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Policy objective to create jobs through climate mitigation

President Obama’s 2008 campaign
sought to create

“5 million ‘green’ jobs”

President Biden promises that his
focus on environment will be

“jobs, jobs, jobs”
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Mitigation requires shifting away from fossil industries

Phasing out fossil fuels jeopardizes the livelihood of communities that
depend of fossil-fuel extraction and fossil-intensive industries
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Low carbon jobs are difficult to observe unlike ‘dirty’ jobs

• Concentrated
• Well established

• Widespread across sectors, occupations, geography
• New, and changing
ÞLack of agreed definition, classification and data

Public debate exaggerates the job killing argument while downplaying
the job creation effect of the low-carbon transition
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How to define green job and green skills?

I No agreed definition of green jobs or green skills
I Green sectors? Green firms? Green activities? Green workers?

I A working definition of green jobs needs to account for the skills
profile of green jobs

I Why focus on green skills?

I Evaluate the skill gap between newly created green jobs and jobs
destroyed by environmental regulation (brown jobs) to evaluate the
possibility of re-employing displaced workers

I Consider the need of complementary educational and training
policies to be combined with environmental policies
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BLS Green Jobs Initiative (2010)

I BLS program initiated in 2010 to help measure for green jobs:

I Number of and trend over time
I Industrial, occupational, and geographic distribution
I Wages

I Output approach: who produces green goods?

I Process approach: who uses green processes?

I O*NET Green Task Development Project (2010) identified:

I 1,369 green tasks
I Added green tasks to 105 existing occupations
I 33 new and emerging green occupations
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Combining task-based approach with the O*NET dataset

I First data driven methodology

I Measure occupation level exposure to green technologies and
productions: share of green tasks over total tasks (Vona et al.,
2018, 2019)

I Data-driven identification of green skills (Vona et al., 2018) and
assessing direct and indirect green jobs (multiplier effects) (Bowen
et al., 2018; Vona et al., 2019)

I Using exogenous policy variation to examine the effect of policies
on demand for green skills (Vona et al., 2018; Popp et al., 2021;
Marin and Vona, 2019; Vona et al., 2019)
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Key insights gained

I Green occupations require more on the job training are slightly
more non-routine cognitive than non-green occupations (Consoli
et al., 2016)

I Green occupations require more technical, engineering, monitoring
and managerial skills. (Vona et al., 2018)

I Winners (technicians, engineers) and losers (manual workers)
from the green transition (Marin and Vona, 2019)

I Effect of green subsidies strongly mediated by the local availability
of green skills (Popp et al., 2021)

I Limitations of the O*NET data on green jobs (i.e., Green Economy
Program)

I Can’t precisely observe green jobs within an occupation
I Difficult to conduct more granular analysis for specific technologies

or occupations
I Data updated infrequently
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Going more granular

Occupation B
Occupation A

Job 1
Job 2

Occupation B
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Our approach: Skill-based, using job level data

I Advantages of job level data

I Move from occupational level to job level data on skill profiles
I Examine skills gaps within an occupational group

I Lightcast dataset comprising all job advertisements in the United
States over 2010-2019

I 196 million job ads

I Occupation

I Skills required

I Salary offered

I Education requirements

I Workers more likely to transition towards green jobs within the same
occupational group
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Relation to the literature

I Identifying green jobs
Vona et al. (NBER 2015); Vona et al. (JAERE, 2018); Bowen et al.
(EE, 2018); Vona et al. (JEconGeo, 2019); Curtis & Marinescu
(NBER, 2022)

I Labour market impacts of environmental policies
Greenstone (JPE, 2002); Kahn & Mansur (JPubE, 2013); Hafstead &
Williams (JPubE 2018); Marin et al. (ERE, 2018); Castellanos &
Heutel (NBER, 2019); Marin & Vona (JEEM, 2019)

I Labour market adjustments to technological change
Hershbein & Kahn (AER, 2018); Deming & Kahn (JLE, 2018);
Gathmann & Schoenberg (JLE, 2010); Atalay et al., (AEJ: AE, 2018)
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The Lightcast dataset
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Number of ads collected has doubled since 2010
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Total job ads across occupations (SOC major groups)

