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Abstract

Linkages between the real economy and financial markets can be extremely im-
portant, as shown by the the recent global financial crisis and European sovereign
debt crisis. In this paper, I develop a simple, structural macroeconomic model
that is consistent with a wide variety of asset pricing facts, such as the size and
variability of risk premia on equities, real and nominal government bonds, and
corporate bonds, commonly referred to as the equity premium puzzle, bond pre-
mium puzzle, and credit spread puzzle, respectively. I thus show how to unify
a variety of asset pricing puzzles from finance into a single, simple, structural
framework. Moreover, I show how to bring standard macroeconomic models into
agreement with a range of asset pricing facts, making it possible to use these
models to study the linkages between the real economy and financial markets
with empirically plausible risk premia.
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1. Introduction

Traditional macroeconomic models, such as Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007), ignore asset prices and risk premia and, in fact, do a notoriously poor job of

matching financial market variables (e.g., Mehra and Prescott, 1985; Backus, Gregory, and Zin,

1989; Rudebusch and Swanson, 2008). At the same time, traditional finance models, such as Dai

and Singleton (2003) and Fama and French (2013), ignore the real economy; even when these

models use a stochastic discount factor or consumption rather than latent factors, those economic

variables are taken to be exogenous, reduced-form processes.

Despite this traditional separation, linkages between the real economy and financial markets

can be extremely important. During the 2007–09 global financial crisis and the ongoing European

sovereign debt crisis, concerns about asset values caused lending and the real economy to plummet,

while at the same time the deteriorating economy led private-sector risk premia to increase and

asset prices to spiral further downward (e.g., Mishkin, 2011; Gorton and Metrick, 2012; Lane,

2012). These crises also led to dramatic fiscal and monetary policy interventions that were well

beyond the range of past experience.1 Reduced-form finance models that perform well based

on past empirical correlations may perform very poorly when those past correlations no longer

hold, such as when there is a structural break or unprecedented policy intervention as observed

during these crises. A structural macroeconomic model is more robust to these changes and

can immediately provide answers and insights into their possible effects on risk premia, financial

markets, and the real economy. Macroeconomic models can also provide useful intuition about

why output, inflation, and asset prices co-move in certain ways and how that comovement may

change in response to policy interventions or structural breaks.

In the present paper, I develop a simple, structural macroeconomic model that is consistent

with a wide range of asset pricing facts, such as the size and variability of risk premia on equities

and real, nominal, and defaultable debt. Thus, unlike traditional macroeconomic models, the

model I present here is able to match asset prices and risk premia remarkably well. And unlike

traditional finance models, the model here can give us insight into the effects of novel policy

1For example, the U.S. Treasury bought large equity stakes in automakers and financial institutions, and insured
money market mutual funds to prevent them from “breaking the buck.” The Federal Reserve purchased very large
quantities of longer-term Treasury and mortgage-backed securities and gave explicit forward guidance about the
likely path of the federal funds rate for years into the future. See, e.g., Mishkin (2011) and Gorton and Metrick
(2012). For Europe, the European Union established the European Stability Mechanism to provide quick financial
backing to member countries in need, while the European Central Bank provided large and unprecedented three-
year loans to banks and announced that it would purchase large quantities of euro area members’ bonds if the
yields on those bonds became excessively stressed (e.g., Wall Street Journal, 2012; European Central Bank, 2012).
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interventions and structural breaks on asset prices, and provides a unified structural explanation

for the behavior of risk premia on a variety of assets.

The model I develop here builds on earlier work by Rudebusch and Swanson (2012) and has

two essential ingredients: generalized recursive preferences (as in Epstein and Zin, 1989, Weil,

1989, and Tallarini, 2000) and nominal rigidities (as in the textbook New Keynesian models of

Woodford, 2003, and Gaĺı, 2008). Generalized recursive preferences allow the model to generate

substantial risk premia without greatly distorting the behavior of macroeconomic aggregates.

Nominal rigidities allow the model to describe the behavior of inflation, nominal interest rates,

and nominal assets such as Treasuries and corporate bonds.

My results have important implications for both macroeconomics and finance. For macroe-

conomics, I show how standard dynamic structural general equilibrium (DSGE) models can be

brought into agreement with a wide variety of asset pricing facts. I thus address Cochrane’s

(2008) critique that a failure of macroeconomic models to match basic asset pricing facts is a sign

of fundamental flaws in those models.2 Moreover, bringing those models into better agreement

with asset prices makes it possible to use those models to study the linkages between risk premia,

financial markets, and the real economy.

For finance, I unify a variety of asset pricing puzzles into a single, simple, structural frame-

work. This framework can then be used to study the relationships between the different puzzles

with each other and the economy. For example, Backus, Gregory, and Zin (1989), Donaldson,

Johnsen, and Mehra (1990), and Den Haan (1995) argue that the yield curve ought to slope

downward on average because interest rates tend to be low during recessions, implying that bond

prices are high when consumption is low (which would lead to an insurance-like, negative risk

premium). According to the model here, the nominal yield curve can slope upward even if the real

yield curve slopes downward if technology shocks (or other “supply” shocks) are an important

source of economic fluctuations. Technology shocks cause inflation to rise when consumption falls,

so that long-term nominal bonds lose rather than gain value in recessions, implying a positive

risk premium. Similarly, the model developed here can be used to study the changes in correla-

tions between stock and bond returns documented by Baele, Bekaert, and Inghelbrecht (2010),

Campbell, Sundaram, and Viceira (2013), and others.

2As Cochrane (2008) points out, asset markets are the mechansim by which marginal rates of substitution are
equated to marginal rates of transformation in a macroeconomic model. If the model is wildly inconsistent with
basic asset pricing facts, then by what mechanism does the model equate these marginal rates of substitution and
transformation?
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Previous macroeconomic models of asset prices have tended to focus exclusively on a single

type of asset, such as equities (e.g., Boldrin, Christiano, and Fisher, 2001; Tallarini, 2000; Gu-

venen, 2009; Barillas, Hansen, and Sargent, 2009) or debt (e.g., Rudebusch and Swanson, 2008,

2012; Van Binsbergen et al., 2012; Andreasen, 2012). A disadvantage of this approach is that it’s

unclear whether the results in each case generalize to other asset classes. For example, Boldrin,

Christiano, and Fisher (2001) show that capital immobility in a two-sector DSGE model can fit

the equity premium by making the price of capital (and equity) more volatile, but this mecha-

nism does not explain subtantial risk premia on long-term government bonds, which involve the

valuation of a fixed stream of (nominal or real) coupon payments. By focusing on multiple asset

classes, I impose additional discipline on the model and ensure that its results apply more gener-

ally. Matching the behavior of a variety of assets also helps to identify model parameters, since

different types of assets are relatively more informative about different aspects of the model. For

example, nominal assets are helpful for identifying parameters related to inflation, while long-lived

equities provide information about the longer-run behavior of the model in response to shocks.

A number of recent papers have begun to study stock and bond prices jointly in a tra-

ditional affine framework (e.g., Eraker, 2008; Bekaert, Engstrom, and Grenadier, 2010; Lettau

and Wachter, 2011; Ang and Ulrich, 2013; Koijen, Lustig, and Van Nieuwerburgh, 2013).3 Some

of these studies work with latent factors, ignoring the real economy, while others relate asset

prices to the reduced-form behavior of consumption. However, none of them uses a structural

macroeconomic model, which has the advantages described above: the ability to analyze novel

policy interventions and structural breaks, and provide greater insight into the macroeconomic

fundamentals driving asset prices. Although reduced-form models often fit the data better than

structural macroeconomic models, this can simply be a tautological implication of Roll’s (1977)

critique (that any mean-variance efficient portfolio perfectly fits the mean returns of all assets),

as noted by Cochrane (2008). It is only the correspondence of financial risk factors to plausible

economic risks that makes reduced-form financial factors interesting.

Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), and

Chen (2010) model equity and corporate bond prices jointly in an endowment economy. Those

authors undertake a much more detailed, structural analysis of the corporate financing decision

than I consider here, but at a cost of working in a much simpler, reduced-form macroeconomic

3See also Campbell, Sundaram, and Viceira (2012), who price stocks and bonds jointly in a quadratic latent-
factor framework.
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environment. In other words, I use a simple, reduced-form model of the firm in order to better

focus on the structural behavior of the economy, while Chen et al. (2010), Bhamra et al. (2010),

and Chen (2010) use a simple, reduced-form model of the macroeconomy to better focus on the

structural finance behavior of the firm. The advantages of the approach I take here have already

been discussed above.

The two papers most closely related to the present paper are Rudebusch and Swanson

(2012) and Campbell, Pflueger, and Viceira (2013).4 Rudebusch and Swanson (2012) extend

a standard New Keynesian DSGE model to incorporate Epstein-Zin-Weil preferences and show

that the model can match the behavior of nominal bond yields given a sufficiently high level of

risk aversion. Relative to Rudebusch and Swanson (2012), the model I develop here is much

simpler (to clarify its essential features) and is extended to match the behavior of equities, real

bonds, and defaultable bonds. Campbell, Pflueger, and Viceira (2013, henceforth CPV) study

stock and bond prices in a reduced-form New Keynesian model. In contrast to the present paper,

CPV use a stochastic discount factor that is related to their New Keynesian IS curve, Phillips

curve, and monetary policy rule only in an ad hoc, reduced-form manner—in this respect, their

analysis is similar to the term-structure studies of Rudebusch and Wu (2007) and Bekaert, Cho,

and Moreno (2010). In fact, the ad hoc connection between the stochastic discount factor and

the economy is crucial for CPV’s results: as shown by Lettau and Uhlig (2000) and Rudebusch

and Swanson (2008), CPV’s Campbell-Cochrane (1999) habit specification does not seem able to

produce significant risk premia when households are able to endogenously smooth consumption,

because households endogenously choose a path for consumption that is so smooth the stochastic

discount factor is stabilized.5 In the present paper, I undertake a more structural approach,

specifying a complete—but simple—macroeconomic model in which the stochastic discount factor

is internally consistent with the other equations of the model.

Throughout the present paper, a recurring theme is the simplicity of the model, which is

in the interest of clarity and intuition for the underlying mechanisms. Thus, the model here is

not designed to match very detailed features of the economy or asset prices; indeed, if one pushes

4See also Van Binsbergen et al. (2012) and Andreasen (2012) for variations on the analysis in Rudebusch and
Swanson (2012).

5Households with Campbell-Cochrane (1999) habits are extremely averse to high-frequency fluctuations in
consumption. In a DSGE model (as opposed to an endowment economy), households can self-insure themselves
from these fluctuations by varying their hours of work or savings. In fact, for plausible parameterizations of DSGE
models, households endogenously choose a path for consumption that is so smooth the stochastic discount factor
does not vary much more than in the model without habits, leading risk premia to be about the same as without
habits. See Rudebusch and Swanson (2008) and Lettau and Uhlig (2000).
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the model far enough, it is certain to fail at matching some features of financial markets or the

macroeconomy, and that failure is essentially by design, given the model’s simplicity. Instead,

the simple model I develop here should be viewed as a “proof of concept” that the standard

New Keynesian DSGE framework can be adapted to match asset prices quite well and shows a

great deal of promise for future development in this direction. The approach I take here is thus

analogous to Kydland and Prescott (1982), who showed that the stochastic growth model could

be extended to match key features of business cycle fluctuations. Their stylized model failed to

match many details of business cycles (e.g., unemployment, inflation), but opened the door to

the equilibrium modeling of these phenomena.

The remainder of the paper proceeds as follows. In Section 2, I develop a simple New

Keynesian DSGE model with nominal rigidities and Epstein-Zin preferences, show how to solve

the model, and discuss the calibration of the model and its implications for macroeconomic

quantities. In Section 3, I derive the prices of stocks and real, nominal, and defaultable bonds

within the framework of the model, and compare the behavior of those asset prices to the data.

In Section 4, I show how the model generates endogenous conditional heteroskedasticity, which

is crucial for producing time-varying risk premia. Section 5 provides additional analysis and

discussion related to issues raised in Sections 2 and 3. Section 6 concludes. Three Appendices

present all the equations of the model, discuss the numerical solution method in more detail, and

provide additional figures and analysis of the basic results.

2. A Simple Macroeconomic Model

In this section, I develop a simple dynamic macroeconomic model with generalized recursive

preferences and nominal rigidities. Generalized recursive preferences, as in Epstein and Zin (1989)

and Weil (1989), are required for the model to match the size of risk premia in the data.6 Nominal

rigidities are necessary for the model to match the basic behavior of inflation, nominal interest

rates, and nominal assets such as Treasuries and corporate bonds.

Throughout this section, I strive to keep the model as simple as possible while still matching

the essential behavior of macroeconomic variables and asset prices. The goal is to maximize

intuition and insight into the relationships between the macroeconomy and asset prices, and

avoid tangential complications. For this reason, I deliberately follow the very simple, “textbook”

6See the previous footnote and Rudebusch and Swanson (2008) for a discussion of why habits in household
preferences, such as Campbell and Cochrane (1999), are unable to match the size of risk premia in DSGE models.
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New Keynesian models of Woodford (2003) and Gaĺı (2008), extended to the case of generalized

recursive preferences. In principle, more realistic, medium-scale New Keynesian models such as

Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007) could also be extended

to the case of Epstein-Zin preferences to achieve an even better empirical fit to the data, but at

the cost of being much more complicated.

2.1 Households

Time is discrete and continues forever. There is a unit continuum of representative households,

each with generalized recursive preferences as in Epstein and Zin (1989) and Weil (1989). In each

period t, the representative household receives the utility flow

u(ct, lt) ≡ log ct − η
l1+χ
t

1 + χ
, (1)

where ct and lt denote household consumption and labor in period t, respectively, and η > 0

and χ > 0 are parameters. Note that equation (1) differs from Epstein and Zin (1989) and Weil

(1989) in that period utility depends on labor as well as consumption.

