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Abstract

This paper develops an approach to measuring labor market power that builds on the struc-
ture of a canonical search model. We relax the common assumption of a continuum of firms and
assume that large employers exert market power in the wage bargain by effectively eliminating
their own future job openings from a worker’s threat point. This granular extension yields a
micro-founded concentration index similar to the Herfindahl and a structural mapping between
the index and worker compensation. We extend the model to allow for firm level productivity
differences. We then use the model as an accounting device to measure the contribution of labor
market concentration to the level and evolution of mean wages in Austrian labor markets. To
do so, we define labor markets endogenously by clustering firms based on worker flows.
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An intuitively appealing approach to measuring the role of market power in the labor market is

to compare measures of labor market concentration to measures of wages.1 This approach allows

researchers to assess the role of employer market power in depressing wages relative to an economy

in which employers do not have market power. It also allows researchers to assess how changes in

concentration contribute to changes in wages. Notably, an increase in labor market concentration

could contribute to the decline in the aggregate labor share (e.g., Karabarbounis and Neiman

(2014)).

In this paper, we develop a model that provides a new microfoundation for a structural re-

lationship between concentration and wages. To do so, we build on the structure of a canonical

search model in the Diamond-Mortensen-Pissarides tradition, but relax the assumption of a contin-

uum of firms. We further assume that non-atomistic employers exert market power by effectively

eliminating their own future job openings from a worker’s threat point in the wage bargain. As a

consequence, the distribution of employment shares matters and we derive a direct mapping from

an empirical concentration measure to average wages.

We then use our framework to gauge the consequences of levels and trends in labor market

concentration over time for wages in the Austrian labor market from 1997 to 2015. In so doing, we

offer two contributions to the literature: first, we use our model to interpret the underlying patterns

in the data and translate these patterns into interpretable economic quantities; second, we define

labor markets in a data-driven way using worker flows, rather than relying on ad hoc definitions

such as various combinations of industry and geography. We find that eliminating employer market

power by moving to the atomistic benchmark would raise wages by about eight percentage points.

We also find that over our sample period concentration has decreased, and so changes in market

structure have increased wages and the labor share.

The model we build has a couple key ingredients. The first key ingredient is that employers

each control a strictly positive fraction of job openings and unemployed workers apply to these in

a process that is subject to coordination frictions. As a consequence, vacancies frequently have

multiple applicants they can choose from.

The second key ingredient is that wages are set through standard Nash-bargaining with the

twist that the firm can manipulate the worker’s threat point. We assume that if the firm and

worker fail to reach an agreement and the disagreeing worker applies to another job opening at the

firm, then the firm would select another worker from the queue of applicants. Thus, the threat

allows the firm not to compete with its own job openings. Because most vacancies receive multiple

applications, this form of punishment is costless for the firm (and the firm only carries out this

punishment when it is costless).

Within the model, we derive a closed form expression for average wages which shows that market

1Boal and Ransom (1997) suggest that Bunting (1962) represents the earliest version of this regression. Bunting
(1962, Appendix 16) finds a positive relationship between wages and concentration. Recently, there has been a surge
of papers computing measures of concentration and relating these measures to wages. A presumably incomplete
list includes: Azar, Marinescu, and Steinbaum (2017), Azar et al. (2018), Benmelech, Bergman, and Kim (2018),
Hershbein, Macaluso, and Yeh (2018), Lipsius (2018), Qui and Sojourner (2019), and Rinz (2018).
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structure is summarized by a particular concentration measure. This measure is distinct from the

standard Herfindahl-Hirschman Index (HHI) since it places more weight on large employers, but

shares the same limits and can be just as easily computed in the data. This measure of concentration

affects two wedges which reduce compensation relative to the atomistic benchmark. These wedges

reflect first, the deterioration of the outside option because all employers act in this fashion, and,

second, the improvement of the inside option since reaching an agreement frees the applicant from

this threat.

To make the model a useful accounting device, we then extend it to allow for firms to differ

in both productivity and size. We show that the same structural mapping between concentration

and worker outcomes exists with an additional term. The additional term measures productivity-

weighted concentration weighted by the covariance between employment and productivity. The

model yields a clean decomposition of the effects of changes in concentration and productivity-

weighted concentration on wages.

To measure productivity-weighted concentration, we show that the model implies a closed-form

and simple-to-compute inversion from wages and size to productivity. In the model, wages depend

on the firm’s size, the firm’s productivity as well as the distribution of productivity and employment

shares across firms. Once we measure size and wages, we can back out productivity.

Finally, we show that the pass-through of firm-level productivity to wages is decreasing in size,

but independent of market structure. As a consequence, the exercise of market power generates

wage dispersion, but in a form that does not per se depend on market-wide concentration.

We then take our model to the data. Our empirical setting is Austria from 1997-2015. We face

the basic challenge of market definition: what counts as a labor market? We build on Nimczik

(2018) to define labor markets based on worker flows. Formally, we cluster firms on the basis of

workers flows, where our model of clustering is a stochastic block model. This endogenous notion

makes market definition an empirical question, rather than an a priori choice such as geography or

industry (though we also report results at the level of geography and industry). We find that the

number of labor markets that maximizes the objective function is 369. As discussed in more detail

in Nimczik (2018), some of these labor markets span geography and industry, while others capture

more conventional measures.

We present four sets of results. Our first set of results concerns trends in concentration. We

find that the level and trends in the HHI and our measure of concentration are very similar: both

follow a u-shape over the sample period, and the magnitude is around 0.11. The size-productivity

concentration wedge, however, moves differently. It is flat and then declines towards the end of

the sample period. The feature of the data that drives this decline is that the size-wage gradient

decreases over the sample period, which has also been documented in the U.S. (Bloom et al. (2018)).

Intuitively, the way the model explains large firms paying higher wages is large firms being more

productive. So the declining size-wage gradient contributes to a declining contribution from the

productivity-weighted concentration wedge.

Our second set of results concerns counterfactuals in the trends of wages. We find, perhaps
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counterintuitively, that the change in the productivity-concentration wedge has led to a decline in

wages. The reason for this divergence from the trend is that the model implies non-linear effects of

our various concentration measures on wages, and we report results averaged over markets. In con-

trast, the changes in the concentration measure offset the declines in the productivity-concentration

wedge so that the changes in market structure led to an increase in wages of about three percentage

points from 1997 to 2015.

Our third set of results concerns counterfactuals in the level of wages relative to the atomistic

benchmark. That is, we ask the question: what would happen to wages if the fundamentals

remained the same, but firms behaved as if they did not have market power? We find that shutting

down the the productivity-concentration wedge would raise wages by about two percentage points,

while additionally shutting down the direct effects of concentration would lead to a total increase

in wages of about eight percentage points. This calculation highlights the value of our structural

framework: a calculation based solely on the HHI would lead to the conclusion that the Austrian

labor market is not concentrated, whereas our framework delivers a precise quantitative answer to

the effect of concentration on wages.

In our final set of results, we document heterogeneity in these effects across labor markets, and

consider the sensitivity of our results to different market definitions and parameter values. We find

considerable heterogeneity in concentration and the effects of concentration across labor markets.

While in the employment-weighted average labor market wages would rise by eight percentage

points in the atomistic counterfactual, in the median labor market this increase is only 2%. Hence,

the average effect is driven by a few markets that are very concentrated.

We find that the endogenous labor markets are more concentrated than when we use con-

ventional labor market definitions and a comparable number of labor markets. When we define

labor markets in terms of 4 digit industry or 2 digit industry times region (approximately, com-

muting zone)—which have a similar number of labor markets as in our baseline endogenous labor

markets—we find effects of concentration that are less than half of what we find in the endogenous

labor markets. In contrast, when we use labor market definitions that are more conventional in

the literature (e.g., 3- and 4-digit industries times region), then we find much bigger effects of

concentration than in our baseline. But this conventional definition also implies well over ten times

as many labor markets as our baseline definition, which mechanically raises measured concentra-

tion. This combination of results emphasizes that the endogenous labor markets capture different

features of the labor market than conventional definitions.

We also find that our results are sensitive to the choice of bargaining parameter. In particular,

increasing worker bargaining power dramatically decreases the implied effects of concentration on

wages. The intuition is that with higher bargaining power worker wages depend more on the inside

option of productivity and less on the outside option that changes in concentration can affect.

Relationship to the literature Our approach is complementary to, but distinct, from papers

that build on the “differentiated firms” framework of Card et al. (2018). These papers include
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Berger, Herkenhoff, and Mongey (2018), Lamadon, Mogstad, and Setzler (2017), MacKenzie (2018)

and Haanwinckel (2018). These papers build static models of the labor market where workers’ labor

supply to a firm resembles consumer product demand. Coupled with a wage-setting protocol that

resembles firms’ product price setting decision, these papers deliver wage equations that provide an

equilibrium microfoundation for the Robinson-style monopsony markdown. In contrast, this paper

builds from the logic of a textbook (labor) search model.2 The source of market power is distinct:

in our model the elasticity of labor supply to all firms is the same (it is zero), but the “markdown”

relative to productivity differs across firms and is a function of market power measured through

size.

The most closely related paper to ours is Berger, Herkenhoff, and Mongey (2018). This paper

also provides a microfoundation for a structural relationship between a measure of concentration

and wages, and uses the model to assess changes in concentration on wages (among other things).

One important difference is that Berger, Herkenhoff, and Mongey (2018) provide a microfounda-

tion for size, rather than taking size as given and reading it off the data. This ambition allows

them to consider richer counterfactuals; it means, however, that the mapping to the data is less

straightforward than in our framework.

Our paper joins a literature that emphasizes variation in outside options in generating wage

variation. Some examples include Beaudry, Green, and Sand (2012), Caldwell and Danieli (2018)

and Arnoud (2018). The key novelty is that we emphasize the role of employer size in affecting

outside options.

We are not the first paper to consider the role of finiteness in search models. Menzio and

Trachter (2015) consider a large firm and a continuum of small firms in the product market. There

is also a literature on market power in the directed search literature, e.g., Galenianos, Kircher, and

Virag (2011). In the context of this literature, our mechanism is distinct.

