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Abstract

We provide evidence on the relationship between aggregate uncertainty and the macroecon-

omy. Identifying uncertainty shocks using methods from the news shocks literature, the analysis

finds that innovations in realized stock market volatility are robustly followed by contractions,

while shocks to forward-looking uncertainty have no significant effect on the economy. More-

over, investors have historically paid large premia to hedge shocks to realized but not implied

volatility. A model in which fundamental shocks are skewed left can match those facts. Aggre-

gate volatility matters, but it is the realization of volatility, rather than uncertainty about the

future, that has been associated with declines.
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1 Introduction

A growing literature in macroeconomics studies the effects of news shocks on the economy. Models

with rational forward-looking agents imply that pure changes in expectations about the future –

news shocks – can induce a response in the aggregate economy. The existing literature has focused

on first-moment news shocks: news about the average future path of the economy. For example,

the literature on total factor productivity (TFP) and real business cycles identifies two types of

TFP shocks: surprise innovations in TFP, and news about the future level of TFP that has no

effects on TFP on impact.1

This paper extends the estimation to second-moment news shocks. Whereas the work described

so far studies changes in the expected future growth rates, we study changes in expected future

squared growth rates. News about the expectation of future squared growth rates represents a

change in the conditional variance – that is, it is an uncertainty shock (Beaudry and Portier

(2014)).

Our goal is to use a news shock identification scheme to study the effects of uncertainty on

the real economy. How uncertainty affects the economy is objectively interesting given that it

clearly varies over time, often as a first-order consequence of policy choices. Moreover, a growing

literature has developed a range of theoretical channels through which uncertainty shocks might

cause recessions, though in most of those models the sign of the effect of uncertainty shocks is

ambiguous.2 Our analysis directly tests those theories by quantifying how the economy responds

to identified shocks to uncertainty.

In order to identify pure uncertainty shocks, we distinguish between current squared growth

rates and news about future squared growth rates, i.e. between (∆TFPt)
2 and Et

[
(∆TFPt+1)

2
]
.

For reasons discussed below, we measure second moments using aggregate stock returns instead

of TFP. So our uncertainty shock is an increase in the variance of the conditional distribution of

future stock prices, while the analog to the first-moment impact shock is the surprise in the size of

squared changes in stock prices – realized volatility – during the current period.

The key distinction between the two shocks is that realized volatility is not the same as un-

certainty about the future. Models of the effects of uncertainty, such as those with wait-and-see

or precautionary saving effects, are driven by variation in agents’ subjective distributions of future

shocks, as opposed to the variance of the distribution from which today’s shocks were drawn. The

importance of that distinction is part of the basic message of this paper.

The analysis focuses on the effects of uncertainty about the aggregate stock market. Our concept

of uncertainty therefore refers to the aggregate value of the largest firms in the US economy. Stock

returns are a useful indicator because they should be affected by any shock that affects the value of

firms. They have three further advantages: the availability of high-frequency data allows accurate

1Beaudry and Portier (2006), Barsky and Sims (2011), and Barsky, Basu, and Lee (2015)
2For theoretical models, among many others, see Basu and Bundick (2017), Bloom et al. (2016), and Leduc and

Liu (2016). Bloom et al. (2016) discuss how in their model uncertainty shocks can have both expansionary and
contractionary effects, and similar forces are present in other settings.
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calculation of realized volatility, option prices can be used to provide information about expected

volatility, and measures of stock market volatility such as the VIX have been widely used in past

research on uncertainty shocks, making it easy to compare our work to the existing literature.

Other data sources typically only allow one to calculate either uncertainty (e.g. the surveys studied

in Bachmann, Elstner, and Sims (2013)) or realized volatility (e.g. the cross-sectional variance of

income growth in Storesletten, Telmer, and Yaron (2007)), but not both.

We identify the two shocks using the identification scheme of Barsky, Basu, and Lee (2015),

which identifies a news shock in a VAR as the rotation of the reduced-form shocks that predicts

the variance of future stock returns and is also orthogonal to the variance of returns in the current

period. In two recent state-of-the-art models of the effects of aggregate uncertainty from Basu and

Bundick (2017) and Bloom et al. (2017), this identification scheme accurately uncovers the true

structural uncertainty shock.

The paper’s main result is that the two shocks have statistically and economically different

effects on the economy. Across a range of VAR specifications, increases in contemporaneous realized

volatility are associated with declines in output, consumption, investment, and employment. On

the other hand, the identified uncertainty shock is estimated to have no significant effect on the

real economy, even though it accounts for more than a third of the variation in overall uncertainty

and is strongly correlated with declines in stock prices. And the difference between the responses

of the economy to the realized and expected volatility shocks is itself statistically significant in our

benchmark specification, indicating that the failure to find uncertainty shocks to be contractionary

is not simply due to low statistical power.