The assumption of additive separability in (1) follows Woodford (2003) and Gaĺı (2008) and

simplifies many aspects of the model. For example, the household’s intertemporal elasticity of

substitution is unity, its Frisch elasticity of labor supply is 1/χ, and its stochastic discount factor

(defined below) is related to ct+1/ct; without additive separability, the expressions for these

quantities would all be much more complicated. The similarity of the stochastic discount factor

to versions of the model without labor also facilitates comparison to the finance literature. In

addition, assuming logarithmic preferences over consumption ensures that the model is consistent

with balanced growth (King, Plosser, and Rebelo, 1988, 2002) and is a standard benchmark in

macroeconomics (e.g., King and Rebelo, 1999).

Households can borrow and lend in a default-free one-period nominal bond market at the

continuously-compounded interest rate it. The use of continuous compounding simplifies the

bond-pricing equations below and enhances comparability to the finance literature. Each period,

the household faces a flow budget constraint

at+1 = eitat + wtlt + dt − ct, (2)

where at denotes beginning-of-period nominal assets and wt and dt denote the nominal wage and
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exogenous transfers to the household, respectively. The household faces a standard no-Ponzi-

scheme constraint,

lim
T→∞

Et

T∏
τ=t

e−iτ+1aT+1 ≥ 0. (3)

Let (ct, lt) ≡ {(cτ , lτ )}∞τ=t denote a state-contingent plan for household consumption and

labor from time t onward, where the explicit state-dependence of the plan is suppressed to reduce

notation. Following Epstein and Zin (1989), Weil (1989), and Tallarini (2000), I assume that the

household has preferences over state-contingent plans ordered by the recursive functional

Ṽ (ct, lt) = (1− β) u(ct, lt) − βα−1log
[
Et exp

(−αṼ (ct+1, lt+1)
)]
, (4)

where β ∈ (0, 1) and α ∈ R are parameters, Et denotes the mathematical expectation conditional

on the state of the economy at time t, and (ct+1, lt+1) denotes the state-contingent plan (ct, lt)

from date t + 1 onward. The case α = 0 in (4) is defined by letting α → 0 and corresponds to

the special case of expected utility preferences. When α �= 0 in (4), the expectation operator is

effectively “twisted” and “untwisted” by the exponential function with coefficient −α. This leaves
the household’s intertemporal elasticity of substitution in (4) the same as for expected utility, but

amplifies (or attenuates) the household’s risk aversion with respect to gambles over future utility

flows by the additional curvature parameter α, with larger values of α corresponding to greater risk

aversion. Thus, generalized recursive preferences allow the household’s intertemporal elasticity of

substitution and coefficient of relative risk aversion to be parameterized independently. Following

Hansen and Sargent (2001), the specific form of generalized recursive preferences in (4) is often

referred to as “multiplier preferences”.

In each period, the household maximizes (4) subject to the budget constraint (2)–(3). The

state variables of the household’s optimization problem are at and Θt, where the latter is a

vector denoting the state of the aggregate economy at time t. The household’s “generalized value

function” V (at; Θt) satisfies the generalized Bellman equation

V (at; Θt) = max
(ct,lt)

(1− β) u(ct, lt) − βα−1log
[
Et exp

(−αV (at+1; Θt+1)
)]
, (5)

where at+1 is given by (2).

It’s straightforward to show (e.g., Rudebusch and Swanson, 2012), that the household’s

stochastic discount factor is given by

mt+1 ≡ β
ct
ct+1

exp
(−αV (at+1; Θt+1)

)
Et exp

(−αV (at+1; Θt+1)
) . (6)
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Let rt denote the one-period continuosly-compounded risk-free real interest rate. Then

e−rt = Etmt+1. (7)

2.2 Firms

The economy also contains a continuum of infintely-lived monopolistically competitive firms in-

dexed by f ∈ [0, 1], each producing a single differentiated good. Firms hire labor from households

in a competitive market and have identical Cobb-Douglas production functions,

yt(f) = Atk
1−θlt(f)

θ, (8)

where yt(f) denotes firm f ’s output, At is aggregate productivity affecting all firms, k and lt(f)

denote the firm’s capital and labor inputs at time t, respectively, and θ ∈ (0, 1) is a parameter.

For simplicity, and following Woodford (2003) and Gaĺı (2008), I assume that firms’ capital stocks

are fixed, so that labor is the only variable input to production. Intuitively, movements in the

capital stock are small at business-cycle frequencies and are dominated by fluctuations in labor.7

Technology, At, follows an exogenous AR(1) process,

logAt = ρA logAt−1 + εAt , (9)

where ρA ∈ (−1, 1], and εAt denotes an i.i.d. white noise process with mean zero and variance σ2
A.

For simplicity and comparability to the finance literature, I set ρA = 1 in the baseline calibration

of the model, below, but consider alternative values of ρA as well. For simplicity and ease of

exposition, I abstract from technology growth in the baseline calibration of (9) as well (i.e., the

mean of log(At/At−1) is 0).
8

Firms set prices optimally subject to nominal rigidities in the form of Calvo (1983) price

contracts, which expire with probability 1− ξ each period, ξ ∈ [ 0, 1). Each time a Calvo contract

expires, the firm sets a new contract price p∗t (f) freely, which then remains in effect for the life

7Woodford (2003, p. 167) compares a model with fixed firm-specific capital to a model with endogenous capital
and investment adjustment costs and finds that the basic business-cycle features of the two models are very similar.
In models with endogenous capital (e.g., Christiano et al., 2005; Smets and Wouters, 2007; Altig et al., 2011),
investment adjustment costs are typically included to keep the capital stock stable at higher frequencies. Thus,
one can think of the fixed-capital assumption as a simple way of achieving the same result. Woodford (2003) and
Altig et al. (2011) also show that firm-specific capital stocks help generate inflation persistence that is consistent
with the data (see particularly Woodford, 2003, pp. 163-173).

8 If the mean rate of technology growth is μA, then the firm-specific capital stocks k must also grow at rate
μA/θ in order for the model to have balanced growth.



9

of the new contract, with indexation to the (continuously-compounded) steady-state inflation

rate π each period.9 In each period τ ≥ t that the contract remains in force, the firm must

supply whatever output is demanded at the contract price p∗t (f)e
(τ−t)π, hiring labor lτ (f) from

households at the market wage wτ .

Firms are jointly owned by households and distribute all profits and losses back to house-

holds each period in an aliquot, lump-sum manner. When a firm’s price contract expires, the

firm chooses the new contract price p∗t (f) to maximize the value to shareholders of the firm’s cash

flows over the lifetime of the contract,10

Et

∞∑
j=0

mt,t+j(Pt/Pt+j)ξ
j
[
p∗t (f)e

jπyt+j(f)− wt+jlt+j(f)
]
, (10)

where mt,t+j ≡
∏j

i=1mt+i denotes shareholders’ stochastic discount factor from period t+ j back

to t, Pt the aggregate price level (defined below), wt the nominal wage at time t, and yt+j(f)

and lt+j(f) denote the firm’s output and labor in period t + j, respectively, conditional on the

contract price p∗t (f) still being in effect.

The output of each firm f is purchased by a perfectly competitive final goods sector, which

aggregates the differentiated goods into a single final good using a CES production technology,

Yt =

[∫ 1

0

yt(f)
1/λdf

]λ
, (11)

where Yt denotes the quantity of the final good and λ > 1 is a parameter. Each intermediate firm

f thus faces a downward-sloping demand curve for its product with elasticity λ/(1− λ),

yt(f) =

(
pt(f)

Pt

)−λ/(λ−1)

Yt, (12)

where pt(f) denotes the price in effect for firm f at time t (so pt(f) = p∗τ (f)e
(t−τ)π̄, letting

τ ≤ t denote the most recent period in which firm f reset its contract price), and Pt is the CES

aggregate price of the final good,

Pt ≡
[∫ 1

0

pt(f)
1/(1−λ)df

]1−λ

. (13)

9The assumption of indexation keeps the model well-behaved with respect to changes in steady-state inflation.
The continuous compounding is notationally simpler for some of the equations below.

10Equivalently, the firm can be viewed as choosing a state-contingent plan for prices that maximizes the value
of the firm to shareholders.
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Differentiating (11) with respect to p∗t (f) and setting the derivative equal to zero yields the

standard New Keynesian price optimality condition,

p∗t (f) = λ
Et

∑∞
j=0mt,t+j(Pt/Pt+j)ξ

jyt+j(f)μt+j(f)

Et

∑∞
j=0mt,t+j(Pt/Pt+j)ξjyt+j(f)ejπ̄

, (14)

where μt(f) denotes the (nominal) marginal cost for firm f at time t,

μt(f) ≡ wtlt(f)

θyt(f)
. (15)

That is, the firm’s optimal contract price p∗t (f) is a monopolistic markup λ over a discounted

weighted average of expected future marginal costs over the lifetime of the contract.11

2.3 Aggregate Resource Constraints and Government

Let Lt denote the aggregate quantity of labor demanded by firms,

Lt =

∫ 1

0

lt(f)df. (16)

Then Lt satisfies

Yt = Δ−1
t AtK

1−θLθ
t , (17)

where K = k denotes the aggregate capital stock and

Δt ≡
[∫ 1

0

(
pt(f)

Pt

)λ/((1−λ)θ)

df

]θ

(18)

measures the cross-sectional dispersion of prices across firms. Δt has a minimum value of unity

when pt(f) = Pt for all firms f ; a greater degree of cross-sectional price dispersion increases Δt

and reduces the economy’s efficiency at producing final output.12

Labor market equilibrium requires that Lt = lt, firms’ labor demand equals the aggregate

labor supplied by households. Equilibrium in the final goods market requires Yt = Ct, where

Ct = ct denotes aggregate consumption demanded by households. For simplicity, there are no

government purchases or investment in the baseline version of the model.

11To be more precise, p∗t (f) is a weighted average of marginal costs deflated by the inflation index rate,

μt+j(f)/e
jπ̄ . In addition, the weights in (14) depend on yt+j(f), which depend on the left-hand-side variable

p∗t (f), so (14) is not a closed-form solution for p∗t (f). However, the closed-form solution for p∗t (f), reported in the
Appendix, has the same form as (14).

12The inequality Δt ≥ 1 follows from Jensen’s inequality applied to (18), since xλ/θ is a convex function.
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Finally, there is a monetary authority that sets the one-period nominal interest rate it

according to a Taylor (1993)-type policy rule,

it = r + πt + φπ(πt − π) +
φy
4
(yt − yt), (19)

where r = − log β denotes the continuously-compounded steady-state real interest rate, πt ≡
log(Pt/Pt−1) denotes the inflation rate, π the monetary authority’s inflation target, yt ≡ log Yt,

yt ≡ ρȳyt−1 + (1− ρȳ)yt (20)

denotes a trailing moving average of log output, and φπ, φy ∈ R and ρȳ ∈ [ 0, 1) are parameters.13

The term (πt − π) in (19) represents the deviation of inflation from policymakers’ target and

(yt − yt) is a measure of the “output gap” in the model.

2.4 Solution Method

I solve the model above by writing each equation in recursive form, dividing nonstationary vari-

ables (Yt, Ct, wt, etc.) by At so that the resulting ratios have a stable nonstochastic steady

state. I then use the method of local approximation around the nonstochastic steady state, or

perturbation methods, to compute a numerical solution to the model.14 For the complete set of

recursive equations that define the model and additional discussion, see Appendix A.

Macroeconomic models similar to the one developed above are typically solved using a first-

order approximation (a linearization or log-linearization), but this solution method reduces all

risk premia in the model to zero.15 A second-order approximation to the model produces risk

premia that are nonzero but constant over time (a constant function of the variance σ2
A). In order

for risk premia in the model to vary with the state of the economy, the model must be solved

13Note that interest rates and inflation in (19) are at quarterly rather than annual rates, so φy corresponds to
the sensitivity of the annualized short-term interest rate to the output gap, as in Taylor (1993). I also exclude a
lagged interest rate “smoothing” term on the right-hand side of (19) for simplicity and to keep the number of state
variables in the model to a minimum. Rudebusch (2002) argues that the degree of federal funds rate smoothing
from one quarter to the next is essentially zero, and that instead the Federal Reserve’s deviations from the Taylor
rule (19) are serially correlated—i.e., that the residuals εit in the empirical version of (19) are serially correlated.

14The equity price pet is normalized by Aν
t rather than At, where ν denotes the degree of leverage (see below).

The value function Vt is normalized by defining Ṽt ≡ Vt − logAt.

15 In the finance literature, it is standard to log-linearize the model and then take expectations of all variables
assuming joint lognormality. This approximate solution method produces nonzero (but constant) risk premia,
but effectively treats higher-order moments of the lognormal distribution on par with first-order economic terms.
Standard perturbation methods (e.g., Judd, 1998; Swanson, Anderson, and Levin, 2006) explicitly relate higher-
order moments of the shock distribution to the corresponding order of the state variables (so variance is a second-
order term, skewness a third-order term, etc.), because their magnitudes are the same in theory.
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to at least third order around the steady state. Note that second- and third-order terms in the

model solution can be non-negligible as long as the model is sufficiently “curved”, which is the

case when risk aversion (related to the Epstein-Zin parameter α) is sufficiently large.

I compute third- and higher-order solutions of the model using the Perturbation AIM al-

gorithm of Swanson, Anderson, and Levin (2006), which can compute general nth-order Taylor

series approximate solutions to discrete-time recursive rational expectations models. The model

above has two state variables (Δt, yt) and a single shock (εAt+1) and thus can be solved to third

order very quickly, in just a few seconds on a laptop computer. To obtain greater accuracy over

a wider range of values for the state variables, the model can be solved to higher order; the re-

sults reported below are for the fifth-order solution unless stated otherwise. (Results for fourth-

and sixth-order solutions are very similar, suggesting that the Taylor series has essentially con-

verged over the relevant range for the state variables.) Aruoba et al. (2006) compare a variety

of numerical solution techniques for standard macroeconomic models and find that higher-order

perturbation solutions are among the most accurate globally as well as being the fastest to com-

pute. Swanson, Anderson, and Levin (2006) provide details of the algorithm and discuss the

global convergence properties of nth-order Taylor series approximations.

