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Abstract

We extract aggregate supply and demand shocks for the US economy from data on inflation and

real GDP growth. Imposing minimal theoretical restrictions, we obtain identification through

exploiting non-Gaussian features in the data. Novel measures of the risks associated with non-

Gaussian shocks together with expected inflation and economic activity are the key factors in a

tractable model of the term structure of interest rates. Despite non-Gaussian dynamics in the

fundamentals, we obtain closed-form solutions for yields as functions of the state variables. The

time variation in the covariance between inflation and economic activity, coupled with their

non-Gaussian dynamics leads to rich patterns in inflation risk premiums and the term structure

of interest rates. The expected inflation and expected real economic activity account for the

bulk of the variation in the levels of yields. In contrast, variables that capture macroeconomic

risks predominantly account for risk premiums and term premiums.
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1 Introduction

We formulate a model which links macroeconomic factors to the term structure of interest

rates in a no-arbitrage framework. We include novel factors in the model that capture

the risks associated with aggregate supply and demand shocks for the U.S. economy. We

extract these shocks from data on real activity and inflation. The model features non-

Gaussian dynamics for macroeconomic variables, but the term structure itself is affine in

the factors, and the model is therefore quite tractable. This tractability arises from using

a recently developed framework, the Bad-Environment Good-Environment (BEGE) model

first introduced by Bekaert and Engstrom (2015).

Our model fills several gaps in the literature for modeling the term structure of interest rates.

Regarding theoretical contributions, the inclusion of aggregate supply and demand factors

naturally implies that the covariance between inflation and real activity changes through

time and can switch sign, a stylized fact we document below.1 The sign of this covariance

affects the sign and magnitude of the inflation risk premium in the model. Shocks to

aggregate supply and demand also feature prominently in DSGE macro models, but these

models tend to be tightly parameterized and relatively intractable when it comes to the

term structure of interest rates (see Van Binsbergen, Fernandez-Villaverde, Koijen, and

Rubio-Ramirez (2012), Amisano and Tristani (2010), Andreasen (2011)). Taking a different

tack, we impose minimal theoretical restrictions and identify aggregate supply shocks in a

straightforward, reduced-form manner, defining them as shocks that move inflation and real

activity in the opposite direction. Similarly, we define demand shocks as innovations that

move inflation and real activity in the same direction. Blanchard (1989) finds empirically

that the joint behavior of output, unemployment, prices, wages and nominal money in the

U.S. is approximately consistent with such an interpretation of macroeconomic fluctuations.

The macro-finance literature has given rise to a large number of reduced-form term structure

models (see Ang and Piazzesi (2003), Dewachter and Lyrio (2006)) but these models have so

far not distinguished between aggregate supply and demand shocks or attempted to model

macro-risks the way we do. Rudebusch and Wu (2009) and Bekaert, Cho and Moreno (2010)

solve for the term structure in a New Keynesian framework with a standard investment-

1Burkhardt and Hasseltoft (2012) document that the correlation between US consumption growth and

inflation changes sign.
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savings equation defining demand shocks and an aggregate supply equation defining supply

shocks, but their framework implies Gaussian and homoscedastic distributions for interest

rates, which is at variance with standard data. Instead, we introduce a tractable framework

in which the macro shocks follow gamma distributions with time-varying shape parameters.

We use the model to develop bond pricing equations that are affine in the state variables,

thus preserving the tractability of the affine class. However, bond prices also inherit the

non-Gaussianities of the factors. This latter feature of our model is noteworthy, relative

to a large class of recent models that use Gaussian time-varying prices of risk to model

the term structure (Dai and Singleton (2002), Duffee (2002), Joslin, Singleton, and Zhu

(2011)). While these models are empirically quite successful along some dimensions, they

generate interest rates that have (conditional) distributions that are Gaussian, a feature

strongly rejected by the data. It is also possible that failing to accommodate time-varying

non-Gaussian risks to fundamentals causes models to exaggerate the degree of movement

in prices of risk that are required to fit the data.2 In our approach, it is straightforward

to add a time-varying price of risk factor to investigate how much variation in prices of

risk is necessary to fit the data while conditioning on the observed non-Gaussianities in the

fundamental macroeconomic variables.

Other means for incorporating non-Gaussian features in a term structure model have emerged

in the literature: quadratic term structure models (Ahn, Dittmar and Gallant, 2002), and

regime-switching models (for example, Bansal and Zhou (2002); Evans (2003), Ang, Bekaert

and Wei (2008), Dai, Singleton and Yang (2007), Bikbov and Chernov (2013)). The model

presented here competes well with these alternative models in terms of its ability to fit the

relevant non-Gaussianities in the data and especially in terms of economic tractability of

state variables. Technically, our model is related to the general pricing model of Le, Sin-

gleton and Dai (2012), which extends earlier work by Gourieroux, Monfort, and Polimenis

(2002), and also considers gamma distributed state variables to model volatility dynamics

while admitting affine pricing solutions. Our model also fits within the generalized transform

framework of Chen and Joslin (2012) who show how to obtain moments for yields within

large class of non-linear models.

2Chernov and Mueller (2012) explicitly try to reduce the variation in risk premiums generated by their

parameter estimates to circumvent that problem. Joslin, Priebsch and Singleton (2014) identify a persistence

bias that also leads to excessively volatile model-implied risk premiums.
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Our main findings lie in the areas of macroeconomic and asset pricing. On the macroe-

conomic front, we develop a new dynamic model for real economic activity and inflation,

which accommodates time-varying non-Gaussian features with good and bad volatility. The

shocks are decomposed into demand shocks which move inflation and GDP growth in the

same direction and supply shocks which move inflation and GDP growth in opposite di-

rection. We find that demand shocks exhibit pronounced skewness, driven, for instance,

by spikes in bad volatility for demand shocks during the Great Recession. Supply shock

variances are high during the seventies and again more recently since 2005. The correlation

between GDP growth and inflation is periodically negative, but peaks in positive territory

during the Great Recession when demand shocks are important. In the asset pricing appli-

cation, this time variation in the covariance between inflation and economic activity, coupled

with their non-Gaussian dynamics leads to time variation in inflation risk premiums and

the term structure. The macroeconomic variables account for over 70 percent of the vari-

ation in the yields, mainly attributed to expected GDP growth and inflation. In contrast,

macroeconomic risks (volatilities) predominantly account for the predictive power of the

macro variables for excess holding period returns.

The remainder of the paper is organized as follows. In section 1, we set out how we model

macro risk factors and extract them from macro-economic data on inflation, real GDP

growth and surveys for the U.S. We envision this section to be of interest to macro-economists

not interested in term structure modeling. In Section 2, we produce some preliminary

empirical analysis linking the macro-factors to term structure data. We also assess whether

they have predictive power for excess bond returns. In section 3, we set out the model and

provide general term structure solutions. In Section 4 we report on the estimation of the

term structure model and discuss the economic implications in terms of a decomposition of

nominal interest rates in real rates, expected inflation and an inflation risk premium over

time. We discuss the importance and role of the macroeconomic factors.
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2 Modeling Macro-Risks

2.1 The Empirical Model

2.1.1 The Model

Consider a simple bivariate system in real GDP Growth (gt) and inflation (πt):

gt = Et−1[gt] + ugt ,

πt = Et−1[πt] + uπt ,
(1)

In a first departure of standard macro-economic modeling, the shocks to output growth and

inflation are a function of two structural shocks, ust and udt :

uπt = −σπsust + σπdu
d
t ,

ugt = σgsu
s
t + σgdu

d
t ,

Cov(udt , u
s
t) = 0, V ar(udt ) = V ar(ust) = 1.

(2)

The first fundamental economic shock, ust , is an aggregate supply shock in that it moves

GDP growth and inflation in opposite directions, as happens in stagflations. The second

fundamental shock, udt , is an aggregate demand shock as it moves GDP growth and inflation

in the same direction as would be typical in a typical economic boom or recession. Both

shocks are assumed uncorrelated. Macro-economists may dispute the labelling of these

shocks as supply and demand shocks, although it is the ”textbook” definition of macro-

shocks. These shocks do not necessarily correspond to demand and supply shocks in, say, a

New Keynesian framework (see e.g. Woodford, 2003) or identified VARs in the Sims tradition

(Sims, 1980). The classic Blanchard and Quah (1989) paper famously identifies ”demand

like” shocks with shocks that affect output only temporary whereas supply disturbances

are the ones that have a permanent effect on output, with neither have a long run effect

on unemployment. These restrictions allow them to identify a linear VAR and interpret

the shocks economically. However, Blanchard (1989) suggests the short-run and long-run

identification as a temporal implication of the standard ”Keynesian” shock definition we

employ, because supply shocks include productivity shocks which tend to have a longer run

effect on output.

