with three lags.

The regression is estimated using ten book-to-market sorted portfolios. The data are annual and cover the 1970-2016

period.
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Table III

Scaled Elasticity of Equity Prices to Temperature Variations

Horizon (K)

1-year 3-year 5-year

ϕK −0.013 −0.024 −0.032

(−1.48) (−2.33) (−3.81)

Table III reports the response of equity valuations to temperature fluctuations based on the following specification,

vi,t = v̄i + (ϕK · βi,LR)∆KTt + ϱi vi,t−1 + αi vt + εi,t ,

di,t = d̄i + βi,LRct + wi,t ,

where vi,t is the log of the price-dividend ratio of portfolio i, v̄i is a portfolio-specific fixed effect, ∆KTt is the

standardized K-year change in U.S. temperature, vt is the price-dividend ratio of the market portfolio. The coefficients

on the lagged price-dividend ratio and on the market price-dividend ratio are a function of the portfolio’s average

book-to-market characteristic (bmi), namely, ϱi = ϱ + ϱbbmi, and αi = α + αbbmi. The cross-sectional variation

in temperature elasticity is governed by the long-run dividend betas, βi,LR, measured by cointegration between log

portfolio dividends (di,t) and log aggregate consumption (ct) in the 1940-2016 sample. The table shows (semi)

elasticities of price-dividend ratios to temperature variations, ϕK , and the corresponding t-statistics (in parenthesis)

that are based on standard errors clustered by portfolio and time using the Newey and West (1987) estimator with

three lags. The panel regression is estimated using ten book-to-market sorted portfolios; the data are annual and

cover the 1970-2016 period.
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Table IV

Price of Temperature Risk

Horizon (K)

1-year 3-year 5-year

λ∆T −0.64 −1.59 −2.68

(−1.39) (−3.67) (−2.76)

λm 1.75 8.35 14.18

(1.16) (2.88) (2.82)

λc 0.62 0.28 0.79

(1.45) (0.74) (1.74)

χ2 4.26 9.43 5.12

p-value 0.75 0.22 0.64

Table IV reports the estimates of the price of temperature risks measured at different frequencies. The risk prices are
estimated by exploiting the Euler equation for a cross-section of N portfolios using a linear stochastic discount factor
(SDF),

E
[
Rei,K,t(1 +MK,t)

]
= 0 , for i = 1, . . . , N ,

MK,t = −λ∆T

[
∆KTt − µT

]
− λm

[
Rem,K,t − µm

]
− λc

[
∆Kct − µc

]
,

where Rei,K,t is the K-period cumulative return of portfolio i in excess of the risk-free rate; MK,t is the SDF that is

driven by the standardized K-year change in temperature, ∆KTt, the cumulative excess return of the market portfolio,

Rem,K,t, and the cumulative consumption growth, ∆Kct (multiplied by 100); µ’s denote the corresponding factor

means. The estimates are obtained through an efficient GMM using ten book-to-market sorted portfolios. T-statistics

(in parenthesis) account for the estimation error in the factor means and are based on the Newey-West estimator

of the variance-covariance matrix with K lags. The last two rows report the Sargan-Hansen test of over-identifying

restrictions (χ2) and its corresponding p-value. The data are annual and cover the 1970-2016 period.
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Table V

Elasticity of Equity Valuations to Long- and Short-Run Temperature Variations

Horizon (K)

3-year 5-year

ϕLRK −0.027 −0.037

(−2.14) (−3.08)

ϕSRK 0.005 −0.011

( 0.34) (−0.59)

Table V reports the response of equity valuations to temperature fluctuations based on the following panel regression
specification,

vi,t = v̄i + ϕLRK LRKt + ϕSRK SRKt + ϱi vi,t−1 + αi vt + εi,t ,

where vi,t is the log of the price-dividend ratio of portfolio i, v̄i is a portfolio-specific fixed effect, LRKt ≡ ∆KTt

represents low-frequency fluctuations in temperature measured by the three- or five-year change in U.S. temperature,

SRKt ≡ ∆Tt ⊥ ∆KTt represents short-run temperature fluctuations measured by changes in annual temperature

that are orthogonal to long-run fluctuations, vt is the price-dividend ratio of the market portfolio. The coefficients

on the lagged price-dividend ratio and on the market price-dividend ratio are a function of the portfolio’s average

book-to-market characteristic (bmi), namely, ϱi = ϱ+ ϱbbmi, and αi = α+ αbbmi. Short- and long-run temperature

variations are standardized. The table shows (semi) elasticities of price-dividend ratios to long- and short-run

temperature variations, ϕLRK and ϕSRK , and the corresponding t-statistics (in parenthesis) that are based on standard

errors clustered by portfolio and time using the Newey and West (1987) estimator with three lags. The regression is

estimated using ten book-to-market sorted portfolios. The data are annual and cover the 1970-2016 period.
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Table VI

Elasticity of Equity Prices to Temperature Variations pre-1970

Horizon (K)

1-year 3-year 5-year

ϕK −0.006 0.014 −0.011

(−1.49) (1.10) (−1.37)

Table VI reports the response of equity valuations to temperature fluctuations based on the following panel regression
specification,

vi,t = v̄i + ϕK ∆KTt + ϱi vi,t−1 + αi vt + εi,t ,

where vi,t is the log of the price-dividend ratio of portfolio i, v̄i is a portfolio-specific fixed effect, ∆KTt is the

standardized K-year change in U.S. temperature, vt is the price-dividend ratio of the market portfolio. The coefficients

on the lagged price-dividend ratio and on the market price-dividend ratio are a function of the portfolio’s average

book-to-market characteristic (bmi), namely, ϱi = ϱ+ ϱbbmi, and αi = α+αbbmi. The table shows (semi) elasticities

of price-dividend ratios to temperature variations, ϕK , and the corresponding t-statistics (in parenthesis) that are

based on standard errors clustered by portfolio and time using the Newey and West (1987) estimator with three lags.