A noteworthy feature of the nonlinear solution algorithm I use here, relative to the loglinear-

lognormal approximation typically used in finance, is that second- and higher-order terms of the

Taylor series display endogenous conditional heteroskedasticity. Letting xt denote a generic state

variable and εt+1 a generic shock, the second-order Taylor series solution has terms of the form

xtεt+1, which have a one-period-ahead conditional variance that depends on the economic state xt

(that is, Vart(xtεt+1) depends on xt). Thus, even though the model’s exogenous driving shocks

εAt+1 are homoskedastic, the nonlinear solution algorithm I use here preserves the endogenous

conditional heteroskedasticity that is naturally generated by the nonlinearities in the model.

2.5 Calibration

The model described above is meant to be illustrative rather than provide a comprehensive empir-

ical fit to the data, so I calibrate rather than estimate its key parameters. The baseline calibration

is reported in Table 1, and is meant to be standard, following along the lines of parameter val-

ues estimated by Smets and Wouters (2007), Altig et al. (2011), and Del Negro, Giannoni, and

Schorfheide (2015) using quarterly U.S. data.

I set the household’s discount factor, β, to .992, implying a nonstochastic steady-state
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Table 1: Parameter Values, Baseline Calibration

β 0.992 θ 0.6 φπ 0.5
χ 3 ξ 0.8 φy 0.75
η 0.545 λ 1.1 π 0.008

RRA(Rc) 60 ρA 1 ρȳ 0.9
σA 0.007

K/(4Y ) 2.5

real interest rate of a little more than 3 percent per year. Although this might seem a bit high,

households’ risk aversion drives the unconditional mean of the risk-free real rate close to 2 percent

in the stochastic case.

The household’s logarithmic preferences over consumption imply an intertemporal elasticity

of substitution of unity, which is higher than estimates based on aggregate data (e.g., Hall, 1988),

but is similar to estimates using household-level data (e.g., Vissing-Jorgensen, 2002). Bansal and

Yaron (2004) and Dew-Becker (2012) argue that estimates based on aggregate data are biased

downward, providing further support for the value of unity used here. In addition, logarith-

mic preferences over consumption are a standard benchmark in macroeconomics (e.g., King and

Rebelo, 1999).16

The calibrated value of χ = 3 implies a Frisch elasticity of labor supply of 1/3, consistent

with estimates in Del Negro et al. (2015) and estimates from household data (e.g., MaCurdy,

1980; Altonji, 1986). I set the parameter η so as to normalize L = 1 in steady state.

The parameter α is calibrated to imply a coefficient of relative risk aversion Rc = 60

in steady state, using the closed-form expressions derived in Swanson (2013) for models with

labor.17 Although this value is high, it is a well-known byproduct of the model’s simplicity:18 for

example, households in the model have perfect knowledge of all the model equations, parameter

values, shock dynamics, and shock distributions, so the quantity of risk in the model is very

16My results are not sensitive to setting the IES equal to unity. For example, specifications with u(ct, lt) =

c1−γ
t /(1−γ)−ηl1+χ/(1+χ) produce very similar results when γ is set to 0.9 or 1.1. Of course, these specifications
do not satisfy balanced growth and are nonstationary in response to permanent technology shocks.
17Swanson (2013) derives the coefficient of relative risk aversion for generalized recursive preferences with flexible

labor and arbitrary period utility function u(ct, lt). For multiplier preferences with period utility function (1) and
l = 1 in steady state, risk aversion is given by Rc= α+ (1+(η/χ))−1. See Swanson (2013) for the derivation and
details. In general, risk aversion is lower when labor supply can vary because the household is better able to insure
itself from shocks.
18For example, Piazzesi and Schneider (2006) estimate a value of 57, Rudebusch and Swanson (2012) a value of

110, Van Binsbergen et al. (2012), Andreasen (2012), and Campbell and Cochrane (1999) a value of about 80, and
Tallarini (2000) a value of about 50. The nonstationarity of technology implied by ρA = 1 in the present paper
increases the quantity of risk in the model here relative to Rudebusch and Swanson (2012), which allows me to
use a lower coefficient of relative risk aversion here.
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small relative to the actual U.S. economy. As a result, the household’s aversion to risk in the

model must be correspondingly larger to fit the risk premia seen in the data. Barillas, Hansen,

and Sargent (2009) formalize this intuition by showing that high risk aversion in an Epstein-Zin

specification is isomorphic to a model in which households have low risk aversion but a moderate

degree of uncertainty about the economic environment.19 As an alternative to high risk aversion,

one could increase the quantity of risk in the model instead, such as by introducing long-run risk

as in Bansal and Yaron (2004), or disaster risk as in Rietz (1988) and Barro (2006).20

Turning to the production side of the economy, I set the elasticity of output with respect

to labor θ = 0.6. I calibrate the Calvo contract parameter ξ = 0.8, implying an average contract

duration of five quarters, consistent with the estimates in Altig et al. (2010) and Del Negro et

al. (2015). I calibrate the monopolistic markup λ for intermediate goods to 1.1, consistent with

the estimates in Smets and Wouters (2007) and Altig et al. (2010). The technology process At

is calibrated to be a random walk in the baseline calibration, ρA = 1. The standard deviation

of technology shocks, σA, is set to .007, following estimates in King and Rebelo (1999). The

steady-state ratio of the capital stock to annualized output is calibrated to 2.5.

The response of monetary policy to inflation, φπ, is set to 0.5, as in Taylor (1993, 1999).

I set φy = 0.75, between the values of 0.5 and 1 used by Taylor (1993) and Taylor (1999). I set

the monetary authority’s inflation target π to 0.8 percent per quarter, implying a nonstochastic

steady-state inflation rate of about 3.2 percent per year. Although this is higher than the value

of about 2 percent used by many central banks as their current official inflation target, there

are two reasons why a higher number is appropriate here: First, a steady state inflation rate

of 2 percent is too low to explain the historical average level of nominal yields in the U.S. and

U.K. (and many other countries), even over relatively recent samples such as 1990–2007, as I will

show below. Second, households’ risk aversion drives the unconditional mean of inflation in the

stochastic version of the model somewhat below the nonstochastic steady-state value. Finally, I

calibrate ρȳ = 0.9, implying that the monetary authority uses the deviation of current output

from its average level over the past roughly 2.5 years to approximate the output gap.

19See also Campanale, Castro, and Clementi (2010), who emphasize that the quantity of consumption risk
in a standard DSGE model is very small, and thus the risk aversion required to match asset prices must be
correspondingly larger.

20The simplifying representative-household assumption could also be dropped. Mankiw and Zeldes (1991),
Parker (2001), and Malloy, Moskowitz, and Vissing-Jorgensen (2009) show that the consumption of stockholders
is more volatile (and more correlated with the stock market) than the consumption of nonstockholders, so the
required level of risk aversion in a representative-agent model is higher than it would be in a model that recognized
that stockholders have more volatile consumption (Guvenen, 2009).
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2.6 Impulse Response Functions

Figure 1 plots impulse response functions for the model to a one-standard-deviation (0.7 percent)

positive technology shock, under the baseline calibration described above. Recall that, because

ρA = 1, the effect of the shock on productivity is permanent. The dashed red lines in each

panel report standard impulse response functions for the first-order (log-linear) solution to the

model, while the solid blue lines report impulse response functions for the nonlinear, fifth-order

Taylor series solution to the model.21 I start by describing the standard, linear impulse response

functions, and then describe how the nonlinear (fifth-order) impulse response functions differ from

their linear counterparts.

The top left panel of Figure 1 reports the impulse response function for consumption, Ct, to

the shock. Consumption jumps upward on impact, as higher productivity increases the supply of

output and makes households wealthier in present-value terms, increasing consumption demand.

The first-order impulse response function for Ct does not jump all the way to its new long-run

level on impact, however, because of the increase in the real interest rate (described shortly).

Instead, consumption continues to increase gradually over time to approach its new steady state.

The top right panel reports the impulse response for inflation, πt. The higher level of

technology reduces firms’ marginal costs of production, and monopolistic firms set their price

equal to a constant markup λ over expected future marginal costs, whenever they are able to

reset their price. Thus, inflation falls on impact (by about 0.5 percent at an annualized rate)

as those firms who are able to reset their prices do so. The response of inflation is persistent,

however, as firms’ price contracts expire only gradually.

The nominal interest rate it, in the middle left panel, is set by the monetary authority as

a function of output and inflation according to the policy rule (19). Interest rates respond more

strongly to inflation than to output, causing the nominal interest rate to decline moderately, on

net, in response to the shock, about 40 basis points (at an annual rate) on impact before gradually

21The impulse response functions for the fifth-order solution to the model are computed as follows: The state
variables of the model are initialized to their nonstochastic steady-state values. The impulse response function is
computed as the period-by-period difference between a “one-shock” and a “no-shock” (baseline) scenario. In the
one-shock scenario, εAt is set equal to .007 in period 1, and equal to 0 from period 2 onward. In the no-shock

scenario, εAt is set equal to 0 in every period. Agents in the model do not have perfect foresight, so they still act
in a precautionary manner even though the realized shocks turn out to be deterministically equal to 0 from period
1 onward. In principle, this nonlinear impulse response function can vary as one varies the initial point of the
simulation, or may scale nonlinearly with the size of the shock εAt . In practice, however, the impulse responses in
Figure 2 do not vary much with the initial point and do not display much nonlinearity in the size of the shock. For
example, the fifth-order impulse response functions to a negative 0.7 percent technology shock, which are reported
in Figure B1 in Appendix B, look very similar to the negative of the blue lines in Figure 1 (although they are a
bit larger in magnitude).
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returning to steady state.

The middle right panel plots the response of the real interest rate, rt. Inflation falls by more

than the nominal interest rate after the shock, causing the real rate to rise slightly, about 5 basis

points (at an annual rate) on impact.22 The real rate then gradually falls back to steady state.

The response of labor, Lt, is plotted in the bottom left panel. After the technology shock,

households are wealthier in present value terms and want to consume more leisure; this tends to

push labor downward. Because prices are sticky and firms are monopolistic, firms hire whatever

labor is necessary to satisfy output demand; this tends to push labor upward. For the very

simple model developed here, the first effect dominates the first-order impulse response function

for labor, causing labor to decline slightly as a result; indeed, this result is common in simple

New Keynesian models, as pointed out by Gaĺı (1999).23

However, the nonlinear impulse response function for labor (and to a lesser extent, con-

sumption) is substantially different from the first-order impulse response function. There are two

main reasons for this difference. First, price dispersion, Δt, increases in response to the shock—as

can be seen in the bottom right panel of Figure 1—but only for the nonlinear solution, because

the linearized version of equation (18) implies shocks have no effect on Δt.
24 The increase in

price dispersion reduces the economy’s ability to produce final output efficiently, and increases

the amount of labor required to produce any given level of output (see equation 17). Indeed, the

hump shape in dispersion is clearly visible in the nonlinear impulse response function for labor

(and to a lesser extent, consumption). Second, the positive technology shock reduces the volatility

of households’ stochastic discount factor, for reasons discussed in detail in Section 4, below. The

lower volatility of the SDF makes households effectively less risk averse and reduces their demand

for precautionary savings, leading to an increase in consumption Ct relative to the linear case (as

can be seen in the top-left panel). Households’ greater demand for consumption requires firms to

hire more labor, putting further upward pressure on Lt in the bottom-left panel.25

22Recall that rt is the ex ante real interest rate, so rt = it − Etπt+1 to first order.

23 In more complicated and realistic models, such as Altig et al. (2011), increased demand for investment following
the technology shock is typically enough to make the increase in firms’ labor demand dominate. Alternatively,
a stronger monetary policy response that drives the short-term real interest rate down in response to the shock
would cause consumption to jump above 0.7 percent on impact and lead to an increase in labor.

24The linearized version of equation (18) is Δt = ξΔt−1, which implies Δt is invariant to shocks. Also note that
the nonlinear impulse response function for Δt in the bottom-right panel is essentially symmetric for a negative
technology shock—see Figure B1 in Appendix B. In the stochastic version of the model, inflation is often below
the nonstochastic steady state value (due to precautionary behavior by firms, discussed in Section 4, below), so
even if there are no shocks, Δt > 1 will hold. Negative technology shocks can thus decrease Δt.

25The higher level of consumption in the nonlinear case also causes the real interest rate to rise by more in
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3. Asset Prices and Risk Premia

The stochastic discount factor implied by the simple macroeconomic model above can now be

used to price any asset in the model. In particular, we can derive the implications of the model

for the prices of equity and real, nominal, and defaultable debt.

3.1 Equity

I define an equity security in the model to be a levered claim on the aggregate consumption

stream. The definition of equity as a consumption claim maximizes comparability to the finance

literature and simplifies the intuition in the model; the results are very similar if equity is instead

defined to be a claim on the profits of the monopolistic intermediate firm sector.26 Each period,

equity pays a dividend equal to Cν
t , where ν is the degree of leverage. Consistent with Abel

(1999), Bansal and Yaron (2004), and Campbell et al. (2013), I calibrate ν = 3. Note that ν can

be interpreted as the sum of operational and financial leverage in the economy, where operational

leverage results from fixed costs of production for firms (Gourio, 2012; Campbell et al., 2013).