From an empirical perspective, the distinction between supply and demand shocks seems

surely relevant. Nobody would dispute that in the 1970s ”supply shocks” as defined above
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were dominant at times or that the Great Recession has been accompanied by a rather

large negative aggregate demand shock of the type suggested above (see also Mian and Sufi,

2014). For convenience, we therefore stick to this labeling throughout.

The relevance of such shocks for the term structure and finance is self-evident and was first

suggested by Fama (1981). In an environment dominated by supply shocks, bonds and

stocks are likely to perform equally well or poorly, whereas in a demand shock environment,

their returns should correlate negatively. This should cause inflation risk premiums to be

higher in a supply than in a demand shock environment.

Note that the covariance matrix of the empirical shocks only yields three coefficients and

we need to identify 4 coefficients in equation (2) to extract the supply and demand shocks.

Hence, a Gaussian system would yield under-identification. Fortunately, it is well known

that macro-economic data exhibit substantial non-Gaussian features (see e.g. Evans and

Wachtel (1993) for inflation, and Hamilton (1989) for GDP growth). Our second departure of

standard macroeconomic modeling is to assume that the demand and supply shocks follow a

Bad Environment Good Environment (BEGE) structure (see Bekaert and Engstrom, 2014).

Let ωx,t be a time t demeaned Γ-distributed variable with scale parameter equal to 1 and

shape parameter x. With the scale normalized to 1, the shape parameter for a de-meaned

gamma distributed variable determines where the distribution starts (at minus the value of

the shape parameter) and all of its moments.

ust = σspω
s
p,t − σsnωsn,t,

udt = σdpω
d
p,t − σdnωdn,t.

(3)

Note that the σ parameters determine the scale and the shape parameters are indicated by

either p (for the ω shock with a positive sign) or n (for the ω shock with the negative sign).

This explains the BEGE moniker, which was initially developed for consumption growth or

stock returns and therefore is most easily explained in the context of GDP growth. Note

that positive supply shocks drive up GDP growth as do the demand shocks. Essentially,

the positive ω shock will be associated with good volatility and positive skewness (a good

environment variable) whereas the bad ω shock will be associated with bad volatility and

negative skewness (a bad environment variable). Of course, this good-bad interpretation is

not applicable for the demand shock in the inflation equation.
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We repeat the distributional assumptions for the ω-shocks:

ωdp,t ∼ Γ(pdt−1, 1)− pdt−1,

ωsp,t ∼ Γ(pst−1, 1)− pst−1,

ωdn,t ∼ Γ(ndt−1, 1)− ndt−1,

ωsn,t ∼ Γ(nst−1, 1)− nst−1.

(4)

We denote the shape parameters by p for the good environment variable and by n for the

bad environment variables. These shape parameters are assumed to vary through time in a

simple autoregressive fashion:

pdt = p̄d(1− φdp) + φdpp
d
t−1 + σdpω

d
p,t,

pst = p̄d(1− φsp) + φspp
s
t−1 + σspω

s
p,t,

ndt = n̄d(1− φdn) + φdnn
d
t−1 + σdnω

d
n,t,

nst = s̄d(1− φsn) + φsnp
s
t−1 + σsnω

s
n,t.

(5)

Note that by imposing suitable restrictions on the the volatilities of the shocks, the various

shape parameter processes can be kept strictly positive even in discrete time.3

2.1.2 Macro risks

At this point, we have set out 4 shock economy with potentially 4 state variables, which

we collect in Xmr
t = [pst , n

s
t , p

d
t , n

d
t ]
′. These 4 state variables summarize the macro-economic

risks in the economy. Using the properties of the demeaned gamma distribution, we have,

for example:

Et−1[ust ] = 0,

Et−1[us
2

t ] = σs
2

p p
s
t + σs

2

n n
s
t ,

Et−1[us
3

t ] = 2σs
3

p p
s
t − 2σs

3

n n
s
t ,

Et−1[us
4

t ]− 3Et−1[us
2

t ] = 6σs
4

p p
s
t + 6σs

4

n n
s
t .

(6)

And analogously for udt .

Thus, the BEGE structure implies that the conditional variance of inflation and output varies

through time, with the time-variation potentially coming from either demand or supply

3The conditions are φdp > σdp , φsp > σsp, φ
d
n > σdn, φsn > σsn. The model is essentially the autoregressive

conditional variance model explored in Gourieroux and Jasiak (2006) paper.
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shocks, and either ”bad” or ”good” volatility. In addition, the distribution of inflation

and output shocks is conditionally non-Gaussian, with time variation in the higher order

moments driven by variation in Xmr
t . It is the factor structure on higher order moments

that keeps the model parsimonious despite having a very rich non-Gaussian structure.

The model also implies that the conditional variance between inflation and GDP growth

shocks is time-varying and can switch signs:

Covt−1[ugt , u
π
t ] = −σπsσgsV art−1u

s
t + σπdσgdV art−1u

d
t . (7)

Thus, when demand shocks dominate the covariance is positive but when supply shocks

dominate it is negative.

2.1.3 Expected inflation and expected GDP growth

While we empirically estimate the conditional means for inflation and GDP growth, our

model is closed by assuming that these expectations follow a first-order VAR:

Et[gt+1] = ḡ + ρggEt−1[gt] + ρgπEt−1[πt] + σegu
g
t ,

Et[πt+1] = π̄ + ρπgEt−1[gt] + ρππEt−1[πt] + σeπu
π
t .

(8)

Note that for now we assume that the macro-shocks and the shocks to expectations are

perfectly correlated. However, as we explain below, this assumption is innocuous for the

term-structure model we develop below. The full model in equations (1)-(8) therefore has a

total of 6 macroeconomic state variables, Xt = [Xmr
t , Et[gt+1], Et[πt+1]].

3 Identifying macro-risks in the US economy

While there are multiple ways to estimate the system in Equations (1)-(8), the presence

of the gamma distributed shocks makes the exercise non-trivial. We therefore split up the

problem in various manageable steps. First, we use linear projections on a set of information

variables to come up with empirical estimates of the conditional mean of GDP growth and

inflation. Second, we filter the demand and supply shocks from the system in Equation (2)

by essentially estimating a GMM system that includes higher-order moments. The use of

higher-order moments is essential to achieve identification. Third, once the demand and
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supply shocks are filtered, we can estimate a univariate BEGE system using approximate

maximum likelihood as in Bates (2006). This section ends by discussing the empirical

properties of the identified macro-risks.

3.1 Conditional means

The data consists of the quarterly time series of US real GDP growth and inflation, survey

forecasts of real GDP growth and inflation and the Anxious index. Inflation is defined as

percentage changes in consumer price index for all urban consumers for all items. Real GDP

growth is defined as the percentage change in the seasonally and inflation adjusted value of

the goods and services produced by labor and property in the United States. The Anxious

index estimates the probability that real GDP will decline in the next quarter; the survey

forecasts for inflation and GDP growth are also for the next quarter. For all three forecast

measures, we take the median forecast across panelists. Growth rates are in natural logs.

The CPI data is obtained from the Federal Bank of St. Louis website. The GDP data

is obtained from the NIPA website. The survey and the Anxious index data is from the

Survey of Professional Forecasters. Due to the availability of the survey forecasts, the data

is quarterly from 1969Q1 to 2012Q3.

Our approach is to simply consider all possible combinations up to three lags in linear pro-

jections and use the Bayesian information criterion (BIC) to select the optimal combination.

Appendix A reports the top 10 models for each equation. The resulting model is:

gt+1 =
0.0064∗∗∗

(0.0014)
+

0.3401∗∗∗

(0.0951)
gt +

−0.1721∗∗

(0.0783)
πt

πt+1 =
−0.0002

(0.0010)
+

0.9055∗∗∗

(0.1772)
πet,t+1 +

0.2355∗∗

(0.1202)
πt

(9)

Note that the optimal model for GDP growth would be implied by a first-order VAR,

whereas for inflation the median survey forecast enters as an important predictor with a

0.9055 weight, but past inflation still enters significantly too. Not surprisingly, the infla-

tion conditional mean is highly but not perfectly correlated with the corresponding survey

forecast, the correlation being 0.8608. For GDP growth, the correlation between the survey

forecast and our conditional mean is only 0.42.