55 − Military Specific

53 − Transportation and Material Moving

51 − Production

49 − Installation, Maintenance, and Repair

47 − Construction and Extraction

45 − Farming, Fishing, and Forestry

43 − Office and Administrative Support

41 − Sales and Related

39 − Personal Care and Service

37 − Building and Grounds Cleaning and Maintenance

35 − Food Preparation and Serving Related

33 − Protective Service

31 − Healthcare Support

29 − Healthcare Practitioners and Technical

27 − Arts, Design, Entertainment, Sports, and Media

25 − Education, Training, and Library

23 − Legal

21 − Community and Social Service

19 − Life, Physical, and Social Science

17 − Architecture and Engineering

15 − Computer and Mathematical

13 − Business and Financial Operations

11 − Management

0 25 M 50 M 75 M
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High skilled occupations are over-represented

53 − Transportation and Material Moving

51 − Production

49 − Installation, Maintenance, and Repair

47 − Construction and Extraction

45 − Farming, Fishing, and Forestry

43 − Office and Administrative Support

41 − Sales and Related

39 − Personal Care and Service

37 − Building and Grounds Cleaning and Maintenance

35 − Food Preparation and Serving Related

33 − Protective Service

31 − Healthcare Support

29 − Healthcare Practitioners and Technical

27 − Arts, Design, Entertainment, Sports, and Media

25 − Education, Training, and Library

23 − Legal

21 − Community and Social Service

19 − Life, Physical, and Social Science

17 − Architecture and Engineering

15 − Computer and Mathematical

13 − Business and Financial Operations

11 − Management

0% 5% 10% 15% 20%
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Burning Glass
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What’s in an ad?

I Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
I MSc required
I 3 years of experience
I Starts at $118k

I Job ads are represented as a set of skills

Cost Control Project Management Quality Assurance and Control

Fuel Cell Process Engineering Biotechnology

Six Sigma Machine Operation Manufacturing Processes

Biotechnology Product Development Genetic Testing Logistics

I BG reports more than 16,000 distinct skills

I We apply Natural Language Processing (NLP) and expert
elicitation to identify green skills
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Highly heterogeneous skill vector length across occupations

17 − Architecture and
Engineering

19 − Life, Physical, and
Social Science

47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair
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Identifying low carbon skills
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Identifying core low carbon skills

I Need to identify skills that are characteristic of the core low carbon
(climate-related) occupations

Keywords
source

NLP
Expert
survey

Core low
carbon skills

I Obtain source text from which to extract low carbon keywords

I Green tasks associated with climate-related occupations in O*NET
(subset of Green Economy)

I “Calculate potential for energy savings.”

I “Fabricate prototypes of fuel cell components, assemblies, or systems.”

I “Test wind turbine components, by mechanical or electronic testing.”

I Green products descriptions from PRODCOM
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Identifying core low carbon skills

I Need to identify skills that are characteristic of the core low carbon
(climate-related) occupations

Keywords
source

NLP
Expert
survey

Core low
carbon skills

I Use natural language processing to extract low carbon keywords

I Unsupervised machine learning using TF-IDF

I Semantically matched against BG skills using word embeddings
(Word2Vec)

I Yields a “greeness” score between 0 and 1

I Perfect semantic matches against top 20 keywords are considered
core low carbon: 396 skills
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Identifying core low carbon skills

I Need to identify skills that are characteristic of the core low carbon
(climate-related) occupations

Keywords
source

NLP
Expert
survey

Core low
carbon skills

I High scoring skills are potentially core low carbon, but must be
inspected manually

I Supervised portion of our selection algorithm

I Surveyed 60+ experts from LSE, Oxford, OECD, University of
Venice among others to review 600 high scoring skills

I 51 skills were selected
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Identifying core low carbon skills

I Need to identify skills that are characteristic of the core low carbon
(climate-related) occupations

Keywords
source

NLP
Expert
survey

Core low
carbon skills

I 447 core low carbon skills

I “Solar Energy Components”

I “Wind Energy Engineering”

I “Light Rail Transit Systems”

I “Clean Air Act”

I Each of the 16,000 skills is classified as low carbon (climate-related)
or generic
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What’s in an ad? Green skill edition

I Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
I MSc required
I 3 years of experience
I Starts at $118k

I Job ads are represented as a set of skills

Cost Control Project Management Quality Assurance and Control

Fuel Cell Process Engineering Biotechnology

Six Sigma Machine Operation Manufacturing Processes

Biotechnology Product Development Genetic Testing Logistics
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Results
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Low carbon jobs’ share has not increased since 2010

0.0%

0.5%

1.0%

1.5%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Total Low skill High skill

a)

19−2 − Physical Scientists 47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair

53 − Transportation and
Material Moving

13−1 − Business Operations
Specialists

17−1 − Architects,
Surveyors, and Cartographers 17−2 − Engineers 17−3 − Engineering and

Mapping Technicians

2010 2014 2018 2010 2014 2018 2010 2014 2018 2010 2014 2018

2010 2014 2018 2010 2014 2018 2010 2014 2018 2010 2014 2018
0%

2%

5%

8%

0%

2%
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8%
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Low carbon ads are concentrated in 6 major SOC groups

53 − Transportation and Material Moving

51 − Production

49 − Installation, Maintenance, and Repair

47 − Construction and Extraction

45 − Farming, Fishing, and Forestry

43 − Office and Administrative Support

41 − Sales and Related

39 − Personal Care and Service

37 − Building and Grounds Cleaning and Maintenance

35 − Food Preparation and Serving Related

33 − Protective Service

31 − Healthcare Support

29 − Healthcare Practitioners and Technical

27 − Arts, Design, Entertainment, Sports, and Media

25 − Education, Training, and Library

23 − Legal

21 − Community and Social Service

19 − Life, Physical, and Social Science

17 − Architecture and Engineering

15 − Computer and Mathematical

13 − Business and Financial Operations

11 − Management

0% 2% 4% 6%

Share of low-carbon ads by occupation (2010-2019)
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Evolution of low carbon share across occupations
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Skill gaps are larger and broader in high-skilled occupations

Cognitive IT Management Social Technical
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Maintenance, and Repair
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Heterogeneous skills gap in low-skilled occupations

Cognitive IT Management Social Technical

13−1 − Business Operations
Specialists

17−1 − Architects,
Surveyors, and Cartographers

17−2 − Engineers

17−3 − Engineering and
Mapping Technicians

19−2 − Physical Scientists

47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair

53 − Transportation and
Material Moving

1 2+ 1 2+ 1 2+ 1 2+ 1 2+

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

Generic High carbon Low carbon

Cognitive IT Management Social Technical

13−1 − Business Operations
Specialists

17−1 − Architects,
Surveyors, and Cartographers

17−2 − Engineers

17−3 − Engineering and
Mapping Technicians

19−2 − Physical Scientists

47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair

53 − Transportation and
Material Moving

1 2+ 1 2+ 1 2+ 1 2+ 1 2+

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

Generic High carbon Low carbon

Cognitive IT Management Social Technical

13−1 − Business Operations
Specialists

17−1 − Architects,
Surveyors, and Cartographers

17−2 − Engineers

17−3 − Engineering and
Mapping Technicians

19−2 − Physical Scientists

47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair

53 − Transportation and
Material Moving

1 2+ 1 2+ 1 2+ 1 2+ 1 2+

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

0%
10%
20%
30%

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

1 2+

Generic High carbon Low carbon
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Specialization vs diversification by occupation

I Define low and high-carbon skill coreness indices:

GSOC
s =

gSOC
s − 1

gSOC
s + 1

gSOC
s =

nSOC
s

nSOC
/
ns
n

CSOC
s =

cSOC
s − 1

cSOC
s + 1

cSOC
s =

nc,SOC
s

nc,SOC
/
nSOC
s

nSOC

where nSOC
s is the number of ads requiring skill s in occupational group SOC

nSOC is the number of ads in occupational group SOC

ns is the number of ads requiring skill s in the entire sample

n is the total number of ads in the sample

nc,SOC
s is the number of low (resp. high) carbon ads requiring skill s in occupational group SOC

nc,SOC is the number of low (resp. high) carbon ads in occupational group SOC

nSOC
s is the number of ads requiring skill s in occupational group SOC

nSOC is the number of ads in occupational group SOC
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Specialization vs diversification by occupation
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The green wage premium has vanished over the decade