The uncertainty shocks are also not small. They have statistically significant forecasting power

for future stock market volatility at horizons of one to two years (which is typical for stock market

volatility and similar to the length of the uncertainty shocks measured by Bloom (2009)), they

account for 30–60 percent of the total variance of uncertainty, and we show in regressions that

option-implied volatility explains more of the variation in expectations of future volatility than

lags of volatility itself do. In other words, option market investors appear to have economically

meaningful information about future uncertainty that is not contained in the time series of past

realized volatility. It is that information that drives our identification.

The last section of the paper presents a simple model that qualitatively matches the evidence

on the effects of realized volatility and uncertainty shocks. Its key mechanism is that shocks

to technology are negatively skewed. Negative skewness means that large shocks – which cause

high realized volatility – also tend to be negative shocks, immediately generating the observed

negative correlation between realized volatility and output. When we estimate the same VAR in

the new model that we estimate in the data, we find qualitatively and quantitatively similar results.

Moreover, the identified shocks in the simulated VAR for the skewed model are strongly correlated

with the simulated structural shocks, providing theoretical support for our identification scheme.

So negative skewness yields a simple explanation for our empirical findings.

There are two important further pieces of evidence in favor of the skewness hypothesis. First,
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changes in a wide variety of measures of real activity are negatively skewed in the data, as are stock

returns. Second, investors have historically paid large premia for insurance against high realized

volatility and extreme negative stock returns in the last 30 years, whereas the premium paid for

protection against increases in expected volatility or uncertainty has historically been near zero or

even positive. Those findings are consistent with uncertainty having no effects on the economy in

equilibrium. We show that the model qualitatively matches both the empirical left skewness and

the large premium on realized volatility compared to shocks to volatility expectations.

To be clear, our claim is not that no type of uncertainty could be bad for the economy. There

is a very wide range of different measures of uncertainty. We focus on the stock market for the

reasons discussed above, but other types of uncertainty certainly might matter, such as policy,

interest rate, or idiosyncratic uncertainty.

In addition to the macroeconomic studies discussed above, our work is also closely related to an

important strand of research in finance. It has long been understood in the asset pricing literature

that expected and realized volatility, while correlated, have important differences (e.g. Andersen,

Bollerslev, and Diebold (2007)). A jump in stock prices, such as a crash or the response to a

particularly bad macro data announcement, mechanically generates high realized volatility. On the

other hand, news about future uncertainty, such as an approaching presidential election, increases

expected volatility (Kelly, Pastor, and Veronesi (2016)). Shocks to realized and expected future

volatility are correlated, but they are not as strongly correlated as one might expect – in our sample,

60–70 percent. This means that it is possible to identify in the data shocks to expectations that

are orthogonal to realizations, and it is well established that they are priced differently by investors

(Broadie, Chernov, and Johannes (2007)).

Our work is related to a large empirical literature that studies the relationship between aggregate

volatility and the macroeconomy. A wide range of measures of volatility in financial markets and

the real economy have been found to be countercyclical.3 To identify causal effects, a number of

papers use VARs, often with recursive identification, to measure the effects of volatility shocks

on the economy.4 Ludvigson, Ma, and Ng (2015), like us, distinguish between different types of

uncertainty. They show that variation in uncertainty about macro variables is largely an endogenous

response to business cycles, whereas shocks to financial uncertainty cause recessions.5 Similarly,

Caldara et al. (2016) use a penalty-function based identification scheme to distinguish between

3Gilchrist, Sim, and Zakrajsek (2014). See, among others, Campbell et al. (2001), Storesletten, Telmer, and Yaron
(2004), Guvenen, Ozkan, and Song (2014), Eisfeldt and Rampini (2006), Alexopoulos and Cohen (2009), and Baker,
Bloom, and Davis (2015).

4See Bloom (2009) and Basu and Bundick (2015), who study the VIX; and Baker, Bloom, and Davis (2015)
and Alexopoulos and Cohen (2009), who study news-based measures of uncertainty. Jurado, Ludvigson, and Ng
(2015) and Ludvigson, Ma, and Ng (2015) measure uncertainty based on squared forecast errors for a large panel of
macroeconomic time series (using a two-sided filter to extract a latent volatility factor). Baker and Bloom (2013)
use cross-country evidence to argue that there is causal and negative relationship between uncertainty and growth.
See also Born and Pfeifer (2014), Caldara et al. (2016), Fernandez-Villaverde et al. (2011) , Fernandez-Villaverde et
al. (2013), Leduc and Liu (2016).

5Other papers arguing that causality could run from real activity to volatility and uncertainty include Decker,
D’erasmo and Boedo (2016), Berger and Vavra (2013), Ilut, Kehrig and Schneider (2015), and Kozlowski, Veldkamp,
and Venkateswaran (2016).
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the effects of uncertainty and financial conditions. A key distinction between our work and those

two papers is that we focus on the distinction between uncertainty expectations and realizations.

Moreover, unlike most past work (Ludvigson, Ma, and Ng (2015), Caldara et al. (2016), Carriero,

Clark, and Marcellino (2016) and Popiel (2017), excepted), our identification scheme builds on the

news shock literature, rather than using a more restrictive purely recursive setup.