Interestingly, when we use these estimates in equation (10) to derive the residuals for inflation
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and GDP expectations, we find these residuals to be highly correlated with the actual GDP

growth and inflation residuals of equation (1). The correlation is 0.9035 for GDP growth and

expected GDP growth residuals and 0.8487 for inflation and expected inflation residuals.

This high correlation rationalizes the implicit assumption in equation (8) of having the

shocks to the macro variables and their expectations identical. However, economically, we

identify the residual coefficients in equation (8) by projecting expected GDP growth and

expected inflation onto the supply and demand shocks we identify next, leaving room for

uncorrelated measurement error that will not enter the term structure model we develop

below.

3.2 Identifying supply and demand shocks

The estimation of the conditional means delivers time series observations on ugt and uπt .

Theoretically, it is of course possible to estimate the system (2)-(5) in one step, but compu-

tationally this is a very tall order. There are 4 unobserved state variables (the Xmr
t vector)

which have non-Gaussian innovations. However, note that we if somehow can identify the

4 σ-coefficients in (2), we can actually filter the supply and demand shocks from the orig-

inal GDP growth and inflation shocks. Note that the covariance matrix does not suffice

to achieve identification of these shocks as it only delivers three moments but there are 4

parameters to identify. In standard macro, additional identification restrictions would be

imposed on VAR; for example, the famous long-run restrictions imposed by Blanchard and

Quah (1989) to identify demand shocks. In our model, identification can simply be achieved

using higher-order moments, which are constrained by the BEGE system.

The BEGE system implies that the following 7 moments can be written as a function of 6

parameters (σgs, σgd, σπs, σπd, E(ud
3

t ), E(us
3

t )):

E(ug
2

t ) = σ2
gs + σ2

gd,

E(ug
3

t ) = 2σ3
gsE(us

3

t ) + 2σ3
gdE(ud

3

t ),

E(uπ
2

t ) = σ2
πs + σ2

πd,

E(uπ
3

t ) = −2σ3
πsE(us

3

t ) + 2σ3
πdE(ud

3

t ),

E(ugtu
π
t ) = −σgsσπs + σgdσπd,

E(ugtu
π2

t ) = 2σgsσ
2
πsE(us

3

t ) + 2σgdσ
2
πdE(ud

3

t ),

E(ug
2

t u
π
t ) = −2σ2

gsσπsE(us
3

t ) + 2σ2
gdσπdE(ud

3

t ).

(10)
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We use the generalized method of moments (GMM) to estimate this simple moments system.

As the weighting matrix for the GMM optimization, we use the inverse of the covariance

matrix of the moment conditions. We compute this matrix by bootstrapping 10,000 time

series of historical length consisting of ugt and uπt , computing the moments in (10) for each

of the time series and calculate the covariance matrix over the 10,000 replications.

Details on the estimation are reported in Table 1. Panel A reports the moments used in

the estimation. Note that unconditionally GDP growth and inflation shocks are negatively

correlated, as would be the case in a stagflation environment. Inflation shocks exhibit

negative, not positive skewness, whereas GDP growth shocks exhibit positive skewness, but

it is not statistically significantly different from zero. The parameter estimates for the σ-

coefficients are reported in Panel B; each being very precisely estimated. The test for the

over-identifying restrictions fails to reject. Panel C summarizes the unconditional properties

of extracted demand and supply shocks. The non-Gaussianity is stronger for demand shocks

which are very leptokurtic and exhibit negative skewness. Much of this behavior turns out

to be driven by the Great Recession, as we will show below. Supply shocks show little

skewness but are leptokurtic. The Jarque-Bera normality test rejects Gaussianity for both

shocks.

3.3 Maximum likelihood estimation

The details of the estimation are in Appendix B and here only the informal intuition is

presented. Only the demand shock estimation is considered, as the supply shock estimation

is identical. The system to estimate is:

udt+1 = σdpω
d
p,t+1 − σdnωdn,t+1,

ωdp,t+1 ∼ Γ(pdt , 1)− pdt ,

ωdn,t+1 ∼ Γ(ndt , 1)− ndt ,

pdt+1 = p̄d + ρdp(p
d
t − p̄d) + σdppω

d
p,t+1,

ndt+1 = n̄d + ρdn(ndt − n̄d) + σdnnω
d
n,t+1,

(11)

where only the time series of demand shock realizations, {udt }Tt=1 is observed. The estimation

consists of three stages, following the approach in Bates (2006):

Stage 0. Initialization. At time 0, the distributions of pd0 and nd0 are initialized with the

unconditional distributions of pdt and ndt .

10



Stage 1. Computing the likelihood. The likelihood of the observation ud1 given the distribu-

tions of pd0 and nd0 is computed as in lines 1-3 of (11).

Stage 2. Bayesian updating of the pd0 and nd0 distributions given the value of ud1. Note from

lines 1-3 of (11), that for some values of pd0 and nd0 the likelihood of observing ud1 will be

higher than for others. The prior distributions of pd0 and nd0 are updated so that these values

yielding higher likelihoods get more probability weight. For instance, if ud1 is very negative,

the expected value of nd0 is likely to go up and the expected value of pd0 is likely to go down.

Stage 3. Computing the conditional distributions of pd1 and nd1 given the value of ud1. This is

done using the evolution processes in lines 4 and 5 of (11). The distributions of nd0 and pd0 are

available from the previous stage, but also the distributions of ωdp,1 and ωdn,1 are needed. To

compute these distributions, note from the first line of (11) that ud1 is a linear combination

of ωdp,1 and ωdn,1. From lines 2 and 3 of (11), the distributions of ωdp,1 and ωdn,1 depend on pd0

and nd0, respectively. Thus, given the distributions of pd0 and nd0, some of the ωdp,1 and ωdn,1

combinations4 will be more likely than others, yielding the distributions of ωdp,1 and ωdn,1.

Stages 1-3 are then repeated for all the following time points. The total likelihood is com-

puted as the sum of individual likelihoods from stage 1. Note that from stage 2 the esti-

mation also yields the expected values of the state variables, pdt and ndt . The estimation is

conducted under the restrictions that σdpp < ρdp, σ
s
pp < ρsp, σ

d
nn < ρdn, σsnn < ρsn, preventing

shape parameters from going negative, which ensures the accuracy of the closed form solu-

tions for the term structure model developed in Section 5. Standard errors are computed

using a parametric bootstrap, where 250 time series of historical length are simulated using

the estimated model parameters and parameters are reestimated for each time series.

The parameter estimates are reported in Table 2. We report the various parameter estimates

including the unconditional values of the pt and nt variables, which determine the extent of

non-Gaussianity in the shock distributions. For the demand shocks, we find that, uncondi-

tionally, the good demand variable is relatively Gaussian, but the bad environment variable

is very non-Gaussian. This variable is also far less persistent than the good environment

variable, therefore capturing rather short-lived recessionary bursts. For the supply shocks,

the estimation failed to discover any time-variation (σspp is hitting its 0 lower bound) in the

good variance, so pst was set to a constant.

4It is appropriate to speak about the combinations, because, given ud1, from the first line of (11) the

value of ωdp,1 defines the value of ωdn,1 and vice versa.
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Yet, the (time invariant) distribution of the good environment shock is relatively non-

Gaussian with skewness equal to 1.55 and excess kurtosis equal to 3.26. The bad-environment

distribution is relatively more Gaussian with the unconditional mean of the shape parameter

equal to 4.38. The bad-environment shape parameter is highly persistent with autoregres-

sive coefficient equal to 0.99. This could imply, for example, that supply driven recessions

are longer-lived than demand driven ones.

In Table 3 we document that the BEGE system fits the higher order moments of inflation

and GDP growth rather well. We show the fit with the volatility, skewness, excess kurtosis

and left and right tail probabilities and the correlation between inflation and GDP shocks.

With the exception of the kurtosis of inflation, which is estimated to be too high, all model

moments are well within a two standard error band of the empirical point estimate. This

is also true for the skewness of GDP growth which is, surprisingly, positive in the data but

negative in the BEGE model.

3.4 Macro-risks in the US economy

Having filtered demand and supply shocks, and their ”good” and ”bad” volatility, the

”macro-risks”, we can now re-interpret the history of real activity and inflation over the

1970-2012 period.

In Figure 1, we show the extracted demand shocks, and the conditional good (pdt ) and bad

(ndt ) variances. The Great Recession demand shock, occurring in the third quarter of 2008,

is very apparent in the shock panel. For all variance statistics, recall that while the shocks

are normalized to have a unit unconditional variance, the good and bad components may

of course have different relative variances, which in turn may vary through time. The good

demand variance was relatively high in the 70s and the early 80s, and then decreased to

low levels consistent with the Great Moderation. It has increased slightly since, roughly,

2005. However, the bad demand variance is almost constant over time with just a few

peaks, namely one in the mid-80s and 8 quarters during the Great Recession. This pattern

is consistent with the relatively low autocorrelation we estimated for the ndt process.