Let pet denote the ex-dividend price of an equity security at time t. In equilibrium,

pet = Etmt+1(C
ν
t+1 + pet+1). (21)

Let Re
t+1 denote the realized gross return on equity,

Re
t+1 ≡ Cν

t+1 + pet+1

pet
. (22)

I define the equity premium at time t, ψe
t , to be the expected excess return to holding equity for

one period,

ψe
t ≡ EtR

e
t+1 − ert . (23)

Note that

ψe
t =

Etmt+1Et(C
ν
t+1 + pet+1)−Etmt+1(C

ν
t+1 + pet+1)

petEtmt+1

the middle-right panel. The higher level of labor in the nonlinear case increases firms’ marginal costs, which puts
upward pressure on inflation. Inflation nevertheless falls a bit more on impact in the nonlinear case for reasons
discussed in Section 4, below.) The response of the nominal interest rate it in the nonlinear case follows in a
straightforward manner from Ct and πt, given the policy rule (19).

26This is because consumption, output, and monopolistic firm profits are very highly correlated in the model:
firms’ profits are essentially a levered claim on the output stream, and Yt = Ct. Note that adding fixed costs of
production to the model would increase the degree of leverage.
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Table 2: Equity Premium as a Function of Risk Aversion and Shock Persistence

Risk aversion Rc Shock persistence ρA Equity premium ψe

10 1 0.62
30 1 1.96
60 1 4.19

90 1 6.70

60 .995 1.86
60 .99 1.08

60 .98 0.53
60 .95 0.17

Model-implied equity premium ψe, in annualized percentage points, for different values of relative risk
aversion Rc and technology shock persistence ρA, holding the other parameters of the model fixed at
their baseline values from Table 1. State variables of the model are evaluated at the nonstochastic steady
state. See text for details.

=
−Covt(mt+1, R

e
t+1)

Etmt+1

= −Covt

( mt+1

Etmt+1
, Re

t+1

)
, (24)

where Covt denotes the covariance conditional on information at time t.27

The recursive equity pricing and equity premium equations (21)–(23) can be appended to

the equations of the macroeconomic model in the previous section, allowing the equity premium

(23) to be solved numerically along with the rest of the model. For the baseline calibration of the

model reported in Table 1, solved to fifth order, the expected excess return on equity is about 1.05

percent per quarter (4.19 percent at an annualized rate), evaluating the model’s state variables

at their nonstochastic steady-state values. Empirical estimates of the equity premium typically

range from about 3 to 6.5 percent for quarterly excess returns at an annual rate (e.g., Campbell,

1999, Fama and French, 2002), so the equity premium implied by the model is consistent with

the data.

The model-implied equity premium is very sensitive to both the level of risk aversion Rc

and the persistence of the technology shock ρA. Table 2 reports values for the equity premium

for several different values of Rc and ρA, holding the other parameters of the model fixed at

their baseline values from Table 1. The equity premium increases about linearly along with

the household’s coefficient of relative risk aversion, Rc, consistent with the analysis in Swanson

27 If mt+1 and Re
t+1 are jointly lognormally-distributed, as is typically assumed in the finance literature, then

the equation Etmt+1R
e
t+1 = 1 implies Etret+1− rft = −Covt(logmt+1, r

e
t+1)− 1

2
Vartret+1, where ret+1≡ logRe

t+1.

Equation (24) says essentially the same thing without assuming joint lognormality.
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Figure 2. Nonlinear impulse response functions for the equity price pet and equity premium ψe
t to a one-

standard-deviation (0.7 percent) positive technology shock in the model, with state variables initialized
to their nonstochastic steady state values. See text for details.

(2013).28 Perhaps more surprising is the substantial drop in the equity premium for values of

ρA that are only slightly less than unity—for example, reducing ρA from 1 to .995 reduces the

equity premium by more than half, and reducing ρA from .995 to .99 cuts the equity premium

almost in half again. There are two reasons why ψe is so sensitive to ρA: First, equity is very

long-lived, so it is sensitive to changes in the consumption dividend even at distant horizons.

Second, the household’s value function Vt, which enters into the stochastic discount factor (6), is

also sensitive to consumption at long horizons. Reductions in ρA below unity have a very large

effect on consumption at distant horizons, and thus significantly attenuate the response of both

the equity price and the stochastic discount factor to a technology shock. The subsantially lower

covariance between these two variables reduces the equity premium (equation (24)). (Note that

the long-run risks literature, beginning with Bansal and Yaron, 2004, makes long-run consumption

more volatile than my baseline calibration of ρA = 1; as a result, their models imply a larger

equity premium than my model here, or a similar-sized equity premium with a lower degree of

risk aversion.)

The equity premium in the model also varies substantially over time. Figure 2 plots the

nonlinear (fifth-order) impulse response functions for the equity price pet and the equity premium

ψe
t to the technology shock, computed the same way as the nonlinear impulse response functions

in Figure 1. The left-hand panel of Figure 2 depicts the response of the equity price, which jumps

28The equity premium increases linearly with risk aversion to second order around the nonstochastic steady
state. The equity premium in Table 2 is computed to fifth order and thus is not strictly linear in risk aversion,
but the intuition from the analysis in Swanson (2013) still holds.
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about 2.5 percent in response to the technology shock on impact. The risk-neutral increase in

the equity price would be about 2.1 percent (the leverage ratio times the increase in dividends

of about 0.7 percent every period); the additional 0.4 percent increase in the price is due to the

decline in the risk premium that investors require to hold the risky asset. This can be seen in the

right-hand panel of Figure 2, where the equity premium drops about 60 basis points (bp) at an

annual rate on impact before rising slowly back toward its initial level. Thus, the model produces

an equity premium that is countercyclical (at least, in response to supply shocks), consistent with

conventional wisdom in the literature (e.g., Fama and French, 1989; Campbell and Cochrane,

1999; Cooper and Priestley, 2008). The reason for this countercyclicality is that the volatility of

the households’ stochastic discount factor falls after a positive technology shock (and increases

after a negative shock), for reasons I discuss below. Over the course of a year, the standard

deviation of the equity premium in the model is about 103 bp, obtained by summing the squares

of the first four quarters of the impulse response and taking the square root. (Note that this is

the standard deviation of the expected excess return on equity; I discuss the standard deviation

of the ex post excess return shortly.)

To compare the model-implied time variation in the equity premium to the data, it is useful

to compute the model-implied Sharpe ratio, ψe
t

/√
Vartret+1 , which is the standard measure used

in the empirical finance literature. The average quarterly (non-annualized) Sharpe ratio in the

model is 1.05/2.5 = 0.42, which is about in line with the typical estimates of 0.2 to 0.4 in the

literature (e.g., Campbell and Cochrane, 1999; Lettau and Ludvigson, 2010). The fact that the

model’s Sharpe ratio is at the high end of this range is not surprising since the model here is

driven by a single shock and thus understates the overall volatility of equity prices; adding a

monetary policy shock to the model, for example, would increase the volatility of equity without

much altering its excess return (because monetary policy shocks are much less persistent than

technology shocks and have only a small effect on the equity premium), and lead to a lower Sharpe

ratio more in line with the data.

The quarterly standard deviation of the (non-annualized) Sharpe ratio in the model is about

0.62/2.5 = 0.25. Again, this is in line with estimates of the quarterly standard deviation of the

Sharpe ratio in the literature, which range between 0.09 and 0.47 (e.g., Campbell and Cochrane,

1999; Lettau and Ludvigson, 2010, Table 11.7).

The ex post excess return on equity has a quarterly standard deviation of about 2.5 percent

per quarter, or 5 percent per year. Empirical estimates in the literature are typically in the range
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of 6 to 12 percent per quarter, or 12 to 24 percent per year (e.g., Campbell, 1999; Lettau and

Ludvigson, 2010), so the model-implied volatility for equity returns is substantially lower than

the data. However, this is again not surprising, given the fact that the stylized model here is

driven by a single shock. Adding additional shocks to the model, such as fiscal or monetary policy

shocks as in the New Keynesian DSGE literature (e.g., Smets and Wouters, 2007), would bring

equity price volatility closer to the data.

From equation (24), we know that the decline in the model-implied equity premium in Fig-

ure 2 must be due to a drop in the conditional covariance of the equity price with the stochastic

discount factor. In other words, the model generates endogenous conditional heteroskedasticity

in response to shocks, even though the exogenous technology shock that drives the model is ho-

moskedastic. This is a striking and very important feature of the model. I discuss how the model

generates heteroskedasticity in detail in Section 4, below (and see also Section 2.4, above), but

the key factor is the behavior of price dispersion Δt. In response to a technology shock, price

dispersion moves in the same direction as the shock (see the bottom-right panels of Figures 1

and B1). Because greater price dispersion reduces output and aggregate productivity (see equa-

tion 17), the response of price dispersion to a technology shock tends to dampen the responses

of the model’s other variables to the shock. In addition, the sensitivity of price dispersion to a

technology shock is greater if there has been a positive technology shock in the recent past—see

Section 4, below. Thus, a positive technology shock today leads to a greater sensitivity of price

dispersion Δt to future shocks, which reduces the volatility of the other variables of the model

(such as consumption and the stochastic discount factor) to future shocks.

The result is that the stochastic discount factor displays substantial endogenous conditional

heteroskedasticity. In a perfectly homogeneous, homoskedastic model—such as the ones typically

used in finance that have no labor and no nominal rigidities—there is no endogenous conditional

heteroskedasticity at all. The only way to generate a time-varying equity premium in those

models is to assume that the exogenous driving shock itself is conditionally heteroskedastic (see,

e.g., Bansal and Yaron, 2004).

3.2 Real and Nominal Default-Free Bonds

A default-free zero-coupon real bond in the model pays one unit of consumption at maturity. Let

p̃
(n)
t denote the nominal price of an n-period zero-coupon real bond, and p

(n)
t ≡ p̃

(n)
t /Pt its real
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price, with p
(0)
t ≡ 1. Then for n ≥ 1,

p
(n)
t = Etmt+1p

(n−1)
t+1 (25)

in equilibrium in each period t. In particular, p
(1)
t = e−rt .

A default-free zero-coupon nominal bond pays one nominal dollar at maturity. Let p
$(n)
t de-

note the nominal price of an n-period zero-coupon nominal bond, with p
$(0)
t ≡ 1. Then for n ≥ 1,

p
$(n)
t = Etmt+1e

−πt+1p
$(n−1)
t+1 (26)

in each period t. In particular, p
$(1)
t = e−it .

Let r
(n)
t denote the n-period continuously-compounded yield to maturity on a real zero-

coupon bond, and i
(n)
t the corresponding yield on an n-period nominal bond. Then

r
(n)
t = − 1

n
log p

(n)
t (27)

and

i
(n)
t = − 1

n
log p

$(n)
t . (28)

Note that even though these bonds are free from default, they are risky in the sense that their

prices can fluctuate in response to shocks, for n > 1.

The risk premium on a bond is typically written as a term premium, the difference between

the yield to maturity on the bond and the hypothetical, risk-neutral yield to maturity on the

same bond. The risk-neutral real price p̂
(n)
t of an n-period zero-coupon real bond is given by

p̂
(n)
t = e−rtEt p̂

(n−1)
t+1 , (29)

where p̂
(0)
t ≡ 1. The n-period real term premium ψ

(n)
t is then given by

ψ
(n)
t ≡ 1

n

(
log p̂

(n)
t − log p

(n)
t

)
≈ 1

np(n)
(
p̂
(n)
t − p

(n)
t

)
, (30)

where p(n) denotes the steady-state real bond price.29 The formula for the term premium on a

nominal n-period bond, ψ
$(n)
t , is analogous. Note that

p̂
(n)
t − p

(n)
t = Etmt+1Etp̂

(n−1)
t+1 − Etmt+1p

(n−1)
t+1

29The first-order approximation on the first line of (30) is useful for gaining intuition. However, when I solve
for bond prices and risk premia in the model numerically below, the solution will always include second-, third-,
and higher-order terms as well as first-order terms.
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Table 3: Real Zero-Coupon Bond Yields, Data vs. Model

2-yr. 3-yr. 5-yr. 7-yr. 10-yr. (10y)−(3y)

US TIPS, 1999–2014a 1.37 1.63 1.90

US TIPS, 2004–2014a 0.19 0.32 0.65 0.95 1.28 0.96
US TIPS, 2004–2007a 1.39 1.52 1.74 1.91 2.09 0.57
UK indexed gilts, 1983–1995b 6.12 5.29 4.34 4.12 −1.17

UK indexed gilts, 1985–2014c 2.02 2.16 2.26 2.35 0.33
UK indexed gilts, 1990–2007c 2.79 2.78 2.79 2.80 0.01

macroeconomic model 1.94 1.93 1.93 1.93 1.93 0.00

aGürkaynak, Sack, and Wright (2010) online dataset.
bEvans (1999).
cBank of England web site.

Estimated zero-coupon real yields from inflation-indexed bonds in the U.S. and U.K., and zero-coupon
real yields implied by the macroeconomic model presented above. The last column reports the difference
between the 10-year and 3-year yields in each row. See text for details.

= −Covt
(
mt+1, p

(n−1)
t+1

)
+ e−rtEt

(
p̂
(n−1)
t+1 − p

(n−1)
t+1

)
= −Et

n−1∑
j=0

e−rt,t+jCovt+j

(
mt+j+1, p

(n−j−1)
t+j+1

)
, (31)

where rt,t+j ≡
∑t+j

τ=t+1 rτ and the last line of (31) follows from forward recursion. Equation (31)

shows that, even though the bond price depends only on the one-period-ahead covariance between

the stochastic discount factor and next period’s bond price, the risk premium on the bond depends

on this covariance over the entire lifetime of the bond. Substituting (31) into (30) gives

ψ
(n)
t = − 1

np(n)
Et

n−1∑
j=0

e−rt,t+jCovt+j

(
mt+j+1, p

(n−j−1)
t+j+1

)
. (32)

Intuitively, the term premium is larger the more negative the covariance between the stochastic

discount factor and the price of the bond over the lifetime of the bond.

