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Abstract. We study the implications of automation for labor market fluctuations in a

DMP framework, generalized to incorporate automation decisions. If a job opening is not

filled with a worker, a firm can choose to automate that position and use a robot instead of a

worker to produce output. The threat of automation strengthens the firm’s bargaining power

against job seekers in wage negotiations, depressing equilibrium real wages in a business cycle

boom. The option of automation increases the value of a vacancy, raising the incentive for

job creation, and thereby amplifying fluctuations in vacancies and unemployment relative

to the standard DMP framework. Since adopting robots improves measured productivity,

aggregate output rises more than wages and employment in good times, leading to a counter-

cyclical labor income share. Over the medium term, our model predicts steady declines in

the labor income share caused by steady declines in the cost of automation, inline with what

has actually transpired in the recent three decades in the United States.

I. Introduction

Recent development in robotics and artificial intelligence has raised concerns that robots

could render human workers redundant (Autor, 2015). Based on occupation-level data,

Frey and Osborne (2015) estimate that about 47 percent of U.S. employment is at risk of

being displaced by computerization. Acemoglu and Restrepo (2017) document evidence that

increases in the usage of industrial robots had significant impact on U.S. local labor markets.

The pessimistic view that machines will replace workers can be traced back to at least Keynes

(1930), who predicted (incorrectly) that the introduction of new technologies in the 1920s

would take away jobs and lead to widespread unemployment.

However, the notion of “machines replacing workers” is a over-simplification of the macroe-

conomic impact of automation. While robots have been increasingly adopted to perform
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standardized tasks previously performed by human workers, new tasks for which workers

have a comparative advantage are being created. And the development of those new tasks

is often spurred by automation of the standardized tasks (Acemoglu and Restrepo, 2018).

Thinking through the impact of automation on the macroeconomy requires a coherent theo-

retical framework. In this paper, we present a general equilibrium framework with a frictional

labor market and the option of automation to study the interactions between automation

and labor market variables, including wages, productivity, job creation, and labor income

share.

Our model builds on the standard Diamond-Mortensen-Pissarides (DMP) labor-search

model and generalizes it to incorporate automation decisions. The model has two key fea-

tures. First, firms create vacancies at a fixed cost. A vacancy is created if the realized i.i.d.

draw of the vacancy creation cost is below the value of the vacancy. Thus, unlike the standard

DMP model, there is no free entry in our model and a vacancy carries a positive value (Leduc

and Liu, 2019). Second, we incorporate endogenous automation decisions. After posting a

vacancy, a firm can fill the position with a worker and obtain the employment value. If the

position is not filled, the firm draws an automation cost. If the realized automation cost

is below the expected benefit of automation, then the position is automated, in which case

the firm uses a robot in place of a worker to produce output. If the unfilled position is not

automated because of high cost draws, then the position remains open and the firm receives

the continuation value of the vacancy.

In the aggregate economy, newly hired workers add to the employment pool, and a fraction

of the employment stock is separated in each period. Similarly, newly adopted robots add

to the automation stock, which becomes obsolete over time at a constant rate. Aggregate

output is the sum of output produced by workers and by robots.

We study the model’s propagation mechanism of business cycle shocks by estimating

the model to fit quarterly U.S. time series data. These time series include unemployment,

vacancies, real wage growth, and non-farm business sector labor productivity growth, with

a sample ranging from 1964:Q2 to 2018:Q4. Our estimated model implies a steady-state

probability of automation of about 10 percent per quarter, in line with the microeconomic

evidence (Frey and Osborne, 2015; Nedelkoska and Quintini, 2018).

Our estimation suggests that automation-specific technology shocks explain about 20 per-

cent of the observed fluctuations in unemployment and vacancies, and over 70 percent of the

fluctuations in labor productivity growth. A neutral technology shock accounts for about 15

percent of the fluctuations in unemployment and vacancies, and most of the fluctuations in

real wage growth. Consistent with the findings of Hall (2017), a discount factor shock in our

model plays a quantitatively important role for explaining the dynamics of unemployment
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and vacancies, accounting for about 50-60 percent of their fluctuations. A job separation

shock explains a modest fraction (15 percent) of the fluctuations in vacancies, but it is not

important for other labor market variables, in line with Shimer (2005).