Figure 2 performs the same exercise for supply shocks. The shock graph already shows the

higher volatility prevalent during the stagflationary 70s, with volatility recurring over the

last decade. The good variance is time-invariant at a relatively low level. The bad variance
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remains high until the early 80s, and then decreases to quite low levels, before rising again

after 2005. Together with a similar pattern uncovered for the demand variance, it appears

that the BEGE system captures the Great Moderation period of lower inflation and GDP

growth variances rather well. The results in Bekaert et.al. (2015) suggest that the period

roughly lasted from 1980 to 2007. The results here suggest a somewhat shorter period from

1985 to 2005.

Figure 3 super-imposes the conditional demand and supply variances. While most of the

time the contribution of supply and demand variances to the conditional variance is about

the same, the demand variance distribution peaks in the Great Recession (at 500%) and is

also relatively high in the early 70:s and right after 1985.

In Figure 4, we plot the conditional variances of inflation and GDP growth. The inflation

variance is relatively elevated in the 70:s, before declining to quite low levels in the 90:s.

By the mid-2000:s, it starts to rise again and then peaks in the Great Recession. For GDP

growth, the conditional variance follows a similar pattern, but the recent rise in volatility

is more subdued with the volatility remaining high during most of the Great Recession

till the end of the sample. Unconditionally, if we decompose the variance of GDP growth

(inflation) shocks attributable to demand shocks, we find it to be 7.75% (84.91%). So, as

in RBC models real output fluctuations are mostly supply driven and inflation is mostly

demand driven. This does not mean that GDP growth shocks are always mostly supply

driven as the demand shock is very skewed and can be quite large at times. For example,

in Figure 5, we use our filtered estimates to show the demand component to both inflation

shocks (bottom panel) and GDP growth shocks (top panel). Whole it is obvious that most

of the demand shock identification comes from inflation shocks, the Great Recession does

coincide with large negative demand driven GDP growth shocks. What helps account for

the dominance of supply shocks in explaining GDP growth variation are the seventies, where

demand shocks are tiny.

Figure 6 (top panel) plots the conditional correlation between GDP growth and inflation.

The covariance is predominantly negative, and on average it is -0.1084. In the bottom panel,

we provide some economic interpretation by splitting the conditional covariance in demand

and supply components. Consistent with our main intuition, the demand component of the

covariance is always positive, but is mostly dominated by the negative supply component.

Only in the 2000:s, when demand shocks become relatively more important, and particularly
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during the Great Recession do demand shocks increase the covariance between inflation

and GDP growth, making it occasionally positive with a peak at the height of the Great

Recession.

4 Macro-Risks and the Term Structure: An Initial

Look

Having identified the macro-risks and expected inflation and expected GDP growth from

macro-data, we now explore their dynamic correlations with the term structure. To this

end, we use the zero coupon data on nominal US Treasury bonds from Gürkaynak, Sack

and Wright (2010), yielding interest rates with a maturity of 1 quarter, and 1 to 15 years.

We denote these yields as yn,t with n the maturity in quarters. We address two basic

questions. First, how are our macro-economic factors related to the yield curve? Second,

do the macro-shocks capture predictable components in (excess) bond returns?

4.1 Macro Risks and the Yield Curve

We start by computing the classic yield curve factors. The level factor is the equally weighted

average of all yields (from the one year to the 15 year maturity); the slope factor is the

difference between the 10 year yield and one quarter yield; and finally, the curvature factor

subtracts twice the two-year rate from the sum of the one quarter rate and the 10 year yield.

Table 4 shows regressions of these factors and, in addition, of the 1 quarter, 1 year and 10

year yields on the 5 macroeconomic state variables. We also show regressions using the one

quarter and the 10 year yield. Lets start with examining our findings regarding the level

factor. First, the explanatory power of these pure macro-economic factors for the level factor

is large with the R2:s exceeding 70%. Figure 7 shows that the overall explanatory power

does not vary much with maturity and is highly statistically significant. Second, the macro-

risks contribute in a statistically significant fashion to this explanatory power, but their

contribution to R2 is far less than that of expected GDP growth and inflation, with the R2

increasing from about 65% (59%) to about 71% (73%) at the 1 quarter (10 year) maturity.

Thus, the explanatory power of the macro risks is more apparent for longer maturities.

Figure 7 shows this clearly by also graphing the R2 while excluding the macro-risk factors.
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While the R2 increase from including the macro-risk factors is overall perhaps modest,

it is statistically significant at the 1% level as shown by the p-values of the joint F -test

in Table 4. Individually, the coefficients are mostly not statistically significant, although

the signs are mostly consistent across equations Good demand and bad supply variance

risk have a negative effect on yields whereas bad demand risk has a positive effect. In

contrast, the regression coefficients for expected GDP growth and expected inflation are

highly statistically significant. These coefficients are consistent with a simple Taylor with a

weight on expected inflation larger than 1, and the weight on output growth much smaller

(see e.g. Bekaert, Cho and Moreno (2010); Clarida, Gali and Gertler (2009)). Of course, in

standard New-Keynesian models, the inflation target is subtracted from expected inflation;

the output measure is typical the output gap and the monetary policy equation features

interest rate smoothing and a discretionary shock. Yet, these coefficients seem economically

reasonable.

The bottom two panels in Table 4 focus on the slope and curvature. For the slope (10

year rate minus 1 quarter rate), the R2 of all macro factors amounts to 42%. Interestingly,

expected GDP growth and inflation do not have a significant effect on the slope, but two

of three macro risks do. Again, an F test rejects the null of the coefficients on the macro

risk factors jointly being zero, and the R2 drops to 18% when they are eliminated. Panel B

in Figure 7 shows the total R2 and the R2 when the macro risk factors are dropped for the

slope over the whole maturity spectrum, that is, we use all yields between the 1 year and

the 15 year yield as the long maturity in the slope computation. The total R2 increases with

maturity, but now the relative importance of the macro-risk factors decreases with maturity.

The final panel in Table shows that the curvature factor is significantly negatively correlated

with expected GDP growth and inflation, but none of the macro risk factor is significant.

The decrease in R2 when they are dropped from the regression is economically small and

only significant at the 10% level.

4.2 Macro Risks and Bond Return Predictability

The literature on bond return predictability is quite voluminous, but mostly focuses on us-

ing information extracted from the yield curve to predict future holding period returns (e.g.

Cochrane and Piazzesi (2005)). Ludvigson and Ng (2009) find that ”real” and ”inflation”
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factors, extracted from a large number of macro-economic tomes series, have important

forecasting power for future excess returns on U.S. government bonds. Moreover, this fore-

castability is above and beyond the predictive power contained in forward rates and yield

spreads. Also, the bond risk premia have a marked countercyclical component. Cieslak

and Pavola (2015) uncover short-lived predictability in bond returns by controlling for a

persistent component in inflation expectations.

In Table 5, we explore the link between bond returns and our macro factors. We focus on

excess holding period returns relative to the one year yield (so the shortest maturity we

consider is two years). Because we use overlapping quarterly data, all standard errors use

40 Newey-West (1987) lags.5 In the most general regression, we use the 5 state variables as

predictive variables but we also include the actual macro shocks as regressors. If the pre-

dictability reflects risk premiums, it would be logical to see opposite signs on the predictive

and contemporaneous coefficients.

Excluding the contemporaneous variables, the predictive R2 increases from about 5% for two

year maturity bonds to about 10% for 10 year maturity bonds. The bulk of this predictability

is coming from the macrorisk factors and not from expected GDP growth and inflation. As

can also be seen from Figure 10, expected GDP growth is only statistically significant at

low horizons and expected inflation never is. Figure 9 shows that the predictive R2 raises

until about maturity 8 and then stays relatively flat. Adding the innovations increases the

R2 to about 14% at the 2 and 24% at the 10 year horizon.

As Table 5 and Figure 10 show, the coefficients on the macro risks have consistent signs

across maturity but increase and become more statistically significant the longer the ma-

turity of the bond considered in the predictive regressions. The coefficients on the demand

risk (pdt and ndt ) are negative whereas the coefficient on the nst is positive. For the bad

environment variables, the coefficients on the macro risk innovations are opposite to that of

the predictive coefficients. Hence, if bad demand (supply) volatility increases, bond prices

increase (decrease) and expected returns decrease (increase). This is consistent with the

intuition that in demand (supply) environments bonds are good (poor) hedges against gen-

eral macro-economic risks. For the good demand volatility the signs of the predictive and

innovation coefficients, however, are the same.