The bond pricing and bond yield equations (25)–(29) are recursive and can be appended to

the macroeconomic model described above and solved numerically along with the macroeconomic

variables, equity price, and equity premium. (Note that, to consider a bond with n periods to

maturity, n − 1 bond pricing equations must be appended to the model, one for each maturity

from 2 to n.)

Table 3 reports the real yield curve implied by the model, along with the corresponding

average real yields estimated from inflation-indexed government bonds in the U.S. and U.K. over

different sample periods. Data for U.S. inflation-indexed Treasuries (TIPS) are taken from the
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updated Gürkaynak, Sack, and Wright (2010) online dataset. The first TIPS were issued in 1998,

and a yield curve for maturities of 5 years or more can be estimated beginning in 1999. The first

row of Table 3 thus reports average TIPS yields from 1999 to 2014. Real yields over this sample

averaged about 1.4 to 1.9 percent per year. Zero-coupon yields for shorter-maturity TIPS (down

to 2 years; neither Gürkaynak et al., 2010, nor the Bank of England report zero-coupon real yields

with a maturity less than 2 years) can be estimated beginning in 2004, and are reported in the

second row of Table 3, along with the average yields for longer maturities over the same sample.

This sample also excludes the period of lower TIPS liquidity in the first few years after they

were issued. Over this sample, average real yields are lower, between about 0.2 and 1.3 percent.

However, the period from 2008–13 is unusual in that the financial crisis and severe recession led

the Federal Reserve to reduce short-term interest rates to record lows, and to some extent we

might expect this to show up in shorter-term real yields as well, both as a lower level of yields

and as a steeper yield curve slope. Thus, the third row of Table 3 reports results from 2004–07,

a short sample, but one that avoids both the low liquidity of TIPS in its first few years and the

financial crisis and recession. Over this sample, real yields average between about 1.4 and 2.1

percent.

However, this is a short sample and the period from 2004 to 2005 was also characterized by

very easy monetary policy and a very low level of short-term U.S. yields as the Federal Reserve

worked to facilitate recovery from the 2001 recession. Thus, the next three rows of Table 3 report

average real yields on inflation-indexed gilts in the U.K., for which we have a longer sample

(indexed gilts have traded since at least the early 1980s in the U.K.). Evans (1999) estimates real

zero-coupon U.K. yields from 1983 to 1995, reported in the fourth row of Table 3, which average

between about 4 and 6 percent over that sample. Interestingly, the real U.K. gilt yield curve

slopes downward rather than upward over this period, by about 100–200 basis points. However,

as in the U.S., the early years of the U.K. indexed gilt market may have suffered from low liquidity

and correspondingly higher yields. Thus, the fifth row of Table 3 reports estimated real yields

from 1985 to the present, from the Bank of England’s web site. Over this longer sample, real U.K.

yields average about 2 to 2.4 percent, and the yield curve sloped upward by about 33 bp. The

sixth row of Table 3 reports results for the U.K. excluding both the early years of the sample and

the financial crisis and recession period, for the same reasons as for the U.S. Over this sample,

1990–2007, real yields in the U.K. are a bit higher, averaging about 2.8 percent, and the yield

curve is about flat, sloping upward by 1 bp.
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While the exact level and slope of the real yield curve depend on the sample period and

country considered (U.S. vs. U.K.), the overall pattern suggests an average real yield of approx-

imately 2 percent per year, with a slope that is relatively flat—neither strongly upward-sloping

nor downward-sloping on average. The macroeconomic model presented above fits these features

of real yields in the data quite well. Real yields in the model average a bit less than 2 percent

under the baseline calibration, evaluating the model’s state variables at the nonstochastic steady

state.30 The model also implies that the real yield curve is about flat on average, with essentially

no spread between the 10-year and 3-year yields, and a −1 bp spread between the 10-year and

2-year yields.

A downward-sloping real yield curve is a standard feature of traditional real-business-cycle

models—see Backus, Gregory, and Zin (1989), Donaldson, Johnsen, and Mehra (1990) and Den

Haan (1995). Intuitively, if short-term real interest rates fall in recessions, then the price of a

long-term real bond will tend to rise in recessions, which is when households value consumption

the most. Thus, long-term real bonds act like recession insurance and should carry a negative

risk premium. In the macroeconomic model I develop here, the response of the short-term real

interest rate to the shock is fairly small (see Figure 1), implying a relatively small change in the

real long-term bond price (see Figure 3, below). Moreover, the fall in the real term premium

after the shock (Figure 3) attenuates the response of the real bond price even more. As a result,

the price of a real long-term bond is not very countercyclical and the insurance properties of the

bond are minor, resulting in only a small risk premium, consistent with the data.

Figure 3 reports nonlinear impulse response functions for the 10-year real bond price and

term premium, computed in the same way as in Figures 1 and 2. The bond price falls only about

0.2 percent on impact, due to the small increase in short-term real rates in Figure 1, and the

offsetting fall in the real term premium (see the right-hand panel of Figure 3). The real term

premium declines in response to the shock, but by much less than the equity premium, only about

4 bp.

Table 4 compares the nominal yield curves implied by the model to the data. Gürkaynak,

Sack, and Wright (2007) estimate zero-coupon nominal Treasury yields for the U.S. going back to

1961 for maturities out to 7 years, and 1971 for maturities out to 10 years, and data through the

30Note that the baseline value of β from Table 1 implies a real yield of a little more than 3 percent in the
nonstochastic steady state. However, the real yield rt = 1/Etmt+1, and Etmt+1 is substantially greater than
1/β in the stochastic case due to Jensen’s inequality terms. Intutively, households’ aversion to risk drives up
their demand for precautionary savings in the riskless asset, lowering the risk-free rate below its nonstochastic
steady-state value.
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Figure 3. Nonlinear impulse response functions for real long-term bond price p
(40)
t and real term premium

ψ
(40)
t to a one-standard-deviation (0.7 percent) positive technology shock in the model, with state variables

initialized to their nonstochastic steady state values. See text for details.

present are available from the online version of their dataset. From 1961 to 2014, nominal yields

averaged about 5.4 to 6.2 percent. From 1971 to 2014, the average is a bit higher, about 5.6 to

6.9 percent, with an average yield curve slope of about 125 bp. Just as for real yields, though, the

period from 2008–14 may be atypical in that short-term interest rates hit record lows in response

to the financial crisis and recession, and were constrained by the zero lower bound on nominal

rates. The “Great Inflation” period of the 1970s and early 1980s may also be problematic in that

monetary policy may have experienced a structural break since that period and is now conducted

in a more aggressive anti-inflationary manner (e.g., Clarida, Gaĺı, and Gertler, 1999). Thus, the

third row of Table 4 reports average yields from 1990 to 2007, a period that excludes both the

Great Inflation and recent Great Recession periods. Over this sample, nominal Treasury yields

averaged about 4.5 to 6 percent, with a yield curve slope of about 140 bp.

The Bank of England also reports estimated zero-coupon yield curves for the U.K. going

back to 1970. From 1970 to 2013, nominal gilt yields in the U.K. averaged between about 7.2 and

8.2 percent, with a yield curve slope of about 93 bp, as reported in Table 4. Restricting attention

to the period from 1990 to 2007, for the same reasons as above, average U.K. nominal yields are

a bit lower, about 6.2 to 6.5 percent, with a slope of just 30 bp.

Again, the exact level and slope of the nominal yield curve depends on the sample period

and country considered, but nominal yields appear to average about 5 or 6 percent and have

an upward slope of about 100 bp. The model is able to reproduce these features of the data

quite well: the average level of nominal yields in the model (evaluating the state variables at
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Table 4: Nominal Zero-Coupon Bond Yields, Data vs. Model

1-yr. 2-yr. 3-yr. 5-yr. 7-yr. 10-yr. (10y)−(1y)

US Treasuries, 1961–2014a 5.36 5.59 5.77 6.05 6.26

US Treasuries, 1971–2014a 5.53 5.77 5.97 6.29 6.54 6.81 1.28
US Treasuries, 1990–2007a 4.56 4.84 5.06 5.41 5.68 5.98 1.42
UK gilts, 1970–2014b 7.07 7.25 7.41 7.65 7.84 8.02 0.95

UK gilts, 1990–2007b 6.20 6.29 6.38 6.47 6.50 6.48 0.28

macroeconomic model 5.35 5.59 5.80 6.09 6.27 6.44 1.09

aGürkaynak, Sack, and Wright (2007) online dataset.
bBank of England web site.

Empirical estimates of zero-coupon nominal yields from government bonds in the U.S. and U.K., and
zero-coupon nominal yields implied by the macroeconomic model presented above. The last column
reports the difference between the 10-year and 1-year yield in each row. See text for details.

the nonstochastic steady state) is between about 5.4 and 6.4 percent, with an upward slope of

109 bp. Thus, although the model-implied real yield curve is flat, the implied nominal yield curve

slopes upward substantially. As discussed by Rudebusch and Swanson (2012), this is because

technology shocks in the model make nominal bonds risky: A negative technology shock causes

inflation to rise persistently at the same time that consumption falls; as a result, long-term

nominal bonds in the model lose value in recessions. This implies that long-term nominal bonds

should carry a substantial risk premium, about 150 bp over the corresponding risk-neutral yield.

Thus, the simple model presented here provides a straightforward answer to the puzzle posed by

Backus, Gregory, and Zin (1989), Donaldson, Johnsen, and Mehra (1990), and Den Haan (1995):

namely, why does the nominal yield curve slope upward? The answer is technology shocks, or

more generally, any type of “supply shock” that causes inflation and output to move in opposite

directions, such as an oil price shock or markup shock.

Of course, the larger and more important are technology or supply shocks in the model, the

larger the term premium on nominal bonds will be. Thus, if supply shocks were relatively larger

in the 1970s and early 1980s than in the 1960s or more recently, the model predicts that we should

see a larger term premium on nominal bonds in those periods when supply shocks were larger.

And in fact, this prediction seems to be consistent with the data: Rudebusch, Sack, and Swanson

(2007) graph several measures of the term premium—from a VAR, affine no-arbitrage models with

latent or observable factors, or the Cochrane-Piazzesi (2005) “tent-shaped” predictor of excess

returns—and for all of these measures, the estimated term premium on long-term nominal bonds

in the U.S. is higher in the 1970s and early 1980s than in the 1960s or more recently.
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Figure 4. Nonlinear impulse response functions for nominal long-term bond price p
$(40)
t and term

premium ψ
$(40)
t to a one-standard-deviation (0.7 percent) technology shock in the model, with state

variables initialized to their nonstochastic steady state values. See text for details.

Campbell, Sundaram, and Viceira (2013) also document changes in the correlation between

stock and nominal bond returns over time. Although the baseline calibration of the model here has

only a single shock, making it stochastically singular, extending the model to include fiscal and/or

monetary policy shocks is straightforward and is standard in the medium-scale New Keynesian

DSGE literature (e.g., Smets and Wouters, 2007). In these models, if the relative importance

of technology or supply shocks is varied, then the size of the term premium and the correlation

between stock and bond returns will vary as well. Thus, changing correlations between stock and

bond returns can be mapped back to more structural features of the model.

Figure 4 plots the nonlinear impulse response functions for the 10-year nominal bond price

and term premium to a one-standard-deviation positive technology shock, computed in the same

way as in Figures 1, 2, and 3. As discussed above, a positive technology shock causes inflation

and the short-term nominal interest rate to fall (Figure 1) and the nominal long-term bond price

to rise substantially (Figure 4), about 1.7 percent on impact before gradually returning back to

steady state. The nominal term premium falls about 10 bp on impact, so part of the strong

price response of the long-term nominal bond is the due to the fall in the term premium. The

reason for the term premium’s fall is essentially the same as for the equity premium: the decline

in the volatility of the households’ stochastic discount factor after the positive technology shock.

Importantly, the model’s prediction of a countercyclical term premium is consistent with the

evidence in Fama and French (1989), Cooper and Priestley (2008), Piazzesi and Swanson (2008),

and conventional wisdom in the literature (e.g., Campbell and Cochrane, 1999). Over the course
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of a year, the standard deviation of the term premium is about 16 bp.

Estimates of the quarterly standard deviation of the term premium in the data range be-

tween about 8 and 40 bp: standard affine term structure models with latent factors, such as

Kim and Wright (2005), imply a quarterly standard deviation of about 30–35 bp, but Rudebusch

and Wu (2007) argue that these highly-parameterized models tend to overfit the high-frequency

fluctuations in long-term yields, and that fluctuations in the term premium are smaller, only

about 8 bp from quarter to quarter (see also the survey of empirical estimates in Rudebusch,

Sack, and Swanson, 2007). The term premium implied by the model of the present paper is

consistent with this range of estimates, but lies more toward the lower end, consistent with the

less highly-parameterized models of Rudebusch and Wu (2007) and others.

3.3 Defaultable Bonds

The simple macroeconomic model developed above also matches many features of defaultable

bond prices. For simplicity, I follow the theoretical finance literature and model a defaultable

bond as a depreciating consol that has some probability of defaulting each period (see, e.g.,

Leland, 1994, 1998; Duffie and Lando, 2001; and Chen, 2010). The credit spread in the model is

the difference in yield between the defaultable consol and an otherwise identical consol that is free

from default. I consider two cases in the analysis below: first, where the probability of default

and the recovery rate given default are constant over time, and second, where those quantities

vary cyclically in line with the data.