Outline This paper proceeds as follows. Section 1 presents the baseline model and analyzes its

implications for wages. Section 2 extends the model to include productivity heterogeneity, analyzes

the implications for wages and pass-through, and also shows how to use the structure of the model

to infer productivity. Section 3 introduces the matched employer-employee data from Austria that

we use, discusses how we define labor markets using worker flows, and finally discusses how we

define size and wage, as well as how we measure the parameters of the model. Section 4 presents

our quantitative results about the role of levels and trends in market structure in explaining levels

and trends in wages.

2This distinction also helps explain how our paper relates to the broader literature computing labor supply
elasticities to firms and interpreting this through the lense of monopsony models. See, for example, Webber (2015)
and Webber (2018).
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1 Granular search

In this section, we develop a partial equilibrium random search model in which workers apply to

job openings that are distributed across a finite number of firms. Wages are set through Nash-

bargaining and we introduce our key assumption: large employers exert market power by threaten-

ing to discriminate in the future in the aftermath of disagreement with a worker. We characterize

the resulting mapping between market structure and average wages as well as the firm size wage

gradient. In section 2 we extend the framework to allow for heterogeneous productivity across

firms.

1.1 Set-up

We study a discrete time economy populated by a measure one of infinitely lived homogeneous

workers. Workers are either employed, producing a flow output of one unit of the economy’s single,

homogeneous good, or they are unemployed. The common discount factor is 0 < β < 1.

An agent who is employed experiences a separation shock at rate δ > 0. In this event, the

worker flows back into unemployment. An unemployed worker receives flow value b < 1.

There are N distinct employers in the market, indexed by i. The probability that a particular

job opening is at firm i is given by fi and so
∑N

i=1 fi = 1. For each job opening, a firm pays a per

period fixed cost ci. The process which pairs unemployed workers with job openings is governed

by an urn-ball matching function. u unemployed workers send one application per period (balls)

towards v vacancies (urns) . This matching process is subject to coordination frictions and so some

vacancies receive no applications while others may receive multiple ones. Standard arguments imply

that the number of applications a vacancy receives is exponentially distributed.

If a firm receives multiple applications it follows up on one randomly chosen one. Subsequently,

the firm and the worker bargain over the wage. Specifically, there is continuous Nash bargaining

over the wage where α ∈ [0, 1] denotes the bargaining power of workers. We assume that all job

openings have strictly positive surplus so that the job finding rate is given by λ ≡ v
u(1− e−

u
v ) (see,

e.g., Shimer (2005)).

The key novelty is that we endow employers with a particular threat which effectively allows

them not to compete with their own future job openings. Specifically, if the firm and the worker

fail to find an agreement and the worker’s next application is to a job opening controlled by the

same firm, then the firm can punish the worker: In the event that the vacancy received multiple

applications the firm breaks the tie by hiring one of the other applicants. This tie-breaking rule

allows the employer to manipulate the disagreement payoff of the worker in the wage bargain.

Importantly, this form of “punishment” is costless to the firm since it only applies to situations

where workers are rationed and the firm never gives up an opportunity to produce. That is, if

a worker under punishment happens to be the sole applicant to one of the firm’s job openings,

then the firm rationally hires the worker. We also highlight that this mechanism operates through

off-equilibrium payoffs and the parties never fail to reach agreement.
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While the firm can punish the worker, we limit the duration of the disagreement “punishment.”

In particular, we assume that as soon as a job opportunity arises at some other employer j, the

worker gets released from the punishment state by firm i. This assumption substantially reduces

the state space (it effectively cuts histories that we have to keep track of) and makes the analysis

tractable.

In order for the punishment to have bite, we assume that workers cannot direct their applications

away from firm i. That is, a worker applies to firm i with probability fi, no matter what the chances

are that she will be hired. This assumption is consistent with an interpretation of the search process

as one where workers randomly encounter job openings and is a natural benchmark.

We now turn to the value functions of the workers. We let Wi denote the value of a worker

employed at firm i while U denotes the value of unemployment for an unemployed worker who is

not under punishment by any firm. Formally, U satisfies

U = b+ β[λ
∑
i

fiWi + (1− λ)U ]. (1)

In a slight abuse of notation, we denote by Ui the continuation value of the worker in the event of

a trade breakdown, which satisfies

Ui = b+ β[λ
∑
j 6=i

fjWj + λfiWi + (1− λ(1− fi)− λfi)Ui]. (2)

This states that, after disagreement with employer i, a worker’s chances to meet and subsequently

work for any other employer j are unaltered. However, if the worker applies to a vacancy controlled

by i she only gets hired if she is the only applicant, which happens at rate λ ≡ e−
u
v . With

complementary probability 1−λ(1−fi)−λfi the worker remains unemployed. Critically, if employer

i is larger, then rejecting i’s offer leads to a larger reduction in the job finding rate and so a worse

outside option.

Let wi denote the wage firm i pays under the Nash bargaining solution. Because a new contact

releases a worker from previous punishments, the wage does not depend on any other state variables,

such as the firms that may have previously punished a worker. The value of working for firm i then

satisfies

Wi = wi + β(δU + (1− δ)Wi). (3)

Following an exogenous breakdown of an employment spell a worker is free to return to another

vacancy posted by the same employer. Thus, the disagreement payoff when bargaining and the

value of unemployment following a job spell differ.

We now turn to the firm. Firm i values the bilateral relationship with each of its workers at Ji
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satisfying

Ji = 1− wi + β(1− δ)Ji, (4)

where we again impose that a job has no continuation value after exogenous separation.

In turn, we have that a job opening has value

Vi = −ci + β
(

1− e−
u
v

)
Ji. (5)

To keep a vacancy open, firm i pays fixed cost ci. The term in brackets captures the probability

that the job opening receives at least one application this period. Our notation also imposes that,

in equilibrium, trade never breaks down and the match is always formed.

We do not take a stance on the details of the job creation process or on what makes a firm large.

But we note that since ci is firm specific, there exist {ci}Ni=1 such that, in equilibrium, Vi = 0∀i
given fi and u

v . Instead of solving for vacancies given a cost function, we simply assume that the

cost function satisfies ci = β
(

1− e−
u
v

)
Ji so that Vi = 0∀i. This choice gives us the flexibility

to simply read employment shares off the data instead of having to explicitly model them. We

also view this choice as natural because it allows us to obtain a normalization akin to a free entry

condition without having to explicitly model the details of the entry process. As a consequence,

we never actually use equation (5) in what follows and report it solely for expositional purposes.

Finally, we turn to how the surplus is split. The joint net value of forming a match (“surplus”) is

then given by Si ≡Wi−Ui+Ji. In words, once the firm has followed up on one of the applications,

the pair can form a match or not: if the match forms, then the worker is in state Wi and the firm

moves into state Ji. In turn, under disagreement, the worker moves into the punishment state Ui

while the firm has no continuation value.

Given that firms sometimes receive multiple applications, one natural question is why the firm

cannot have the multiple applicants compete for the job opening. The same issue arises in Blanchard

and Diamond (1994, pg. 425). They invoke a standard no commitment assumption to rule out

this competition. In particular, the no commitment assumption means that as soon as the other

applicants leave the firm, and regardless of the agreement the firm and worker reached, the hired

worker would seek to renegotiate the contract, where the bargaining positions would be as stated

in the previous paragraph. Similarly, Blanchard and Diamond (1994) also implicitly assume that

there are no side payments so that the firm cannot extract the value of the match to the worker in

an up-front payment. We follow them here and make both assumptions.

With axiomatic Nash bargaining, the wage then implements a surplus split such that the net

value of forming the match to the worker is

αSi = Wi − Ui, (6)
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while the net value of forming the match to employer i is

(1− α)Si = Ji. (7)

Throughout, we already anticipate a result, namely that in equilibrium workers are willing to work

for all firms i. That is Si ≥ 0∀i.
To summarize the set-up, we highlight the key distinction between our granular search frame-

work and the standard setup with atomistic employers: Here, both workers and employers recognize

that, with strictly positive probability, they will meet again in finite time which is what gives bite

to the firm’s threat. The fact that vacancies may receive multiple applications in turn allows the

firm to credibly commit to go through with its threat without hurting its own future vacancy yield.

As such, the threat is individually rational for the firm.

1.2 A Concentration Index

We are interested in the mapping between market structure—in particular, employment concentration—

and equilibrium wages. Concentration is frequently measured via the HHI. But concentration has

no inherent cardinality so the right choice of units depends on the question at hand. This subsection

presents a particular concentration index that shares many similarities with the HHI and turns out

to be the right way to summarize market structure in our model.

To begin with, let τ ≡ α β(λ−λ)
1−β(1−λ) ∈ (0, α). τ summarizes how costly punishment is for workers:

It is increasing in the share of surplus that a worker gives up when under punishment (α), and in

the strength of the punishment (λ− λ).

Going forward, we use the approximation τ ≈ α βλ
1−β(1−λ) . The reason is that quantitatively

our model implies that λ is several orders of magnitude smaller than λ (for λ = 0.12 we obtain

λ = 0.0002) and so this approximation is highly accurate. More importantly, this simpler form of

τ enables us analytic expressions that cleanly capture the main economic forces at work. Econom-

ically, this effectively ignores the possibility that the worker, after disagreement, next applies to a

job opening by the same firm and ends up being the only applicant. The reason this approximation

is quantitatively inconsequential is that with a monthly job finding rate of around 12% the implied

probability of being the only applicant is indeed remote, which is also true in the data (see, e.g.,

Davis and Samaniego (2019)). We note that we derive our main theoretical results under the exact

model and only impose the approximation at the very end of the proofs so the reader can find

the exact expressions in the appendix. When we implement our framework quantitatively we work

with the exact expressions.

Finally, let fk ≡
∑

i f
k
i such that f1 = 1 and f2 is the HHI index for employment shares in our

labor market with 0 ≤ f2 ≤ 1. The following is a useful concentration index.