2 Preliminary evidence

We begin by briefly presenting simple regressions that illustrate the basic results of the paper. Table

1 reports results of regressions of monthly growth rates of employment and industrial production

on the current value and four lags of realized S&P 500 volatility and option-implied volatility.

We discuss the data in more detail below, but realized volatility is calculated as the sum of daily

squared returns on the S&P 500 index each month and option-implied volatility is nearly identical

to the VIX and it is calculated based on option prices at the end of each month. All variables are

converted to z-scores to aid interpretation of the coefficients. We report only the average of the

coefficients on realized and implied volatility (they are relatively stable across lags).

The first column in the two sections of table 1 shows results from regressions that include only

option-implied volatility (V1). That column shows that high implied volatility – often interpreted as

a measure of uncertainty – is associated with declines in employment and industrial production. The

second column adds realized volatility (RV ) to the regression. Once realized volatility is included,

implied volatility no longer carries a negative coefficient – the coefficient is actually positive in

both regressions. So table 1 provides our simplest piece of evidence that it is realized rather than

implied volatility that is most clearly associated with declines in real activity. And the effects are

economically significant: a unit standard deviation increase in realized volatility is associated with

declines in employment and industrial production growth of 0.2 standard deviations.

The evidence in table 1 is very simple: it includes no additional controls, it allows only a very

specific and constrained lead/lag relationship, it does not allow us to trace out dynamic responses,

and it does not identify structural shocks. The regressions also measure uncertainty purely based

on option-implied volatility, even though option prices include risk premia. We therefore focus the

majority of our analysis on vector autoregressions, which address those various concerns. But those

basic results will continue to hold in the richer specifications.

3 Empirical framework

This section describes how we define, measure, and identify uncertainty shocks in the data.

3.1 Conditional variances

Denote the log of the total return stock index as st. Uncertainty about the future value of the stock

market relative to its value today is measured in this paper as the conditional variance, V art [st+n].
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The one-period log stock return is rt ≡ st− st−1. If returns are unpredictable and time periods

are sufficiently short that Etrt+1 ≈ 0, we have:

V art [st+n] = Et

n−1∑
j=1

r2t+j

− n−1∑
j=1

Et [rt+j ]
2 (1)

≈ Et

n−1∑
j=1

r2t+j

 (2)

When returns are unpredictable (which is very nearly true empirically, especially at short hori-

zons), the conditional variance of stock prices on some future date is equivalent to the expected

total variance of returns over that same period.6 Under standard conditions on the returns process,

as the length of a time period approaches zero, the second line becomes an equality. Writing the

conditional variance in (2) as an expectation directly connects the analysis to the news shock lit-

erature, which studies changes in expectations. The result in (2) says that, when stock returns are

unpredictable, variation in uncertainty about the future is the same as variation in expectations of

volatility in the future – uncertainty and expected volatility are equivalent.

Whereas the literature on news about TFP studies Et

[∑n
j=1 ∆tfpt+j

]
where ∆tfp is the

first difference of log TFP, here we study second-moment expectations: the expectation of fu-

ture squared returns (r2 = (∆s)2), which is simply the conditional variance of future stock prices.

Second-moment news shocks are shifts in expected future squared returns. Based on equation

(2), throughout the paper, we refer to second-moment news shocks, or expected volatility shocks,

equivalently as uncertainty shocks.

In the literature on TFP news shocks, there is also the contemporaneous innovation in TFP,

tfpt − Et−1tfpt. The analog here is the innovation in realized volatility, r2t − Et−1
[
r2t
]
. The

conditional variance of future stock prices, V art [st+n], is equal (when returns are calculated at

high frequency) to cumulative expected future realized volatility.

So the analysis parallels the first-moment news shock literature closely. Anywhere past work

talks about ∆tfp, it is replaced here with r2, both when looking at realization shocks and at news.

First-moment news shocks are changes in the expectation of future values of ∆tfp, holding constant

the current innovation in ∆tfp. Second-moment news shocks are changes in the expectation of

future values of r2, holding constant the current innovation in r2 (current realized volatility).

An important concern is that since stock prices are forward-looking, an innovation in uncertainty

about the future should cause current stock prices to change, meaning that we might expect it to be

impossible (or illogical) to construct a shock to uncertainty that is orthogonal to current r2. But if

uncertainty shocks have a linear effect on returns, then they have a quadratic effect on r2, making

6In practice, we work with daily returns where the zero-mean approximation holds strongly, as documented in
the literature. In the notation of continuous time models, Et

[
r2t+1

]
is O (∆t), while Et [rt+1]2 is O

(
∆t2

)
, where ∆t

is the length of a time period. So as the time period shrinks, the terms involving squared expected returns become
negligible.
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r2 in fact generally uncorrelated with uncertainty shocks. We expand on this point below and show

that in three benchmark models, structural uncertainty shocks are actually contemporaneously

uncorrelated with realized volatility.