The regression is estimated using ten book-to-market sorted portfolios. The data are annual and cover the 1940-1969

period.
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Table VII

Capital-Market Based Measure of the Welfare Cost of Carbon

Panel A: In $ Per Metric Ton of CO2

Temperature Elasticity of Valuations

5%–bound Estimate 95%–bound

Climate
Sensitivity

5%–bound 33.3 23.3 13.2

Mean 65.1 45.4 25.8

95%–bound 95.3 66.6 37.8

Panel B: In $ Per Gallon of Gasoline

Temperature Elasticity of Valuations

5%–bound Estimate 95%–bound

Climate
Sensitivity

5%–bound 0.30 0.21 0.12

Mean 0.58 0.40 0.23

95%–bound 0.85 0.59 0.34

Table VII presents the welfare cost of carbon (WCC) implied by the estimated (semi) elasticity of equity valuations to

temperature variations. The table shows the WCC implied by the point estimate of the five-year temperature elasticity

of equity valuations in Table III and the mean value of the climate sensitivity parameter reported in MacDougall,

Swart, and Knutti (2017) (in bold), and its 5th to 95th percentile range. The 5th percentile, mean, and 95th percentile

of the climate sensitivity parameter are 0.88, 1.72, and 2.52 degree Celsius per trillion tonnes of carbon, respectively.

The estimated temperature elasticity of equity prices is −0.266, and its 5%–95% confidence interval is [−0.38; −0.15].

The WCC is measured in 2016 international dollars of world gross domestic product per metric ton of CO2 (Panel A)

and in equivalent dollars per gallon of gasoline (Panel B).
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Table VIII

Cost of the 2017 Global Industrial Carbon Emissions

Temperature Elasticity of Valuations

5%–bound Estimate 95%–bound

Climate
Sensitivity

5%–bound 0.99% 0.69% 0.39%

Mean 1.94% 1.36% 0.77%

95%–bound 2.84% 1.99% 1.13%

Table VIII shows the cost of global industrial CO2 emitted in 2017 as a percentage of gross domestic product. The

table shows the cost implied by the point estimate of the five-year temperature elasticity of equity valuations in Table

III and the mean value of the climate sensitivity parameter reported in MacDougall, Swart, and Knutti (2017) (in

bold), and its 5th to 95th percentile range. The 5th percentile, mean, and 95th percentile of the climate sensitivity

parameter are 0.88, 1.72, and 2.52 degree Celsius per trillion tonnes of carbon, respectively. The estimated temperature

elasticity of equity prices is −0.266, and its 5%–95% confidence interval is [−0.38; −0.15]. Global industrial carbon

dioxide emissions in 2017 amount to about 36.2 gigatonnes.
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Table IX

Model Implications

Panel A: Risk-Free Rate (%) Panel B: Price of Temperature Risk (%)

IES IES

0.2 1 1.5 0.2 1 1.5

1/1.5 8.25 2.44 1.96 1/1.5 0.411 0.075 0.000

RA 1 8.21 2.43 1.95 RA 1 0.384 0.000 −0.085

5 7.79 2.29 1.83 5 0.000 −1.004 −1.215

Panel C: Temperature Elasticity of WC-ratio Panel D: Welfare Cost of Carbon (%)

IES IES

0.2 1 1.5 0.2 1 1.5

1/1.5 0.0190 0.0000 −0.0042 1/1.5 0.095 0.225 0.253

RA 1 0.0192 0.0000 −0.0042 RA 1 0.096 0.227 0.255

5 0.0219 0.0000 −0.0047 5 0.109 0.251 0.280

Table IX shows the model-implied risk-free rate, the price of temperature risk, the temperature elasticity of the

wealth-consumption ratio and the welfare cost of carbon under various configurations of risk aversion (RA) and the

intertemporal elasticity of substitution (IES). The risk-free rate and the price of temperature risk are expressed in

percent per annum, the WCC is expressed as a percentage of the representative-agent consumption. The table is

constructed using the following calibration of the stylized model economy: δ = 0.99, µ = 0.015, ση = 0.018, d =

−0.05, ℓ0 = 0.01, ℓ1 = 0.01, ν = 0.966, Θ = 1, χ = 0.2, σζ = 1.
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Figure 1. Global Temperature Projections (IPCC (2014))
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Figure 2. Climate and Economic Module
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Figure 3. Implications of Global Warming for Consumption Growth

Figure 3 shows the distribution of normalized consumption growth when climate change is absent (solid line) and the

corresponding distribution with climate-driven damages when temperature anomaly is set at 2◦C (dashed line). The

figure is constructed using the following calibration of consumption growth: µ = 0.015, ση = 0.018, d = −0.05, ℓ0 =

0.01, ℓ1 = 0.01.
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Figure 4. Cross-Sectional Variation in Temperature Elasticity

Figure 4 shows temperature elasticity (Bi,1) as a function of cash-flow exposure to consumption risks (φi). The plot is

constructed using the following calibration of the stylized model economy: δ = 0.99, γ = 5, ψ = 1.5, µ = 0.015, ση =

0.018, d = −0.05, ℓ0 = 0.01, ℓ1 = 0.01, ν = 0.966, Θ = 1, χ = 0.2, σζ = 1, σi = 0.018.
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Figure 5. Long- and Short-Run Fluctuations in U.S. Temperature

Figure 5 shows the five-year moving-average of U.S. temperature (solid line) and annual temperature variations (dashed

line). Temperature is measured in degrees Celsius.
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Figure 6. Dividend Betas and Temperature Betas