Our model also suggests that the threat of automation dampens wage fluctuations relative

to unemployment and vacancies. The volatility of the vacancy-unemployment ratio (i.e., the

v-u ratio), which is a measure of labor market tightness, is about 10 times that of the real

wage rate, much higher than that obtained from the standard DMP model, which has diffi-

culties in generating the observed relative volatility of the v-u ratio because of flexible wage

adjustments (Shimer, 2005). In our model, the option of automating an unfilled position

raises the reservation value for firms and thus strengthens the firm’s bargaining power. Fol-

lowing a positive technology shock, a worker’s productivity rises, putting upward pressure on

the real wage rate. However, the value of automation and thus the incidence of automation

also increase, raising the the firm’s reservation value (which is the value of a vacancy) and

weakening the work’s bargaining power. This would put downward pressure on the real wage

rate. Our model thus creates an endogenous real wage rigidity, contributing to generating

large fluctuations in the labor market tightness.

The increase in automation value in good times also induces a stronger incentive for firms

to create job positions. With a greater fraction of job positions automated, aggregate out-

put rises at a faster pace than employment, leading to an increase in aggregate productivity.

Meanwhile, since wages are endogenous rigid, the labor income share declines. The counter-

cyclical labor income share is consistent with U.S. evidence.

Our model is a stylized way of thinking about automation and labor markets. To keep

the model tractable, we assume that automation applies to a job position. We interpret a

job position broadly as consisting of a bundle of tasks, which are ex ante identical, but a

fraction of which will be automated depending on the realization of the idiosyncratic costs

for automation. This approach simplifies our analysis significantly. Acemoglu and Restrepo

(2018) use an alternative approach to studying automation. Building on the earlier work

of Zeira (1998), they consider a job consisting of a continuum of tasks, a fraction of which

are automatable, the others need to be performed by human workers (see also Autor and

Salomons (2018)). These studies abstract from labor market frictions. Our paper adds to the

literature by incorporating automation in a DMP framework. Furthermore, by estimating the

general equilibrium model to fit U.S. time-series data, our work also provides a quantitative

assessment of the importance of automation for propagating labor market dynamics over the

business cycles.
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II. The model with labor market frictions and automation

This section presents a DSGE model that generalizes the standard DMP model to incor-

porate endogenous decisions of automation.

To keep automation decisions tractable, we impose some assumptions on the timing of

events. In the beginning of period t, a job separation shock δt realizes. Workers who lose

their jobs adds to the stock of unemployment from the previous period, forming the pool

of job seekers ut. Firms post vacancies vt at a fixed cost κ. The stock of vacancies vt

includes the unfilled vacancies that were not automated at the end of period t− 1, the jobs

separated in the beginning of period t, and new vacancies created in the beginning of period

t. Creating a new vacancy incurs a fixed cost, which is drawn from an i.i.d. distribution

G(·) as in Leduc and Liu (2019). In the labor market, a matching technology transforms job

seekers and vacancies into an employment relation, with a wage rate determined through

Nash bargaining between the employer and the job seeker. Once an employment relation

is formed, production takes place, and the firm receives the employment value. An unfilled

vacancy can be either carried forward to the next period or automated at a fixed cost. Similar

to the vacancy creation cost, the automation cost x is drawn from an i.i.d. distribution F (x).

If a firm draws an automation cost that is below a threshold value x∗t , then the firm adopts

a robot and closes the job opening. In that case, the firm obtains the automation value.

Otherwise, the vacancy remains open and the firm receives the continuation value of the

vacancy. Newly adopted robots add to the stock of automation, which becomes obsolete

over time at a constant rate ρo. Final goods output is the sum of the goods produced by

workers and by robots. The final good is used for household consumption and also for paying

the costs of vacancy posting, new vacancy creation, and robot adoption.

II.1. The Labor Market. In the beginning of period t, there are Nt−1 existing job matches.

A job separation shock displaces a fraction δt of those matches, so that the measure of

unemployed job seekers is given by

ut = 1− (1− δt)Nt−1, (1)

where we have assumed full labor force participation and normalized the size of the labor

force to one.