Definition 1. Let concentration be measured as

C ≡
∑∞

k=2 τ
k−2fk

1 + τ
∑∞

k=2 τ
k−2fk

.
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This concentration index is distinct from—yet very closely related to—the standard HHI. First,

note that the first element of the infinite sums is simply f2, the HHI. Second, it shares the same

bounds: In the limit with atomistic employers, we have that C = 0, just like the HHI. In the limit

of a single monopolistic employer, we have that C = 1, just like the HHI.3

What differs between our index and the HHI is the inclusion of the additional higher order

terms, (down)-weighted by τ . The higher-order terms place more weight on the size of the largest

firms in the labor market than the HHI. Clearly, the higher order terms are particularly important

if τ is large while C converges to the HHI as τ → 0. Despite the theoretical possibility that these

two measures could be very different, empirically we find that the HHI and C strongly comove and

yield almost identical quantitative results when using our preferred parameter values.

1.3 Concentration, Average Surplus, and Wages

To see why C is useful in mapping the connection between changes in market structure and worker

compensation, let w̄ ≡
∑

i fiwi denote the average wage. All firms produce flow output of 1, so

define ω ≡ wi−b
1−b to be the fraction of the net flow output produced by a worker-firm pair that goes

to the worker. Let ω̄ ≡
∑

i fiωi. Our first result is the following:

Proposition 1. The (employment-weighted) mean surplus is

S1 =
1− b

1− β

1− λα [1− C]︸ ︷︷ ︸
wedge 1

−δ
[
1− αC

(
βλ

1− β (1− λ)

)]
︸ ︷︷ ︸

wedge 2

 .

The equilibrium relationship between compensation and concentration satisfies:

1− ω̄ = (1− α)

 1− β (1− δ)

1− β
(

1− λα [1− C]− δ
[
1− αC

(
λβ

1−β(1−λ)

)])


Proof. See Appendix B.

To interpret the denominator in the surplus and wage expressions, note that there are three

terms that multiply β. First, the pure time discounting term which, naturally, is not affected by

market structure (this is the 1). Second, discounting due to the foregone option value of search of

3To see this, note that fk = 0 ∀k ≥ 2 in case of perfect competition while fk = 1 ∀k ≥ 2 in the case of a
monopolist. In Appendix A we present an example of two economies where these two measures present different
rankings. One economy consists of a monopsonist with a competitive fringe, and another consists of all equal-sized
firms. By choosing the relative size of the monopsonist in comparison to the equal-sized firms, we can make these two
measures move in opposite direction. The reason is that C places more weight on the largest firm (the monopsonist)
than the HHI.
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the worker (this is the λα term). Third, discounting because at some point in the future the match

ends (this is the δ term).

Market structure puts wedges into the second and third discounters and reduces them, thereby

increasing the value of the bilateral employment relationship. The reason for the first wedge is that

the firm and worker recognize that the worker’s outside option is reduced because all the other

employers that she may potentially match with have market power.

The second wedge reflects the fact that the benefits of forming a match lasts beyond the spell.

Why is that? For the worker (this explains the α in the wedge), forming a match has the additional

benefit that she then has the possibility of returning right away to the firm, whereas if she fails

to form a match, then she will be punished by being unable to return. This additional benefit

is captured by the term βλ
1−β(1−λ) , which is inversely related to the duration of an unemployment

spell. That is, the second wedge captures that, by reaching an agreement, the pair increases the

worker’s outside option from Ui to U . If an unemployment spell is very long because λ is very low,

then this benefit goes to zero. If spells are short and the agent is patient, then it goes to 1.

The second part of the proposition relates wages to market structure. In a static setting, the

firm would receive a share (1− α). In a dynamic setting, this gets dampened because the parties

recognize that the worker has other options, which is the λα term. However, this dampening is

weaker in a setting with market power. The second effect which likewise weakens wages is the

threat effect, which is particularly large when workers are patient and unemployment spells are

short.

It is instructive to consider what happens when the market becomes dominated by one firm

(and thus C → 1). In this case we have that

1− ω̄ = (1− α)

 1− β (1− δ)

1− β
(

1− δ
[
1− α

(
λβ

1−β(1−λ)

)])
 . (8)

It is thus immediate that a large employer is able to extract even more than a fraction 1 − α
of the flow surplus. The latter is an important benchmark since it would be the surplus split that

would arise in the absence of any competition from the labor demand side. But gaining market

shares in our setup not only directly reduces competition, it also allows the firm to manipulate its

worker’s outside option more sharply, which further reduces wages. That force is reflected by the

remaining wedge in equation 8 (in squared brackets). Again, the threat is particularly strong if

unemployment spells are short relative to a worker’s rate of time preference.

Most importantly, proposition 1 offers a structural relationship between average wages and

market structure. As a consequence, it allows us to directly assess the quantitative contribution

of empirically observed changes in employment shares to average wages, given a set of parame-

ters {β, δ, α, λ, b}. Given those parameters, measuring C empirically does not require any more

information than a standard HHI.
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An important corollary to Proposition 1 is that:

Corollary 1. Average wages are monotonically decreasing in concentration C.

This result provides a theoretical foundation for a negative relationship between concentration—

as measured by C— and average wages. The next corollary tells us when we should expect variation

in concentration to matter:

Corollary 2. The elasticity of wages with respect to concentration becomes smaller in magnitude

as worker bargaining power (α) increases.

Proof. See Appendix C.

This result anticipates an important quantitative feature of our results: variation in concentra-

tion matters more when worker bargaining power is low. There are three steps in this logic. First,

concentration affects wages through the outside option. Second, when bargaining power is high,

wages are determined by the inside option (productivity) whereas when bargaining power is low

wages are determined by the outside option. Putting the pieces together, variation in concentration

matters more when bargaining power is low.

From the perspective of empirical work that relates variation in concentration into variation

in wages, it is useful to note that C appears in the elasticity. This fact implies that there is a

non-constant elasticity and hence a regression is averaging over heterogeneous effects.

1.4 Concentration and Individual Wages

In the previous section, we related market-wide mean pay to concentration. The model also has

implications for firm level wages wi. We are particularly interested in the relationship of wi with

concentration C and the size of the individual employer i, fi.

We summarize our key findings in Proposition 2:

Proposition 2. Firm-specific relative worker compensation is fully characterized by

ωi
ωj

=
1− τfj
1− τfi

Proof. See Appendix D.

Proposition 1 showed how average wages are governed by concentration C. Proposition 2 in turn

shows that relative compensation is independent of concentration. That is, changes in concentration

affect compensation at all firms proportionally.

Proposition 1 only proved that average compensation declines. In combination with proposition

2 this further implies that individual wages (and compensation) are monotonically decreasing in C
at all employers i.

Proposition 1 also implies that wages are monotonically decreasing in employer size fi. That

is, naturally, the firm with more market power pays a lower wage.
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The proposition also reveals that the effect of size on wages is increasing in τ . That is, the

wage-size gradient steepens as τ increases. This is natural since, as discussed above, τ captures

the ability of firms to punish. As a consequence, inequality induced by market power in the labor

market rises if τ increases. Furthermore, we highlight that the returns to size is independent of the

distribution of employment shares across other firms in the market. In other words, the relative

returns to size are independent of market structure.

Proposition 2 emphasizes that market power affects wage purely through size, which is a distinct

mechanism from the typical “markdown” mechanism embedded in monopsony-style models. In

those models, the variation in wages stems from variation in the elasticity of labor supply to the

firm (here, the elasticity of labor supply to each firm is 0).

2 Heterogeneous Productivity

The model presented in the previous section has the virtue of simplicity. But it has a pair of stark

and counterfactual implications: size perfectly predicts wages, and wages are decreasing in firm

size. In this section, we add productivity heterogeneity to the model which allows the model to

generate an imperfect relationship between size and wages.

This extension allows us to separate the two distinct ways changing employment shares affects

labor market outcomes: First, through the pure size distribution already studied in the previous

section. And, second, through how size and productivity comove. Our setup yields a clean de-

composition between the two, and hence lets us separately quantify the consequences of empirical

movements along both dimensions over time. Underlying this decomposition is the intution that

if the firms gaining marke share are low-productivity firms, then increases in concentration matter

less than direct measurement suggests.

2.1 Concentration, Average Surplus, and Wages

Let pi denote output per worker at firm i. As before, let fk ≡
∑

i f
k
i and define pk ≡

∑
i pif

k
i such

that p1 is the employment weighted average output produced by a match. We also define p̃i = pi−b
and p̃k ≡

∑
i(pi− b)fki to be net output and the employment weighted average net output. For the

following theoretical exposition we sometimes normalize, without loss, p̃1 = 1. When taking the

model to the data, we let p̃1 move over time so as to account for fluctuations in aggregate produc-

tivity over time. The definition of C is unchanged. The following is the productivity counterpart

of C, namely a productivity weighted concentration index:

Definition 2. Measure productivity-weighted concentration as

CP ≡
∑∞

k=2 τ
k−2p̃k

1 + τ
∑∞

k=2 τ
k−2p̃k

.

This index is identical to C except the employment weights are productivity weighted. It shares

the same properties as C discussed above. Next, we relate C and CP .

12



Definition 3. Measure the wedge between concentration and productivity-weighted concentration

as

P ≡
[
CP − C

](
1 +

τ
∑∞

k=2 τ
k−2p̃k

p̃1

)
.

This wedge has a couple key properties. First, it is equal to zero if pi is identical across

firms. Second, the wedge is positive when the weighted covariance between size and productivity

is positive:

Proposition 3. The sign of the P is the same sign as

∑
i

fi(p̃i − 1)

1− τfi
, (9)

which is the weighted covariance between size and (normalized) productivity, where the weights are
1

1−τfi , and so are increasing in size.

Proof. See Appendix E.

Denote by S1∗ and ω∗ average surplus and average worker compensation in the homogeneous

firms benchmark presented in proposition 1. Similar to before let ω̄ ≡ w̄−b
p1−b = w̄−b

p̃1
the fraction

of the average net flow output that goes to workers. Let β̂ ≡ β 1−β(1−δ−λ)
(1−β(1−δ))(1−β(1−λ)) > 0. Our key

result is summarized in the following proposition:

Proposition 4. Mean surplus is given by

S1 = S1∗
(

1 + β̂λαP
)
.

The equilibrium relationship between compensation and concentration satisfies:

1− ω̄ = (1− ω̄∗)
(

1 + β̂λαP
)
.

Proof. See Appendix F.