Figure 6 presents the scatter plot of long-run dividend betas and temperature betas of ten book-to-market sorted

portfolios. Dividend betas are measured by cointegration between log portfolio dividends and log aggregate

consumption in the 1940-2016 sample. Temperature return beta of a portfolio is estimated by regressing five-year

cumulative excess return on the standardized five-year change in temperature controlling for cumulative market and

consumption growth risks. The data are annual and cover the 1970-2016 period.
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Figure 7. Temperature Betas and Risk Premia

Figure 7 presents the scatter plot of average excess returns and temperature betas of ten book-to-market sorted

portfolios. Temperature beta of a portfolio is estimated by regressing five-year cumulative excess return on the

standardized five-year change in temperature controlling for cumulative market and consumption growth risks. The

data are annual and cover the 1970-2016 period.
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Figure 8. Decomposition of the Welfare Cost of Carbon

Figure 8 shows the following decomposition of the welfare cost of carbon:

WCCt =

[ ∞∑
n=1

wn · wcc(n)t

]
Ct ,

where wcc
(n)
t is the horizon-specific cost (i.e., the n-period WCC strip) expressed as a fraction of current consumption,

and wn is the value-weight of the n-period strip. The figure is constructed using the following calibration of the

stylized model economy: δ = 0.99, µ = 0.015, ση = 0.018, d = −0.05, ℓ0 = 0.01, ℓ1 = 0.01, ν = 0.966, Θ =

1, χ = 0.2, σζ = 1; and risk aversion is set at 5. The term-structure of WCC strips in Panel (a) is invariant to the

intertemporal elasticity of substitution (IES); the term-structure of weights in Panel (b) depends on IES and is plotted

for IES of 0.2 and 1.5.
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Appendix

A Solution to the Climate Change Economy

A.1 Solving for the Wealth-Consumption Ratio

We conjecture that the wealth-consumption ratio follows zt = A0 +A1Tt. To determine A0 and A1,

we exploit the representative agent’s Euler equation to solve for the return on wealth, in particular,

Et [exp(mt+1 + rc,t+1)] = 1. Substituting the log-linear approximation of the wealth return:

rc,t+1 = κ0 +∆ct+1 + zt+1 − κ1zt , (A.1)

and the IMRS (see Equation (7)) into the Euler equation, obtain:

Et

[
exp

(
θ ln δ + (1− γ)∆ct+1 + θκ0 + θ(zt+1 − κ1zt)

)]
= 1 , (A.2)

where κ1 = ez̄

ez̄−1 , κ0 = κ1z̄ − ln(ez̄ − 1), and z̄t is the unconditional mean of the log

wealth-consumption ratio. Plugging in the dynamics of consumption growth and the conjecture

for zt yields:

Et

[
θ ln δ + (1− γ + χΘθA1)µ+ θκ0 + (1− κ1)θA0 + θ(ν − κ1)A1Tt

+ (1− γ + χΘθA1)σηηt+1 + χθA1σζζt+1 + (1− γ)Dt+1

]
= 1 .

(A.3)

Evaluating the expectation and taking logs we obtain the equilibrium condition that A0 and A1

must satisfy:

0 = θ ln δ + (1− γ + χΘθA1)µ+ θκ0 + (1− κ1)θA0 + 0.5 (1− γ + χΘθA1)
2σ2η

+ 0.5 (χθA1σζ)
2 + ℓ0ϕ

{
(1− γ) d

}
+

(
θ(ν − κ1)A1 + ℓ1ϕ

{
(1− γ) d

})
Tt ,

(A.4)
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where we use the moment generating function of the Poisson distribution to obtain:

Et

[
exp

(
(1− γ)dNt+1

)]
= exp

(
πtϕ

{
(1− γ) d

})
,

with ϕ
{
(1− γ) d

}
≡ e(1−γ) d − 1.

It follows from Equation (A.4) that:

A1 =
ℓ1
θ

ϕ
{
(1− γ)d

}
κ1 − ν

, (A.5)

and,

A0(κ1 − 1) = ln δ + κ0 +
(
1− 1

ψ
+ χΘA1

)
µ+

ℓ0
θ
ϕ
{
(1− γ) d

}
+ 0.5 θ

[(
1− 1

ψ
+ χΘA1

)2
σ2η +

(
χA1σζ

)2
]
.

(A.6)

A.2 Solving for the IMRS and the Risk-Free Rate

We use the solution for zt to derive the dynamics of the IMRS:

mt+1 = m0 − (θ − 1)(κ1 − ν)A1Tt − (γ − (θ − 1)χΘA1)σηηt+1 − (1− θ)χA1σζζt+1 − γDt+1 , (A.7)

where,

m0 = θ ln δ + (θ − 1)κ0 −
(
γ − (θ − 1)χΘA1

)
µ+ (θ − 1)(κ1 − 1)A0 .

We can now solve for the risk-free rate by exploiting the Euler condition Et[exp(mt+1 + rf,t)] = 1.

In particular,

rf,t = rf + ℓ1

(
θ − 1

θ
ϕ
{
(1− γ)d

}
− ϕ

{
− γd

})
Tt , (A.8)

where

rf =− θ ln δ + γµ− (θ − 1) (κ0 + (1− κ1)A0 + χΘA1µ)

−
[(
γ − (θ − 1)χΘA1

)2
σ2η +

(
(1− θ)A1χσζ

)2]− ℓ0ϕ
{
− γd

}
.
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A.3 Risk Premium

To solve for the risk premium we first obtain the expression for the return on wealth. Substituting

the solution for the wealth-consumption ratio and the dynamics of consumption growth into the

log-linear return approximation, obtain:

rc,t+1 = rc − (κ1 − ν)A1Tt + (1 + χΘA1)σηηt+1 +A1χσζζt+1 +Dt+1 , (A.9)

where:

rc = A0(1− κ1) + κ0 + (1 + χΘA1)µ .