5This is the (rounded) optimal number of lags according to procedures discussed in Newey and West

(1994) given the autocorrelation structure and the length of our data.
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5 A Term Structure Model with Macro Risks

This section develops a reduced-form term structure model, which allows to decompose the

fluctuations in nominal yields into the fluctuations in real yields, expected inflation and

inflation risk premium. The real log risk-free rate is assumed to be:

y1,t = a0 + agEtgt+1 + aπEtπt+1 + apdp
d
t + andn

d
t + ansn

s
t + zt, (12)

where a0, ag, aπ, apd , and , and ans are constants and zt is a latent factor, which follows an

AR(1) process:

zt = ρzzt−1 + σzε
z
t+1, (13)

where ρz and σz are constants and εzt+1 is assumed to be a unit variance zero-mean Gaussian

shock.

The implied real log stochastic discount factor is:

mt+1 =(−a0 + f(λps)p̄
s)

−agEtgt+1 − aπEtπt+1 − zt + (−apd + f(λpd))p
d
t+

(−and + f(λnd))n
d
t + (−ans + f(λns)n

s
t+

λpdω
d
p,t+1 + λndω

d
n,t+1 + λpsω

s
p,t+1 + λnsω

s
n,t+1 + λzε

z
t+1 =

b0 − agEtgt+1 − aπEtπt+1 − zt + bpdp
d
t + bndn

d
t + bnsn

s
t+

λpdω
d
p,t+1 + λndω

d
n,t+1 + λpsω

s
p,t+1 + λnsω

s
n,t+1 + λzε

z
t+1,

(14)

where f(x) = x+ ln(1− x), λpd , λnd , λps , λns , and λz are constants, and b0, bpd , bnd , bps , bns

are implicitly defined.

By recursively taking the expectations of the stochastic discount factor, it follows that the

price of a real risk-free zero-coupon n period bond at time t, Pt,n is:

Pt,n = exp(Cn +GnEtgt+1 + ΠnEtπt+1 + P d
np

d
t +Nd

nn
d
t +N s

nn
s
t + Znzt),

C1 = −a0,

G1 = −ag,

Π1 = −aπ,

P d
1 = −apd ,
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Nd
1 = −and ,

N s
1 = −ans ,

Z1 = −1,

Cn = Cn−1 + b0 +Gn−1ḡ + Πn−1π̄ + P d
n−1p̄

d(1− ρdp)+ (15)

Nd
n−1n̄

d(1− ρdn) +N s
n−1n̄

s(1− ρsn)−

f(λps +Gn−1σ
e
gσgsσ

s
p − Πn−1σ

e
πσπsσ

s
p)p̄

s +
1

2
(λz + Zn−1σz)

2,

Gn = −ag +Gn−1ρgg + Πn−1ρπg,

Πn = −aπ +Gn−1ρgπ + Πn−1ρππ,

P d
n = bpd + ρdpP

d
n−1 − f(λpd + P d

n−1σ
d
pp +Gn−1σ

e
gσgdσ

d
p + Πn−1σ

e
πσπdσ

d
p),

Nd
n = bnd + ρdnN

d
n−1 − f(λnd +Nd

n−1σ
d
nn −Gn−1σ

e
gσgdσ

d
n − Πn−1σ

e
πσπdσ

d
n),

N s
n = bns + ρsnN

s
n−1 − f(λns +N s

n−1σ
s
nn −Gn−1σ

e
gσgsσ

s
n + Πn−1σ

e
πσπsσ

s
n),

Zn = −1 + ρzZn−1. (16)

Instead of bond prices, logarithmic yields, defined as yt,n = − 1
n

lnPt,n, will be used.

As usual, the nominal stochastic discount factor is m$
t+1 = mt+1−πt+1. Again, the price of a

nominal risk-free zero-coupon n period bond at time t, P $
t,n, can be obtained by recursively
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taking the expectations of the nominal stochastic discount factor:

P $
t,n = exp(C$

n +G$
nEtgt+1 + Π$

nEtπt+1 + P d$
n p

d
t +Nd$

n n
d
t +N s$

n n
s
t + Z$

nzt),

C$
1 = b0 − f(λps + σπsσ

s
p)p̄

s,

G$
1 = −ag,

Π$
1 = −aπ − 1,

P d$
1 = bpd − f(λpd − σπdσdp),

Nd$
1 = bnd − f(λnd + σπdσ

d
n),

N s$
1 = bns − f(λns − σπsσsn),

Z$
1 = −1,

C$
n = C$

n−1 + b0 +G$
n−1ḡ + Π$

n−1π̄ + P d$
n−1p̄

d(1− ρdp)+

Nd$
n−1n̄

d(1− ρdn) +N s$
n−1n̄

s(1− ρsn)−

f(λps +G$
n−1σ

e
gσgsσ

s
p − Π$

n−1σ
e
πσπsσ

s
p + σπsσ

s
p)p̄

s +
1

2
(λz + Zn−1σz)

2,

G$
n = −ag +G$

n−1ρgg + Π$
n−1ρπg,

Π$
n = −aπ − 1 +G$

n−1ρgπ + Π$
n−1ρππ,

P d$
n = bpd + ρdpP

d$
n−1 − f(λpd + P d$

n−1σ
d
pp +G$

n−1σ
e
gσgdσ

d
p + Π$

n−1σ
e
πσπdσ

d
p − σπdσdp),

Nd$
n = bnd + ρdnN

d$
n−1 − f(λnd +Nd$

n−1σ
d
nn −G$

n−1σ
e
gσgdσ

d
n − Π$

n−1σ
e
πσπdσ

d
n + σdπσ

d
n),

N s$
n = bns + ρsnN

s$
n−1 − f(λns +N s$

n−1σ
s
nn −G$

n−1σ
e
gσgsσ

s
n + Π$

n−1σ
e
πσπsσ

s
n − σπsσsn),

Z$
n = −1 + ρzZ

$
n−1.

(17)

The estimation is conducted via maximizing the likelihood of observed bond yields assum-

ing that all bond yields are observed with independent zero-mean Gaussian errors with

bond specific variances, which are constant over time. This is implemented using standard

Kalmant filtering where zt is a latent state variable and bond yields are noisy observations.

The data consists of quarterly observations of 1, 5, and 10 year nominal zero-coupon Treasury

yields from the online appendix of Gürkaynak, Sack and Wright (2007) from 1969Q1 to

2012Q3 and 2, 5, and 10 year real zero-coupon yields constructed using data from the online

appendix of Gürkaynak, Sack and Wright (2010) from 2004Q1 to 2012Q3, as there were

serious liquidity issues in the TIPS markets before that.

The use of the real yields is essential for the identification, because we are interested in

decomposing the difference between the nominal rate and the expected inflation into the real

19



rate and the inflation risk premium. Both of these components are unobserved and depend on

the stochastic discount factor parameters which we need to estimate. Empirically, this leads

to the situation where the likelihood function becomes flat as it is possible to fit the time-

varying difference between the nominal yields and the expected inflation (two observables)

either through the time-varying real rates or time-varying inflation risk premium, depending

on the parameters of the stochastic discount factor. Thus, without using the real rates a

number of maxima could be identified.

The TIPS real yields reported in Gürkaynak, Sack and Wright (2010) must be adjusted

for liquidity. We use the approach similar to Gürkaynak, Sack and Wright (2010) for this

purpose. In particular, we regress the ”inflation compensation” variable reported in Gürkay-

nak, Sack and Wright (2010) on a constant and three measures of TIPS liquidity. The first

measure is the relative trading volume of TIPS compared to nominal Treasuries. This is

obtained from the FR-2004 forms available on the Federal Reserve Bank of New York web-

site. The second and third measures are the Pastor and Stambaugh (2003) aggregate and

traded liquidity factors. Although these are equity liquidity factors, the large literature

starting from Chordia, Sarkar, and Subrahmanyam (2005) suggests that there is a strong

commonality in liquidity across markets. The regressions of the ”inflation compensation” on

liquidity factors give the time-variation in liquidity but not its absolute levels. To pin down

the absolute levels, we follow Chen, Lesmond, and Wei (2007) and Gürkaynak, Sack and

Wright (2010) and set the liquidity premium to 0 at the time point it achieved its lowest

value. Figure 11 illustrates the results. We can see that the liquidity premium patterns

and levels are very similar to the ones reported in Gürkaynak, Sack and Wright (2010):

the liquidity premium for all bonds have been relatively low and spiked during the Great

Recession (over 200 basis points for the 2 year real bonds) and the liquidity premium is

higher for the bonds with shorter maturities (for instance, for the 10 year bond the spike

during the Great Recession had been less than 100 basis points). After the Great Recession,

the liquidity premium in TIPS has returned to and below the pre-crisis period, consistently

with the evidence in D’Amico, Kim, and Wei (2014).