One last minor issue is that we have data on daily stock returns, but data on real activity only

at the monthly level. We therefore aggregate volatility to a monthly frequency. Specifically, we

define realized volatility in month t, RVt, as

RVt ≡
∑
days∈t

r2i (3)

We then have

V art [st+n] ≈ Et

 n∑
j=1

RVt+j

 (4)

Again, the approximation is only due to discreteness – if we had truly continuous data instead of

sampling only at the daily level, (2) and (4) would hold exactly (for unpredictable returns). Given

how small average daily stock returns are (less than 0.05 percent), the approximation errors here

are quantitatively unimportant.

We study daily squared returns for a number of reasons. First, the arguments linking stock

return volatility to the conditional variance of the level of stock prices rely on time periods being

short. Second, monthly returns are a much noisier measure of the actual volatility of returns than

are daily returns.7 Since our goal is to control for current volatility, we want to measure that

volatility as well as possible, which is aided by using as many data points as possible – a single

observation is an extraordinarily poor way to measure a variance. Furthermore, the VIX index,

which has been widely used in past work to measure uncertainty about the future, is motivated

theoretically as a measure of expectations of the future volatility of returns in continuous time.

All of those factors would actually suggest using data at frequencies even higher than a single day.

Such data is not easily accessible over long periods, though, whereas daily data is widely available

with a very long time series. Finally, we also study below the behavior of variance swaps, which

are derivatives whose payoffs depend explicitly on daily squared returns.

3.2 Vector autoregressions

To identify uncertainty shocks and estimate their effects, we estimate VARs of the form[
RVt

Yt

]
= C + F (L)

[
RVt−1

Yt−1

]
+Aεt (5)

7If returns are Gaussian with a monthly variance of σ2
m, for example, the monthly squared return is equal to σ2

m

multiplied by a χ2
1 random variable (the subscript denoting degrees of freedom), since it is a single squared realization.

If there are on average 21 trading days in a month, then the sum of daily squareds return is equal to σ2
m/21 (due to

returns being serially uncorrelated) multiplied by a χ2
21 random variable. The variance of the sum of daily squared

returns is then 21 times smaller than the variance of the monthly return, showing that using high-frequency data
gives a much more accurate estimate of the true underlying current volatility.
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where RVt is realized volatility from (3), Yt is a vector including measures of real activity, variables

that help forecast future values of realized volatility, and other controls, C is a vector of constants,

and F (L) is a matrix polynomial in the lag operator, L. εt is a vector of uncorrelated innovations

with unit variances and A is the lower-triangular Cholesky factorization of the variance matrix of

the reduced-form innovations. (5) can be estimated by ordinary least squares. The VAR has a

moving average (MA) representation,[
RVt

Yt

]
= (I − F (1))−1C +B (L)Aεt (6)

where B (L) =

∞∑
j=0

BjL
j = (I − F (L))−1 (7)

The shocks to realized volatility and uncertainty are identified under a timing restriction. The

realized volatility shock is treated as moving first, so that its impulse response functions (IRFs) are

defined as
∂E
[
Yt+j | RVt, RV t−1, Y t−1]

∂RVt
= BjA(:,1) (8)

where A(:,1) denotes the first column of A. E denotes the expectation operator conditional on the

VAR (5) and RV t−1 and Y t−1 are the histories of RV and Y up to date t−1. As in Hamilton (1994),

the impulse response is defined as the average change in expectations for the future following a unit

innovation in realized volatility. We do not view the realized volatility shock as a structural shock

– obviously volatility in the stock market depends on many different underlying shocks. Instead,

the IRF tells us on average how the economy (output, employment, etc.) changes when realized

volatility changes.

The second estimated shock is the residual innovation in uncertainty over the following n periods,

V art [st+n] or, equivalently, the residual innovation in expectations of future volatility. It is the

component of Et
∑n

j=1RVt+j − Et−1
∑n

j=1RVt+j that is orthogonal to RVt − Et−1RVt. In other

words, the uncertainty shock is ordered second, following realized volatility.

The total change in cumulative expected volatility up to time t+ n is constructed as

Et

n∑
j=1

RVt+j − Et−1
n∑
j=1

RVt+j =

e1 n∑
j=1

Bj

Aεt (9)

where e1 = [1, 0, ...]. The parameter n determines the horizon over which the news shock is

calculated. Cumulative expected volatility depends on the sum of the first rows of the MA matrices

up to lag n. The innovation to expectations over horizon n, i.e. the news about future volatility,

is then simply the linear combination of shocks represented by e1
∑n

j=1BjA. As in Barsky, Basu,

and Lee (2014) and Barsky and Sims (2011), we then orthogonalize that linear combination with

respect to the innovation to RVt so that the impact shock to RVt is uncorrelated with the news
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shock.8 The VAR is only partially identified in that it identifies two shocks and is unstructured

otherwise.