Using the return dynamics and the solution for the IMRS, we derive the conditional risk premium:

lnEt[Rc,t+1]− rf,t = (γ + (1− θ)χΘA1)(1 + χΘA1)σ
2
η + (1− θ)(A1χσζ)

2 + γd2(ℓ0 + ℓ1Tt) . (A.10)

A.4 The Cross Section of Equities

We similarly conjecture that the log of the price-dividend ratio of equity security i follows

zi,t = Bi,0 + Bi,1Tt and solve for the solution coefficients by exploiting the Euler equation. In

particular, we obtain:

Bi,1 = ℓ1

1−θ
θ ϕ

{
(1− γ) d

}
+ ϕ

{
(φi − γ) d

}
1− κi,1ν

, (A.11)

where κi,1 = ez̄i
ez̄i+1

is the constant of log-linearizaion, and z̄i is the mean of the log price-dividend

ratio. Note that
∂Bi,1
∂φi

= ℓ1e(φi−γ)dd
1−κi,1ν < 0, that it, in the cross section, equity elasticity to temperature

is inversely related to dividend beta. The equity risk premium is provided in Equations (18–21) in

the main text.

A.5 Welfare Cost of Carbon

Recursive preferences imply the following relationship between the wealth-consumption ratio and

the maximized lifetime utility,
Ut
Ct

= ωZ
ψ
ψ−1

t , (A.12)
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where Zt =
Wt
Ct

and ω = (1− δ)
1

1−1/ψ . Consider the marginal cost of an additional unit of emissions

in terms of current consumption:

WCCt = −∂Ut
∂Et

/
∂Ut
∂Ct

. (A.13)

From Equation (A.12) it follows that the derivatives of lifetime utility with respect to consumption

and emissions are:32

∂Ut
∂Ct

= ωZ
1

1−1/ψ

t , (A.14)

∂Ut
∂Et

=
∂Ut
∂Zt

∂Zt
∂Et

=
ω

1− 1/ψ
Z

1/ψ
1−1/ψ

t

∂Zt
∂Et

. (A.15)

Hence, the WCC can be measured by the elasticity of Zt to emissions, i.e.,

WCCt =
1

1− 1/ψ

−∂Zt
∂Et

Ct
Zt

(A.16)

The wealth-consumption ratio is the present value of future consumption growth:

Zt =
∞∑
j=0

Et

[
Mt→t+j

Ct+j
Ct

]
, (A.17)

where the stochastic discount factor is given by:

Mt→t+j = δj
(
Ct+j
Ct

)−1/ψ

St→t+j , (A.18)

for j > 0, St→t+j is a function of continuation utility, specifically, St→t+j =

j∏
k=1

St+k, and

St+k =
[
Et+k−1U

1−γ
t+k

] γ−1/ψ
1−γ

/
U
γ−1/ψ
t+k , and Mt→t = 1.

32Consistent with our model framework, we assume that an increase in current (time-t) emissions does not affect
the level of time-t consumption.
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Taking the derivative of Zt with respect to current emissions, Et, can show that:

∂Zt
∂Et

=
∞∑
j=0

Et

[
∂Ct+j
∂Et

1

Ct
Mt→t+j +

∂Mt→t+j

∂Et
Ct+j
Ct

]
(A.19)

=
(
1− 1/ψ

) ∞∑
j=0

Et

[
∂Ct+j
∂Et

1

Ct
Mt→t+j

]
+

∞∑
j=0

Et

[
δj
(Ct+j
Ct

)1−1/ψ ∂St→t+j

∂Et

]
(A.20)

Hence, we can represent the WCC as:

WCCt =

∞∑
j=0

Et

[
− ∂Ct+j

∂Et Mt→t+j

]
Wt

Ct + Qt , (A.21)

where Qt = − 1

1− 1/ψ

∞∑
j=0

Et

[
δj
(Ct+j
Ct

)1−1/ψ ∂St→t+j

∂Et

]
Ct
Zt

measures the impact of a marginal

increase in current emissions on future utility. Note that under power utility preferences, St→t+j = 1,

and the welfare cost of carbon is simply the present value of emission-induced damages in future

consumption stream. Under recursive preferences, the WCC in addition accounts for the impact

of emissions on higher moments of the distribution of future consumption, and hence, on future

state-price density.

Using the model solution for the wealth-consumption ratio in Equation (A.5), we obtain the

following model-implied cost of carbon emissions:

WCCt =
ψ

ψ − 1

(
−A1

)
χCt =

Φ

γ − 1
χCt . (A.22)

Note that Φ
γ−1 > 0 and is increasing with risk aversion (γ), sensitivity of damage intensity to

temperature (ℓ1), and persistence of temperature fluctuations (ν). The welfare cost of carbon

emissions is also affected by climate sensitivity, i.e., the elasticity of temperature to emissions (χ).