The job separation rate shock δt follows the stationary stochastic process

ln δt = (1− ρδ) ln δ̄ + ρδ ln δt−1 + εδt, (2)

where ρδ is the persistence parameter and the term εδt is an i.i.d. normal process with a

mean of zero and a standard deviation of σδ. The term δ̄ denotes the steady-state rate of

job separation.
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The stock of vacancies vt in the beginning of period t consists of the vacancies in period

t− 1 that were not filled with workers and not automated, plus the displaced job positions

and newly created vacancies. The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat−1))vt−1 + δtNt−1 + ηt, (3)

where qvt−1 denotes the job filling rate in period t − 1, qat−1 denotes the automation rate in

period t− 1, and ηt denotes the newly created vacancies (i.e., entry).

In the labor markert, new job matches are formed between job seekers and open vacancies

based on the matching function

mt = µuαt v
1−α
t , (4)

where mt denotes the number of job matches (or hiring) and α ∈ (0, 1) is the elasticity of

job matches with respect to the number of job seekers.

The flow of new job matches adds to the employment pool and job separations subtract

from it. Aggregate employment evolves according to the law of motion

Nt = (1− δt)Nt−1 +mt. (5)

At the end of period t, the searching workers who failed to find a job match remain

unemployed. Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (6)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (7)

Similar, we define the job filling probability qvt as

qvt =
mt

vt
. (8)

II.2. The firms. If a firm successfully hires a worker, then it can produce Zt units of

intermediate goods. The technology shock Zt follows the stochastic process

lnZt = (1− ρz) ln Z̄ + ρz lnZt−1 + εzt. (9)

The parameter ρz ∈ (−1, 1) measures the persistence of the technology shock. The term εzt

is an i.i.d. normal process with a zero mean and a finite variance of σ2
z . The term Z̄ is the

steady-state level of the technology shock.1

The value of employment satisfies the Bellman equation

Jet = Zt − wt + EtDt,t+1

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (10)

1The model can easily be extended to allow for trend growth. We do not present that version of the

model to simplify presentation.
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where Dt,t+1 is a stochastic discount factor of the households. Hiring a worker generates a

flow profit Zt − wt in the current period. If the job is separated in the next period (with

probability δt+1), then the firm receives the vacancy value Jvt+1. Otherwise, the firm receives

the continuation value of employment.

Following Leduc and Liu (2019), we assume that creating a new vacancy incurs an entry

cost e in units of consumption goods. The entry cost is drawn from an i.i.d. distribution

F (e). A new vacancy is created if and only if the net value of entry is non-negative. The

benefit of creating a new vacancy is the vacancy value Jvt . Thus, the number of new vacancies

ηt is given by the cumulative density of the entry costs evaluated at Jvt . That is,

ηt = F (Jvt ). (11)

Posting a vacancy incurs a per-period fixed cost κ (in units of final consumption goods).

If the vacancy is filled (with probability qvt ), the firm obtains the employment value Jet . If

the vacancy is not filled, then the firm can choose to automate the position and close the

vacancy (with probability qat ), in which case the firm obtains the automation value Jat . If

the firm does not automate the unfilled position, then it receives the continuation value of

the vacancy. Thus, the vacancy value satisfies the Bellman equation

Jvt = −κ+ qvt J
e
t + (1− qvt )qat Jat + (1− qvt )(1− qat )EtDt,t+1J

v
t+1. (12)

The flow of automated job positions adds to the stock of automation, which becomes

obsolete at the rate ρo ∈ [0, 1] in each period. Thus, the automation stock At evolves

according to the law of motion

At = (1− ρo)At−1 + qat vt, (13)

where qat vt is the number of jobs that are newly automated in period t.

Once adopted, a robot produced Ztζt units of output, where ζt denotes an equipment-

specific technology shock, which follows a stochastic process that is independent of the

neutral technology shock Zt. In particular, ζt follows the stationary process

ln ζt = (1− ρζ) ln ζ̄ + ρζ ln ζt−1 + εζt. (14)

The parameter ρζ ∈ (−1, 1) measures the persistence of the automation-specific technology

shock. The term εζt is an i.i.d. normal process with a zero mean and a finite variance of σ2
ζ .

The term ζ̄ is the steady-state level of the automation-specific technology shock.