Table 6 reports the maximum likelihood parameter estimates. Estimates of ag (around

0.5) and aπ (above 0) are in line with the Taylor rule dynamics. ans is negative, which

might be corresponding to the precautionary savings effect. apd and and are positive but

insignificant. As ndt behaves like a rare-disaster type variable, the positive coefficient on and
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might be attributed to the intertemporary smoothing effect. λnd and λns are positive and

significant, which might be attributed to negative shocks increasing marginal utility. λpd

and λps are positive, but insignificant. Positive λpd might be related to positive inflation

shocks decreasing marginal utility (as, e.g., in Ang and Piazzesi, 2003, and Moneta and

Baludzzi, 2012).

Figure 12 shows that the model fits the 5 year yields accurately: the correlation between

the data and the model is 0.99, implying the R2 of over 98%. Table 7 confirms this fit for

other yields. The fit for the real yields is slightly worse than for nominal yields because, as

can also be seen from Figure 12, 2000:s seem to be a slightly more difficult period to fit.

Short yields are also more difficult to fit than long-term yields as they are more volatile.

Figure 13 decomposes the 5 year nominal yield into real yields, expected inflation, and

inflation risk premium. From the top panel, we can see that the real yields had been around

1-2% in the 1970:s, went up to 7-8% in the first half of the 80:s and had been 3-4% until the

early 2000:s when they started to decline hitting 0 in 2004 and during and post the Great

Recession. The expected inflation has been 6-8% throughout the 70:s and the early 80:s and

stayed at around 2-3% after that, plummetting during the Great Recession. The inflation

risk-premium has been over 1.5% in the 70:s and early 80:s, but has remained around 0

after that. This declining pattern is consistent with the economy shifting from the supply

environment into the demand environment documented in previous sections.

Table 8 summarizes the unconditional properties of the three term structure components.

In terms of both levels and volatility, expected inflation and real yields are most important.

Although on average the inflation risk premium is less important, as the bottom panel of

Figure 13 shows, its contribution to the yield is strongly time-varying. Our estimates of

inflation risk premium are in line with the recent studies using TIPS, such as Grischenko

and Huang (2013) and Fleckenstein, Longstaff and Lustig (2014) and are somewhat lower

than in studies which do not use real yields such as Buraschi and Jiltsov (2005) and Ang,

Bekaert, and Wei (2010). However, as described above, using the real yields is essential for

accurate decomposition of the difference between nominal yields and expected inflation into

real yields and inflation risk premium.

Figure 14 illustrates that model implied nominal and real yield curves are upward sloping.

The top panel shows that the model accurately replicates the nominal yield curve, albeit
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the model implied curve has slightly higher slope. The real yield curve slope is also positive

but smaller than the nominal yield curve slope (around 1 percentage point versus around

2 percentage points) indicating the the term structure of inflation risk premium is upward

sloping as well. The estimated real yield curve is consistent with other recent estimates in

the literature, such as Ang and Ulrich (2012) and Chernov and Mueller (2012).

Figure 15 plots the time series of the latent factor expected values, which is instructive

about episodes difficult to explain using the purely macroeconomic model. In particular,

the figure suggests that the high interest rates observed during the Volcker experiment

(the latent variable achieves its highest values during that period) and the low interest rates

during the Great Recession (the latent variable achieves its lowest values during that period)

are difficult for purely macroeconomy driven model, indicating that economically the latent

factor might be related to unconventional monetary policy.

6 Conclusion

In this article, we provide three main contributions. First, we develop a new dynamic

model for real economic activity and inflation, where the shocks are drawn from a Bad

Environment-Good Environment model, which accommodates time-varying non-Gaussian

features with ”good” and ”bad” volatility. The shocks are decomposed into ”demand”

shocks which move inflation and GDP growth in the same direction and ”supply shocks”

which move inflation and GDP growth in opposite direction. We find the demand shocks

to exhibit marked skewness, driven, inter alia, by peaks in ”bad demand volatility” during

the Great Recession. Supply shock variances are high during the seventies and again more

recently since 2005. The correlation between GDP growth and inflation is mostly negative

but peaks during the Great Recession when demand shocks are important. Second, we

link the macro factors extracted from the dynamic macro model, expected GDP growth

and inflation and the macro risk variables represented by the conditional variances (shape

parameters) of the shocks, to the term structure. The macro variables explain a little

over 70% of the variation in the levels of yields, but the proportion of explanatory power

accounted for by the macro risk variables rises from 8.4% at the one quarter maturity to

19.2% at the 10 year maturity. When we run predictive regressions of excess holding period

returns onto the macro variables, the R2 rises from 5% for 2 maturity bonds to 10% for 10
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year maturity bonds with the bulk of it accounted for by the macro-risk variables. Third,

we build a term structure model in which the macro factors feature as state variables in

addition to one latent variable. Despite the non-Gaussianities in the state variables, the

term structure model is affine in the state variables.
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Appendix A - Models of GDP growth and inflation ex-

pectations

This appendix compares the optimal linear models of expected GDP growth and inflation.

The predictors used are the lagged GDP growth and inflation values, the median survey

forecasts of GDP growth and inflation over 1, 2, and 3 quarters ahead and the Federal

Reserve Bank of Philadelphia anxious index over 1, 2 and 3 quarters ahead. The table

below reports the top 15 optimal linear models in terms of the Bayesian information criterion

(BIC).

Optimal Linear Models for GDP Growth, Inflation and Inflation Expectations. The data are quarterly US inflation and real

GDP growth. Inflation is defined as percentage changes in consumer price index for all urban consumers for all items. Real

GDP growth is defined as the percentage change in seasonally and inflation adjusted value of the goods and services produced

by labor and property in the United States. The data is logarithmised. The time span is from 1969Q1 to 2012Q3. BIC is

Bayesian information criterion.

Panel A: GDP growth

Predictors BIC

GDP 1 lag, inflation 1 lag -1646

GDP 1 lag -1644

GDP lag 1, inflation lag 3 -1644

GDP lags 1,2 -1644

GDP 1 lag, anxious 1 -1643

GDP forecast 1, inflation 1 lag -1642

GDP lag 1, inflation lag 1,3 -1642

GDP lag 1, anxious 2 -1642

anxious 1 -1640

GDP lags 1,3 -1640

Panel B: Inflation

Predictors BIC

Inflation lag 1, inflation forecast 1 -1723

Inflation lag 1,2,3 -1718

Inflation lag 1, inflation forecast 1,2 -1715

Inflation lag 1,3, inflation forecast 1 -1714

Inflation forecast 1,2 -1714

Inflation lag 1, GDP growth lag 1, inflation forecast 1 -1710

Inflation forecast 1 -1709

Inflation lag 1,2,3, inflation forecast 1 -1709

Inflation lag 1, GDP growth lag 2, inflation forecast 1 -1709

Inflation lag 1, GDP growth lag 3, inflation forecast 1 -1709
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Appendix B - Maximum likelihood estimation of de-

mand and supply shock dynamics

The estimation procedure is a modification of Bates (2006)’s algorithm for the component

model of two gamma distributed variables. Below the step-by-step estimation strategy for

the demand shock is described. The estimation for the supply shock is identical.

The methodology below is an approximation, because, in order to facilitate the computation,

at each time point the conditional distribution (conditioned on the previous realizations of

udt of state variables pdt and ndt is assumed to be gamma, although the distribution does not

have a closed form solution. The choice of the approximating distributions is discussed in

details in section 1.3 of Bates (2006). Here the gamma distributions are used, because they

are bounded from the left at 0, which ensures that the shape parameters of the gamma

distribution in the model (pdt and ndt ) will always stay positive, like they should.

The system to estimate is:

udt+1 = σdpω
d
p,t+1 − σdnωdn,t+1,

ωdp,t+1 ∼ Γ(pdt , 1)− pdt ,

ωdn,t+1 ∼ Γ(ndt , 1)− ndt ,

pdt+1 = p̄d + ρdp(p
d
t − p̄d) + σdppω

d
p,t+1,

ndt+1 = n̄d + ρdn(ndt − n̄d) + σdnnω
d
n,t+1.

The following notation is defined:

Ud
t ≡ {ud1, ..., udt } is the sequence of observations up to time t.