Also, because rising temperature has a long-run impact on the economy, for any given size of

damages, under a preference for early resolution of uncertainty agents would be willing to pay a

higher price to resolve climate-change uncertainty compared with the power-utility specification

(Bansal, Kiku, and Ochoa (2019)).
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Further, it follow that,

WCCt =
∞∑
n=1

wn

[
ψ

ψ − 1

(
−A

(n)
1 χ

)]
Ct =

[ ∞∑
n=1

wn · wcc(n)t

]
Ct , (A.23)

where A
(n)
1 is temperature (semi) elasticity of the consumption strip with n-period to maturity,

i.e., z
(n)
t = logZ

(n)
t = A

(n)
0 + A

(n)
1 Tt, wn = Z

(n)
t /Zt is the value-weight of the n-period strip, and

wcc
(n)
t is the horizon-specific cost (i.e., the n-period WCC strip) expressed as a fraction of current

consumption. The (semi) elasticity of the n-period consumption strip to temperature is given by:

A
(n)
1 =

1− 1
ψ

1− γ
l1

(
e(1−γ)d − 1

)1− νn

1− ν
(A.24)

For a given level of risk aversion, the magnitude of WCC strips
(
wcc

(n)
t ≡ − ψ

ψ−1A
(n)
1 χ

)
is invariant

to IES and is increasing with maturity. Hence, WCC
(n)
t varies with risk aversion but not with IES.

The effect of IES is embedded in the relative weights of near-future and distant consumption, wn.

At low IES, yields are high; hence, relatively distant consumption is heavily discounted and so is the

impact of temperature risk on the future economy. As IES increases, the yield curve shifts down,

and distant consumption carries greater weight. Consequently, future economic losses associated

with temperature risks contribute non-trivially to the welfare cost of carbon driving it up.

B Data

Our analysis of the U.S. markets is based on the standard set of ten portfolios sorted by

book-to-market ratio. In addition, in the robustness section, we also use a cross section of 25

equity portfolios sorted on market capitalization and book-to-market as in Fama and French (1993).

The portfolios are constructed using the monthly stock file from the Center for Research in Security

Prices (CRSP), which contains monthly stock returns and prices per share, and the COMPUSTAT

annual research file, which contains accounting information for publicly traded U.S. firms. To

compute excess returns on each portfolio we use the yield on the 1-month Treasury bill from CRSP.

The data are obtained from Kenneth French’s online data library. We also collect data on the return

on the value-weighted market portfolio from CRSP and on aggregate real per capita consumption
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of nondurables plus services obtained from the Bureau of Economic Analysis’ NIPA tables.

Our analysis of global financial markets exploits data on the country-level price-dividend ratio

for a panel of 48 countries from Global Financial Data. We find that the first principal component

extracted from the cross section of price-dividend ratios accounts for about 69% of the total

variation in prices across countries and the second component explains an additional 10%. This

suggests that the cross-country variation in equity valuations is influenced by common global

macro-economic factors. Jagannathan and Marakani (2015) show that the first two price-dividend

ratio factors provide robust proxies for future economic growth and variation in macro-economic

uncertainty. Guided by their evidence, we use the first two principal components to control for global

macro-economic risks in our regression analysis. We also control for country-level macroeconomic

conditions by including their real GDP growth, inflation, unemployment, and real interest rate

collected from the World Bank Open Data. Table A.V presents a list of countries in our sample;

note that the sample is somewhat tilted towards developed economies as those are more likely to

have a long enough history of capital markets.

We obtain time series of temperature for the U.S. from the National Oceanic and Atmospheric

Administration. Historical temperature data for the other countries in our sample are obtained

from the World Bank’s Climate Change Knowledge Portal. In particular, we use land surface

temperature anomalies measured by deviations from the average temperature over the 1951-1980

period. Temperature is expressed in degrees Celsius. Similar to the rise in the U.S. temperature,

we find that on average across countries, temperature has increased by about by 1◦C over the last

four decades. Panel (a) of Figure A.1 shows the time-series dynamics of the common trend in

country-level temperature. We also find that country temperature series have a strong common

component that is highly correlated with variations in global temperature. As shown in Table A.VI,

the first principal component of annual temperature series accounts for about 60% of the total

variation in temperature across countries and has an 83% correlation with global temperature

anomaly. At lower frequencies, the co-movement in local temperature becomes much stronger.

For example, using five-year moving-averages of local temperature, we find that the first principal

component explains about 83% of the overall variation in local temperature trends. This evidence

suggests that systematic changes in climate are driven mostly by low-frequency movements in
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temperature (i.e., global warming) rather than by short-run temperature fluctuations (i.e., weather

fluctuations). Note that while local temperature series share a common long-run component, there

is also substantial heterogeneity in the amount of warming across countries. Panel (b) of Figure A.1

displays the distribution of the increase in average temperature between 2006-2015 and 1970-1979

time periods across countries in our sample. The histogram shows that countries have shown an

increase in temperature ranging from about half a degree Celsius to two degrees Celsius, which

suggests that there is significant cross-sectional variation in long-run temperature shifts in the data.

Our empirical analysis of the U.S. capital market is carried out using annual data from 1970

through 2016, and our global market evidence is based on annual data from 1970 to 2015. We

choose to start the sample in 1970 because beginning in the 1970s, there was a major increase in

social concerns about environmental problems, which in the U.S. resulted in the creation of the

Environmental Protection Agency in 1970, the celebration of the first Earth Day on April 22, 1970,

and the establishment of the National Climate Program during the Carter administration intended to

improve our understanding of climatic changes, both natural and man-induced.33 Awareness about

environmental challenges was not confined to the U.S. Beginning in the 1970s, several developed

countries such us France, Japan and Germany established environmental agencies, and the United

Nations member countries started the United Nations Environment Programme in response to

increasing concerns about environmental issues at the global and regional level.

C Environmental Regulations

In this section we check how robust our U.S. evidence is to excluding firms that might have been

the target of significant environmental regulations by the Environmental Protection Agency (EPA).

