

Michael Bauer (University of Hamburg) Stephie Fried (Federal Reserve Bank of San Francisco) Òscar Jordà (UC Davis, Federal Reserve Bank of San Francisco) Fernanda Nechio (Federal Reserve Bank of San Francisco) Toàn Phan (Federal Reserve Bank of Richmond)

THE FOREST AWAKENS AMAZON REGENERATION AND POLICY SPILLOVER

Juliano Assunção | *Climate Policy Initiative / PUC-Rio* Clarissa Gandour | *Climate Policy Initiative / PUC-Rio* Eduardo Souza-Rodrigues | *University of Toronto*

FED Virtual Seminar on Climate Economics

March 9th, 2022

WHY RESTORATION MATTERS

 climate change mitigation Stern, 2006 | Greenstone & Jack, 2015 | IPCC, 2018 | Nordhaus, 2019

- carbon capture & storage: protection & restoration of natural particularly tropical ecosystems
- restoration of 350 million hectares worldwide by 2030 IUCN and Winrock, 2017
 - absorb 1.7 GtCO₂ per year
 - yield USD 170 billion in net annual benefits
- Brazil: unique position

... **not** amongst Brazil's conservation priority over the past two decades

economic impact: watershed protection, improved agricultural yields, forest products, livelihoods, etc

• potential for restoration-based carbon sequestration: degraded / deforested lands in tropical ecosystems

BRAZIL'S TROPICAL CONSERVATION EFFORTS

Deforestation and Regeneration, Brazilian Amazon

BRAZIL'S TROPICAL CONSERVATION EFFORTS

Deforestation and Regeneration, Brazilian Amazon

BRAZIL'S TROPICAL CONSERVATION EFFORTS

Data sources: PRODES/Inpe (deforestation rate); TerraClass/Inpe and Embrapa (secondary vegetation)

Amazon Regeneration, 2014

REGENERATION: UNINTENDED POLICY OUTCOME?

- regeneration was invisible
 - to policy: no targeted efforts in action plan
 - to satellite-based monitoring systems

- monitoring and law enforcement strategy was key driver of deforestation slowdown Assunção, Gandour & Rocha, 2019 | Assunção, McMillan, Murphy & Souza-Rodrigues, 2021
 - increased cost of engaging in illegal deforestation

... did monitoring and law enforcement strategy (unintentionally) affect regeneration?

stricter monitoring and law enforcement

increased perceived risk of illegal primary deforestation

stricter monitoring and law enforcement

greater demand for previously deforested areas [to evade monitoring that detects new clearings]

conversion to non-forest uses in previously deforested areas

reduction in extent of regeneration

displacement

increased perceived risk of illegal primary deforestation

greater demand for previously deforested areas [to evade monitoring that detects new clearings]

conversion to non-forest uses in previously deforested areas

reduction in extent of regeneration

displacement

Source: Climate Policy Initiative/ PUC-Rio (2020).

... both constitute spillover

CONTEXT

MONITORING DEFORESTATION

Deforested Area

Deforestation Mask

Previously Analyzed Area

Once detected by PRODES, an area is marked as deforested in the year of detection and incorporated in both systems' "deforestation masks" in later years. DETER only scans areas outside this mask for signs of clearing activity.

MONITORING DEFORESTATION

Deforestation Mask

Previously Analyzed Area

Once detected by PRODES, an area is marked as deforested in the year of detection and incorporated in both systems' "deforestation masks" in later years. DETER only scans areas outside this mask for signs of clearing activity.

Source: Climate Policy Initiative/ PUC-Rio (2020).

MONITORING REGENERATION (OR LACK THEREOF...)

Deforested Area

Deforestation Mask

Once detected by PRODES, an area is marked as deforested in the year of detection and incorporated in both systems' "deforestation masks" in later years. DETER only scans areas outside this mask for signs of clearing activity.

MONITORING REGENERATION (OR LACK THEREOF...)

Deforested Area 🧭 Previously Analyzed Area

Once detected by PRODES, an area is marked as deforested in the year of detection and incorporated in both systems' "deforestation masks" in later years. DETER only scans areas outside this mask for signs of clearing activity.

MONITORING REGENERATION (OR LACK THEREOF...)