Proposition 4 naturally extends the results in Proposition 1 to the heterogeneous firms case.

First, it shows that the average joint surplus is given by exactly the same expression as in the

baseline case up to a wedge P. This wedge is positive if productivity is more concentrated than

employment. The reason is that the net value of an employment relationship is larger if the outside

option of the worker deteriorates. One way the worker outside option deteriorates is if, relative to

employment, productivity becomes more concentrated as measured by an increase in P.

The expression for compensation clarifies that heterogeneous productivity has a similar effect

on wages. That is, compensation equals the homogeneous firm compensation level subject to a

wedge which reduces compensation when productivity is positively correlated with size and vice

versa. This wedge reflects the fact that when productivity becomes more concentrated this has a

direct effect on wages since large firms have a more market power.
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We also have that:

Corollary 3. Average wages are monotonically decreasing in concentration C and P.

Proof. Follows from differentiating.

This result shows that the basic result from the homogeneous firms case extends to the hetero-

geneous firms case: there is a negative relationship between the concentration of employment shares

as measured by C and wages. What is new is that when productivity concentration as measured by

P becomes more concentrated this also depresses wages. Below, we offer a model-based strategy

to systematically decompose the contribution of the two using only data on firm level wages and

firm size.

2.2 Concentration, Pass-Through, and Individual Wages

We now extend our previous results on firm-level wages to the heterogeneous productivity case.

To that end, it is useful to define Π ≡ βλ(1−α)
1−β+β(λ+δ)(b − w̄). Importantly, Π depends only on the

mean wage and primitives. It is linearly decreasing in the mean wage and, as such, an affine

transformation of 1− ω̄ as defined in 4. As a consequence, it is simply another way of summarizing

market power that comes in handy role in the following result:

Proposition 5. Firm level wages wi satisfy

(1− τfi) (pi − wi) = (1− α) (pi − b) + Π

Proof. See Appendix G.

To interpret this result, note that pi−wi = (1−α)(pi−b) is the solution to static Nash bargain.

Suppose market structure changes, leading to a decline in the mean wage w̄ and an increase in Π.

This affects employers market-wide, even those with unchanged size. In this case, wages at all firms

fall as follows from the expression in the proposition. The multiplier (1− τfi) is the size mark-

down. It again reflects the fact that larger firms have a larger ability to punish off the equilibrium

path. The result in proposition 5 is also key in our empirical strategy when mapping the full model

to the data as discussed below.4

Of course, the proposition also shows that, all else equal, more productive firms pay higher

wages. The following corollary records the coefficient that governs the pass-through from a linear

projection of productivity levels on wage levels:

Corollary 4. The firm-level productivity pass-through coefficient is:

α− τfi
1− τfi

.

4We can also use proposition 5 to express relative wages in a form similar to proposition 2,

(1− τfi)(pi − wi)− (1− α)(pi − b) = (1− τfj)(pj − wj)− (1− α)(pj − b).

This expression nests Proposition 2.
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This expression shows that the model generates size-dependent pass through of productivity to

wages. We can see that the pass-through coefficient is maximized at α at the smallest firms in the

economy. This pass-through reflects the fact that firms and workers divide the surplus, and the

worker share is given by α. As the firm’s size-based market power increases, the pass-through rate

declines. In the monopolist limit, the pass-through coefficient can be arbitrarily close to zero when

workers are patient and unemployment spells are short for the same reasons discussed above in the

context of proposition 1.

Another important aspect of the corollary is the implication that firm level pass-through in

levels is independent of the overall market structure. That is, market level concentration matters

for the level of wages, but not for the distribution of relative wages across employers. In addition,

the result shows that the the pass-through of size or productivity shocks at the firm level and, as

a consequence, the size-productivity gradient, are disconnected from market structure.

2.3 Backing out Firm-Level Productivity

We next show how one can use proposition 5 to invert the model to solve for the market-wide vector

of firm-level productivities pi using information on firm-level wages, wi, and market shares, fi.

To do so, we express b as a multiple of mean output such that b = b̃p1. We further define

c1 ≡ βλ(1−α)
1−β+β(λ+δ) and c2 ≡ b̃(c1 − (1− α)). Also, define 1 to be the N × 1 vector of all ones. Define

F to be the N × 1 vector of fi. Let I denote the N × N identity matrix, and let DF denote the

N × N matrix that has the employment shares fi on its diagonal. Let P be the N × 1 vector of

productivities and W the N × 1 vector of wages. To ease notation, let A ≡ αI− τDF. Then, we

can write the expression in Proposition 5 in matrix form as

[αI− τDF]P = [I− τDF]W + c21F′P− c11F′W

and so

P = [A− c21F′]−1[I− τDF − c11F′]W.

The following Proposition derives a closed form expression for P:

Proposition 6. The productivity vector P exists and is given by

P =

[
A−1 + c2

A−11F′A−1

1− c2F′A−11

]
[I− τDF − c11F′]W.

Proof. See Appendix H.5

We highlight that A is a diagonal matrix and so there is a closed-form expression for the

inverse. The result in proposition 6 is key for the empirical implementation of the full model with

heterogeneous productivity. It states that, having taken a stance on the five model parameters, the

5Thanks to Mary Wootters for pointing us to the Sherman-Morrison lemma, which is used in the proof.
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vector of firm level productivities can be solved for from the firm size and wage distribution in one

single step by inverting the model.

3 Data and measurement

In this section we introduce the data that we use and the sample restrictions we impose. We then

discuss how we define a labor market, and how we define and measure the variables and parameters

that appear in the model.

3.1 Matched employer-employee data

Our analysis is based on the Austrian labor market data base (AMDB) that covers the universe of

private sector employment in Austria. For the period from 1997 to 2015, the AMDB provides daily

information on employment and unemployment spells, reports annual wages (including base pay and

bonus payments) for each worker-firm combination, and contains some worker characteristics (age,

gender, nationality) and firm characteristics (industry, geographical location, year of foundation).

We make the following sample restrictions. First, we restrict our sample to regular workers

(blue and white collar workers) and exclude marginal workers, short-time workers, and apprentices.

Second, we restrict the analysis to firms with 5 or more workers.

3.2 Market definition

We consider a few different notions of market definition. Following the literature, we consider

markets based on observable features of firms such as industry and geography (as well as their

interaction). In particular, we examine concentration within 4-digit NACE industry codes, within

NUTS-3 regions (slightly smaller than commuting zones in the US),6 and within industry by region

cells.

A large share of worker flows, however, occurs across industry and regional boundaries.7 Pre-

defined categorizations therefore do not necessarily capture the set of reasonable potential employers

for a given worker. Likewise, a commensurately long literature discusses whether human capital is

industry-, occupation-, or task-specific (e.g., Neal (1995), Kambourov and Manovskii (2009), and

Gathmann and Schonberg (2010)).

To address these concerns, we use as our primary definition of a labor market an endogenous

notion that clusters firms based on observed worker flows. This definition corresponds to the model

in the sense that in the model a labor market is a set of firms where a worker would plausibly

go following a spell of unemployment. We follow Nimczik (2018) and estimate a stochastic block

model on the network of worker flows. A key tuning parameter is the number of labor markets to

6There are on average about 440,000 people per commuting zone in the US; there are on average about 250,000
people per NUTS-3 region.

7For the importance of cross-industry flows in the U.S., see Bjelland et al. (2011), especially Figure 7 documenting
that over half of employer-to-empoyer flows are across 11 super-sectors (which are coarser than 1 digit NAICS
industries).
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consider. We pick the number of labor markets to maximize the likelihood of the objective function.

This leads us to 369 labor markets. We refer readers to Nimczik (2018) for complete details, but

in Appendix I we provide a basic sketch of what we do.

We compute measures market-by-market, and then report results on an employment-weighted

basis.

3.3 Measuring variables

The central variables that the model considers are firm size and wages. We now discuss how we

define and measure these variables in the data.

Firm size: fi We employ the following measure of firm size fi: We count the number of regular

employees in a given firm at a reference date (August 10th) each year. This measure has the virtue

of simplicity and comparability to previous studies that have computed employment-based HHI

(e.g., Azar, Marinescu, and Steinbaum (2017), Benmelech, Bergman, and Kim (2018) and Rinz

(2018)). We also report some sensitivity to an alternative definition that tries to capture vacancy

shares by measuring the share of new hires at an employer.

Wages: wi The AMDB provides annual information on gross base wages and bonus payments

for each match between a worker and a firm. The wage data are capped at the social security

contribution limit. We compute daily salaries by combining annual base and bonus payments

and dividing by the number of days employed. We convert daily salaries to real wages using the

consumer price index provided by Statistik Austria with 2000 as base year.

The model-relevant notion of a wage is a firm-specific wage in levels. The reason it is in levels

and not logs is that in the bargaining problem firms and workers value the units equally. Because

it is a firm specific wage and the model features homogeneous workers, we would ideally control

for compositional differences across firms. But we have limited covariates and it is not clear how

well standard wage regression adjustments perform in levels. Moreover, it is not clear whether such

adjustments would be model-consistent. Instead, we use the median wage. This has the benefit

of addressing the censoring as well as being transparent. We report sensitivity to considering

alternative quantiles of the wage distribution.

3.4 Measuring parameters

The model depends on 6 parameters: {b, λ, λ, δ, α, β}. We now discuss what feature of the data

drives our choice of each of the parameters.

Job finding rate: λ We measure λ by calculating the share of workers who are unemployed in

month t who are employed in month t+1. Across years, this rates ranges from 0.099 to 0.136, with

an average of 0.121.
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Job finding rate when a sole applicant: λ The urn-ball matching function implies a unique

value of v
u that generates the λ; given this value of v

u , we then calculate λ. Given that λ = 0.121,

the implied λ is extremely small and is 0.0002.

Job destruction rate: δ We measure δ using information in the unemployment rate and λ. In

particular, in steady state standard mass balance arguments imply that u = δ
λ+δ . Rearranging, we

have that δ = uλ
1−u . Given that the average unemployment rate in Austria is 0.047, this gives us

δ = 0.006.