Since there is no explicit list of firms subject to regulatory oversight, we follow Greenstone (2002)

to divide the industries covered by CRSP into heavy-emitters and non-emitters. In particular, we

collect data on the EPA’s estimates of industry-specific emissions to determine the contribution

of each industry to industrial sector emissions.34 We designate an industry a heavy-emitter if it

accounts for an important share of the industrial sector emissions of at least one of the pollutants

33For a discussion of the outset of environmental policy in the U.S. see, for example, Freeman (2002).
34We collect data on industry-specific emissions for 2001 from the EPA’s Sector Notebook Project Series.
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regulated by the EPA under the Clean Air Act.35 We consider three alternative thresholds for the

contribution of an industry to industrial emissions to assign an emitter status to industries: 3%, 5%

and 7%. Consequently, an industry is designated a heavy-emitter if its contribution to industrial

emissions exceeds this threshold.36

Following this procedure and using 3%–threshold we identify 20 industries that have been

main contributors to industrial emissions and very likely the target of EPA oversight. The top

heavy-emitters include: fossil fuel electric generation (SIC 4911, 493), petroleum refining (SIC 2911),

primary metal manufacturing (SIC 331), and the cement industry (SIC 3211–3299). There are 16

and 10 industries that are considered heavy-emitters under the 5%– and 7%–threshold, respectively.

With a list of industries classified as heavy-emitters for the three alternative thresholds, we

proceed to construct 25 size and book-to-market sorted portfolios excluding from the CRSP dataset

firms that belong to an industry identified as a heavy-emitter. The remaining firms belong to

industries that are considered non-emitters. On average, the non-emitters represent about 75%

and 85% of the market capitalization for classifications of emitters using 3%– and 7%–threshold,

respectively. Using portfolios comprised of non-emitters, we re-estimate the response of equity prices

to temperature fluctuations.

Table A.III presents the (semi) elasticity of the price-dividend ratio of non-emitters to the

five-year change in temperature. The three columns report the estimates for three alternative

thresholds of emitter status. Consistent with our baseline results, the price-dividend ratio falls

with temperature and the price response is economically and statistically significant. Note that

exposure of asset valuations to temperature is consistent across different thresholds, and it is

also similar in magnitude to the estimate based on the entire cross section of firms suggesting

that our results are robust to excluding heavy-emitters. Similarly, as Panel B of Table A.III

shows, the cross-sectional variation in temperature elasticities of non-emitters is driven in large

by long-run cash-flow risk. Further, we find that the estimates of the market price of low-frequency

temperature risks estimated using non-emitters are negative and statistically significant regardless

35The Clean Air Act and its amendments set minimum level of air quality that counties in the U.S. are required to
meet for four pollutants: carbon monoxide (CO), tropospheric ozone (O3), sulfur dioxide (SO2), and total suspended
particles (TSPs).

36Greenstone (2002) uses a threshold of 7% and focuses only on the manufacturing industry. We focus on a broader
set of industries and use alternative thresholds to explore if our results are sensitive to the assignment rule.
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of the threshold that determines emitter status. That is, even after excluding firms that might

have been affected by environmental regulations, we find that equity markets carry a significant

positive temperature premium. In all, our empirical evidence suggests that the economic impact of

climate-change risks is distinct from and is not driven by environmental regulations.

D Evidence from Global Financial Markets

In this section, we evaluate the impact of temperature fluctuations on equity valuations using

information from global financial markets. Because international markets are not fully integrated

and countries vary in the degree of segmentation and frictions, we focus our empirical analysis on

the effects of temperature on equity valuations.37

Using annual data from 1970 to 2015 for 48 countries, we estimate the impact of temperature

on asset valuations running the following panel regression,

vi,t = v̄i + ϕK ∆KTi,t + ϱr vi,t−1 + α′
r vt + ζ ′xi,t + εi,t , (D.1)

where vi,t is the log of the price-dividend ratio of country i, v̄i is a country-specific fixed effect, ∆KTi,t

is the K-year change in country-level temperature, vt is a vector that includes the first two principal

components of the price-dividend ratios, and xi,t is a vector of country-level control variables that

includes inflation, unemployment, the real interest rate, and GDP growth. The principal components

of the country-level price-dividend ratios control for common global macroeconomic fluctuations,

and we allow exposure to global macroeconomic risks, αr, to differ across five geographical regions.

Similarly, the coefficient on vi,t−1 is allowed to vary across regions. Note that in estimating the

impact of temperature risks on equity valuations we exploit both time-series and cross-sectional

variation in local temperature.

Table A.VII reports our estimates of the (semi) elasticity of global equity prices to one-, three-

and five-year fluctuations in temperature and the corresponding t-statistics based on standard

37The expected returns of assets traded in segmented markets are not determined by a common stochastic discount
factor, which prevents the identification of the price of temperature risks from a cross-section of international stocks.
For evidence on international risk sharing and market segmentation see, for example, Backus, Kehoe, and Kydland
(1992), Sørensen, Wu, Yosha, and Zhu (2007), Bekaert, Harvey, Lundblad, and Siegel (2011).
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errors clustered by country and time-region. While short-run temperature fluctuations do not

have a statistically significant effect on equity valuations, long-run fluctuations have a negative

and statistically significant effect on global asset prices. Our evidence implies that equity valuations

decline by about 1.5 percent in response to a one standard deviation increase in the five-year

temperature trend. To verify the significance of the temperature impact, we run a Monte Carlo

simulation. We simulate a panel of temperature that preserves the cross-sectional correlations in

temperature series by (repeatedly) randomly drawing a column of observations from the observed

panel of temperature data,
{
∆KTi,t

}
. We then re-estimate the specification in Equation (D.1)

using the simulated temperature series and repeat this exercise to construct the distribution of

t-statistics under the null that temperature risks have no effect on equity prices. The Monte Carlo

based p-values reported in Table A.VII confirm that persistent temperature fluctuations have a

significant impact in global capital markets. To further evaluate the separate impact of short- and

long-run temperature fluctuations, in Table A.VIII we run a modified version of the panel regression

in Equation (D.1). We find that global equity valuations decline in response to an increase in the

long-run component of temperature and that short-run temperature fluctuations have no significant

effect.
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Table A.I

Quarterly Estimates of the Price of Temperature Risk

Horizon (K)