Operating the robot incurs a flow fixed cost of κa. The value of automation satisfies the

Bellman equation

Jat = Ztζt − κa + (1− ρo)EtDt,t+1J
a
t+1, (15)

where the term κa captures the costs of energy, facilities, and space for automated production.
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Automating a vacancy requires a fixed cost x in units of consumption goods. The fixed

cost is drawn from the i.i.d. distribution G(x). A firm chooses to adopt a robot if and only

if the cost of automation is less than the benefit. For any given benefit of automation, there

exists a threshold value x∗t in the support of the distribution G(x), such that automation

occurs if and only if x ≤ x∗t . The threshold value x∗t depends on the value of automation Jat

relative to the continuation value of a vacancy. In particular, the threshold for automation

decision is given by

x∗t = Jat − EtDt,t+1J
v
t+1. (16)

Thus, the probability of automation is the cumulative density of the automation costs eval-

uated at x∗t . More formally, the automation probability is determined by

qat = G(x∗t ). (17)

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βtΘt (lnCt − χNt) , (18)

where E [·] is an expectation operator, Ct denotes consumption, and Nt denotes the fraction

of household members who are employed. The parameter β ∈ (0, 1) denotes the subjective

discount factor, and the term Θt denotes an exogenous shifter to the subjective discount

factor.

The discount factor shock θt ≡ Θt
Θt−1

follows the stationary stochastic process

ln θt = ρθ ln θt−1 + εθt. (19)

In this shock process, ρθ is the persistence parameter and the term εθt is an i.i.d. normal

process with a mean of zero and a standard deviation of σθ. Here, we have implicitly assumed

that the mean value of θ is one.

The representative household chooses consumption Ct and savings Bt to maximize the

utility function in (18) subject to the sequence of budget constraints

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt) + dt − Tt, ∀t ≥ 0, (20)

where rt denotes the gross real interest rate, wt denotes the real wage rate, dt denotes the

household’s share of firm profits, and Tt denotes lump-sum taxes. The parameter φ measures

the flow benefits of unemployment.

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max lnCt − χNt + βEtθt+1Vt+1(Bt, Nt), (21)
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subject to the budget constraint (20) and the employment law of motion (5), the latter of

which can be written as

Nt = (1− δt)Nt−1 + quut, (22)

where we have used the definition of the job finding probability qut = mt
ut

, with the measure

of job seekers ut given by Eq. (1). In the optimizing decisions, the household takes the

economy-wide job finding rate qut as given.

Define the employment surplus (i.e., the value of employment relative to unemployment)

as SHt ≡ 1
Λt

∂Vt(Bt−1,Nt−1)
∂Nt

, where Λt denotes the Lagrangian multiplier for the budget con-

straint (20). We show in the Appendix that the employment surplus satisfies the Bellmand

equation

SHt = wt − φ−
χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)SHt+1, (23)

where Dt,t+1 ≡ βθt+1Λt+1

Λt
is the stochastic discount factor, which applies to both the house-

hold’s intertemporal optimization and the firms’ decisions.

The employment surplus has a straightforward economic interpretation. If the household

adds a new worker in period t, then the current-period gain would be wage income net of the

opportunity costs of working, including unemployment benefit and the disutility of working.

The household also enjoys the continuation value of employment if the employment relation

continues. Having an extra worker today adds to the employment pool tomorrow (if the

employment relation survives job separation); however, adding a worker today would also

reduce the pool of searching workers tomorrow, a fraction qut+1 of whom would be able to

find jobs. Thus, the marginal effect of adding a new worker in period t on employment in

period t + 1 is given by (1 − qut+1)(1 − δt+1), resulting in the effective continuation value of

employment shown in the last term of Eq. (23).

We also show in the appendix that the household’s optimizing consumption-savings deci-

sion implies the intertemporal Euler equation

1 = EtDt,t+1rt. (24)

II.4. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage optimally splits of the joint surplus

of a job match between the worker and the firm. The worker’s employment surplus is given

by SHt in Eq. (23). The firm’s surplus is given by Jet − Jvt . The possibility of automation

affects the value of a vacancy, and thus indirectly affects the firm’s reservation value and

their bargaining decisions.

The Nash bargaining problem is given by

max
wt

(
SHt
)b

(Jet − Jvt )1−b , (25)
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where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Jet − Jvt + SHt . (26)

Then the bargaining solution is given by

Jet − Jvt = (1− b)St, SHt = bSt. (27)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.