Worker bargaining power: α We pick α to match a labor share of 0.66 in an initial time

period. To do so, we use the model-implied productivities from Proposition 6. Intuitively, holding

everything else constant, increasing α leads to a higher labor share and this relationship is mono-

tonic. Hence, it is straightforward to numerically find the value of α that implies a labor share of
2
3 . We find α = 0.105. We also report sensitivity to alternative values of α.

Flow value of unemployment: b We measure b by picking a constant multiple of average

productivity in the economy; i.e., b = b̃p1. The reason is that in this model we treat the mean

productivity as a structural (and exogenous) object. Importantly, this normalization means that b

is time-varying. In contrast, the typical approach to calibrating b picks it as some fraction of mean

(or median wages). In this model, this approach is not model-consistent because we view wages as

reflecting both bargaining relative to b, as well as market structure and so b would not be invariant

in counterfactuals in which we varied concentration.

To pick a number for b̃, we follow standard calibrations and target b = 0.4w1. We pick α to

get labor share (w
1

p1
) equal to 2

3 in an initial period. Combining, this implies that b̃ = b
p1

= 0.4w1

p1
=

0.4× 2
3 = 0.267. We also report sensitivity to alternative values of b̃.

Time discount: β There is no information in the data that informs this parameter, and so we

follow standard convention and set β so that the annual discount factor is 0.95. On a monthly basis

this gives us β = 0.951/12 = 0.9957.

Summary: Table 1 summarizes our parameter values.

4 Quantifying the effect of market structure on wages

We now use our model to quantify the effect of changes in market structure in Austria from 1997-

2014 on wages. We begin by discussing trends in market structure in Austria. We then use our

model to quantify the effect of these changes in market structure on the level of wages. We measure

how imperfect competition affects the level of wages by considering the effect on wages of shifting

from the existing market structure to the atomistic benchmark. We then show how our average
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results mask considerable heterogeneity across labor markets. Finally, we consider the sensitivity

of our results to changes in market definition and some parameter values.

4.1 Trends in market structure

Figure 1 shows that concentration, whether measured by HHI or C has followed a u-shaped pattern

from 1997-2014. The peak of the u-shape is at around 0.120 and the minimum is at around 0.105.

The similarity of the trends in the two figures emphasizes that while it is logically possible for the

model-based measure to depart in important ways from the HHI that this gap is small in practice.

One regularity is that our concentration index is always larger than the HHI.

Our model helps us interpret the magnitudes of the changes. In particular, C first decreases

and then increases by about 0.015, or approximately 10%. Since C has the same effect on wages

as a movement in the job finding parameter or the bargaining parameter, this implies that these

changes in concentration are equivalent to about a 10% change in worker bargaining power.

Figure 2 shows that productivity-weighted concentration wedge, P was flat and then fell. Over

the sample period P fell by over 50% (from 0.025 to 0.010). Mechanically, for P to rise means that

the productivity-size correlation is decreasing. As with C, P enters the compensation equation in

multiplicative units that are the same as the bargaining parameter. So this says that this change

was equivalent to bargaining power increasing by over 50%.

To give some intuition about what in the underlying data drives the change in P, Figure 3 shows

that the size wage correlation has changed over time. Intuitively, the model interprets a positive

size-wage relationship as telling us that there is a positive size-productivity correlation because

larger firms would pay lower wages in the absence of being more productive. The declining size-

wage correlation then suggests that the size-productivity correlation has fallen over time (Bloom

et al. (2018) document a similar decline in the US).

Both Figures also show parallel results for a single “arbitrary” market. The reason to show

results for a single market is that the model contains non-linearities. In the next sections, when

we turn to the counterfactuals the employment-weighted counterfactuals are not monotone trans-

formations of the employment weighted trends. In contrast, for the single market, the trends will

translate more intuitively into counterfactuals.

4.2 Effects of changes in market structure on compensation

We use the compensation equation in Proposition 4 to quantify the effects of these changes in

market structure on compensation. Using the model allows us to isolate the pure role of market

structure. Naturally, in the data it is typically difficult to isolate exogenous shifts in market

structure that do not have independent effects on wages. To do so, we fix all parameters. We then

allow the productivity-weighted concentration wedge (P) to evolve as in the data, while holding

concentration (C) fixed. We then additionally allow concentration to vary.

Figure 4 shows the effect of the change in P and C on compensation, holding everything else con-

stant. The Figure shows that the time series variation in P alone leads to a decline in compensation
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of almost ten percentage points.

Similarly, the Figure shows that when we allow both C and P to vary that—relative to just

allowing P to vary—this can also lead to fairly substantial moves in the worker compensation share.

In particular, when we allow both C and P to vary, the change in market structure leads to an

increase in compensation of three percentage points.

We highlight that one appealing feature of our framework is that we can separate the effect of

changes in concentration from changes in productivity-weighted concentration. This is important

as the productivity weighted concentration reflects the size-wage gradient, which has changed. It

is notable that quantitatively the most important source of changes over time in wages due to

changes in market structure in fact comes through the changing size-productivity relationship.

This effect of changes in market structure on wages is missed in typical analyses that focus on an

employment-weighted HHI.

As we discuss more below, this average effect masks substantial heterogeneity across markets.

Looking at the bottom Panel, for example, we can see that in this selected market the overall

movements in counterfactual wages are much smaller than the average. Moreover, the incremental

contribution of changes in C is substantially smaller. If we consult the bottom Panel of Figure 1,

then we can see why: C did not move by very much in this particular market.

4.3 The level of wages in the atomistic benchmark

We now use the compensation equation in Proposition 4 to quantify the change in wages from

moving to the atomistic benchmark over time. This exercise provides a sense of the magnitude of

the effects of imperfect competition of the form highlighted in this paper on wages. Specifically, we

fix all parameters and then send P to zero, and then we send C to zero.

Figure 5 shows that moving to the atomistic benchmark has a large effect on wages. The Figure

shows that through the lense of the model the existing productivity-size relationship depresses

wages by about two percentage points a year. The Figure shows that if we moved to the atomistic

benchmark that the level of wages would rise by about nine percentage points.

This ordering of effects is the reverse of what we found in the previous section. That is, for

explaining changes over time the key change in market structure is in the productivity-weighted

concentration, and not concentration directly. In contrast, the aspect of market structure that

deviates most strongly from imperfect competition is the pure concentration component, and the

productivity-weighted concentration contributes less.

One notable feature of our results is that simply reading off the nature of competition from the

HHI would suggest that the Austrian labor market is not very concentrated. The threshold for a

market to be considered “moderately concentrated” according to US antitrust authorities is 0.15.8

We find that the maximum value of the HHI over the period we observe is 0.12. Nonetheless, we

find that imperfect competition as measured through concentration depresses wages by about eight

percentage points per year. This highlights the value of our structural framework which allows us

8See https://www.justice.gov/atr/herfindahl-hirschman-index.
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to translate measures of concentration into wages and so to simply and transparently assess the

effects of imperfect competition on wages.

4.4 Heterogeneity across markets

Our main results reported so far reflect employment-weighted averages over 369 distinct labor

markets. Table 2 provides some sense of how concentration and our counterfactual results vary

across labor markets.

Panel A shows that most labor markets are not very concentrated, but that the distribution

of concentration is very skewed so that there are a few labor markets that are very concentrated.

Two statistics emphasize this point. First, while the employment-weighted maximum HHI and C
over the sample period are both 0.12, the median of these statistics are a third the size at 0.04.

Similarly, the 95th percentile of concentration measures is an order of magnitude larger than the

median; for example, while the median of the max of C is 0.04, the 95th percentile of this measure

is 0.63.

Panel B shows that the effects of concentration are also concentrated in a few labor markets.

For example, while on average moving to the atomistic benchmark raises wages by 10%, in the

median labor market this increase is only 2%. But at the 95th percentile of labor markets, wages

would increase by 75% in the atomistic benchmark. Combining the two panels, this emphasizes that

our average results mask considerable heterogeneity. Specifically, to the extent that concentration

affects wages, these effects are concentrated in a small number of labor markets so that most

workers are not affected by concentration, but some workers see their wages dramatically depressed

by concentration.

4.5 Sensitivity

Table 3 reports how our main result of the increase in wages when moving to the atomistic bench-

mark varies as a function of market definition, parameter choices and variable definitions.

Market definition Our baseline results use worker flows to define labor markets. The first few

rows of Panel A show that when we define labor markets instead by either region or geography

separately that concentration has a small effect on wages: the largest effect comes from 4 digit

industries, where the counterfactual indicates a decrease in wages of 3.2 percentage points (as

opposed to 8.2 percentage points in our baseline).

We find much larger effects when we follow conventional definitions in the literature and in-

teract region and industry. For example, when we interact region and 3 digit industry (which is

approximately comparable to the market definition in Berger, Herkenhoff, and Mongey (2018)) we

find that in 2014 moving to the atomistic benchmark increases wages by 18 percentage points.

When we interact region and 4 digit industry (which is approximately comparable to the market

definition in Rinz (2018), we find that the atomistic benchmark increases wages by 26 percentage

points. This last number is over 3 times the size of our baseline.
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Holding fixed the number of labor markets, the endogenous labor market definition finds more

concentrated labor markets and thus a larger effect of concentration on wages. In the industry ×
region labor market definitions when there are larger effects of concentration than in our baseline

endogenous labor market definition, there are also over ten times as many labor markets. Naturally,

defining more labor markets leads to higher measured concentration and thus larger effects of

concentration on wages. In the industry and industry × region definitions where there are a

similar number of labor markets (4 digit industry and 2 digit industry × region), we find effects

of concentration 2.5 to 4 times the size with our endogenous labor markets than in the more

conventionally defined labor markets. This emphasizes that the endogenous labor markets capture

different features of the data than conventional labor market definitions.

Value of unemployment We chose the value of unemployment to match typical calibrations of

b in the literature. Panel B shows how our results vary with the choice of b̃ (recall that b̃ is flow

value of unemployment as a share of mean productivity). When we lower b̃ from our benchmark of

0.267 to 0.10, we find larger effects of concentration on wages (0.137 vs. 0.082).