1-year 3-year 5-year

λ∆T −0.79 −1.38 −1.78

(−3.21) (−2.74) (−2.75)

λm 2.05 8.84 12.87

(2.06) (2.60) (3.21)

λc 0.17 0.12 0.60

(0.48) (0.43) (0.91)

χ2 3.34 10.93 8.56

p-value 0.85 0.14 0.29

Table A.I reports the estimates of the price of temperature risks measured at different frequencies. The risk prices are
estimated by exploiting the Euler equation for a cross-section of N portfolios using a linear stochastic discount factor
(SDF),

E
[
Rei,K,t(1 +MK,t)

]
= 0 , for i = 1, . . . , N ,

MK,t = −λ∆T

[
∆KTt − µT

]
− λm

[
Rem,K,t − µm

]
− λc

[
∆Kct − µc

]
,

where Rei,K,t is the K-period cumulative return of portfolio i in excess of the risk-free rate; MK,t is the SDF that

is driven by the standardized K-year change in temperature, ∆KTt, the cumulative excess return of the market

portfolio, Rem,K,t, and the cumulative consumption growth, ∆Kct (multiplied by 100); µ’s denote the corresponding

factor means. The estimates are obtained through an efficient GMM using ten book-to-market sorted portfolios.

T-statistics (in parenthesis) account for the estimation error in the factor means and are based on the Newey-West

estimator of the variance-covariance matrix with 4 ·K lags. The last two rows report the Sargan-Hansen test of

over-identifying restrictions (χ2) and its corresponding p-value. Estimated are based on quarterly data over the

1970Q1-2016Q4 period.
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Table A.II

Temperature Elasticity of Equity Valuations (Size/BM Portfolios)

Panel A: Temperature Elasticity

Horizon (K)

1-year 3-year 5-year

ϕK −0.032 −0.037 −0.053

(−1.85) (−2.05) (−3.89)

Panel B: Scaled Temperature Elasticity

Horizon (K)

1-year 3-year 5-year

ϕK −0.020 −0.023 −0.031

(−2.46) (−1.96) (−3.86)

Table A.II reports the response of equity valuations to temperature fluctuations based on the following panel regression
specification,

vi,t = v̄i + (ϕK · βi,LR)∆KTt + ϱi vi,t−1 + αi vt + εi,t ,

where vi,t is the log of the price-dividend ratio of portfolio i, v̄i is a portfolio-specific fixed effect, ∆KTt is the

standardized K-year change in U.S. temperature, vt is the price-dividend ratio of the market portfolio. In Panel A,

βi,LR = 1; in Panel B, the cross-sectional variation in temperature elasticity is governed by the long-run dividend

betas, βi,LR, measured by cointegration between log portfolio dividends and log aggregate consumption in the

1940-2016 sample. The coefficients on the lagged price-dividend ratio and on the market price-dividend ratio are

a function of the portfolio’s average log market-capitalization share (s̄i) and average book-to-market ratio (bmi),

namely, ϱi = ϱ + ϱss̄i + ϱbbmi, and αi = α + αss̄i + αbbmi. The table shows (semi) elasticities of price-dividend

ratios to temperature variations, ϕK , and the corresponding t-statistics (in parenthesis) that are based on standard

errors clustered by portfolio and time using the Newey and West (1987) estimator with three lags. The regression is

estimated by weighted least squared using 25 portfolios double sorted on market capitalization and book-to-market

ratio. The data are annual and cover the 1970-2016 period.
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Table A.III

Temperature Elasticity of Equity Valuations of Non-Emitters (Size/BM Portfolios)

Panel A: Temperature Elasticity

Threshold for Emitter Status

3% 5% 7%

ϕ5 −0.051 −0.051 −0.050

(−3.84) (−3.83) (−3.85)

Panel B: Scaled Temperature Elasticity

Threshold for Emitter Status

3% 5% 7%

ϕ5 −0.031 −0.031 −0.031

(−4.33) (−4.32) (−4.11)

Table A.III reports the response of equity valuations to temperature fluctuations based on the following panel regression
specification,

vi,t = v̄i + (ϕ5 · βi,LR)∆5Tt + ϱi vi,t−1 + αi vt + εi,t ,

where vi,t is the log of the price-dividend ratio of portfolio i, v̄i is a portfolio-specific fixed effect, ∆5Tt is the

standardized five-year change in U.S. temperature, vt is the price-dividend ratio of the market portfolio. In Panel

A, βi,LR = 1; in Panel B, the cross-sectional variation in temperature elasticity is governed by the long-run dividend

betas, βi,LR, measured by cointegration between log portfolio dividends and log aggregate consumption in the

1940-2016 sample. The coefficients on the lagged price-dividend ratio and on the market price-dividend ratio are

a function of the portfolio’s average log market-capitalization share (s̄i) and average book-to-market ratio (bmi),

namely, ϱi = ϱ + ϱss̄i + ϱbbmi, and αi = α + αss̄i + αbbmi. The table shows (semi) elasticities of price-dividend

ratios to temperature variations, ϕ5, and the corresponding t-statistics (in parenthesis) that are based on standard

errors clustered by portfolio and time using the Newey and West (1987) estimator with three lags. The regression is

estimated by weighted least squared using 25 portfolios double sorted on market capitalization and book-to-market

ratio. When forming portfolios we exclude industries that account for more than 3%, 5% and 7% of the industrial

emissions of at least one pollutant monitored by the Environmental Protection Agency (EPA) and regulated through

the Clean Air Act Amendments. The data are annual and cover the 1970-2016 period.
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Table A.IV

