Virtual Seminar on Climate Economics

Who's fit for the low-carbon transition? Emerging skills and wage gaps in job ad data with Misato Sato and Francesco Vona

Aurélien Saussay
London School of Economics

Janury $19^{\text {th }}, 2023$

Policy objective to create jobs through climate mitigation

President Obama's 2008 campaign
sought to create
" 5 million 'green' jobs"

President Biden promises that his focus on environment will be "jobs, jobs, jobs"

Mitigation requires shifting away from fossil industries

Phasing out fossil fuels jeopardizes the livelihood of communities that depend of fossil-fuel extraction and fossil-intensive industries

Low carbon jobs are difficult to observe unlike 'dirty' jobs

- Widespread across sectors, occupations, geography
- New, and changing
\Rightarrow Lack of agreed definition, classification and data

Public debate exaggerates the job killing argument while downplaying the job creation effect of the low-carbon transition

How to define green job and green skills?

- No agreed definition of green jobs or green skills
- Green sectors? Green firms? Green activities? Green workers?
- A working definition of green jobs needs to account for the skills profile of green jobs
- Why focus on green skills?
- Evaluate the skill gap between newly created green jobs and jobs destroyed by environmental regulation (brown jobs) to evaluate the possibility of re-employing displaced workers
- Consider the need of complementary educational and training policies to be combined with environmental policies

BLS Green Jobs Initiative (2010)

- BLS program initiated in 2010 to help measure for green jobs:
- Number of and trend over time
- Industrial, occupational, and geographic distribution
- Wages
- Output approach: who produces green goods?
- Process approach: who uses green processes?
- O*NET Green Task Development Project (2010) identified:
- 1,369 green tasks
- Added green tasks to 105 existing occupations
- 33 new and emerging green occupations

Combining task-based approach with the O*NET dataset

- First data driven methodology
- Measure occupation level exposure to green technologies and productions: share of green tasks over total tasks (Vona et al., 2018, 2019)
- Data-driven identification of green skills (Vona et al., 2018) and assessing direct and indirect green jobs (multiplier effects) (Bowen et al., 2018; Vona et al., 2019)
- Using exogenous policy variation to examine the effect of policies on demand for green skills (Vona et al., 2018; Popp et al., 2021; Marin and Vona, 2019; Vona et al., 2019)

Key insights gained

- Green occupations require more on the job training are slightly more non-routine cognitive than non-green occupations (Consoli et al., 2016)
- Green occupations require more technical, engineering, monitoring and managerial skills. (Vona et al., 2018)
- Winners (technicians, engineers) and losers (manual workers) from the green transition (Marin and Vona, 2019)
- Effect of green subsidies strongly mediated by the local availability of green skills (Popp et al., 2021)
- Limitations of the \mathbf{O}^{*} NET data on green jobs (i.e., Green Economy Program)
- Can't precisely observe green jobs within an occupation
- Difficult to conduct more granular analysis for specific technologies or occupations
- Data updated infrequently

Going more granular

Our approach: Skill-based, using job level data

- Advantages of job level data
- Move from occupational level to job level data on skill profiles
- Examine skills gaps within an occupational group
- Lightcast dataset comprising all job advertisements in the United States over 2010-2019
- 196 million job ads
- Occupation
- Skills required
- Salary offered
- Education requirements
- Workers more likely to transition towards green jobs within the same occupational group

Relation to the literature

- Identifying green jobs

Vona et al. (NBER 2015); Vona et al. (JAERE, 2018); Bowen et al. (EE, 2018); Vona et al. (JEconGeo, 2019); Curtis \& Marinescu (NBER, 2022)

- Labour market impacts of environmental policies Greenstone (JPE, 2002); Kahn \& Mansur (JPubE, 2013); Hafstead \& Williams (JPubE 2018); Marin et al. (ERE, 2018); Castellanos \& Heutel (NBER, 2019); Marin \& Vona (JEEM, 2019)
- Labour market adjustments to technological change Hershbein \& Kahn (AER, 2018); Deming \& Kahn (JLE, 2018); Gathmann \& Schoenberg (JLE, 2010); Atalay et al., (AEJ: AE, 2018)

The Lightcast dataset

Number of ads collected has doubled since 2010

Total job ads across occupations (SOC major groups)

High skilled occupations are over-represented

What's in an ad?

- Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
- MSc required
- 3 years of experience
- Starts at $\$ 118 \mathrm{k}$
- Job ads are represented as a set of skills

Cost Control	Project Management	Quality Assurance and Control
Fuel Cell	Process Engineering	Biotechnology
Six Sigma	Machine Operation	Manufacturing Processes
Biotechnology Product Development	Genetic Testing	Logistics
- BG reports more than 16,000 distinct skills		
- We apply Natural Language Processing (NLP) and expert		
elicitation to identify green skills		

Highly heterogeneous skill vector length across occupations

17 - Architecture and Engineering

19 - Life, Physical, and Social Science

47 - Construction and Extraction

49 - Installation, Maintenance, and Repair

Identifying low carbon skills

Identifying core low carbon skills

- Need to identify skills that are characteristic of the core low carbon (climate-related) occupations

- Obtain source text from which to extract low carbon keywords
- Green tasks associated with climate-related occupations in O*NET (subset of Green Economy)
- "Calculate potential for energy savings."
- "Fabricate prototypes of fuel cell components, assemblies, or systems."
- "Test wind turbine components, by mechanical or electronic testing."
- Green products descriptions from PRODCOM

Identifying core low carbon skills

- Need to identify skills that are characteristic of the core low carbon (climate-related) occupations

- Use natural language processing to extract low carbon keywords
- Unsupervised machine learning using TF-IDF
- Semantically matched against BG skills using word embeddings (Word2Vec)
- Yields a "greeness" score between 0 and 1
- Perfect semantic matches against top 20 keywords are considered core low carbon: 396 skills

Identifying core low carbon skills

- Need to identify skills that are characteristic of the core low carbon (climate-related) occupations

- High scoring skills are potentially core low carbon, but must be inspected manually
- Supervised portion of our selection algorithm
- Surveyed 60+ experts from LSE, Oxford, OECD, University of Venice among others to review 600 high scoring skills
- 51 skills were selected

Identifying core low carbon skills

- Need to identify skills that are characteristic of the core low carbon (climate-related) occupations

- 447 core low carbon skills
- "Solar Energy Components"
- "Wind Energy Engineering"
- "Light Rail Transit Systems"
- "Clean Air Act"
- Each of the 16,000 skills is classified as low carbon (climate-related) or generic

What's in an ad? Green skill edition

- Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
- MSc required
- 3 years of experience
- Starts at \$118k
- Job ads are represented as a set of skills

Cost Control	Project Management	Quality Assurance and Control
Fuel Cell	Process Engineering	Biotechnology
Six Sigma	Machine Operation	Manufacturing Processes
Biotechnology Product Development	Genetic Testing	Logistics

Results

Low carbon jobs' share has not increased since 2010

a)

Low carbon ads are concentrated in 6 major SOC groups

Share of low-carbon ads by occupation (2010-2019)

Evolution of low carbon share across occupations

b)

Skill gaps are larger and broader in high-skilled occupations

Heterogeneous skills gap in low-skilled occupations

Specialization vs diversification by occupation

- Define low and high-carbon skill coreness indices:

$$
\begin{array}{ll}
G_{s}^{S O C}=\frac{g_{s}^{S O C}-1}{g_{s}^{S O C}+1} & g_{s}^{S O C}=\frac{n_{s}^{S O C}}{n^{S O C}} / \frac{n_{s}}{n} \\
C_{s}^{S O C}=\frac{c_{s}^{S O C}-1}{c_{s}^{S O C}+1} & c_{s}^{S O C}=\frac{n_{s}^{c, S O C}}{n^{c, S O C}} / \frac{n_{s}^{S O C}}{n^{S O C}}
\end{array}
$$

where $n_{s}^{S O C}$ is the number of ads requiring skill s in occupational group SOC
$n^{S O C}$ is the number of ads in occupational group SOC
n_{s} is the number of ads requiring skill s in the entire sample
n is the total number of ads in the sample
$n_{s}^{c, S O C}$ is the number of low (resp. high) carbon ads requiring skill s in occupational group SOC
$n^{c, S O C}$ is the number of low (resp. high) carbon ads in occupational group SOC
$n_{s}^{S O C}$ is the number of ads requiring skill s in occupational group SOC
$n^{S O C}$ is the number of ads in occupational group SOC

Specialization vs diversification by occupation

$$
\begin{gathered}
\text { 17-1 - Architects \& } \\
\text { Cartographers }
\end{gathered}
$$

$17-3$ - Engineering \& Mapping Technicians

47 - Construction \& Extraction

47 - Construction \& Extraction

13-1 - Business Operations Specialists

Specialization vs diversification by occupation

The green wage premium has vanished over the decade

Years

- 2010-2012
- 2017-2019

Limited overlap between low and high-carbon low-skilled jobs

Low carbon ads vs high carbon vacancies

Share of low carbon ads

$$
0 \% \text { to } 0.6 \%
$$

\square 0.6% to 0.9% \square 0.9% to 1.1% \square 1.1% to 1.5% \square 1.5% or more