The uncertainty shock, denoted ut, is equal to the component of
(
e1
∑n

j=1Bj

)
Aεt that is

orthogonal to the RV shock, e1Aεt, and its impulse responses are defined as

∂E
[
Yt+j | ut, RVt, RV t−1, Y t−1] /∂ut

Again, the VAR yields the average behavior of the economy following a unit increase in uncertainty

(conditional on RVt), as measured by ut. The measure of uncertainty here thus obviously depends

on the variables included in the VAR. Our measure of volatility news is, strictly, the change in

expectations of future realized volatility conditional on the vector [RVt, Y
′
t ]′ and the estimated

VAR coefficients.

So far the shocks have been defined purely statistically. The next subsection discusses when

they have a structural interpretation and shows that the identification holds in recent benchmark

models.

An important concern with our identification scheme is that it could be prone to overfitting

volatility news. In our most general model, we will have six variables and four lags, meaning that

future volatility is being forecast with 24 degrees of freedom. We will thus argue that it is important

to restrict the model somewhat to alleviate overfitting and ensure that the results are consistent

with economic priors.

The two impulse responses defined above are only identified up to some normalization. In

the main analysis, we rescale them so that they have the same effect on uncertainty. The uncer-

tainty/news shock is reported as a unit standard deviation impulse, while the realized volatility

shock is rescaled so that its cumulative effect on uncertainty (i.e. its IRF for realized volatility over

the next 24 months) is the same as that for the news shock. The shocks then have equal effects on

uncertainty about the future and differ only in their effect on realized volatility on impact.

We set n = 24 months, which is the horizon over which we examine IRFs (past work finds

that volatility shocks have half-lives of 6–12 months, so 24 months represents the point at which

the average shock has dissipated by 75 percent or more). A larger value of n reduces power, since

long-term effects are relatively difficult to estimate, while a smaller value identifies shocks that may

be less relevant for economic decisions. We find similar results for n between 12 and 60 months.

3.3 Identification and the structural models

The identification scheme involves a timing restriction; the uncertainty shock is orthogonalized

with respect to realized volatility (it moves second). In what type of model would the timing

scheme make sense? The required assumption is that structural uncertainty shocks cannot affect

realized volatility contemporaneously. That restriction is perhaps worrisome. Any shock that

8The orthogonalized innovation is simply e1
∑n

j=1BjĀεt, where Ā is equal to A but with the first column set to
zero.
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increases uncertainty about the future might be expected to reduce stock prices, and thus create

a realization of volatility. But a shock that decreases uncertainty also changes stock prices, just

in the opposite direction, and thus also creates realized volatility. So, intuitively, since there is

a quadratic relationship between shock realizations and realized volatility – both large positive

and large negative shocks create high RV – there need not be any nonzero correlation between

uncertainty shocks and RV.

As a formal example, if shocks to uncertainty are symmetrically distributed (see Amengual and

Xiu (2014) for an analysis of upward and downward jumps in stock market volatility) and they have

a linear relationship with stock returns, then they will have exactly zero correlation with squared

stock returns. Empirically, monthly changes in the log of S&P 500 implied volatility are close to

symmetric. The 10th, 25th, 75th, and 90th percentiles are -0.59, -0.34, 0.25, and 0.62. Deeper into

the tails, changes are skewed somewhat to the right (the skewness is 1.21 overall), but the bulk of

the distribution is overall not far from being symmetrical, suggesting that the idea that uncertainty

shocks should not have a first-order effect on realized volatility is reasonable.

Perhaps more importantly, our identification scheme successfully identifies the uncertainty

shocks in two state-of-the-art models of the effects of uncertainty, in addition to the new model

that we present below. The first model, from Basu and Bundick (2017; BB from here on), is a new-

Keynesian model of the business cycle that features fluctuations in the volatility of innovations to

consumption demand. The second model, from Bloom et al. (2017; RUBC from here on), is a real

business cycle model that incorporates fixed costs of adjustment in investment, inducing responses

to uncertainty at the micro level.9 The BB and RUBC models capture the two most prominent

channels through which uncertainty has been proposed to affect the economy: precautionary savings

and wait-and-see effects, respectively.

Finally, the model developed in this paper is a real business cycle model with time-varying

uncertainty about the volatility of productivity and also aggregate technology shocks that are

skewed left. We therefore refer to it as the RSBC model (“really skewed business cycles”, to

highlight the key difference with Bloom et al.’s (2017) RUBC – “really uncertain business cycles”).

As an experiment, we estimate our VAR specification in simulations of the three models. The

three models are all specified in discrete time with time periods equal to a quarter in the case of BB

and RUBC and a month in the case of RSBC, so there is not an exact mapping in the models to the

daily realized volatility that we study empirically. We approximate it here as the square of the total

realized return in the model in each period (after subtracting mean returns as a normalization).