Deforested Area 🧭 Previously Analyzed Area

incorporated in both systems' "deforestation masks" in later years. DETER only scans areas outside this mask for signs of clearing activity.

DATA

- satellite-based land cover and land use
 - deforestation: PRODES / Inpe
 - Iand use in deforested areas: TerraClass / Inpe and Embrapa
 - years: 2004, 2008, 2010, 2012, 2014
 - forest disturbance alerts: DETER / Inpe
- Other variables
 - weather: Matsuura and Willmott, 2015
 - satellite visibility: TerraClass / Inpe and Embrapa
 - protected territory: SNUC / MMA, Funai, ISA
 - priority municipalities: MMA
 - distance to the nearest road, nearest waterway, nearest municipality with pop>20k
- units of observation: 5.2 million cells
- sample period: 2004-2014

SPATIAL SETUP

900m

DATA – MEASURING SECONDARY VEGETATION

- TerraClass' definition:
 - areas that were once clear-cut and that currently contains trees and/or shrubs
 - contains no pasture nor commercial reforestation
- first main difficulty: regeneration is a time-consuming process
 - may take several years to show up in satellite classification
 - short-term time-series variation is prone to measurement error Torchiana, Rosenbaum, Scott, Souza-Rodrigues, 2022; Alix-Garcia and Millimet, 2022
 - not fallow land
- second main difficulty: misclassification
 - distinguish degraded primary forest from actual secondary vegetation

"NON-DECREASING" SECONDARY VEGETATION

"NON-DECREASING" SECONDARY VEGETATION

DATA – MEASURING SECONDARY VEGETATION

- our (conservative) solution: consider *only* areas that meet two criteria:
- a) classified as secondary vegetation for at least two consecutive TerraClass years
- b) once classified as secondary vegetation, it never ceases to be classified as secondary vegetation

• we detect *permanence* by using the *full* TerraClass time-series (2004-2014)

NON-DECREASING SECONDARY VEGETATION

TerraClass category				cell classified as non-decreasing secondary vegetation in … ?		
2004	2008	2010	2012	2014	2004	2014
sec. veg.	sec. veg.	sec. veg.	sec. veg.	sec. veg.	yes	yes
sec. veg.	sec. veg.	unobserved	unobserved	sec. veg.	yes	yes
forest	forest	sec. veg.	sec. veg.	sec. veg.	no	yes
forest	sec. veg.	unobserved	unobserved	sec. veg.	no	yes
forest	sec. veg.	unobserved	unobserved	unobserved	no	yes
pasture	pasture	sec. veg.	sec. veg.	sec. veg.	no	yes
sec. veg.	sec. veg.	pasture	pasture	pasture	no	no
sec. veg.	sec. veg.	pasture	pasture	sec. veg.	no	no
forest	pasture	sec. veg.	sec. veg.	pasture	no	no
forest	sec. veg.	unobserved	unobserved	pasture	no	no
forest	forest	forest	forest	sec. veg.	no	no

Pixel Classification Algorithm

DATA – MEASURING CARBON STOCK

CARBON UPTAKE OF SECONDARY FORESTS (Yang et al., 2020)

- calculate age of secondary vegetation in every pixel
- relate age to above ground biomass (AGB)

 $ABG = 250(1 - \exp(-0.027Age))^{0.72}$

convert aboveground biomass to total carbon density

 $TCD = 0.49(ABG + 0.489ABG^{0.72})$

• Average: 41.5–66.3 tons of carbon per hectare

MONITORING AND LAW ENFORCEMENT

DATA – DETER VS PRODES

Recorded Areas in Mor

year	detected area DETER (ha)	detected area PRODES (ha)	detection share DETER/PRODES
2006	$491,\!457$	1,091,857	45%
2007	816,888	$1,\!150,\!637$	71%
2008	438,735	$1,\!336,\!129$	33%
2009	224,019	$643,\!061$	35%
2010	266,439	635,751	42%
2011	204,710	$574,\!122$	36%
2012	277,758	$446,\!873$	62%
2013	$305,\!376$	$542,\!452$	56%
total	3,025,380	$6,\!420,\!882$	47%