13−1 − Business Operations
Specialists

17−1 − Architects, Surveyors,
and Cartographers

17−2 − Engineers

17−3 − Engineering and Mapping
Technicians

19−2 − Physical Scientists

47 − Construction and
Extraction

49 − Installation,
Maintenance, and Repair

53 − Transportation and
Material Moving

−20% −10% 0% 10% 20%
Low carbon job ads wage gap
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0% 10% 20% 30%
High carbon job ads wage gap

Years

2010−2012
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Limited overlap between low and high-carbon low-skilled
jobs

Low carbon ads vs high carbon vacancies Low carbon ads vs high carbon jobsA. B.

Share of low carbon ads

0% to 0.6% 0.6% to 0.9% 0.9% to 1.1% 1.1% to 1.5% 1.5% or more

A. B.

Share of low carbon ads

0% to 0.6% 0.6% to 0.9% 0.9% to 1.1% 1.1% to 1.5% 1.5% or more
High carbon ads / employment

Top 15% commuting zones
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Low carbon jobs are created in relatively richer areas
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Conclusions

I No increase in the overall demand for low carbon jobs over the
past decade in the US

I Increase in low skill occupations, decrease in high skill occupations

I Low carbon jobs require more skills

I Skill gap more pronounced in high-skilled occupations, and for social,
management, and technical skills

I Emerging skill gap larger and broader than previously considered

I The low carbon wage premium has eroded over time

I Lack of a wage premium for low carbon jobs despite higher skills
requirements is problematic for their attractiveness

I Powerful, replicable tool to monitor, evaluate many aspects of
labour market consequences of the low-carbon transition
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Follow-up: UK extension
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Low carbon ad share: similar to US levels, but different
trends
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Aurélien Saussay, Misato Sato, Francesco Vona 2 / 8



Low carbon share for selected SOC groups

53 − Skilled Construction And
Building Trades

81 − Process, Plant And
Machine Operatives

82 − Transport And Mobile
Machine Drivers And

Operatives

311 − Science, Engineering
And Production Technicians

312 − Draughtspersons And
Related Architectural

Technicians

52 − Skilled Metal,
Electrical And Electronic
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211 − Natural And Social
Science Professionals

212 − Engineering
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243 − Architects, Town
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Spatial patterns: Low carbon job ad share

Notes: For each Travel to Work Area (TTWA), we calculate the (unweighted) average of low carbon ad shares across all 4-digit
SOC occupations within each skill category. TTWAs approximate local labour market areas. The TTWAs with hashed orange
overlay indicates those with a high share (top 15%) of high carbon job ads for that skill level. High skill occupations are those in
SOC major groups 1, 2, and 3; middle skill occupations are in SOC major groups 4 and 5; low skill occupations are in SOC
major groups 6, 7, 8, and 9.
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Low carbon wage gap by SOC group

211 − Natural And Social
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Key Takeaways - UK

1. Low carbon jobs declined between 2012-2018 as green policies were
killed off (e.g. onshore wind support, green investment bank, green
deal, zero carbon homes )

2. Growth in middle and high skilled low carbon jobs since 2018 but
not low skilled

3. Spatial correlation between high and low carbon jobs, especially
for low skilled but also for high skilled (Scotland)

4. Green wage premium has generally disappeared in recent years.
Some exceptions e.g. Managers and directors (high), skilled
construction trade (middle), machine operatives (low)

5. Both green and brown jobs require more skills than generic jobs,
across all broad skill groups
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Appendix
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What’s in an ad?

I Example: Chemical Engineer job offered in Sunnyvale, CA in 2018
I MSc required
I 3 years of experience
I Starts at $118k

I Job ads are represented as a set of skills

Cost Control Project Management Quality Assurance and Control

Fuel Cell Process Engineering Biotechnology

Six Sigma Machine Operation Manufacturing Processes

Biotechnology Product Development Genetic Testing Logistics

I BG reports more than 16,000 distinct skills

I We apply Natural Language Processing (NLP) and expert
elicitation to identify green skills
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