Temperature and Macro and Financial Factors

Horizon (K)

1-year 3-year 5-year

Market −0.11 −0.02 −0.30

Consummption 0.06 0.13 0.11

TFP shocks 0.18 0.10 0.08

Basu, Fernald, and Kimball (2006)

Leverage factor −0.03 −0.07 −0.07

Adrian, Etula, and Muir (2014)

Leverage factor −0.04 0.03 −0.14

He, Kelly, and Manela (2017)

Collateral constraint shocks −0.02 0.00 −0.06

Jermann and Quadrini (2012)

Equity issuance cost shocks −0.05 −0.06 −0.19

Belo, Lin, and Yang (2018)

Investment shocks 0.01 0.15 −0.05

Kogan and Papanikolaou (2014)

Sentiment change 0.07 0.04 0.05

Baker and Wurgler (2006)

Volatility shocks −0.20 0.00 0.08

Bansal, Kiku, Shaliastovich, and Yaron (2014)

Table A.IV reports correlations between temperature and various macro and financial factors. Temperature variations

are measured by the K-year change in U.S. temperature. The data are annual and cover the 1970-2016 period.
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Table A.V

List of Countries

Argentina Greece Philippines

Australia Hungary Poland

Belgium India Portugal

Brazil Indonesia Russia

Bulgaria Ireland Singapore

Canada Israel Slovenia

Chile Italy South Africa

China Jamaica South Korea

Colombia Japan Spain

Croatia Malaysia Sri lanka

Czech Republic Mexico Sweden

Denmark Morocco Switzerland

Egypt Netherlands Thailand

Finland New Zealand U.K.

France Norway U.S.A.

Germany Peru Venezuela

Table A.V provides a list of the countries in our data set.
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Table A.VI

Principal Components of Country-Level Temperature

Horizon (K)

1-year 3-year 5-year

1 60.85 75.38 83.07

2 15.30 11.03 7.53

3 4.48 3.83 3.62

4 3.65 1.96 1.53

5 3.30 1.60 1.05

Table A.VI reports the percentage of variance of country-level temperature explained by each of the first five principal

components of temperature. The principal components are computed using a panel of 48 countries over the 1970-2015

period.
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Table A.VII

Elasticity of Global Equity Prices to Temperature Variations

Horizon (K)

Sample 1-year 3-year 5-year

ϕK −0.002 −0.016 −0.015

(t-stat) (−0.21) (−2.29) (−1.96)[
p-value∗

] [
0.426

] [
0.029

] [
0.051

]

Table A.VII reports the response of global equity valuations to temperature fluctuations based on the following panel
regression specification,

vi,t = v̄i + ϕK ∆KTi,t + ϱr vi,t−1 + α′
r vt + ζ′xi,t + εi,t ,

where vi,t is the log of the price-dividend ratio of country i, v̄i is a country-specific fixed effect, ∆KTi,t is the

standardized K-year change in country-level temperature, vt is a vector of global controls that include the first two

principal components of the price-dividend ratios, and xi,t is a vector of country-level control variables that include

inflation, unemployment, the real interest rate, and GDP growth. The coefficients on vt and vi,t−1 vary across five

geographical regions, r. The table presents the estimates of the (semi) elasticity of equity valuations to temperature,

ϕK , and the corresponding t-statistics (in parenthesis) that are based on standard errors clustered by country and

time-region. P-value∗ (in brackets) is the fraction of Monte Carlo samples generated under the null that temperature

risks have no effect on equity prices in which t-statistics are lower than the sample statistics. The regression is

estimated using 48 countries over 1970-2015.
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Table A.VIII

Elasticity of Global Equity Prices to Long- and Short-Run Temperature Variations

Horizon (K)

3-year 5-year

ϕLRK −0.016 −0.015

(t-stat) (−2.33) (−1.99)[
p-value∗

] [
0.030

] [
0.050

]
ϕSRK 0.007 0.004

(t-stat) (0.74) (0.45)[
p-value∗

] [
0.976

] [
0.958

]

Table A.VIII reports the response of global equity valuations to temperature fluctuations based on the following
regression specification,

vi,t = v̄i + ϕLRK LRKi,t + ϕSRK SRKi,t + ϱr vi,t−1 + α′
r vt + ζ′xi,t + εi,t ,

where vi,t is the log of the price-dividend ratio of country i, v̄i is a country-specific fixed effect, LRKi,t represents

low-frequency fluctuations in temperature measured by the three- or five-year change in local temperature, SRKi,t

represents short-run temperature fluctuations measured by changes in annual temperature that are orthogonal

to long-run fluctuations, vt is a vector of global controls that include the first two principal components of the

price-dividend ratios, and xi,t is a vector of country-level control variables that include inflation, unemployment, the

real interest rate, and GDP growth. The coefficients on vt and vi,t−1 vary across five geographical regions, r. Short-

and long-run temperature variations are standardized. The table presents the estimated slope coefficients, ϕLR and

ϕSR, and the corresponding t-statistics (in parenthesis) that are based on standard errors clustered by country and

time-region. P-value∗ (in brackets) is the fraction of Monte Carlo samples generated under the null that temperature

risks have no effect on equity prices in which t-statistics are lower than the sample statistics. The regression is

estimated using 48 countries over the 1970-2015 period.
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Figure A.1. Trend in Country-Panel Temperature Data

Panel A of Figure A.1 shows the (normalized) first principal component of the five-year moving-average of local

temperature series. Panel B shows the histogram of the trend in local temperature measured by the change in

average temperature over the 2006-2015 period relative to the 1970-1979 average. The cross-sectional data comprise

48 countries; temperature is measured in degrees Celsius.
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