F (iφ, iψ1, iψ2|Ud
t ) ≡ E(eiφu

d
t+1+iψ1pdt+1+iψ2ndt+1|Ud

t ) is the next period’s joint conditional char-

acteristic function of the observation and the state variables.

Gt|s(iψ
1, iψ2) ≡ E(eiψ

1pdt+iψ2ndt |Ud
s ) is the characteristic function of the time t state variables

conditioned on observing data up to time s.

At time 0, the characteristic function of the state variables G0|0(iψ1, iψ2) is initialized. As

mentioned above, the distribution of pd0 and nd0 is approximated with gamma distributions.

Note that the unconditional mean and variance of pdt are E(pdt ) = p̄d and V ar(pdt ) =
σ2
pp

1−ρd2p
p̄d,

respectively. The approximation by the gamma distribution with the shape parameter

k0 and the scale parameter σp0 is done by matching the first two unconditional moments.
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Using the properties of the gamma distribution, kp0 =
E2pdt

V ar(pdt )
and θp0 =

V ar(pdt )

E(pdt )
. Thus, pd0

is assumed to follow Γ(kp0, θ
p
0) and nd0 is assumed to follow Γ(kn0 , θ

n
0 ), where kn0 and θn0 are

computed in the same way. Using the properties of the expectations of the gamma variables,

G0|0(iψ1, iψ2) = e−k
p
0 ln(1−θp0 iψ1)−kn0 ln(1−θn0 iψ2) . Given G0|0(iψ1, iψ2), computing the likelihood

of Ud
T is performed by repeating the steps 1-3 below for all subsequent values of t.

Step 1. Computing the next period’s joint conditional characteristic function of the obser-

vation and the state variables:

F (iΦ, iψ1, iψ2|Udt ) = E(E(eiΦ(σd
pω

d
p,t+1−σ

d
nω

d
n,t+1)+iψ1(p̄d+ρdpp

d
t +σd

ppω
d
p,t+1)+iψ2(n̄d(1−ρdn)+ρdnn

d
t +σd

nnω
d
n,t+1)|Udt )

= E(eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)+(iψ1ρdp−ln(1−iΦσd

p−iψ
1σd

pp)−iΦσd
p−iψ

1σd
pp)pdt +(iψ2ρdn−ln(1+iΦσd

n−iψ
2σd

nn)+iΦσd
n−iψ

2σd
nn)nd

t |Udt )

= eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)Gt|t(iψ

1ρdp − ln(1− iΦσdp − iψ1σdpp)− iΦσdp − iψ1σdpp, iψ
2ρdn − ln(1 + iΦσdn − iψ2σdnn) + iΦσdn − iψ2σdnn).

Step 2. Evaluating the conditional likelihood of the time t+ 1 observation:

p(udt+1|Ud
t ) =

1

2π

∫ ∞
−∞

F (iΦ, 0, 0|Ud
t )e−iΦu

d
t+1)dΦ,

where the function F is defined in step 1 and the integral is evaluated numerically.

Step 3. Computing the conditional characteristic function for the next period, Gt+1|t+1(iψ1, iψ2):

Gt+1|t+1(iψ1, iψ2) =
1

2π

∫∞
−∞ F (iΦ, iψ1, iψ2|Ud

t )e−iΦu
d
t+1dΦ

p(udt+1|Ud
t )

.

As above, the function Gt+1|t+1(iψ1, iψ2) is also approximated with the gamma distribution

via matching the first two moments of the distribution. The moments are obtained by taking

the first and second partial derivatives of the joint characteristic function:

Et+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1ψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1p
d
t+1,

Et+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2ψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1n
d
t+1,

where Fψi denotes the derivative of F with respect to ψi. The expressions inside the integral

are obtained in closed form by derivating the function F (iΦ, iψ1, iψ2|Ud
t ) in step 1, and

integrals are evaluated numerically. Using the properties of the gamma distribution, the

values of the shape and the scale parameters are kpt+1 =
E2
t+1p

d
t+1

V art+1pdt+1
and θpt+1 =

V art+1pdt+1

Et+1pdt+1
,

respectively. The expressions for knt+1 and θnt+1 are similar.
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The total likelihood of the time series is the sum of individual likelihoods from step 2:

L(YT ) = ln p(ud1|k
p
0, θ

p
0) +

∑T
t=2 ln p(udt+1|Ud

t ).
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Figure 1: Demand Shock. The graph is quarterly. The demand shock is defined as a shock

which moves GDP growth and inflation in the same direction.
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Figure 2: Supply Shock. The data are quarterly US observations from 1969Q1 to 2012Q3.

The supply shock is defined as a shock which moves GDP growth and inflation in opposite

directions.
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Figure 3: Demand and Supply Shock Variances. The data are quarterly US observations

from 1969Q1 to 2012Q3. The demand shock is defined as a shock which moves GDP growth

and inflation in the same direction. The supply shock is defined as a shock which moves

GDP growth and inflation in opposite directions.
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Figure 4: Conditional Inflation and GDP Growth Variances. The data are quarterly US

observations from 1969Q1 to 2012Q3.
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Figure 5: Demand and Supply Shock Components of GDP Growth and Inflation Shocks.

The data are quarterly US observations from 1969Q1 to 2012Q3. The demand shock is

defined as a shock which moves GDP growth and inflation in the same direction. The

supply shock is defined as a shock which moves GDP growth and inflation in opposite

directions. The supply shock component is equal to GDP growth/inflation shock - demand

component of GDP growth/inflation shock.
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Figure 6: Conditional Correlation between GDP Growth and Inflation. The data are quar-

terly US observations from 1969Q1 to 2012Q3.
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Figure 7: Explanatory Power of State Variables on Yields. Adjusted R2 statistics are for the

ordinary least squares regressions. The data are quarterly US observations from 1969Q1 to

2012Q3. The slope is defined with respect to the 1 quarter nominal bond. The confidence

intervals are bootstrap confidence intervals.
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Figure 8: Impact of State Variables on Yields. The coefficients (solid lines) are ordinary

least squares coefficients from the multivariate regression of the yields on a constant and

state variables. The 95% confidence intervals (dotted lines) are based on the Newey-West

standard errors with 40 lags. The data are quarterly US observations from 1969Q1 to

2012Q3. The slope is defined with respect to the 1 quarter nominal bond. The confidence

intervals are bootstrap confidence intervals.
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Figure 9: Explanatory Power of State Variables and Macroeconomic Shocks on 1 Quarter

Excess Bond Returns. The data are quarterly US observations from 1969Q1 to 2012Q3.

Adjusted R2 statistics are for the ordinary least squares regressions. The confidence intervals

are bootstrap confidence intervals.
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Figure 10: Impact of State Variables on 1 Quarter Excess Holding Returns. The coefficients

(solid lines) are ordinary least squares coefficients from the multivariate regression of the

excess holding return on a constant, state variables and macroeconomic innovations. The

95% confidence intervals (dotted lines) are based on the Newey-West standard errors with

40 lags. The data are quarterly US observations from 1969Q1 to 2012Q3. The confidence

intervals are bootstrap confidence intervals.
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Figure 11: Real Yields. The figure plots annualized zero-coupon interpolated TIPS yields

from Gürkaynak, Sack and Wright (2010) and their liquidity adjusted counterparts.
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Figure 12: Historical 5 Year Nominal Yield Fit. The yield is a zero-coupon annualized yield.
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Figure 13: Decomposition of the Historical 5 Year Nominal Yield. The yield is decomposed

into the real yield, expected inflation and the inflation risk premium. All yields are zero-

coupon annualized yields.
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Figure 14: Zero-coupon Real and Nominal Yield Curves. All yields are annualized.
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Figure 15: The Historical Dynamics of the Latent Variable. The graph is the expected value

of the latent factor filtered using Kalman filtering.
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Table 1: Extracting Supply and Demand Shocks from GDP and Inflation Shocks. The

data are quarterly GDP growth and inflation data from 1969Q1 to 2012Q3. In Panel A,

standard errors in parentheses are bootstrap standard errors. In Panel B, standard errors in

parentheses are GMM standard errors. *** indicates the statistical significance at the 1%

level.