The table below reports the correlation of the identified uncertainty shock with the true shock to

uncertainty in the three models:

Correlation of VAR-identified uncertainty shock

with structural uncertainty shock:

9The simulations of the BB model are carried out with the replication files available from Econometrica’s website.
Stephen Terry generously provided simulations of the RUBC model.
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BB RUBC RSBC

0.94 0.94 0.91

Our identification scheme robustly identifies the true structural innovation to uncertainty across

three very different structural models. Intuitively, that happens because in all three cases the

identifying assumptions hold: the uncertainty shocks in the models all increase the future volatility

of stock returns, and they have approximately zero effect on realized volatility on impact. To see

that, we note that the correlations of the uncertainty shocks with realized volatility in the BB,

RUBC, and RSBC models are all close to zero:

Contemporaneous correlation of structural

uncertainty shocks with realized volatility:

BB RUBC RSBC

-0.01 -0.10 0.00

A reason that it is important to control for RV first in the VAR is that RV itself may raise

future uncertainty. That effect is a standard result in the finance literature on volatility, often

referred to as a GARCH (generalized autoregressive conditional heteroskedasticity) effect (Engle

(1982), Bollerslev (1986)). We can also use the simulations of the models to explore what happens

if the assumed timing of the shocks is reversed, failing to control for realized volatility in identifying

the uncertainty shock. That is, what if we assume that uncertainty shocks move first and realized

volatility second? In that case, the identifying assumption is that the change in uncertainty is

affected by no other shocks in the economy. In the three simulated models, we then find that

the VAR-identified uncertainty shock is less strongly correlated with the true uncertainty shock.

Specifically, in the BB, RUBC, and RSBC models, the correlations between the VAR-identified and

the true uncertainty shock become 0.94, 0.66, and 0.83, respectively. In the BB model, then, we

can see that the timing is not relevant – that is because in the VAR in that model innovations to

realized volatility and uncertainty are uncorrelated (which we will see below is strongly at odds with

the data). In the other two models, though, realized volatility and uncertainty are more correlated,

and the ordering of the variables does in fact matter. Given the robustness of GARCH effects, not

surprisingly, we will find empirically that ordering is relevant.

To summarize, then, our identification scheme does extremely well in capturing the true uncer-

tainty shock across the three models; conversely, none of the shocks in the reverse ordering correctly

captures the uncertainty shock in general. That said, we will report results using both orderings

in our empirical analysis below, and show that the results we obtain are both consistent with our

interpretation of the facts.
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4 Data

4.1 Macroeconomic data

As in other work in this literature (Bloom (2009), Leduc and Liu (2016)), we use monthly data to

maximize statistical power, especially since fluctuations in both expected and realized volatility are

sometimes short-lived (e.g. Bloom (2009)). We measure real activity using the Federal Reserve’s

measure of industrial production (IP) for the manufacturing sector. Employment and hours worked

are measured as those of the total private non-farm economy.

4.2 Information about uncertainty

Obviously in order to identify a news shock, the vector of state variables in the VAR, Yt, must

contain information that can reveal expectations of future volatility beyond what is contained in

current RVt (ut must have a component independent of the innovation to RVt). We therefore

include information from financial markets. First, we use V1,t, the option-implied volatility of stock

returns over the next month (we define V1,t very similarly to the VIX, as explained in the next

section). Since V1,t may not include all the available financial information about uncertainty, we

also include the six-month implied volatility, V6,t, in some specifications.

Importantly, there is no assumption here that risk premia are zero or constant or that the

option-implied volatility is measured without error. The only assumption that we need to calculate

the impulse responses defined above is that some elements of Yt contain information about future

values of RV beyond the innovation to RVt itself. We include option-implied volatilities because

we would expect them to contain such information, but they are obviously also contaminated by

risk premia and potential measurement error (e.g. due to stale prices or bid/ask spreads). Below

we examine a number of other variables that past work has found can also help forecast volatility,

but we find that their predictive power is subsumed by that in lagged RV and V1.

Duffee (2011) shows that in standard linear term structure models, except for in knife-edge cases

(even allowing for time-varying risk premia), investor expectations of the future can be extracted

from observed asset prices. In our setting, that result corresponds to the view that the current state

of the term structure of option-implied volatilities and RVt should, together, encode all available

information about future values of RV and option-implied volatility. We show that idea is in fact

consistent with our data (even though Duffee (2011) argues it appears to be violated in the bond

market), which will allow us to impose useful coefficient restrictions on the VAR and further reduce

overfitting.

4.3 Financial data

We obtain data on daily stock returns of the S&P 500 index from the CRSP database and use

it to construct RVt at the monthly frequency. Option-implied volatilities, Vn,t, are constructed

using prices of S&P 500 options obtained from the Chicago Mercantile Exchange (CME), with
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traded maturities from one to at least six months since 1983 (we thus have a substantially longer

sample of implied volatility than has been used in past work). Given that shocks to stock market

volatility are typically short-lived, with half lives often estimated to be on the order of six to nine

months (see Bloom (2009) and Drechsler and Yaron (2011)), one- to six-month options will contain

information about the dominant shocks to stock market uncertainty. Technically, Vn,t is defined as

the option-implied variance of the stock index on date t+ n under the pricing measure Q,10

Vn,t ≡ V arQt [st+n] (10)

The appendix provides the details of the calculation.