DATA – DETER VS PRODES

- differences due to:
 - spatial resolution
 - DETER detects forest degradation too
- accuracy:
 - $Pr(deforestation \ or \ degradation \ | \ alert) \cong 89\%$
 - Negligible errors for areas > 10 has INPE, 2008 | Ferreira, 2023

DATA

- alert intensity:
 - total number of alert cells over 2006-2013 as a share of total neighborhood area
- neighborhood rings:
 - 5km, 10km, 20km, 50km, and 100km
- sample selection:
 - cells with strictly positive shares of deforestation
- benchmark sample: cells containing at least 50% primary forest cover in 2004
 - proximity to remaining primary vegetation affects regeneration Crouzeilles et al., 2016 | Latawiec et al., 2016 | Uriarte and Chazdon, 2016

DATA – SUMMARY STATISTICS

- 2004 secondary vegetation (% cell area)
- 2004 non-decreasing secondary vegetation (% cell area)
- 2014 secondary vegetation (% cell area)
- 2014 non-decreasing secondary vegetation (% cell area

d=1 if 2004-2014 Δ secondary vegetation ≥ 0.1 cell ar 2004-2014 Δ secondary vegetation 2004-2014 Δ non-decreasing secondary vegetation (% of

alerts 5km neighborhood ring (% ring area) alerts 10km neighborhood ring (% ring area) alerts 20km neighborhood ring (% ring area) alerts 50km neighborhood ring (% ring area) alerts 100km neighborhood ring(% ring area)

2004 primary forest (% cell area)

total annual rainfall (mm) average annual temperature (Celsius) 2004 unobservable TerraClass (% cell area) 2014 unobservable TerraClass (% cell area) baseline accumulated deforestation (% cell area) alert intensity (year average) d=1 if protected

	Brazilian Amazon		benchma	benchmark sample		
	mean	std. dev.	mean	std. dev.		
	0.0220	0.0865	0.0611	0.0862		
)	0.0109	0.0565	0.0345	0.0663		
	0.0366	0.1167	0.1056	0.1274		
)	0.0243	0.0887	0.0735	0.1009		
	0.0000	0.0490	0 0001	0 4000		
ea	0.0630	0.2430	0.2031	0.4023		
	0.0146	0.0919	0.0445	0.1181		
cell area)	0.0133	0.0605	0.0390	0.0785		
	0.0590	0 1920	0.1809	0.3067		
	0.0590	0.1576	0.1608	0.2372		
	0.0589	0.1327	0.1000	0.1881		
	0.0583	0.1021	0.1173	0.1321		
	0.0572	0.0819	0.0962	0.0985		
	0.7656	0.3853	0.7958	0.1512		
	2326.69	448.39	2182.20	368.65		
	26.41	0.98	26.28	1.06		
	0.0108	0.0820	0.0137	0.0553		
	0.0070	0.0581	0.0146	0.0682		
	0.1318	0.3040	0.1742	0.1435		
	0.0590	0.3152	0.2216	0.5766		
	0.4879	0.4999	0.1922	0.3941		

ECONOMETRIC STRATEGY & RESULTS

EMPIRICAL STRATEGY

- benchmark specification: $\Delta regeneration_i =$
- time-consuming natural process: collapse panel into ten-year cross-sectional difference Aide et al., 2000 | Chazdon, 2008 | Alves et al., 1997
- identification: alerts in n do not correlate with unobservable factors affecting regeneration in i
 - regeneration invisible to monitoring
 - OVB
 - cell-level controls: location (municipality, saturated longitude/latitude)

weather (temperature, rainfall) satellite visibility (2004 and 2014) baseline deforested area

$$\sum_{n \in \partial i} \beta_n enforcement_{n,i} + X'_i \theta + \varepsilon_i$$

- observed conservation policy (protection, local law enforcement)

RESULTS: AREA

Catchment Area for Law Enforcement Spillover on Regeneration

-	Panel B: Δ non-decreasing secondary vegeta
	alerts 5km
	alerts 10km
	alerts 20km
	alerts 50km
	alerts 100km
	R-squared
	number of observations
	controls
	municipality
	coordinates (lon, lat, lon^2 , lat^2 , lon^*lat)
	weather
	satellite visibility
	baseline accumulated deforestation
	observed conservation policy