The bargaining solution (27) and the expression for household surplus in equation (23)

together imply that the Nash bargaining wage wNt satisfies the Bellman equation

b

1− b
(Jet − Jvt ) = wNt − φ−

χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1). (28)

II.5. Government policy. The government finances unemployment benefit payments φ for

unemployed workers through lump-sum taxes. We assume that the government balances the

budget in each period so that

φ(1−Nt) = Tt. (29)

II.6. Search equilibrium. In a search equilibrium, the markets for bonds and goods all

clear. Since the aggregate bond supply is zero, the bond market-clearing condition implies

that

Bt = 0. (30)

Goods market clearing requires that consumption spending, search and recruiting costs,

and vacancy creation costs add up to aggregate production. This requirement yields the

aggregate resource constraint

Ct + κvt + vt

∫ x∗t

0

xdG(x) +

∫ Jvt

0

edF (e) = Yt, (31)

where Yt denotes aggregate output. In this equation, the first integration term on the left-

hand side corresponds to the aggregate cost of automation, with x∗t = Jat − EtDt,t+1J
v
t+1.

The second integral corresponds to the aggregate cost of vacancy creation.

Aggregate output is sum of goods produced by workers and by robots. Specifically, it is

given by

Yt = ZtNt + ZtζtAt. (32)
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III. Empirical Strategies

We solve the model by log-linearizing the equilibrium conditions around the deterministic

steady state.2 We calibrate a subset of the parameters to match steady-state observations

and the empirical literature. We estimate the remaining structural parameters and the shock

processes to fit U.S. time-series data.

We focus on the parameterized distribution functions

F (e) =
(e
ē

)ηv
, G(x) =

(x
x̄

)ηa
, (33)

where ē > 0 and x̄ > 0 are the scale parameters and ηv > 0 and ηa > 0 are the shape

parameters of the distribution functions. We set ηv = 1 and ηa = 1, so that both the

vacancy creation cost and the automation cost follow a uniform distribution.3 We estimate

the scale parameters ē and x̄ by fitting the model to U.S. time series data.

III.1. Parameter calibration. Table 1 shows the calibrated parameter values.

We consider a quarterly model. We set β = 0.99, so that the model implies a annualized

real interest rate of about 4 percent in the steady state. We set α = 0.5 following the

literature (Blanchard and Gaĺı, 2010; Gertler and Trigari, 2009). In line with Hall and

Milgrom (2008), we set b = 0.5 and φ = 0.25. Based on the data from JOLTS, we calibrate

the steady-state job separation rate to δ̄ = 0.10 at the quarterly frequency. We set ρo = 0.03,

so that equipment depreciates at an average rate of 12 percent per year. We normalize the

level of labor productivity to Z̄ = 1 and equipment-specific productivity to ζ̄ = 1.

We target a steady-state unemployment rate of U = 0.055. We can then solve for the

steady-state employment N = 1 − U , hiring m = δ̄N , and the number of job seekers

u = 1 − (1 − δ̄)N . The job finding rate is given by qu = m
u

. We target a steady-state job

filling rate qv of 0.6415 per month based on the empirical estimation in Davis et al. (2013)

using establishment-level JOLTS data.4 The implied stock of vacancies is v = m
qv

. The scale

of the matching efficiency is then given by µ = m
uαv1−α

= 0.7765. We set the flow cost of

operating robots to κa = 0.98. Given the average productivities Z̄ = ζ̄ = 1, this implies a

quarterly profit of 2 percent of the revenue by using a robot for production. The steady-state

automation value Ja can then be solved from the Bellman equation (15).

2Details of the equilibrium conditions, the steady state, and the log-linearized system are presented in

the appendix.
3We also experiment with different values of η to match some key moments in the distribution of the

automation probabilities across occupations documented by Frey and Osborne (2017).
4Davis et al. (2013) estimate that the daily job filling rate averages about 0.05. Assuming that one

month consists of 20 business days, we can infer the monthly job filling rate qv from the daily rate f = 0.05

by using the relation fm = f +f(1−f)+f(1−f)2 + · · ·+f(1−f)19 = 1− (1−f)20 = 0.6415. The quarterly

job filling rate is given by qv = 1− (1− fm)3 = 0.9539.
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Conditional on Ja and the estimated values of ē and x̄ (see below for estimation details),

we use the vacancy creation condition (11), the automation adoption condition (16), and

law of motion for vacancies (3) to obtain the steady-state probability of automation, which

is given by

qa =
Ja

x̄+ βē(1− qv)v
.