A default-free depreciating nominal consol is an infinitely-lived bond that pays a geometri-

cally declining coupon of δn dollars in each period n = 1, 2, . . . after issuance. The equilibrium

ex-coupon price pct of the consol in period t is given by

pct = Etmt+1e
−πt+1(1 + δpct+1), (33)

where the size of the next coupon payment is normalized to one dollar. The very simple recursive

structure of (33) makes this type of long-term bond extremely convenient to work with and

generalizes naturally to the case where the bond may default.31 When δ = 0, the consol reduces

31Leland (1994), Duffie and Lando (2001), and Chen (2010) use a nondepreciating consol to model corporate
bonds, while Leland (1998) uses a depreciating consol. Rudebusch and Swanson (2008) use a (default-free) depre-
ciating consol to study the long-term bond premium puzzle. The behavior of the depreciating consol in the simple
model above and in Rudebusch and Swanson (2008) is very similar to that of a zero-coupon bond with the same
Macauley duration.
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to a one-period zero-coupon bond, and when δ = 1, it behaves like a traditional nondepreciating

consol. By choosing δ appropriately, the consol can be given any desired Macauley duration and

made to behave very similarly to the corresponding zero-coupon bond.

The continuously-compounded yield to maturity, ict , for the consol satisfies

pct =
1

ei
c
t
+

δ

e2i
c
t
+

δ2

e3i
c
t
+ · · · , (34)

implying

ict = log
( 1

pct
+ δ

)
. (35)

The Macauley duration of the consol is

−d log p
c
t

dict
= 1 + δpct . (36)

When calibrating the model below, I set δ so that the consol has a Macauley duration of 10 years,

corresponding to the approximate duration of the longer-term coupon bonds in Moody’s indexes.

A defaultable consol pays a nominal coupon each period in the same way as a default-free

consol, but in addition there is a chance each period that the bond will default and cease paying

interest forever. In the event of default, bondholders receive a recovery rate times the previous

value of the bond, which we can calibrate to the data. Thus, the defaultable consol price pdt

satisfies

pdt = Etmt+1e
−πt+1

[
(1− 1d

t+1)(1 + δpdt+1) + 1d
t+1 ωt+1 p

d
t

]
, (37)

where 1d
t is an indicator variable equal to 1 if the bond defaults in period t and 0 otherwise, and

ωt denotes the recovery rate on the bond in the event of default. The yield to maturity idt and

duration of the defaultable bond are defined by equations (35)–(36), with pdt in place of pct . The

credit spread is the yield differential, idt − ict .

It remains to calibrate Prt{1d
t+1 = 1} and ωt in (37). The average rate of default for

bonds initially rated Baa or BBB is about 0.6 percent per year (e.g., Moody’s, 2006; Standard &

Poor’s, 2014), and the average recovery rate on defaulted bonds is about 42 percent (Chen, Collin-

Dufresne, and Goldstein, 2009; Chen, 2010).32 As a first calibration, then, I set Prt{1d
t+1 = 1}

to an exogenous, constant rate of 0.15 percent per quarter, and ωt to an exogenous constant of

42 percent.

32The default rate on bonds currently rated Baa/BBB is much lower, about 0.15 percent per year on average.
However, these bonds also lose value when they are downgraded, which happens with much higher probability
than default. Rather than keep track of credit ratings, the probability of downgrades, and capital losses in the
event of downgrade, I simply keep track of the default rate for bonds initially rated Baa/BBB.
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Table 5: Model-Implied Credit Spread on Defaultable Bonds

average ann. cyclicality of average cyclicality of credit
default prob. default prob. recovery rate recovery rate spread (bp)

.006 0 .42 0 34.0

.006 −0.3 .42 0 130.9

.006 −0.3 .42 2.5 143.1

.006 −0.15 .42 2.5 78.9

.006 −0.6 .42 2.5 367.4

.006 −0.3 .42 1.25 137.0

.006 −0.3 .42 5 155.2

Model-implied credit spread idt − ict for defaultable vs. default-free depreciating consols with Macauley
duration of 10 years. Average annualized default probability is calibrated to bonds initially rated Baa.
Cyclicality of default probability and recovery rate are the loadings on the output gap, yt − yt. See text
for details.

The credit spread implied by the model for this calibration is reported in the first row of

Table 5. With a constant average annual default probability of 0.6 percent, the model-implied

credit spread is about 34 bp. This is essentially the risk-neutral expected loss each period from

default, (.006)(.58) = 34.8 bp, and is far less than the historical average credit spread on Baa-

rated bonds of about 120 bp (e.g., Chen, Collin-Dufresne, and Goldstein, 2009; Chen, 2010).33

Intuitively, if the risk of default in the model is uncorrelated with the stochastic discount factor,

there is no additional risk premium attached to losses from default.

Empirically, however, corporate bond defaults are highly countercyclical and recovery rates

highly procyclical (see, e.g., Chen, 2010; Giesecke, Longstaff, Schaefer, and Strebulaev, 2011;

Standard & Poor’s, 2011). For example, in Figure 1 of Chen (2010), the default rate averages

about 0.9 percent for all bonds over the postwar period, but spikes to about 3.7 percent in 1990,

4 percent in 2001, and 5.5 percent in 2009, with smaller increases in earlier recessions (and a spike

to 8.5 percent in 1933). In boom years, the default rate falls to essentially zero. Recovery rates

average about 42 percent, but drop to about 20–25 percent in 1990, 2001, and 2009, while they

rise to 50–60 percent in boom years.

Thus, the next rows of Table 5 consider cases where the default rate, recovery rate, or both

33This is the average difference between the yield on Moody’s Baa and Aaa seasoned corporate bond indexes from
1921–2013. The average spread over alternative sample periods is similar. The spread between Baa-rated corporate
bonds and U.S. Treasuries is even larger, about 185 bp. However, U.S. Treasuries carry an additional premium
for their extreme liquidity and beneficial tax treatment, so the Baa-Aaa spread is often used in the literature to
measure the credit spread (since Aaa corporate bonds are similar in liquidity and tax treatment to Baa-rated
bonds and the probability of default on Aaa-rated bonds is still extremely low; see, e.g., Chen, Collin-Dufresne,
and Goldstein, 2009).
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are correlated with the output gap in the model, yt − yt. I calibrate the cyclicality of the model’s

annualized default rate to a value of −0.3, which implies a drop in output of 5 percent below

trend is associated with an increase in the default rate of about 1.5 percentage points. While this

cyclicality is lower than in Chen (2010), my focus here is on bonds initially rated Baa/BBB, while

the data in Chen (2010) is for all bonds, which includes many that were issued at ratings below

investment grade.34 The second row of Table 5 reports the model-implied credit spread when

the default rate is countercyclical, holding the recovery rate constant over time. This greatly

increases the model-implied credit spread, to about 131 bp, consistent with the observed spread

in the data.

The third row of Table 5 considers the case where the recovery rate is also cyclical. I

calibrate the cyclicality of the recovery rate in the model to 2.5, so that a fall in output of 5

percent below trend is associated with a roughly 12.5-percentage-point decrease in the recovery

rate on defaulted corporate bonds, in line with the variation reported in Chen (2010). Given this

degree of cyclicality, the credit spread in the model increases a bit further, to 143 bp, still close

to (and even a bit above) the value of 120 bp in the data.

In the last four rows of Table 5, I vary these cyclicality parameters to check the sensitivity

of the credit spread to these parameters. Changes in the cyclicality of default have a large effect

on the spread, while changes in the cyclicality of the recovery rate have a much smaller effect,

varying by only a few basis points. Intuitively, a marginal increase in the probability of default

is much more costly to households because it implies an increase in the chance of a large loss;

in contrast, a marginal fall in the recovery rate implies only a small chance (0.15 percent per

quarter) of a modest increase in the loss. Thus, the cyclicality of recovery rates are of much lesser

importance in the model and can be largely ignored.

Figure 5 reports nonlinear impulse response functions for the defaultable bond price and

credit spread to a positive one-standard-deviation technology shock, computed the same way

as in previous figures. The default probability and recovery rate in the model are assumed to

have the same cyclicality as in the third row of Table 5, consistent with the data. On impact,

the defaultable bond price jumps about 2.3 percent, in between the responses of the default-free

nominal bond and equity prices in Figures 4 and 2. This is intuitive, since defaultable bonds are

riskier than default-free bonds but less risky than equity in the model.

34See the discussion in footnote 32. Also, to prevent the default rate in the model from becoming negative, I
model it in logarithms rather than in levels. That is, the cyclicality of the log default rate is set to −50, which,
when multiplied by the average default rate of .006 per year, produces −0.3.
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Figure 5. Nonlinear impulse response functions for defaultable long-term bond price pdt and credit spread
idt − ict to a one-standard-deviation (0.7 percent) technology shock in the model, with state variables
initialized to their nonstochastic steady state values. See text for details.

The credit spread, depicted in the right-hand panel of Figure 5, drops about 7 bp on impact.

This is somewhat less than in the data; the standard deviation of the post-war quarterly change

in the Baa-Aaa spread is about 20 bp. However, as discussed above, the stylized model here

has only one driving shock; extending the model to include additional shocks would increase the

overall volatility of the credit spread and bring it more in line with the data.

To some extent, the model’s ability to jointly fit equity returns and corporate bond yields

is not surprising, since Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Stre-

bulaev (2010), and Chen (2010) achieve similar simultaneous fits in an endowment economy.

Nevertheless, the present paper is the first paper to jointly match these data in a fully-specified

macroeconomic model. The distinction is important because results in an endowment economy

do not necessarily carry over to the case where households can choose their consumption stream

endogenously (see, e.g., the discussion of Campbell-Cochrane (1999) habits in the Introduction

above and in Rudebusch and Swanson, 2008).

Like the present paper, Bhamra et al. (2010) and Chen (2010) use Epstein-Zin preferences,

albeit in an endowment economy, with consumption and inflation both taken to be exogenous,

reduced-form processes. The advantage of the structural macroeconomic approach I take here

is its greater robustness to structural breaks and ability to consider novel policy interventions,

which cannot be studied in a reduced-form macroeconomic environment. On the other hand, the

much simpler macroeconomic structure in Bhamra et al. (2010) and Chen (2010) allows them

to perform a more structural analysis of firms’ corporate financing and default decisions. In
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other words, I have adopted a simplistic, reduced-form model of the firm in order to better focus

on the structural behavior of the macroeconomy, while Bhamra et al. (2010) and Chen (2010)

have adopted a very simplistic, reduced-form model of the macroeconomy to better focus on the

structural finance behavior of the firm.

4. Endogenous Conditional Heteroskedasticity

As discussed above—in Sections 2.4 and 3.1—the macroeconomic model I develop in the present

paper naturally generates endogenous conditional heteroskedasticity in response to shocks. In-

deed, this feature of the model is crucial for generating time-varying risk premia on assets, as

discussed in Section 2.4: If the stochastic discount factor and the asset return are both ho-

moskedastic, then the risk premium on the asset must be constant over time, as can be seen in

equation (24). The fact that the model produces time-varying risk premia in Figures 2 through 5 is

therefore (indirect) evidence that the model-implied stochastic discount factor is heteroskedastic.

Figure 6 provides direct evidence of this heteroskedasticity. In Figure 6, I plot non-

linear impulse response functions for the conditional variance of the stochastic discount fac-

tor. Given that mt+1 = β(Ct+1/Ct)
−1

[
exp(−αVt+1)/Et exp(−αVt+1)

]
, the conditional volatility

Vart logmt+1 can be decomposed into two parts, Vart log(Ct+1/Ct)
−1 and Vart log

[
exp(−αVt+1)/

Et exp(−αVt+1)
]
, which are reported separately in the left- and right-hand panels of Figure 6.

The nonlinear impulse response functions are computed in the same way as in previous figures.35

In response to a positive one-standard-deviation technology shock, the conditional variance

of the SDF falls about 50 percent in total. The conditional variance of consumption growth in the

left-hand panel of Figure 6 falls about 40 percent, while the conditional variance of the Epstein-Zin

term (the right-hand panel) falls about 10 percent, so the fall in the variance of current-period

consumption is the primary driver of the decline in volatility of the SDF.36 Nevertheless, the

Epstein-Zin term is still important because its average volatility is so much higher than that of

35The conditional variance Vart of a variable Xt+1 in the model is computed by defining μXt ≡ EtXt+1, and

then V X
t ≡ Et(Xt+1 − μXt )2. These recursive equations can then be appended to the rest of the model and

solved nonlinearly along with the other model variables as described earlier. Note that the conditional variance
V X
t is linearized and not log-linearized around the nonstochastic steady state because it equals zero at that point

(when the variance of the technology shock σ2
A is set to zero). I report the change in variances V X

t in Figure 6

in percentage terms by dividing the impulse responses (in levels) through by a constant; namely, the variance V X
t

solved to fifth order and evaluated with each state variable at the nonstochastic steady state (but with the variance
of the technology shock σ2

A = .0072).
36As with previous figures, the impulse responses in Figure 6 are essentially symmetric for a negative technology

shock. That is, a negative technology shock causes the conditional volatility of the SDF to increase, with a similar
magnitude to (in fact, slightly larger magnitude than) Figure 6.
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Figure 6. Nonlinear impulse response functions for conditional variances Vart(Ct+1/Ct)
−1 and

Vart[ exp(−αVt+1)/Et exp(−αVt+1)] to a one-standard-deviation (0.7 percent) positive technology shock
in the model, with state variables initialized to their nonstochastic steady-state values. Impulse re-
sponses are in percentage deviation from steady state. The model-implied stochastic discount factor is
mt+1 = β(Ct+1/Ct)

−1[ exp(−αVt+1)/Et exp(−αVt+1)], so the two panels decompose the response of the
conditional variance of the SDF to the shock. See text for details.

consumption growth—about 0.472 vs. 0.00652. The high average volatility of the Epstein-Zin

term makes the relative fall in consumption growth volatility quantitatively important for risk

premia in the model.