We use the measure of V arQt [st+n] in (10) because it maps directly to our object of interest,

the conditional variance of log stock prices. In practice, it is extremely close to the VIX calculated

by the CBOE and other related model-free implied volatility measures.

In the remainder of the paper we focus on the logs of realized and option-implied volatility

(rvt ≡ logRVt, vn,t ≡ Vn,t) due to their high skewness, but we find similar results in levels.

4.4 The time series of uncertainty and realized volatility

Figure 1 plots the history of realized volatility along with 1-month option-implied volatility in

annualized standard deviation terms. Both realized and option-implied volatility vary considerably

over the sample. The two most notable jumps in volatility are the financial crisis in 2008 and the

1987 market crash, which both involved realized volatility above 75 annualized percentage points

and rises of V1,t to 65 percent. At lower frequencies, the periods 1997–2003 and 2008–2012 are

associated with persistently high uncertainty, while it is lower in other periods, especially the early

1980’s, early 1990’s, and mid-2000’s. There are also distinct spikes in uncertainty in the summers

of 2010 and 2011, likely due to concerns about the stability of the Euro zone and the willingness

of the United States government to continue to pay its debts.

5 Second-moment forecasting regressions

Since identification of the second-moment news shock depends on using the variables in the VAR

to forecast future realized volatility (i.e. through equation (2)), a natural first question is which

of those variables, if any, has forecasting power for rv. Table 2 reports results of regressions of∑6
j=1 rvt+j on various predictors. The first column reports results from a regression on rvt and

v1,t. v1,t has a substantially larger t-statistic, indicating that it has greater explanatory power. The

marginal R2 of v1,t is 0.0554, while that of rvt is smaller by a factor of eight at 0.0069. rvt is in

fact only marginally significant at the ten-percent level. In other words, option-implied volatility

is a substantially stronger predictor of future realized volatility than the current level of realized

10The pricing measure, Q, is equal to the true (or physical) pricing measure multiplied by Mt+1/Et [Mt+1], where
Mt+1 is the pricing kernel.
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volatility is. Given that asset prices are expected to aggregate information efficiently, it is not

surprising that v1,t nearly drives rvt out in a forecasting regression.

The second column of table 2 shows that we obtain a similar result when we include a lagged

value of rv. In fact, if we include 6 lags of rv, their combined marginal R2 is still only half the

marginal R2 of v1,t. So in simple forecasting regressions, option prices yield substantially better

predictions of future volatility than the past history of volatility does.

The third column of table 2 adds the six-month implied volatility, v6,t, and finds that it adds

no incremental information. We obtain similar results using a principal component of the term

structure of implied volatilities. The fourth and fifth columns of table 2 add macroeconomic and

financial variables to the regressions. None of them are individually statistically significant, nor

are they jointly significant. The fifth column includes principal components from the large set

of financial and macroeconomic time series collected by Ludvigson and Ng (2007), as well as the

market return and the default spread (difference between the yields of Baa and Aaa corporate

bonds). None of them has statistically significant forecasting power after controlling for rvt and

v1,t, so we exclude them from the remainder of the analysis.

The R2s are similar across all the specifications, and always 0.46 or less. The majority of the

variation in six-month realized stock market volatility is thus unpredictable, even given information

available at the beginning of the period.

It is perhaps notable that we do not find any variables beyond lagged rv and v1 to be significant

in predicting future volatility. Table A.1 in the appendix shows that when rv and v1 are excluded

from the regression, a number of the macroeconomic and financial variables become significant

predictors of future volatility. In other words, the macro and financial time series on their own

can help predict future volatility, but their forecasting power is subsumed by current realized and

option-implied volatility.

6 VAR results

We now report the results from our main VAR. For all the VARs that we run, we include four

lags, as suggested by the Akaike information criterion for our main specification. In the benchmark

specification, the vector of variables included in the VAR is [rvt, v1,t, FFRt, ipt, empt], where the

latter three variables are the Fed Funds rate, log industrial production, and log employment,

respectively.

The benchmark specification imposes the restriction that the coefficients on the lags of FFR, ip,

and emp in the equations for rv and v1 are equal to zero, consistent with the predictive regression

results above. A χ2 test of the validity of those restrictions yields a p-value of 0.61, implying that

they are consistent with the data. Table A.2 in the appendix shows, in regressions analogous to

those in table 2, that v1 is predicted only by its own lags and those of rv (again consistent with the

theoretical predictions of Duffee (2011)). In addition to their economic motivation, the restrictions

help keep the news shock from being overfit, which we show can be a problem in section 6.3.2. These
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restrictions together imply that in the benchmark specification the uncertainty shock is equivalent

to the reduced-form shock to v1, orthogonalized with respect to rv. We relax the restrictions below

and show that our results remain similar, though statistically weaker.