High carbon ads / employment Top 15\% commuting zones

Low carbon jobs are created in relatively richer areas

Table SI.14: Correlation between the share of low-carbon ads and annual personal income

	Low skill		
	Unweighted	Weighted by ad count	Weighted by population
$\log \left(i n c_{c z}\right)$	$0.006^{* * *}$	0.002^{*}	$0.002^{* *}$
	(0.001)	(0.001)	(0.001)
Observations	685	685	685
R2	0.03	0.01	0.02
AIC	-4.974	-4.960	-4.961

Table SI.15: Correlation between the share of high-carbon ads and annual personal income

	Low skill		
	Unweighted	Weighted by ad count	Weighted by population
$\log \left(i n c_{c z}\right)$	$0.007^{* * *}$	$-0.001^{* *}$	$-0.001^{* * *}$
	(0.002)	(0.000)	(0.000)
Observations	647	647	647
R2	0.03	0.01	0.01
AIC	-4.522	-4.456	-4.459

Conclusions

- No increase in the overall demand for low carbon jobs over the past decade in the US
- Increase in low skill occupations, decrease in high skill occupations
- Low carbon jobs require more skills
- Skill gap more pronounced in high-skilled occupations, and for social, management, and technical skills
- Emerging skill gap larger and broader than previously considered
- The low carbon wage premium has eroded over time
- Lack of a wage premium for low carbon jobs despite higher skills requirements is problematic for their attractiveness
- Powerful, replicable tool to monitor, evaluate many aspects of labour market consequences of the low-carbon transition

Follow-up: UK extension

Low carbon ad share: similar to US levels, but different trends

Low carbon share for selected SOC groups

Spatial patterns: Low carbon job ad share

Low skill
Middle skill

High skill

Share of low carbon ads

Notes: For each Travel to Work Area (TTWA), we calculate the (unweighted) average of low carbon ad shares across all 4-digit SOC occupations within each skill category. TTWAs approximate local labour market areas. The TTWAs with hashed orange overlay indicates those with a high share (top 15\%) of high carbon job ads for that skill level. High skill occupations are those in SOC major groups 1, 2, and 3; middle skill occupations are in SOC major groups 4 and 5 ; low skill occupations are in SOC major groups $6,7,8$, and 9 .

Low carbon wage gap by SOC group

Years

212 - Engineering
Professionals
53 - Skilled Construction And
Buildina Trades
81 - Process, Hlant And
Machine Operatives

- 2012-2015
- 2018-2021

Key Takeaways - UK

1. Low carbon jobs declined between 2012-2018 as green policies were killed off (e.g. onshore wind support, green investment bank, green deal, zero carbon homes)
2. Growth in middle and high skilled low carbon jobs since 2018 but not low skilled
3. Spatial correlation between high and low carbon jobs, especially for low skilled but also for high skilled (Scotland)
4. Green wage premium has generally disappeared in recent years. Some exceptions e.g. Managers and directors (high), skilled construction trade (middle), machine operatives (low)
5. Both green and brown jobs require more skills than generic jobs, across all broad skill groups

Appendix

What's in an ad?

- Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
- MSc required
- 3 years of experience
- Starts at $\$ 118 \mathrm{k}$
- Job ads are represented as a set of skills

Cost Control	Project Management	Quality Assurance and Control
Fuel Cell	Process Engineering	Biotechnology
Six Sigma	Machine Operation	Manufacturing Processes
Biotechnology Product Development	Genetic Testing	Logistics
- BG reports more than 16,000 distinct skills		
- We apply Natural Language Processing (NLP) and expert		
elicitation to identify green skills		

References I

Bowen, A., Kuralbayeva, K., and Tipoe, E. L. (2018). Characterising green employment: The impacts of 'greening' on workforce composition. Energy Economics, 72:263-275.
Consoli, D., Marin, G., Marzucchi, A., and Vona, F. (2016). Do green jobs differ from non-green jobs in terms of skills and human capital? Research Policy, 45(5):1046-1060.
Marin, G. and Vona, F. (2019). Climate policies and skill-biased employment dynamics : evidence from EU countries. Journal of Environmental Economics and Management, 98:102253.
Popp, D., Vona, F., Marin, G., and Chen, Z. (2021). The employment impact of a green fiscal push: Evidence from the american recovery and reinvestment act. Brookings Papers on Economic Activity, Fall. 1-49.
Vona, F., Marin, G., and Consoli, D. (2019). Measures, drivers and effects of green employment: evidence from US local labor markets, 2006-2014. Journal of Economic Geography, 19(5):1021-1048.
Vona, F., Marin, G., Consoli, D., and Popp, D. (2018). Environmental Regulation and Green Skills: An Empirical Exploration. Journal of the Association of Environmental and Resource Economists, 5(4):713-753.