Figure 7 sheds light on what drives the decline in consumption volatility in Figure 6. The left

column reports nonlinear impulse response functions for a one-standard-deviation (0.7 percent)

positive technology shock, while the right column of Figure 7 reports the analogous impulse

response functions for a negative (−0.7 percent) technology shock. In each panel of Figure 7,

two lines are plotted: The dashed blue line is the standard nonlinear impulse response function

computed in the same way as in previous figures (see footnote 21); that is, the period-by-period

difference between a “one shock” and a “no shock” (baseline) scenario, with all state variables of

the model initialized to their nonstochastic steady-state values. The solid green line in each panel

of Figure 7 is the period-by-period difference starting from a different initial point: instead of

the nonstochastic steady state, the impulse responses are computed starting from the point right

after a positive 0.7 percent technology shock in the previous period. Thus, the solid green lines

in Figure 7 depict the difference between a “two shock” and a “one shock” (baseline) scenario.37

37This is computed as follows: in period −1, the state variables of the model are initialized to their nonstochastic
steady-state values. In the baseline (“one shock”) scenario, εAt is set equal to .007 in period 0, and set equal to 0

from period 1 onward. In the “two shock” scenario, εAt is set equal to .007 in period 0, to .007 in period 1 (for the
left-hand column of Figure 7, or to −.007 in period 1 for the right-hand column of Figure 7), and then set equal
to 0 from period 2 onward. The impulse response function is computed as the period-by-period difference between
the “two-shock” scenario and the baseline (“one shock”) scenario, beginning in period 1.
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The lower conditional volatility of consumption after a positive technology shock can be seen

clearly in the middle panels of Figure 7, particularly the middle-right panel. There, consumption

falls substantially less in response to a negative technology shock (in period 1) if that shock was

preceded by a positive technology shock the period before (in period 0)—that is, the solid green

line does not fall by as much as the dashed blue line. In the middle-left panel, the response of

consumption to a positive technology shock (in period 1) is fairly similar whether or not there was

a positive technology shock in the previous period (period 0). This lower volatility of consumption

growth in the middle panels of Figure 7 is typical of other sizes of shocks as well, and thus explains

the lower consumption growth volatility that is evident in Figure 6.38

I now turn to the causes of this lower conditional volatility. The top row of Figure 7 plots

the impulse responses of the economy’s price dispersion Δt. In the top left panel, the solid

green line and dashed blue line are fairly similar, indicating that the economy’s overall degree

of price dispersion responds similarly to a positive 0.7 percent technology shock whether or not

the economy was hit by a positive technology shock the period before. In the top-right panel,

however, the solid green line falls more in response to the negative 0.7 percent shock than the

dashed blue line, indicating that the economy’s price dispersion falls by more in response to the

shock if it is following on the heels of a positive technology shock last period.

This behavior of price dispersion passes through to consumption Ct in two ways. First, lower

price dispersion increases the economy’s efficiency at producing final output (see equation 17),

which boosts consumption, all else equal. This can be seen in the middle panels of Figure 7, in

the difference between the solid green and dashed blue lines. The lower level of price dispersion

in the solid green impulse responses helps push consumption higher relative to the dashed blue

lines.

The second way lower price dispersion passes through to consumption is through prices.

Lower price dispersion increases the economy’s productive efficiency, which raises the marginal

product of labor and lowers monopolistic firms’ marginal costs. (And because the effect on price

dispersion persists for several periods, firms’ expected marginal costs are lower for several periods.)

Lower marginal costs imply that monopolistic firms will set lower prices today, all else equal. This

can be seen in the bottom panels of Figure 7, as the difference between the solid green and dashed

38As in previous figures, the effects are also essentially symmetric: if the economy is hit by a negative technology
shock in period 0, then the conditional volatility in Figure 6 increases rather than decreases, and consumption in
the middle-right panel of Figure 7 is relatively lower after the negative technology shock—i.e., the solid green line
lies below the dashed blue line.
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Figure 8. Illustrative graph of price dispersion Δt as a function of monopolistic firms’ time-t reset
price pt/Pt. The solid blue line assumes pτ/Pτ = 1 for all τ < t; the dashed red line assumes pt−1/Pt−1 < 1
and pτ/Pτ = 1 for all τ < t− 1. Point A denotes firms’ risk-neutral optimal price (or the optimal price
in the linearized model), point B denotes firms’ risk-averse optimal price, and point C firms’ risk-averse
optimal price after pt−1/Pt−1 < 1. See text for details.

blue lines. The lower level of price dispersion in the solid green impulse responses pushes inflation

lower relative to the dashed blue lines. The lower level of prices, in turn, increases consumption

Ct by allowing households to purchase more. Thus, the lower prices in the solid green impulse

responses boost consumption in the middle panels (relative to the dashed blue lines) even more.

The key mechanism driving the fall in conditional volatility of consumption in Figure 7 is

price dispersion, which is why it is plotted at the top of the figure. A mathematical discussion is

provided in Appendix C, but the intuition is as follows. First, note that equation (18) for price

dispersion Δt implies that Δt ≥ 1, by Jensen’s inequality, the definition of Pt, and the convexity

of the function xλ/θ. Moreover, Δt attains the minimum value of 1 when pt(f) = Pt for all

firms f . Thus, the graph of Δt as a function of pt/Pt is essentially as depicted by the solid blue

curve in Figure 8 (assuming an initial condition of pτ/Pτ = 1 for all τ < t).

In Figure 8, monopolistic firms’ optimal reset price at the nonstochastic steady state (with

no uncertainty) is p∗t /Pt = 1, which is depicted as point A on the solid blue curve. Point A is

also firms’ optimal reset price in the linearized model—at this point, firms’ expected profits over

the lifetime of the price contract are maximized, as in equation (14). In recessions, firms will

lose a bit of profit because output is too low, and in expansions firms will lose a bit of profit

because output (and hence marginal cost) is too high, but in expectation the firms’ price strikes

an optimal balance between these two.

Now consider the case where the firms’ owners (here, the households) are risk averse, as in
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the nonlinear version of the model. In this case, recessions are more painful than expansions, so

it is optimal for the firm to put more weight on generating profit in recessions. This causes the

firms’ optimal price to be lower than in the risk-neutral case, so as to generate more output and

profit in the event of recessions. Thus, the risk-averse firms’ optimal price in Figure 8 lies at a

point like B, which is to the left of A. Note that at point B, the derivative ∂Δt/∂(pt/Pt) < 0, so

positive technology shocks (which cause p∗t /Pt to fall) raise Δt, while negative technology shocks

(which cause p∗t /Pt to rise) lower Δt, as in the bottom-right panels of Figures 1 and B1.

Finally, suppose that the economy was hit by a positive technology shock in period t − 1,

so that pt−1/Pt−1 < 1. Then the situation is like the dashed red line in Figure 8, with price

dispersion Δt > 1 everywhere and the curve shifted up and slightly to the left relative to the

solid blue curve. In this case, firms who are setting their price in period t will optimally want to

set a lower price than before, corresponding to point C in Figure 8. Intuitively, one can think of

this as strategic complementarities, as in Woodford (2003, pp. 161–73): If other firms have set a

lower price in period t− 1, this puts period-t firms at greater risk of losing profits in recessions.

To reduce this risk, it’s optimal for firms at time t to set their prices a bit lower than they

otherwise would.39 It turns out that at point C, ∂Δt/∂(pt/Pt) is more negative than at point B,

which implies that price dispersion Δt responds by a greater amount to a technology shock (see

Appendix C for a derivation). Since the effect of price dispersion is to mitigate or attenuate the

effect of the technology shock on other variables in the model, such as consumption and inflation,

the volatility of those variables is reduced, as in Figure 6.

5. Additional Discussion and Extensions

The macroeconomic model developed above is essentially a “proof of concept” that standard,

structural macro models can be brought into agreement with a variety of asset pricing puzzles. In

the analysis, I’ve deliberately kept the model as simple as possible in order to focus on the most

crucial features for matching the broad behavior of macroeconomic variables and asset prices. Of

course, some of those simplifying assumptions raise questions, and the model’s overall simplicity

invites extension in a number of directions. First, I compare the model’s assumption of a unitary

intertemporal elasticity of substitution to the typical assumption that the IES > 1 in the long-run

39Alternatively, price dispersion Δt is higher for every possible value of pt/Pt, and output is correspondingly
lower. This implies that firms’ future profits in recessions will be lower, so to mitigate this risk firms set a lower
price at time t.
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risks literature. Second, I discuss the relationship between the conditional heteroskedasticity in

the model and the literature on “uncertainty shocks” (e.g., Bloom, 2009). Third, I extend the

model to include additional shocks—in particular, a monetary policy shock and a fiscal policy

shock—and discuss how this affects the results. Finally, I discuss the implications of the model’s

ability to price assets endogenously for financial frictions models, such as Bernanke, Gertler, and

Gilchrist (1999), Kiyotaki and Moore (1997), and others.

5.1 The Intertemporal Elasticity of Substitution

In the long-run risks literature, such as Bansal and Yaron (2004), the intertemporal elasticity

of substitution is typically assumed to be substantially greater than unity. There are two main

reasons for that calibration: first, an IES > 1 ensures that a positive shock to consumption in

their model causes stock prices to rise rather than fall; and second, an IES > 1 ensures that an

exogenous increase in volatility in their model causes stock prices to fall rather than rise.

However, even in Bansal and Yaron (2004, henceforth BY), the assumption of an IES > 1 is

not strictly necessary for these two criteria to be satisfied. For example, when equity represents

a levered rather than unlevered consumption claim, then equity prices in BY rise in response to

a positive consumption shock if and only if the IES > 1/ν, where ν is the degree of leverage.

With leverage equal to 3, values of the IES down to 1/3 still satisfy the criterion that a positive

shock to consumption causes stock prices to rise. For a volatility shock, stock prices can respond

negatively as long as the IES > 1/γ, where γ is the household’s relative risk aversion.40 If risk

aversion is substantially greater than unity, then stock prices can respond negatively to volatility

shocks even for values of the IES that are substantially less than unity.

Of course, the model in the present paper differs in many respects from that in BY and other

reduced-form long-run risks models. In BY, consumption is an exogenous process with highly

persistent shocks to consumption growth, while in the present paper, consumption is determined

endogenously and is driven by exogenous technology growth shocks that are i.i.d. rather than

persistent. Nevertheless, a positive shock to consumption (through technology) in the model here

causes stock prices to rise, as can be seen clearly in Figure 2, even though the IES = 1. (In

fact, the substitution effect dominates the wealth effect here even for values of the IES that are

40 In Bansal and Yaron (2004), the coefficient A2 for the unlevered consumption claim requires θ < 0, where
θ = (1 − γ)/(1 − 1/ψ) and γ denotes risk aversion and ψ the IES in their paper. For the levered consumption
claim, however, the coefficient A2,m requires θ/(1− θ) < 0 (see their equation A20), which holds if either θ < 0 or
θ > 1. Given γ > 1, then θ > 1 if and only if ψ > 1/γ.
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somewhat below unity, consistent with the discussion above even though the model here differs

from BY.) Thus, the model here satisfies the first criterion that positive output shocks cause stock

prices to rise.

In order to investigate the second criterion—that an increase in volatility causes stock prices

to fall—I extend the macroeconomic model of the present paper to include exogenous stochastic

volatility in technology. In particular, let the standard deviation of the technology shock each

period, σA,t, follow the autoregressive process

log σA,t = (1− ρσ) log σ̄A + ρσ log σA,t−1 + εσt , (38)

where σ̄A = .007, as in Table 1. Following Bansal and Yaron (2004), I calibrate ρσ = 0.98 and

Var(εσt ) = (0.1)2.41

Figure 9 plots the nonlinear impulse response functions of the model (computed the same

way as in previous figures) to a positive one-standard-deviation shock to εσt . Volatility σ
A
t increases

to about .0077 on impact and slowly declines back toward its initial level of .007. Consumption

drops about 0.2 percent on impact, as households increase precautionary savings, and inflation

falls about gradually by about 0.1 percent in response to the decrease in demand. The increase in

the conditional volatility of consumption increases the volatility of the stochastic discount factor,

which causes a large, 60 bp jump in the equity premium. (The nominal term premium also

responds substantially to the volatility shock, increasing about 25 bp.) The large and persistent

rise in the equity premium implies that the equity price must fall dramatically on impact, about 4.5

percent.42 Thus, the model also satisfies the second criterion discussed above—that an exogenous

increase in volatility causes stock prices to fall—without the need for an IES > 1, consistent with

the discussion above even though the model differs from BY in many respects.

5.2 Uncertainty Shocks

In the literature on uncertainty shocks (e.g., Bloom, 2009), it is common to use the volatility of

stock prices as a measure of uncertainty. As Bloom (2009) notes, recessions are often associated

with periods of greater stock market uncertainty. Although one interpretation of this correlation

41Bansal and Yaron (2004) assume a more complicated (square-root rather than logarithmic) process for σA,t

than (38), but the magnitudes in (38) are essentially the same as theirs.
42 In order to generate an equity premium of 60 bp in the first period, stock prices must fall by about 0.6 percent

below their second-period value. In order to generate an equity premium in each subsequent period, equity prices
must continue to rise. This requires a large initial fall in the equity price so that in each subsequent period equity
prices can rise in line with the implied equity premium.
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is that exogenous increases in uncertainty lead to recessions, it is also possible that recessions

lead to higher uncertainty in the stock market.

In fact, both of these channels can be seen clearly in the macroeconomic model developed in

the present paper. The exogenous shock to volatility εσt from the previous section is an exogenous

shock to uncertainty in the model. Thus, the impulse responses in Figure 9 depict the effects of

an uncertainty shock in the model. As can be seen in that figure, consumption (and output) falls

about 0.3 percent in response to the shock and recovers quite slowly (because the shock in the

model is so persistent). Thus, the model (extended to the case of exogenous stochastic volatility

as in the previous section) matches the empirical findings in Bloom (2009) and other authors.