(1)	(2)	(3)	(4)	(5)		
tion (% cell area)						
0.0035***	-0.0001	0.0001	0.0001	0.0001		
(0.0006)	(0.0008)	(0.0008)	(0.0008)	(0.0008)		
	0.0068^{***}	0.0030^{**}	0.0030^{**}	0.0030^{**}		
	(0.0010)	(0.0012)	(0.0012)	(0.0012)		
		0.0076^{***}	0.0075^{***}	0.0077^{***}		
		(0.0014)	(0.0016)	(0.0016)		
			0.0002	-0.0004		
			(0.0022)	(0.0023)		
				0.0038		
				(0.0036)		
				. ,		
0.1403	0.1404	0.1404	0.1404	0.1405		
403,191	403,191	403,191	403,191	403,191		
ves	ves	ves	ves	ves		
ves	ves	ves	ves	ves		
ves	ves	ves	ves	ves		
ves	ves	ves	ves	ves		
VOS	yes	yes	yes	yes		
yes	yes	yes	yes	yes		
yes	yes	yes	yes	yes		

RESULTS: AREA

Law Enforcement Spillover on Regeneration

	(1)	(2)	(3)	(4)		
Panel B: Δ non-decreasing secondary vegetation (% cell area)						
alanta Elem	0 0069***	0 0050***	0.0050***	0.0041***		
alerts okm	-0.0003	-0.0058	-0.0058	-0.0041		
	(0.0007)	(0.0007)	(0.0007)	(0.0007)		
alerts 10km	0.0026**	0.0036***	0.0036***	0.0037***		
	(0.0013)	(0.0012)	(0.0012)	(0.0012)		
alerts 20km	0.0095^{***}	0.0095^{***}	0.0093^{***}	0.0091^{***}		
	(0.0016)	(0.0016)	(0.0016)	(0.0016)		
alerts 50km	-0.0012	0.0042^{*}	0.0028	0.0037		
	(0.0021)	(0.0023)	(0.0023)	(0.0023)		
alerts 100km	0.0058***	0.0039	0.0022	0.0064*		
	(0.0020)	(0.0036)	(0.0036)	(0.0036)		
		()	()	()		
R-squared	0.0005	0.0741	0.0744	0.1164		
number of observations	403,191	403,191	403,191	403,191		
controls						
municipality	no	yes	yes	yes		
coordinates (lon, lat, lon ² , lat ² , lon [*] lat)	no	yes	yes	yes		
weather	no	no	yes	yes		
satellite visibility	no	no	no	yes		
baseline accumulated deforestation	no	no	no	no		
observed conservation policy	no	no	no	no		

Table notes omitted from slides, but included in document.

Benchmark Specification

Dashed lines indicate 95% confidence interval.

RESULTS: AREA

Sample Definition: Alternative Cutoffs

cutoff: 75%

COUNTERFACTUAL EXERCISES

- no monitoring system:
 - almost 100,000 hectares (3%) decrease in extent of secondary vegetation
 - About 4.15—6.63 million tC
 - Social Benefit of \$762.5 million \$1.2 billion (assuming SCC = \$50/tCO2)
- improvement to monitoring system: detects all PRODES clearings
 - approx. 300,000 hectares (10%) increase in extent of secondary vegetation
 - About 12—19 million tC
 - Social Benefit of \$2.3 billion \$3.65 billion
- monitoring costs (IBAMA and INPE roughly): \$60 million per year

WRAP UP

(ALWAYS) MORE WORK TO BE DONE

- carbon counterfactual
 - natural (passive) regeneration
 - cost/benefit
 - reduced deforestation (target)
 - increased regeneration (spillover)
- disentangle impact heterogeneity
 - where is regeneration happening? [public x private lands]
 - time for regeneration? [early x late alerts]

POLICY IMPLICATIONS

- policy design & targeting
 - evaluation & cost-effectiveness (impact on social welfare)
- restoration at scale
 - UN development goals
 - UN decade for ecosystem restoration
 - Brazil's iNDCs: restore/reforest 12 million hectares countrywide

... information can catalyze promotion and protection of tropical regeneration

THANK YOU