Given qa and v, the stock of automation A can be solved from the law of motion (13), which

reduces to ρoA = qav in the steady state. Aggregate output is given by Y = Z̄(N + ζ̄A).

Given the solution for Y , we calibrate the vacancy posting cost to κ = 0.1225, implying

that the steady-state vacancy posting cost is about one percent of aggregate output (i.e.,

κv = 0.01Y ).

The law of motion for vacancies implies that the flow of new vacancies is given by η =

qa(1− qv)v. The vacancy value is then given by Jv = ēη.

Given Jv and Ja, we obtain the cutoff point for robot adoption x∗ = Ja−βJv. The match

value Je can be solved from the Bellman equation for vacancies (12), and the equilibrium

real wage rate can be obtained from the Bellman equation for employment (10). Steady-

state consumption is solved from the resource constraint (31). We then infer the value of

χ = 0.6956 from the expression for bargaining surplus in Eq. (28).

III.2. Estimation. We now describe our estimation approach.

III.2.1. Data and measurement. We fit the DSGE model to four quarterly U.S. time series:

the unemployment rate, the job vacancy rate, the growth rate of average labor productivity

in the non-farm business sector, and the growth rate of the real wage rate. The sample

covers the range from 1964:Q2 to 2018:Q4.

The unemployment rate in the data (denoted by Udata
t ) corresponds to the end-of-period

unemployment rate in the model Ut. We demean the unemployment rate data (in log units)

and relate it to our model variable according to

ln(Udata
t )− ln(Udata) = Ût, (34)

where Udata denotes the sample average of the unemployment rate in the data and Ût denotes

the log-deviations of the unemployment rate from its steady-state value in the model.

Similarly, we use demeaned vacancy rate data (also in log units) and relate it to the model

variable according to

ln(vdatat )− ln(vdata) = v̂t, (35)

where vdata denotes the sample average of the vacancy rate data and v̂t denotes the log-

deviations of the vacancy rate from its steady-state value in the model. Our vacancy series
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for the periods prior to 2001 is the vacancy rate constructed by Barnichon (2010) based on

the Help Wanted Index. For the periods after 2001, we use the JOLTS vacancy rate.

In the data, we measure labor productivity by the average labor productivity in the

non-farm business sector. We use the demeaned quarterly log-growth rate of productivity

(denoted by ∆ ln pdatat ) and relate it to our model variable according to

∆ ln(pdatat )−∆ ln(pdata) = Ŷt − N̂t − ( ˆYt−1 − ˆNt−1), (36)

where ∆ ln(pdata) denotes the sample average of productivity growth, and Ŷt and N̂t denote

the log-deviations of aggregate output and employment from their steady-state levels in our

model.

We measure the real wage rate in the data by the average hourly earnings of production

and nonsupervisory workers in private industries, deflated by the chain personal consumption

expenditure (PCE) price index. We related the observed real wage growth to the model

variables by the measurement equation

∆ ln(wdatat )−∆ ln(wdata) = ŵt − ŵt−1, (37)

where wdatat denotes the real wage rate in the data, ∆ ln(wdatat ) denotes the log growth rate

of real wages, and ŵt denotes the log-deviations of real wages from its steady-state level in

our model.

III.2.2. Prior distributions and posterior estimates. The prior and posterior distributions of

the estimated parameters from our benchmark model are displayed in Table 2.

The priors for the structural parameters ē and x̄ are drawn from the gamma distribution.

We assume that the prior mean of each of these three parameters is 5, with a standard devi-

ation of 1. The priors of the persistence parameter of each shock follow the beta distribution

with a mean of 0.8 and a standard deviation of 0.1. The priors of the volatility parameter of

each shock follow an inverse gamma distribution with a prior mean of 0.01 and a standard

deviation of 0.1.