In addition, the model developed here also implies that recessions cause uncertainty to

increase endogenously, particularly as measured by volatility in the stock market. The intuition for

this is essentially the same as for the model’s endogenous conditional heteroskedasticity, discussed

in Section 3.1. When the economy is weak, consumption is low and the household’s stochastic

discount factor becomes more sensitive to subsequent shocks. This drives up the equity premium,

as shown in Figure 2, but it also increases the volatility of stock prices, as shown in Figure 10. In

that latter figure, the one-step-ahead variance of the log equity price pet , solved to fifth order using

the same methods as above, is graphed as a function of technology At.
43 (Recall that At in the

baseline parameterization of the model is a random walk, so the difference logAt − ȳt essentially

“stochastically detrends” logAt.) When At is low (relative to ȳt), the economy is in a recession,

with weakening output and consumption. And as can be seen in the figure, stock prices in the

model are more volatile. When technology and output are about 5 percent below potential, the

volatility of stock prices is about 2 to 2.5 times more volatile than when the economy is operating

near potential.

The point here is that the causality in the macroeconomic model between recessions and

uncertainty runs in both directions: exogenous increases in uncertainty cause the economy to

weaken, but a weakening economy also causes uncertainty in the model to rise. Changes in stock

price volatility in the model are not a valid measure of “uncertainty shocks” without additional

identifying assumptions that can plausibly isolate the exogenous changes in uncertainty from the

endogenous changes in stock price volatility in response to the economy.

43To compute the one-period-ahead variance in the model, I define two new variables, exppe
t ≡ Etpet+1 and

varpe
t ≡ Et(pet+1)

2 − (exppe
t )

2. The latter variable, solved to fifth order, is plotted in Figure 10.
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Figure 10. One-step-ahead variance of the log equity price pet in the baseline model computed to fifth
order. Low values of At relative to ȳt correspond to a weaker economy, and to a more volatile equity
price. See text for details.

5.3 Extension to Monetary and Fiscal Policy Shocks

[To be written. See Rudebusch and Swanson (2012) for some analysis along these lines in the

meantime.]

5.4 The Financial Accelerator

Traditional models of the financial accelerator (e.g., Bernanke, Gertler, and Gilchrist, 1999; Kiy-

otaki and Moore, 1997; Gertler and Kiyotaki, 2014) allow for the possiblity of default, but ignore

risk premia. The fact that borrowers might default introduces a wedge between borrowers and

lenders that can act as an amplification and propagation mechanism for shocks hitting the econ-

omy. For example, in Kiyotaki and Moore (1997), a negative technology shock reduces the value

of capital, which also reduces firms’ collateral; with less collateral, firms must scale back produc-

tion and output falls by more than the effect of the technology shock alone. In Bernanke, Gertler,

and Gilchrist (1999, henceforth BGG), a weaker economy implies a higher probability of default,

which raises costly state verification costs for financial intermediaries, which in turn leads to a

greater spread between private borrowing rates and the risk-free rate.

The traditional financial accelerator mechanism captures many important features of a

credit crunch and a financial crisis. At the same time, these models are essentially risk-neutral

and abstract from risk premia—that is, in BGG and Kiyotaki and Moore (1997), the spread

between private borrowing rates and the risk-free rate is just the risk-neutral expected loss from

default. Yet an important part of the transmission mechanism in the 2007–08 financial crisis was
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the fall in the value of collateral beyond even the risk-neutral probability of default. For example,

risk and liquidity premia rose dramatically even on securities that had little or no connection to

subprime real estate lending (Gorton and Metrick, 2012), and the prices of many mortgage-backed

securities and credit default swaps fell by much more than can be explained by any reasonable

assumption for mortgage default and recovery rates (Stanton and Wallace, 2014). The dramatic

increase in risk premia during the financial crisis caused huge drops in the value of collateral and

historic increases in credit spreads. For the same reasons as in traditional financial accelerator

models, we would expect these repercussions from rising risk premia to be an important part of

the transmission mechanism from financial markets to the real economy.

Previous studies of the financial accelerator have likely ignored risk premia—departures from

risk-neutral asset pricing—at least in part because of the inability of standard macroeconomic

models to match the behavior of risk premia in the data. The macroeconomic model developed

here solves this problem. As a result, extending the model here to include a financial accelerator

mechanism should allow researchers to study the effects of risk premia on collateral values, credit

spreads, and the macroeconomy in a financial crisis. That extension of the model is beyond the

scope of the present paper, but would be a worthy topic for future research.

6. Conclusions

The simple macroeconomic model developed in this paper is consistent with a wide variety of asset

pricing facts, such as the size and variability of the equity premium, nominal term premium,

real term premium, and the credit spread. Thus, I show that a wide variety of asset pricing

puzzles are all consistent with the behavior of a very standard macroeconomic model—essentially

the textbook New Keynesian model of Woodford (2003) and Gaĺı (2008)—extended to include

generalized recursive preferences, as in Epstein and Zin (1989) and Weil (1989).

Generalized recursive preferences allow the model to match the size and variability of risk

premia in the data, essentially by increasing the model’s risk aversion without greatly distorting its

implications for macroeconomic variables. Thus, the variety of asset pricing puzzles that I consider

in the present paper can all be thought of as different facets of a single, more fundamental puzzle:

namely, why does risk aversion in macroeconomic models need to be so high to match the size

and variability of risk premia in the data?

In the present paper, I do not directly address this last question, but good answers are

provided by a number of recent studies in the macro-finance literature. For example, simple
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macroeconomic models substantially understate the true level of risk or uncertainty in the econ-

omy, such as general model uncertainty (e.g., Barillas, Hansen, and Sargent, 2009), parameter

uncertainty (e.g., Weitzman, 2007), long-run risks (e.g., Bansal and Yaron, 2004), rare disasters

(e.g., Rietz, 1988; Barro, 2006; Schmidt, 2015), and/or uninsurable idiosyncratic risk (e.g., Con-

stantinides and Duffie, 1996; Schmidt, 2015). In addition, there is evidence that the consumption

of stock- and bond-holders is more cyclical than that of non-asset-holders (e.g., Mankiw and

Zeldes, 1991; Parker, 2001; Malloy, Moskowitz, and Vissing-Jorgensen, 2009), so the required

level of risk aversion in a simple representative-agent model is higher than it would be in a model

that recognized this heterogeneity (Guvenen, 2009). Similarly, Adrian, Etula, and Muir (2014)

provide evidence that the marginal investor is a financial intermediary, whose principals’ con-

sumption is likely very highly correlated with market fluctuations. Extending the very simple,

stylized model of the present paper to incorporate additional features along any of these lines

would allow it to explain the asset pricing puzzles above with a substantially lower degree of risk

aversion. The point of the present paper is not to incorporate all of these additional features and

provide the best possible fit to the data, but rather to serve as a “proof of concept” that the asset

pricing data can be matched within the standard New Keynesian modeling paradigm.

The simple, structural model I develop here provides a unified and intuitive framework

for thinking about asset prices and asset pricing puzzles. Rather than studying each puzzle in

isolation, the model here provides a reasonable description of the behavior of all the major asset

classes. In addition, structural models have the well-known advantage of being more robust to

structural breaks and novel policy interventions, such as those observed during the recent global

financial crisis and European sovereign debt crisis. The model developed here can potentially

provide insight into the effects of these types of policies, where more traditional, reduced-form

models would be out of their element.

Finally, by showing how a standard macroeconomic model can be made consistent with the

behavior of risk premia in financial markets, the present paper opens the door to studying the

feedback between those risk premia and the economy within the standard macreconomic modeling

framework in use at central banks and other institutions around the world. As evidenced by the

recent financial crises, this feedback from asset prices to the economy and back again can be

very important. In the simple, stylized model of the present paper, asset prices have no feedback

effects on the real economy (this is one of the costs of simplicity, since adding feedback effects

from asset prices to the real economy would complicate the model substantially). Nevertheless,
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it would be very interesting to combine the asset-pricing framework of the present paper with a

macroeconomic model that includes a financial accelerator along the lines of Bernanke, Gertler,

and Gilchrist (1999), Kiyotaki and Moore (1997), Gertler and Kiyotaki (2011), and others. In

general, these models abstract from risk aversion and risk premia and focus instead on the effect of

agency problems and collateral constraints on lending and investment. In a combined framework,

shocks that cause the economy to deteriorate would lead to an increase in risk premia and a

concomitant fall in asset prices, further amplifying the collateral constraint on firms and financial

intermediaries. This channel appears to have been an important amplification and propagation

mechanism in the recent crises.
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Appendix A: Model Equations

We can write the equations of the macroeconomic model in Section 2 in recursive form as follows. (Equa-
tions for equity and debt are essentially the same as in Section 3 and are not reproduced here.)

Value function:

Vt = (1− β)

(
logCt − η

L1+χ
t

(1 + χ)

)
− βα−1 log Vexpt, (A1)

Vexpt = Et exp(−αVt+1). (A2)

Risk-free real rate and Euler equations:

e−rt = βEt(Ct+1/Ct)
−1( exp(−αVt+1)/Vexpt), (A3)

C−1
t = βEte

it−πt+1C−1
t+1( exp(−αVt+1)/Vexpt). (A4)

Optimal price setting by firms: (
p∗t
Pt

)1+λ(1−θ)/((λ−1)θ)

= λ
znt
zdt

, (A5)

znt = μtYt + βξEt(Ct+1/Ct)
−1( exp(−αVt+1)/Vexpt)(e

πt+1−π̄)λ/((λ−1)θ)znt+1, (A6)

zdt = Yt + βξEt(Ct+1/Ct)
−1( exp(−αVt+1)/Vexpt)(e

πt+1−π̄)1/(λ−1)zdt+1, (A7)

(eπt−π̄)1−ε = (1− ξ)

(
p∗t
Pt

)1−ε

(eπt−π̄)1/(1−λ) + ξ. (A8)

Marginal cost and real wage:

μt =
wt

Pt

Y
(1−θ)/θ
t

θA
1/θ
t K

(1−θ)/θ
, (A9)

ηLχ
t /C

−1
t =

wt

Pt
. (A10)

Production and resource constraint:
Yt = AtK

1−θLθ
t/Δt, (A11)

Δ
1/θ
t = (1− ξ)

(
p∗t
Pt

)−λ/((λ−1)θ)

+ ξ(eπt−π̄)λ/((λ−1)θ)Δ
1/θ
t−1, (A12)

Yt = Ct. (A13)

Monetary policy rule:

it = log(1/β) + πt + φπ(πt − π̄) +
φy

4
log(Yt/Ȳt), (A14)

log Ȳt = ρȳ log Ȳt−1 + (1− ρȳ) log Yt. (A15)

Technology shock:
logAt = logAt−1 + εAt . (A16)

Equations (A1)–(A2) break the generalized value function into two equations to correspond to the
syntax of Perturbation AIM and other rational expectations equation solvers, which typically require the
model to be written as a system of equations in a form similar to EtF (Xt−1, Xt, Xt+1; εt) = 0.

Equations (A5)–(A7) represent monopolistic firms’ optimal price-setting equations. The exponent
on (p∗t /Pt) in (A5) follows from substituting out yt+j(f) in equation (14) in the main text, and is due
to the presence of firm-specific capital stocks. Equations (A6)–(A7) are recursive versions of the infinite
sums in the numerator and denominator of (14).

The other equations above follow in a straightforward manner from the equations in the main text.
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Although capital stocks in the model above are fixed, the model nevertheless has a balanced growth
path along which all variables are either constant or grow at constant rates if technology At itself grows
at a constant rate. Along the balanced growth path, each of the variables Yt, Ct, wt, Ȳt, z

n
t , and z

d
t grow

at the same rate as At. If we divide each of these variables through by At, the ratios have a nonstochastic
steady state. Moreover, after a shock to At, these ratios converge back to their pre-shock levels. Thus,
the nonstochastic steady state of these ratios constitutes a stable point around which we can approximate
the model.

I thus transform the model by dividing each of the above variables by the level of technology At,
and transform the value function Vt by defining Ṽt ≡ Vt − logAt. The transformed model then has a
nonstochastic steady state around which I can compute an nth-order approximate solution as described
in the text. These solutions are highly accurate in a neighborhood of the steady state, and become
increasingly accurate over larger regions of the state space as the order of approximation n becomes large
(see Swanson, Anderson, and Levin, 2006, for details and discussion).

Appendix B: Impulse Responses to a Negative Technology Shock

The nonlinear impulse response functions graphed in Figures 1 through 5 can be asymmetric for positive
and negative shocks, because they are nonlinear. In practice, the New Keynesian model presented in
the main text does not produce impulse response functions that are very asymmetric. This can be seen,
for example, in Figure/ B1, which reproduces Figure 1 from the main text for the case of a negative
one-standard-deviation (−.007) shock to technology At. The nonlinear impulse response functions in
Figure B1 are computed in exactly the same was as in Figures 1 through 6, except that the shock has the
opposite sign. Overall, the responses in Figure B1 are close to being symmetric counterparts to Figure 1.

Figure B2 presents nonlinear impulse response functions for the equity price pet , equity premium
ψe

t , real long-term bond price p
(40)
t , and term premium ψ

(40)
t on the real long-term bond to the negative

one-standard-deviation technology shock. The impulse responses are again close to being the symmetric
counterparts to the nonlinear impulse responses functions in Figures 2 and 3, although the asset price
and risk premium responses are slightly larger in magnitude for the negative shock than they are for the
positive shock. For example, the equity premium increases by about 70 bp after the negative technology
shock here, while it fell by about 62 bp after the positive shock in Figure 2. Similarly, the equity price
falls by about 2.75 percent after the negative technology shock here, but rose by about 2.5 percent after
the positive shock in Figure 2.

Figure B3 repeats the analysis for the nominal long-term bond price p
$(40)
t , the term premium ψ

$(40)
t

on the nominal long-term bond, defaultable bond price pdt , and credit spread idt − ict . As with Figure B2,
the responses here are essentially symmetric to their counterparts in Figures 4 and 5, while also being
somewhat larger in magnitude.
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