This dimension of sensitivity does not reflect anything about the fundamental economics of our

model; instead, it reflects how our approach to measuring productivity depends on parameters. To

see this, note that holding observed wages and α constant, if we reduce b̃, then to generate the

same level of wages there needs to be a higher level of productivity. Hence, when we move to the

atomistic benchmark, there is more productivity for the workers to extract from the employment

relationship and so a bigger difference in wages.

When we raise b̃ to 0.4, we find a smaller effect of moving to the atomistic benchmark relative

to our baseline value of b̃. The logic is identical to the previous paragraph, but the effect goes in the

opposite direction. Thus, as we increase b̃ we will find a smaller effect of changes in concentration

on wages.

Worker bargaining power We chose α to match labor share. An alternative way to choose

α would be to use Corollary 4 and choose α to match pass-through estimates of productivity to

wages at small firms. For example, if we use the average results in Kline et al. (Forthcoming), we

would get α = 0.30, though if we use the results for workers hired post patent application (which

corresponds more closely to the experiment in our model) we would arrive at an α of approximately

0.9

Panel B shows that our results are very sensitive to the choice of worker bargaining power (α).

In particular, as we increase α from the baseline of 0.1 to 0.4, the implied effects on wages of

moving to the atomistic benchmark fall by an order of magnitude. In 2014, the increase in wages

falls from an increase of 8.2% to an increase of 0.7%. This quantitative result can be anticipated

9Kline et al. (Forthcoming) do not report a pass-through coefficient for new hires. This guess comes from
comparing column (2) and column (4) in Table 7, which shows that average stayer earnings rise by on average $7,780,
while new hire earning rise by a statistically insignificant $110—or almost two orders of magnitude less. Admittedly,
there are challenging issues around the changes in composition of new hires for interpreting the effects on new hires.
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from Corollary 2 where we showed that the sensitivity of wages to concentration is decreasing in

worker bargaining power. In the discussion of that Corollary, we emphasized the intuition that

as α rises, wages are more dependent on the inside option of productivity, instead of the outside

option that concentration can move. Hence, with larger α, wages are less sensitive to movements

in concentration.

Firm-level wage Our baseline results use the median firm-level wage. Panel C shows that if we

instead use the 25th or the 75th percentiles of the firm-level wage distribution that our results are

virtually unchanged.

Firm size Our baseline results measure firm size using employment at a point in time. We instead

measure firm size as the share of hires in a year from unemployment. The final row of Panel C shows

that this leads to smaller wage effects of moving to the atomistic benchmark. Notably, setting P to

zero decreases wages. The reason for this divergence from our baseline results is that this alternative

measure produces a negative correlation between wages and size, which translates into a negative

wedge between concentration and productivity-weighted concentration. The productivity-weighted

wedge therefore increases wages relative to the atomistic benchmark. Finally, additionally setting

C to zero increases wages, but by only half as much as in our baseline results.

5 Discussion

This paper develops a structural model that provides a microfoundation for an equilibrium rela-

tionship between market structure—in particular, concentration—and wages. The core idea of the

model is that size is a source of market power because firms do not compete with their own future

vacancies. This lack of competition means that workers’ outside options are worse when bargaining

with a large firm. As a result, wages are lower at large firms and in more concentrated markets.

We then extend the model to account for productivity heterogeneity. The model separates the

effects of concentration and productivity-weighted concentration on wages.

The model allows us to simply and transparently assess the effects of (changes in) market struc-

ture on levels and trends in wages. We implement our framework in Austrian matched employer-

employee data. We overcome the arbitrariness of typical definitions of labor markets, and define

endogenous labor markets based on worker flows.

While conventional measures of concentration would suggest that the Austrian labor market

is quite competitive, we find that wages are eight percent lower than they would be if all firms

acted atomistically. The quantitatively more important force in the distance from the atomistic

benchmark is concentration by itself, with the productivity-weighted concentration wedge playing

a smaller role. In contrast, when we look at trends over time, the key change in market structure

that drives changes in wages in our framework is the changing contribution of productivity-weighted

concentration wedge, which reflects the changing size-wage premium.
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Table 1: Parameter values

Parameter Value

λ 0.121
λ 0.0002
δ 0.006
α 0.105

b̃ 0.267
β 0.9992

Notes: This Table reports monthly parameter values.
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Table 2: Heterogeneity of effects of market structure across markets

Average Median 5th percentile 95th percentile

Panel A. Concentration measures
max HHI 0.12 0.04 0.01 0.62
min HHI 0.10 0.03 0.01 0.43
max C 0.12 0.04 0.01 0.63
min C 0.10 0.03 0.01 0.44
max P 0.03 0.01 -0.04 0.20
min P 0.01 0.01 -0.08 0.13
Panel B. Counterfactuals
max ∆ω in time trends with just P 1.00 1.00 1.00 1.18
max ∆ω in time trends with P and C 1.03 1.00 1.00 1.25
max ∆w̄ in atomistic benchmark P = 0 0.03 0.01 -0.02 0.19
max ∆w̄ in atomistic benchmark P = C = 0 0.10 0.02 -0.00 0.75

Notes: This Table reports how a variety of measures vary across markets. The average column
corresponds to the main results in the text and reflects employment-weighted averages. The re-
maining three columns report results for employment-weighted quantiles of the markets. In Panel
A, the maximum of the concentration measures is calculated as follows: for each market, we take
the maximum value of the measure over time and then compute the employment-weighted quantile.
Similarly, the minimum reflects quantiles of the distribution of the minimum, where there is one
observation per market. HHI is the Hirschman-Herfindahl index, C is our model-based measure of
concentration, and P is the productivity-concentration weighted wedge. In Panel B, we similarly
compute the largest change in each measure within market, and then report quantiles of this dis-
tribution across markets. The two exercises use Proposition 4 to compute counterfactual wages
either using shifts in C and P over time, or by sending these quantities to zero.
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Table 3: Sensitivity of effects of market structure

Increase in wages in the atomistic benchmark in 1997 and 2014

Setting P = 0 Setting C = P = 0

1997 2014 1997 2014

Baseline 0.025 0.023 0.097 0.082
Panel A. Alternative market definitions

NUTS-3 regions (35) 0.002 0.003 0.004 0.005
2-digit industries (80) 0.008 0.006 0.014 0.011
3-digit industries (273) 0.013 0.009 0.030 0.024
4-digit industries (599) 0.017 0.012 0.043 0.032
2-digit industry × region (459) 0.018 0.011 0.035 0.023
3-digit industry × region (5410) 0.039 0.031 0.225 0.181
4-digit industry × region (9326) 0.040 0.037 0.315 0.259

Panel B. Alternative parameterizations

b̃ = 0.1 0.031 0.028 0.171 0.137

b̃ = 0.4 0.023 0.021 0.070 0.060
α = 0.2 0.019 0.017 0.079 0.065
α = 0.3 0.005 0.005 0.018 0.016
α = 0.4 0.002 0.002 0.008 0.007
α = 0.5 0.001 0.001 0.004 0.004

Panel C. Alternative wage and size definitions
wi 25th percentile of firm-level wage distribution 0.031 0.024 0.104 0.083
wi 75th percentile of firm-level wage distribution 0.022 0.023 0.093 0.082
fi hires from unemployment -0.003 -0.027 0.033 0.014

Notes: This Table considers the sensitivity of our benchmark results on the counterfactual of having
firms behave atomistically on wages using the results in Proposition 4. The first row shows our
baseline results where we use 369 endogenous labor markets and the parameterization reported in
Table 1, where α = 0.105 and b̃ = 0.267. Panel A considers alternative market definitions based
just on region, industry and industry × region. The number of markets is in parentheses. Panel B
considers alternative choices of α and b̃. Panel C considers alternative definitions of the firm-level
wage, where our baseline results use the median firm-level wage. It also considers a definition of
fi based on share of hires from unemployment, where our baseline results instead use the share of
employment.
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Figure 1: Trends in HHI and C

(a) Employment-weighted average of all markets

(b) A single market

Notes: This figure plots concentration indexes C and HHI from 1997 - 2015 based on micro data from
the Austrian labor market database. The top panel displays the employment-weighted average over
all 369 endogenous labor markets, while the bottom panel displays the results for a single market.
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Figure 2: Trends in P

(a) Employment-weighted average of all markets

(b) A single market

Notes: This figure shows the change over time of the wedge P between productivity-weighted
concentration CP and concentration C. The top panel displays the employment-weighted average
over all 369 endogenous labor markets, while the bottom panel displays the results for a single
market.
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Figure 3: Declining size-wage gradient

(a) Employment-weighted average of all markets

(b) A single market

Notes: This figure plots the (employment-weighted average) of the correlation between firm size
and firm-level median wages. Firm size is measured at a reference date (August 10th) each year
and wages are the median of the firm-level distribution of regular employee wages. The top panel
displays the employment-weighted average over all 369 endogenous labor markets, while the bottom
panel displays the results for a single market.
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Figure 4: Effect of changes over time in P and C on compensation (ω)

(a) Employment-weighted average of all markets

(b) A single market

Notes: This Figure uses Proposition 4 to quantify the effect of the change over time in C and P
documented in Figures 1 and 2 on compensation. The top panel displays the employment-weighted
average over all 369 endogenous labor markets, while the bottom panel displays the results for a
single market.
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Figure 5: Increase in wages by moving to atomistic benchmark (over time)

(a) Employment-weighted average of all markets

(b) A single market

Notes: This Figure uses Proposition 4 to quantify the change in wages implied by moving to the
atomistic benchmark over time. The top panel displays the employment-weighted average over all
369 endogenous labor markets, while the bottom panel displays the results for a single market.
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A Example where C and HHI switch positions

In this Appendix, we describe two model economies. The ordering of the concentration of these
economies according to C is different than the ordering according to HHI.

Relationship between the two economies: Choose c1 such that c1 =
√
c2 − ε.

Economy 1: monopsonist with a competitive fringe:

• c1 share of employment at the first firm;

• 1−c1
n−1 of employment at the remaining n− 1 firms, where we let n→∞.

Economy 2: equally-sized, but finite number of firms:

• c2 share of employment at each of the 1
c2

firms.

HHI in these two economies: For the first one:

c2
1 +

(1− c1)2

n− 1
≈ c2

1,

where the ≈ relies on n→∞.
For the second one:

1

c2
c2

2 = c2.