The posterior estimates and the 90 percent probability intervals for the posterior distribu-

tions are displayed in the last three columns of Table 2. The posterior mean estimate of the

vacancy creation cost parameter is ē = 7.07. The posterior mean estimates of the automation

cost parameter is x̄ = 6.17. These parameters imply a steady-state automation probability

of about 10 percent per quarter, which lies in the range estimated in the empirical litera-

ture (Frey and Osborne, 2015; Nedelkoska and Quintini, 2018). The 90-percent confidence

intervals indicate that the data are informative about these structural parameters.
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The posterior estimation suggests that the neutral technology shock, the discount factor

shock, and the automation-specific technology shock are all highly persistent, with the pos-

terior means of the AR(1) parameters at ρz = 0.9765, ρθ = 0.9788, and ρζ = 0.978. The

job separation shock is slightly less persistent, with ρδ = 0.9466. The standard deviations

of the neutral technology shock (σz = 0.0234) is smaller than the other shocks. The esti-

mated volatility of the automation-specific shock is the greater than the other shocks, with

σζ = 0.0773). The discount factor shock is also highly volatile, with σθ = 0.0568. The job

separation shock has a modest volatility of σδ = 0.0428.

IV. Economic implications

We now examine the model’s transmission mechanism and its quantitative performance

for explaining the labor market dynamics.

IV.1. The model’s transmission mechanism. The equilibrium dynamics in our model

are driven by both the exogenous shocks and the model’s internal propagation mechanism.

To help understand the contributions of the shocks and the model’s mechanism, we examine

forecast error variance decompositions and impulse response functions.

IV.1.1. Forecast error variance decompositions. Table 3 displays the unconditional forecast

error variance decompositions for the four observable labor market variables used for our

estimation.5

The variance decompositions suggest that the discount factor shock is important for the

observed business cycle dynamics of unemployment and vacancies, accounting for about 50-

60 percent of their fluctuations. Automation-specific shock explains about 20 percent and the

neutral technology shock accounts for about 15 percent of the variances of unemployment and

vacancies. Fluctuations in the real wage growth are mostly driven by the neutral technology

shock, which accounts for over 90 percent of the wage fluctuations. The observed labor

productivity fluctuations are mainly driven by the automation-specific shock, which explains

about 70 percent of the variance. It is also partly explained by neutral technology shocks,

which account for about 20 percent of the variance.

The importance of the discount factor shock for unemployment and vacancies has been

emphasized by Hall (2017) and confirmed in an estimated DSGE model by Leduc and Liu

(2019). Since a discount factor shock directly affects the present values of a job match, an

open vacancy, and the employment surplus for a job seeker, it contributes to explaining the

observed fluctuations in unemployment and vacancies.

5We have also computed the conditional forecast error variance decompositions with forecasting horizons

between 4 quarters and 16 quarters and found that they deliver the same message as the unconditional

variance decomposition.
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In our model with automation, there is a new mechanism that propagates neutral and

automation-specific technology shocks to drive fluctuations in unemployment and vacancies.

Since firms have the option of automation if a vacancy is not filled, it raises the vacancy value,

which creates two effects. First, the increased vacancy value induces more vacancy creation,

boosting the job finding rate and employment. Second, the increased vacancy value also

raises the firm’s outside option in wage bargaining, leading to smaller real wage adjustments

over the business cycles. Both effects serve to amplify the fluctuations in unemployment

and vacancies, while dampening wage fluctuations. This mechanism through automation

enables both neutral technology shock and automation-specific shock to drive fluctuations

in the labor market variables.

Job separation shocks do not play a big role in labor market fluctuations, except for va-

cancies, for which they account for about 17 percent of the variance. As noted by Shimer

(2005), job separation shocks generate a counterfactually positive correlation between unem-

ployment and vacancies. Accordingly, in our estimated model, this shock plays a relatively

minor role.

IV.1.2. Impulse responses. Figure 1 shows the impulse responses of several key labor market

variables to a one-standard-deviation neutral technology shock, in two different models:

our benchmark model (the black solid lines) and a standard DMP model (the blue dashed

line). The standard model here corresponds to a version our benchmark, where we keep the

automation probability and the automation stock at their steady-state levels.

Figure 2 shows the impulse responses of the labor market variables to a one-standard-

deviation discount factor shock in the benchmark model and the counterfactual DMP model.