Panel A: Moments used to invert supply and demand shocks from GDP and inflation shocks

Moment Historical value GMM fitted value

uπ2
t 4.14E-05 4.14E-05

(1.08E-05)

ug2t 5.62E-05 5.06E-05

(0.89E-05)

ugt u
π
t -5.88E-06 -5.86E-06

(4.70E-06)

uπ3
t -3.70E-07 -3.73E-07

(4.29E-07)

ug3t 6.48E-08 -14.38E-08

(25.86E-08)

uπ2
t ugt -1.55E-07 -1.44E-07

(1.28E-07)

uπt u
g2
t 3.00E-08 0.65E-08

(6.77E-08)

Panel B: GMM parameter estimates

Parameter Estimate

σgd 0.0020

(0.0005)

σgs 0.0070

(0.0005)

σπd 0.0059

(0.0009)

σπs 0.0025

(0.0008)

p-value of the overidentification test 0.2281

Panel C: Properties of demand and supply shocks

Demand shock Supply shock

Variance 1.0284 1.1198

Skewness -1.7792 0.0724

Excess kurtosis 12.4529 1.5959

Jarque-Berra normality test p-value 0.0001∗∗∗ 0.0034∗∗∗
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Table 2: Maximum Likelihood Parameter Estimates For Demand and Supply Shocks. The

standard errors in parentheses are parametric bootstrap standard errors and computed by

simulating the sampled paths for the shocks of historical length under the optimal maximum

likelihood parameters 250 times and re-estimating the parameters for each of the simulated

time series.

Parameters Demand shock Supply shock

σp 0.1925 0.4501

(0.0744) (0.0825)

p̄ 20.2846 1.6567

(1.9108) (0.2942)

σn 5.1541 0.4534

(1.3974) (0.0944)

n̄ 0.0137 4.3830

(0.0192) (0.5636)

ρp 0.9493

(0.0550)

σpp 0.7752

(0.1688)

ρn 0.6844 0.9912

(0.2000) (0.1508)

σnn 0.1332 0.2327

(0.0717) (0.1875)
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Table 3: Unconditional Moments of GDP Growth and Inflation Shocks. The data are

quarterly GDP growth and inflation data from 1969Q1 to 2012Q3. Bootstrap standard

errors are in parentheses. Std is standard deviation, Skw is skewness, Ekur is excess

kurtosis, and Pr is probability.

Moment Data Model

Std(ugt ) 0.0078 0.0078

(0.0006)

Skw(ugt ) 0.2485 -0.4443

(0.3999)

Ekur(ugt ) 2.0482 1.2953

(1.0337)

Pr(ugt < 2Std(ugt )) 0.0231 0.0323

(0.0113)

Pr(ugt > 2Std(ugt )) 0.0173 0.0216

(0.0089)

Std(uπt ) 0.0064 0.0070

(0.0008)

Skw(uπt ) -1.4355 -1.9976

(1.0274)

Ekur(uπt ) 9.9054 24.9804

(5.4129)

Pr(uπt < 2Std(uπt )) 0.0289 0.0159

(0.0117)

Pr(uπt > 2Std(uπt )) 0.0173 0.0202

(0.0128)

Corr(ugt , u
π
t ) -0.1084 -0.0849

(0.1128)
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Table 4: Relationship between State Variables and Yield Properties. The coefficients are

ordinary least squares regression estimates. The left-hand side variables in the regression

are quarterly yield properties and the right-hand side variables are state variables. The

Newey-West (40 lags) 95% - standard errors are in parentheses. ***, **, and * indicate the

statistical significance at 10%, 5%, and 1% level. For the R2:s the statistical significance is for

the difference between the models with and without macroeconomic shocks state variables

(pdt , n
d
t , and nst) which is determined based on the F -statistic for the joint significance of the

macroeconomic shocks state variables.

1 quarter nominal interest rate

Constant Etgt+1 Etπt+1 pdt ndt nst R2 R2
no macro factors

-0.0022 0.4944*** 1.5208*** -0.0001 0.0193 -0.0008* 0.7074 0.6483***

(0.0027) (0.1849) (0.2205) (0.0001) (0.0149) (0.0004)

1 year nominal interest rate

Constant Etgt+1 Etπt+1 pdt ndt nst R2 R2
no macro factors

-0.0022 0.5645*** 1.6767*** -0.0001 0.0206 -0.0006 0.7174 0.6544***

(0.0028) (0.1936) (0.2393) (0.0001) (0.0178) (0.0006)

10 year nominal interest rate

Constant Etgt+1 Etπt+1 pdt ndt nst R2 R2
no macro factors

0.0036* 0.5011*** 1.5623*** -0.0003** 0.0261* 0.0001 0.7284 0.5888***

(0.0022) (0.1538) (0.2100) (0.0001) (0.0143) (0.0004)

Level (average over 1-15 year yields)

Constant Etgt+1 Etπt+1 pdt ndt nst R2 R2
no macro factors

0.0021 0.5313*** 1.5844*** -0.0003** 0.0242 -0.00013 0.7353 0.6180***

(0.0023) (0.1645) (0.2176) (0.0001) (0.0153) (0.0005)

Slope (10 year yield - 1 quarter yield)

Constant Etgt+1 Etπt+1 pdt ndt nst R2 R2
no macro factors

0.0059*** 0.0068 0.0055 -0.0002*** 0.0068 0.0008*** 0.4232 0.1805***

(0.0008) (0.0495) (0.0777) (0.0000) (0.0104) (0.0001)

Curvature (10 year yield + 1 quarter yield-2×2 year yield)

Constant Etgt+1 Etπt+1 pdt ndt nst R2 R2
no macro factors

0.0048*** -0.2101** -0.3928*** 0.0000 0.028 0.0001 0.3934 0.3603*

(0.0011) (0.0942) (0.0735) (0.0001) (0.0118) (0.0003)
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Table 5: Relationship between State Variables and 1 Quarter Excess Bond Returns. The

coefficients are ordinary least squares coefficients from the multivariate regression of the 1

quarter excess holding return on a constant, state variables and macroeconomic innovations.

The Newey-West (40 lags) 95% - standard errors are in parentheses. ***, **, and * indicate

the statistical significance at 10%, 5%, and 1% level. For the R2:s the statistical significance

is with respect to the R2 on the line above it determined based on the F -statistic for the

joint significance of the regressors not included in the model but included in the model above

it.

Excess return on 2 year bond Excess return on 10 year bond

Constant -0.0003 0.0228***

(0.0012) (0.0081)

Etgt+1 0.1810** 0.1797

(0.0846) (0.8231)

Etπt+1 0.0967 -0.8669

(0.1252) (0.5974)

pdt -0.0002*** -0.0012***

(0.0001) (0.0003)

ndt -0.0150 -0.2448***

(0.0103) (0.0719)

nst 0.0006* 0.0055***

(0.0003) (0.0014)

ωdp,t+1 -0.0005*** -0.0033***

(0.0001) (0.0006)

ωdn,t+1 0.0092*** 0.0984***

(0.0012) (0.0300)

ωsn,t+1 -0.0009** -0.0076***

(0.0004) (0.0022)

R2 0.1380 0.2402

R2
no ω:s 0.0496* 0.1051***

R2
no macro factors and ω:s 0.0071*** 0.0274***
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Table 6: Maxium Likelihood Parameter Estimates. Parameters are estimated using Kalman

filtering. The sample is quarterly from 1969Q1 to 2012Q3 for nominal yields and from

2004Q1 to 2012Q3 for real yields. The nominal yields are 1 year, 5 year and 10 year yields.

The real yields are 2 year, 5 year, and 10 year yields. Standard errors in parentheses are

inverse information matrix standard errors.

Parameter Estimate

Real interest rate

a0 0.0039

(0.0036)

ag 0.5433

(0.2694)

aπ 0.0376

(0.0390)

apd 0.0002

(0.0002)

and 0.0074

(0.1685)

ans -0.0006

(0.0003)

Latent variable

ρz 0.9956

(0.0094)

σz 0.0023

(0.0009)

Prices of risk

λpd 0.0310

(2.2437)

λnd 21.7673

(9.9818)

λps 0.4052

(4.7303)

λns 4.7812

(2.3985)

λz 0.0594

(1.0828)
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Table 7: Model Fit. The correlations for the nominal yields are from quarterly observations

from 1969Q1 to 2012Q3 and for the real yields from 2004Q1 to 2012Q3.

Yield Correlation(Model, Data)

1 year nominal 0.9660

5 year nominal 0.9946

10 year nominal 0.9873

2 year real 0.8974

5 year real 0.9910

10 year real 0.9700
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Table 8: Decomposition of the Historical 5 Year Nominal Yield. The yield is decomposed

into the real yield, expected inflation and the inflation risk premium. All yields are zero-

coupon annualized yields.

Component Average level Standard deviation

Real rate 2.31% 2.03%

Expected inflation 4.06% 1.40%

Inflation risk premium 0.25% 0.46%
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