Now c2
1 = (

√
c2− ε)2 ≈ c2− ε < c2, so the second economy is more concentrated when measured

using HHI.

C in these two economies: We now consider the k > 2 terms.
For the first economy:

ck1 + (n− 1)(
1− c1

n− 1
)k = ck1 +

(1− c1)k

(n− 1)2
≈ ck1,

where the ≈ relies on taking n→∞.
For the second economy:

1

c2
ck2 = ck−1

2 .

For k > 2 the first economy is now more concentrated. To see this note that

ck1 = (
√
c2 − ε)k ≈ c

k/2
2 − ε

k.

Because for k > 2 we have k
2 < k − 1, c2 < 1 and ε is small,

c
k/2
2 − ε

k > ck−1
2 .

Hence, for small enough ε the first economy will be more concentrated according to C. Intuitively,
C places more weight on the largest firm than HHI (in the limit, only the largest share), and so the
monopsonist with the competitive fringe is more concentrated according to C than HHI.
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B Proof of Proposition 1

Proof. Now:

Ui = b+ β[λ
∑
j 6=i

fjWj + λfiWi + (λ− λ)fiUi + (1− λ)Ui]

Ui = b+ β[Ui + λ
∑
j 6=i

fj(Wj − Ui) + λfi(Wi − Ui)]. (A1)

From equations (6), (3), and (2)

αSi = (Wi − Ui) = wi + β[δU + (1− δ)Wi]− b− β[Ui + λ
∑
j 6=i

fj(Wj − Ui) + λfi(Wi − Ui)]

= wi + βαSi − β[δαSi)]− b− β[λαS1 − (λ− λ)fiαSi + λ
∑
j

fj(Uj − Ui)] + βδ(U − Ui)

(1− β(1− δ))αSi = wi − b+ β(λ− λ)fiαSi − βλ[αS1 +
∑
j

fj(Uj − Ui)] + βδ(U − Ui), (A2)

where we define S1 ≡
∑

i fiSi and we used the fact that:∑
j 6=i

fj(fiSi − fjSj) =
∑
j 6=i

fj(fiSi − fjSj) + fi(fiSi − fiSi)

=
∑
j

fj(fiSi − fjSj).

Note that

Uk = b+ β[Uk + λ
∑
j 6=k

fj(Wj − Uk) + λfk(Wk − Uk)]

= b+ β[Uk + λW 1 − λfkWk − λ(1− fk)Uk + λfk(Wk − Uk)]
(1− β(1− λ))Uk = b+ β[λW 1 − λfkWk + λfkUk + λfk(Wk − Uk)]
(1− β(1− λ))Uk = b+ β[λW 1 − (λ− λ)fkαSk]

where W 1 ≡
∑

j fjWj . Hence,

(Uj − Ui) =
β(λ− λ)α

(1− β(1− λ))
[fiSi − fjSj ]. (A3)

Note that:

U − Ui = β[λW + (1− λ)U ]− β[Ui + λ
∑
j 6=i

fj(Wj − Ui) + λfi(Wi − Ui)]

(1− β(1− λ))(U − Ui) = β(λ− λ)fiαSi

βδ(U − Ui) = βδ
β(λ− λ)

(1− β(1− λ))
fiαSi. (A4)
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Plug(A4) and (A3) into (A2) to get

(1− β(1− δ))αSi

= wi − b+ β(λ− λ)fiαSi − βλ[αS1 +
β(λ− λ)α

(1− β(1− λ))

∑
j

fj [fiSi − fjSj ]] + βδ
β(λ− λ)

(1− β(1− λ))
fiαSi

(1− β(1− δ))αSi = wi − b− βλαS1 + βλ
β(λ− λ)α

(1− β(1− λ))
S2 +

1− β(1− δ)
1− β(1− λ)

β(λ− λ)fiαSi. (A5)

Combine (5), (4), and the normalization that Vi = 0 to get that:

wi = 1− (1− β(1− δ))(1− α)Si. (A6)

Hence, combine (A6) and (A5)

(1− β(1− δ))Si = 1− b− βλαS1 + βλ
β(λ− λ)α

(1− β(1− λ))
S2 +

1− β(1− δ)
1− β(1− λ)

β(λ− λ)fiαSi. (A7)

Define Sk ≡
∑

i f
k
i Si, recall that τ = β(λ−λ)α

1−β(1−λ) and that fk ≡
∑

i f
k
i , to rewrite (A7) as

(1− β(1− δ))Sk = fk
[
1− b− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+ (1− β(1− δ))τSk+1. (A8)

Evaluate (A8) at k = 1, 2, 3, ... and to get

(1− β(1− δ))S1 = f1

[
1− b− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+ (1− β(1− δ))τS2

(1− β(1− δ))S2 = f2

[
1− b− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+ (1− β(1− δ))τS3

(1− β(1− δ))S3 = f3

[
1− b− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+ (1− β(1− δ))τS4.

Note that, for k = 1, we can also write

(1− β(1− δ))S1 = 1− b− βλαS1 + β(λ− λ)α
1− β + β(δ + λ)

(1− β(1− λ))
S2. (A9)

Hence:

(1− β(1− δ))S1 =

[
1− b− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

][
f1 + τf2 + τ2f3....

]
(A10)

(1− β(1− δ))S2 =

[
1− b− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

][
f2 + τf3 + τ2f4....

]
. (A11)

Define

F ≡
(
f2 +

(
λ

λ+ r

)
f3 +

(
λ

λ+ r

)2

f4 + ....
)

=

∞∑
k=2

τk−2fk (A12)
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to get that, directly from equations (A10) and (A11)

S2 = S1 F

1 + τF
= S1C. (A13)

Plug this into equation (A9) to get that mean surplus is given by

S1 =
1− b[

(1− β(1− δ)) + βλα

]
− τ
[
1− β(1− δ) + βλ

]
C
. (A14)

This is where we use the approximation that λ ≈ 0. As a consequence,

τ ≈ α βλ

1− β(1− λ)

and so
1− b[

(1− β(1− δ)) + βλα

]
−
[
λ+ βλδ

1−β(1−λ)

]
αβC

or

1− b

1− β

1− λα [1− C]︸ ︷︷ ︸
wedge 1

−δ
[
1− αC

(
βλ

1− β (1− λ)

)]
︸ ︷︷ ︸

wedge 2

 .

(A15)

Integrate across equation (A6) to get

w1 = 1− (1− β(1− δ))(1− α)S1

w1 − b
1− b

=
(1− β(1− δ) + βλ)(α− τC)[

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
. (A16)

For the expression for 1 − ω̄ reported in the proposition, again integrate across (A6) and plug
in (A15).

C Proof of Corollary 2

Proof. We want to show that the elasticity is increasing in α. Because the elasticity is always
negative, increasing means that it becomes smaller in magnitude.

To keep notation more compact, it is helpful to note that:

w̄ = ω̄(1− b) + b (A17)

Then:

∂w̄

∂C
= (1− b)∂ω̄

∂C
. (A18)
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And:

∂w̄

∂C
C
w̄

=
∂ω̄

∂C
(1− b)C

ω̄(1− b) + b

=
∂ω̄

∂C
C

ω̄ + b
1−b

. (A19)

Then:

∂w̄
∂C
C
w̄

∂α
=
∂ ∂ω̄∂C
∂α

C
ω̄ + b

1−b
− ∂ω̄

∂C
∂ω̄

∂α

C
(ω̄ + b

1−b)
2

=
C

ω̄ + b
1−b

(
∂2ω̄

∂C∂α
− ∂ω̄

∂C
∂ω̄

∂α

1

(ω̄ + b
1−b)

)
. (A20)

Note that:

∂ω̄

∂C
=

(
(1− β(1− δ) + βλ)(α− τC)−

[
(1− β(1− δ)) + βλα

]
+

[
1− β(1− δ) + βλ

]
τC
)[

1− β(1− δ) + βλ

]
τ([

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
)2

=
−(1− α)τ [1− β(1− δ)][1− β(1− δ) + βλ]([

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
)2 < 0. (A21)

Note that:

∂ω̄

∂α
=

([
1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC − (α− τC)βλ

)[
1− β(1− δ) + βλ

]
([

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
)2

=
(1− τC)[1− β(1− δ)][1− β(1− δ) + βλ]([

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
)2 > 0 (A22)

Now we can consider the cross-partial:

∂2ω̄

∂C∂α

=

([
(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC + 2βλ(1− α)

)
τ [1− β(1− δ)][1− β(1− δ) + βλ]([

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
)3 > 0.

(A23)

Combining pieces, we can see that the relevant elasticity is positive, which is what we wanted to
show.
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D Proof of Proposition 2

Proof. Start with (A5)

(1− β(1− δ))αSi = wi − b− βλαS1 + βλ
β(λ− λ)α

(1− β(1− λ))
S2 +

1− β(1− δ)
1− β(1− λ)

β(λ− λ)fiαSi

(α− τfi)Si =
wi − b

1− β(1− δ)
+

1

1− β(1− δ)

(
− βλαS1 + βλτS2

)
. (A24)

Add (1− α)Si = 1−wi
1−β(1−δ) on both sides to get

(1− τfi)Si =
1− b

1− β(1− δ)
+

1

1− β(1− δ)

(
− βλαS1 + βλτS2

)
.