[discussions to be included]

V. Conclusion

[To be added]
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

φ Unemployment benefit 0.25

α Elasticity of matching function 0.50

µ Matching efficiency 0.7765

δ̄ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κ Vacancy posting cost 0.1225

b Nash bargaining weight 0.50

ηv Elasticity of vacancy creation cost 1

ηa Elasticity of automation cost 1

ra Flow cost of automated production 0.98

χ Mean value of preference shock 0.6956

Z̄ Mean value of neutral technology shock 1

ζ̄ Mean value of equipment-specific technology shock 1
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Table 2. Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

ē scale for vacancy creation cost G [5, 1] 7.0736 5.6958 8.4619

x̄ scale for robot adoption cost G [5, 1] 6.1681 4.3781 7.7361

ρz AR(1) of neutral technology shock B [0.8, 0.1] 0.9765 0.9699 0.9844

ρθ AR(1) of discount factor shock B [0.8, 0.1] 0.9788 0.9668 0.9926

ρδ AR(1) of separation shock B [0.8, 0.1] 0.9466 0.9187 0.9722

ρζ AR(1) of automation-specific shock B [0.8, 0.1] 0.9780 0.9703 0.9855

σz std of tech shock IG [0.01, 0.1] 0.0234 0.0213 0.0252

σθ std of discount factor shock IG [0.01, 0.1] 0.0568 0.0465 0.0690

σδ std of separation shock IG [0.01, 0.1] 0.0469 0.0428 0.0507

σζ std of automation-specific shock IG [0.01, 0.1] 0.0773 0.0595 0.0915

Note: This table shows our benchmark estimation results. For the prior distribution types,

we use G to denote the gamma distribution, B the beta distribution, and IG the inverse

gamma distribution.
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Table 3. Forecasting Error Variance Decomposition

Variables Neutral Discount Job Automation-

technology shock factor shock separation shock specific shock

Unemployment 16.31 60.35 1.29 22.05

Vacancy 13.94 51.08 16.94 18.04

Productivity growth 19.97 7.70 0.02 72.31

Real wage growth 95.72 3.85 0.02 0.41

Note: The numbers reported are the posterior mean contributions (in percentage terms) of

each of the four shocks in the benchmark estimation to the forecast error variances of the

variables listed in the rows.
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Figure 1. Impulse responses to a positive neutral technology shock: bench-

mark model vs. standard DMP model.
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model vs. standard DMP model.
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Appendix A. Summary of equilibrium conditions

A search equilibrium is a system of 19 equations for 19 variables summarized in the vector[
Ct, rt, Yt,mt, ut, vt, q

u
t , q

v
t , q

a
t , Nt, Ut, ηt, J

e
t , J

v
t , J

a
t , At, x

∗
t , w

N
t , wt

]
.

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 = Etβθt+1
Ct
Ct+1

rt, (A1)

(2) Matching function

mt = µuαt v
1−α
t , (A2)

(3) Job finding rate

qut =
mt

ut
, (A3)

(4) Vacancy filling rate

qvt =
mt

vt
, (A4)

(5) Employment dynamics:

Nt = (1− δt)Nt−1 +mt, (A5)

(6) Number of searching workers:

ut = 1− (1− δt)Nt−1, (A6)

(7) Unemployment:

Ut = 1−Nt, (A7)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat−1)vt−1 + δtNt−1 + ηt, (A8)

(9) Automation dynamics

At = (1− ρo)At−1 + qat vt, (A9)

(10) Employment value

Jet = Zt − wt + Etβθt+1
Ct
Ct+1

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (A10)

(11) Vacancy value

Jvt = −κ+ qvt J
e
t + (1− qvt )qat Jat + (1− qvt )(1− qat )Etβθt+1

Ct
Ct+1

Jvt+1. (A11)
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(12) Automation value

Jat = Ztζt − κa + (1− ρo)Etβθt+1
Ct
Ct+1

Jat+1, (A12)

(13) Automation threshold

x∗t = Jat − Etβθt+1
Ct
Ct+1

Jvt+1. (A13)

(14) Robot adoption

qat =

(
x∗t
x̄

)ηa
(A14)

(15) Vacancy creation

η =
Jvt
ē

(A15)

(16) Aggregate output

Yt = ZtNt + ZtζtAt. (A16)

(17) Resource constraint

Ct + κvt +
ηa

1 + ηa
qat x

∗
tvt +

1

2
ηtJ

v
t = Yt, (A17)

(18) Nash bargaining wage:

b

1− b
(Jet − Jvt ) = wNt − φ− χCt + Et

βθt+1Ct
Ct+1

(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1). (A18)

(19) Actual real wage (with real wage rigidity)

wt = wγt−1(wNt )1−γ, (A19)