Plug in for Si using Si = 1−wi
(1−α)(1−β(1−δ)) and observe that the right hand side is a constant to

get that

1− wi
1− wj

=
1− τfj
1− τfi

. (A25)

E Proof of Proposition 3

Proof. Note that:

CP =

∑∞
k=2 τ

k−2p̃k

p̃1 + τ
∑∞

k=2 τ
k−2p̃k

× p̃1

p̃1

=

∑∞
k=2 τ

k−2p̃k/p̃1

1 + τ
∑∞

k=2 τ
k−2p̃k/p̃1

. (A26)

We have that:

CP − C =

∑∞
k=2 τ

k−2p̃k/p̃1

1 + τ
∑∞

k=2 τ
k−2p̃k/p̃1

−
∑∞

k=2 τ
k−2fk

1 + τ
∑∞

k=2 τ
k−2fk

. (A27)

Forming a common denominator, the sign of Cp − C depends on the sign of
∑∞

k=2 τ
k−2p̃k/p̃1 −∑∞

k=2 τ
k−2fk. So now let us sign this component:

∞∑
k=2

τk−2p̃k/p̃1 −
∞∑
k=2

τk−2fk =
∞∑
k=2

τk−2(p̃i/p̃1 − fk)

=
∑
i

∞∑
k=2

τk−2fki (p̃i/p̃1 − 1)

=
1

τ2

∑
i

∞∑
k=1

τkfki (p̃i/p̃1 − 1)− 1

τ2

∑
i

τfi(p̃i/p̃1 − 1)

=
1

τ2

∑
i

(p̃i/p̃1 − 1)
τfi

1− τfi
− 1

τ
(p̃1/p̃1 − 1). (A28)
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Note that p̃1/p̃1 − 1 = 0. So we have:

∞∑
k=2

τk−2p̃k/p̃1 −
∞∑
k=2

τk−2fk =
1

τ2

∑
i

(p̃i/p̃1 − 1)
τfi

1− τfi

=
1

τ

∑
i

fi(p̃i/p̃1 − 1)

1− τfi
. (A29)

Since
∑

i fip̃i/p̃
1 = 1, the numerator is the weighted empirical covariance between fi and p̃i/p̃1 (note

that
∑

i fi(p̃i/p̃
1− 1) =

∑
i(fi− f̄)(p̃i/p̃1− 1)), where the weights are 1

1−τfi , so we place more weight
on the larger firms.

F Proof of Proposition 4

Proof. Now we have:

wi = pi − (1− β(1− δ))(1− α)Si. (A30)

We proceed in exactly the same fashion as in the proof of proposition 1. The proof is unaltered
up to equation (A5).

(1− β(1− δ))Si = pi − b− βλαS1 + βλ
β(λ− λ)α

(1− β(1− λ))
S2 +

1− β(1− δ)
1− β(1− λ)

β(λ− λ)fiαSi. (A31)

Thus, proceeding identically to the proof of proposition 1, the counterpart to equation (A8) is

(1− β(1− δ))Sk = p̃k + fk
[
− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+

1− β(1− δ)
1− β(1− λ)

β(λ− λ)αSk+1

(A32)

where p̃k ≡
∑

i f
k
i (pi − b) is the employment weighted average (net) productivity.

Evaluate (A32) at k = 1, 2, 3, ... to get

(1− β(1− δ))S1 = p̃1 + f1

[
− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+

1− β(1− δ)
1− β(1− λ)

β(λ− λ)αS2

(1− β(1− δ))S2 = p̃2 + f2

[
− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+

1− β(1− δ)
1− β(1− λ)

β(λ− λ)αS3

(1− β(1− δ))S3 = p̃3 + f3

[
− βλαS1 + βλ

β(λ− λ)α

(1− β(1− λ))
S2

]
+

1− β(1− δ)
1− β(1− λ)

β(λ− λ)αS4.

Importantly, for k = 1, we can also write

(1− β(1− δ))S1 = p̃1 − βλαS1 + β(λ− λ)α
1− β + β(δ + λ)

(1− β(1− λ))
S2. (A33)

Now start the substitution
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(1− β(1− δ))S1 = p̃1 + f1

[
− βλαS1 + βλτS2

]
+ τ

(
p̃2 + f2

[
− βλαS1 + βλτS2

]
+ (1− β(1− δ))τS3

)
.

(A34)

If we keep substituting, then we get:

(1− β(1− δ))S1 =

(
p̃1 + τ p̃2 + τ2p̃3 + ...

)
+

[
− βλαS1 + βλτS2

](
f1 + τf2 + τ2f3 + ....

)
.

(A35)

Proceeding identically for S2 gives

(1− β(1− δ))S2 =

(
p̃2 + τ p̃3 + τ2p̃4 + ...

)
+

[
− βλαS1 + βλτS2

](
f2 + τf3 + τ2f4 + ....

)
.

(A36)

Define

P ≡
(
p̃2 + τ p̃3 + τ2p̃4 + ....

)
=
∞∑
k=2

τk−2p̃k (A37)

and let, as previously, F ≡
∑∞

k=2 τ
k−2fk. This gives, directly from equations (A35) and (A36)

S2 = S1 F

1 + τF
− 1

1− β(1− δ)

[(
p̃1 + τP

) F

1 + τF
− P

]
= S1C − 1

1− β(1− δ)
[(
p̃1 + τP

)
C − P

]
.

(A38)
Note that: (

p̃1 + τP
)
C − P =

(
p̃1 + τP

)
C − P p̃

1 + τP

p̃1 + τP

=
(
p̃1 + τP

)
(C − CP )

= p̃1

(
1 +

τP

p̃1

)
(C − CP )

= −p̃1P.

Plug this into equation (A33) to get

S1 =
p̃1
(

1 + τ 1−β+β(δ+λ)
1−β(1−δ) P

)
1− β + β(δ + λα)− τC(1− β + β(δ + λ))

. (A39)

Integrate across equation (A30) to get

w̄ − b
p̃1

= 1− (1− β(1− δ))(1− α)
S1

p̃1
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and thus, plugging in (A39),

w̄ − b
p̃1

=
(1− β(1− δ) + βλ)(α− τC)[

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
− τ(1− β + β(δ + λ))(1− α)P[

(1− β(1− δ)) + βλα

]
−
[
1− β(1− δ) + βλ

]
τC
.

G Proof of Proposition 5

Proof. Equation (A5) also holds in the extension with heterogeneous productivity:

(1− β(1− δ))αSi = wi − b− βλαS1 + βλ
β(λ− λ)α

(1− β(1− λ))
S2 +

1− β(1− δ)
1− β(1− λ)

β(λ− λ)fiαSi

(α− τfi)Si =
wi − b

1− β(1− δ)
+

1

1− β(1− δ)

(
− βλαS1 + βλτS2

)
. (A40)

Add (1− α)Si = pi−wi

1−β(1−δ) on both sides to get

(1− τfi)Si =
pi − b

1− β(1− δ)
+

1

1− β(1− δ)

(
− βλαS1 + βλτS2

)
.

Plug in for Si once more to get

(1− τfi) (pi − wi) = (1− α) (pi − b) + (1− α)

[
− βλαS1 + βλτS2

]
. (A41)

To characterize the term in squared brackets use, from equation (A33),

(1− β(1− δ) + βλα)S1 = p̃1 + τ(1− β + β(δ + λ))S2.

Rewrite as

βλ

[
τS2 − 1− β((1− δ) + βλα

1− β + β(δ + λ)
S1

]
= −p̃1 βλ

1− β + β(δ + λ)

and so

βλ

[
τS2 − αS1 − (1− α)[1− β(1− δ)]

1− β + β(δ + λ)
S1

]
= −p̃1 βλ

1− β + β(δ + λ)

βλ

[
τS2 − αS1

]
= −p̃1 βλ

1− β + β(δ + λ)
+ βλ

(1− α)[1− β(1− δ)]
1− β + β(δ + λ)

S1

βλ

[
τS2 − αS1

]
= − βλ

1− β + β(δ + λ)

[
p̃1 − S1(1− β(1− δ))(1− α)

]
.

Use this to replace the term in squared brackets in (A41) and plug in for S1 = (p1−w̄) 1
(1−β(1−δ))(1−α)
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to get that

(1− τfi) (pi − wi) = (1− α) (pi − b)−
βλ(1− α)

1− β + β(δ + λ)

[
p̃1 − (p1 − w̄)

]
(1− τfi) (pi − wi) = (1− α) (pi − b)−

βλ(1− α)

1− β + β(δ + λ)
(w̄ − b),

which completes the proof.

H Proof of Proposition 6

Proof. P satisfies
P = [A− c21F′]−1[I− τDF − c11F′]W.

The Sherman-Morrison lemma states that a matrix of the form A − c21F′ is invertible if and
only if 1− c2F

′A−11 6= 0. To verify this, note that

1− c2F
′A−11 =1− c2

∑
i

fi
α− τfi

(A42)

=1 + b̃(1− α)
r + δ

r + δ + λ

1

α

∑
i

fi

1− λ
λ+rfi

> 1. (A43)

The first line uses that A is a diagonal matrix whose ith diagonal element is given by α− τfi. The
second line uses the definitions of c2 and τ , and that fi ≤ 1∀i. Thus, a solution to the inverse
exists. The Sherman-Morrison lemma states that it is given by

[A− c21F′]−1 =

[
A−1 + c2

A−11F′A−1

1− c2F′A−11

]
which completes the proof.

I Flow-based Labor Markets

We assume that each firm i = 1, . . . , N in the economy is associated with one out of a finite
number K of labor markets. An N × 1 vector z denotes the assignment of firms to markets with
zi ∈ {1, . . . ,K}. Rather than being determined by regional or industry classifications, however, we
assume that the boundaries of labor markets are unobserved. We assume that worker flows between
firms are driven by the latent markets and hence are able to recover the unobserved classification
from observed worker flows. In particular, a K ×K matrix M summarizes transition probabilities
between labor markets where the typical element Muv indicates how likely a firm in market u
experiences a job-to-job transition of one of its workers to a firm in market v.

The dependence of worker flows between firms i and j on market assignments is then expressed
as

E[Aij ] = Mzizjγ
+
j γ
−
i , (A44)

where the number of worker transitions from i to j , Aij , depends on the market assignments of
firms i and j, zi and zj , the transition probability between these markets, and firm-level parameters
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γ+
j and γ−i that capture the individual propensity of firm j to attract workers from other firms and

the individual propensity of firm i to release workers. Based on the observed N ×N matrix A of
worker transitions between firms, we estimate the parameters of equation A44 by a computational
approximation to maximum likelihood. An important tuning parameter is the number of markets to
consider, K. In order to assure comparability to industry or geography groups, we choose various
values of K that are equal to the number of NUTS-3 regions in Austria, to 1-digit and 4-digit
industries, and to the interaction of industries and regions.

The model imposes no restrictions on the structure of the transition matrix M . The resulting
labor markets, however, are much more self-contained than standard labor markets defined by
geographical regions or industry classifications.
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