6.1 Coefficient estimates

Before reporting impulse responses it is useful to examine the coefficients in the VAR, similar to

the regression results in table 1.11 In our benchmark specification, the sums of the coefficients on

lags of rvt and v1,t in the equations for employment and industrial production are

Sum of coefficients

Dep. var.: rv v1 Diff. p-value

Employment -0.0017 0.0012 0.0028 0.063

Indus. prod. -0.0034 0.0024 0.0057 0.285

The coefficients on rv are negative for both variables, while the coefficients on v1 are again

positive. That basic result mirrors those in table 1 and appears consistently across the specifications

that we estimate, giving a simple indication of the different effects of realized and expected volatility

on real outcomes.

6.2 Benchmark specification

We now examine impulse response functions (IRFs), which describe the average responses of the

variables in the economy to the two innovations. As discussed above, the IRFs are scaled so that

the two shocks – current rv and the identified uncertainty shock – have the same total effect

on volatility expectations (uncertainty) 2–24 months in the future (i.e. not counting the impact

period).

Figure 2 has three columns for the responses of rv, employment, and industrial production to

the shocks. Each panel shows the point estimate for the IRFs along with 1-standard deviation

(68-percent) and 90-percent bootstrapped confidence intervals.

The first row shows the response of the economy to the rv shock. The shock to realized

volatility is very short-lived: the IRF falls by half within two months, and by three-fourths within

five months, showing that realized volatility has a highly transitory component. Those transitory

increases in realized volatility are associated with statistically and economically significant declines

in both employment and industrial production. So, consistent with past work, we find a significant

negative relationship between volatility and real activity. However, this result does not allow us

to conclude that an uncertainty shock is contractionary. The reason is that the realized volatility

shock is a combination of an uncertainty shock (we can see from the first panel that the shock does

11These coefficients differ from the ones in table 1 because that regression includes the contemporaneous rv and
v1, whereas in this one only lags are included, according to the VAR specification. Also, the VAR includes lags of
the macroeconomic variables.
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predict future rv after impact, so it contains news about future volatility) with a shock to current

realized volatility; by observing how the economy reacts to this combination of shocks we cannot

draw conclusions about how it responds to the uncertainty shock only.

The second row of panels in figure 2 plots IRFs for the identified uncertainty shock, which has

no contemporaneous effect on rv, but captures uncertainty about the future. First, as we would

expect from equation (4), the news shock forecasts high realized volatility in the future at a high

level of statistical significance (p-values testing whether the IRF is positive range between 0.001 and

0.05). That result alone is important: it says that the identified news shock contains statistically

significant news about uncertainty.

Surprisingly, though, the second-moment news shocks are associated with no significant change

in either employment or industrial production; the IRFs both stay very close to zero at all horizons.

And the confidence bands are reasonably narrow: at almost all horizons, the point estimate for

the responses of employment and industrial production to the rv shock are outside the 90-percent

confidence bands for the uncertainty shock.

To further examine the magnitudes, the bottom row of panels in figure 2 reports the difference

in the IRFs for the uncertainty and realized volatility shocks along with confidence bands. The two

shocks have the same cumulative impacts on the future path of realized volatility (by construction,

due to the scaling of the IRFs). But they obviously have different effects on rv on impact due to

the identifying assumptions.

The two other panels in the bottom row of figure 2 plot the difference between the IRFs for

industrial production and employment. We see that the difference is statistically significant for

employment, weakly so for industrial production. So innovations in rv are followed by statistically

significant declines in real activity, while uncertainty shocks are not, and that difference itself is

statistically significant in one case.

An alternative way to interpret the bottom row of IRFs is that it represents the response of the

economy to a pure shock to realized volatility that has no net effect on forward-looking uncertainty.

By construction, the shock in the third row has a positive effect on rv on impact, but the IRF for

rv over the following 24 periods sums to zero. The figure shows that such a shock has negative

effects on the economy.

Overall, then, figure 2 shows that under our baseline identification scheme, shocks to rv are

associated with statistically significant subsequent declines in output, while uncertainty shocks are

not, and the difference between those two results is itself statistically significant. That result is

notable given that past work (e.g. Bloom (2009), Basu and Bundick (2017), Leduc and Liu (2016))

has found that increases in option-implied volatility are followed by declines in output (a result

we also obtain in our data; see appendix figure A.5). The results here show that it is actually

realizations of volatility that seem to drive such effects, as opposed to shocks to uncertainty about

the future. However, since realized volatility and option-implied volatility are positively correlated,

using either of the two variables alone in a VAR as in past studies will lead the researcher to

conclude that each shock is contractionary. To uncover the differential macroeconomic effects of
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realization and uncertainty shocks it is critical to include both in the VAR.

6.2.1 Volatility and uncertainty

To further understand the importance of the uncertainty and rv shocks, figure 3 reports forecast

error variance decompositions (FEVDs). As in figure 2, we report the effect of the rv shock, the

uncertainty shock, and their difference.

The first column reports variance decompositions for Et

[∑24
j=1 rvt+j

]
, which is our measure

of uncertainty. The plots show that at the point estimates the rv shock accounts for 65 percent

of the variance of uncertainty, while the uncertainty shock accounts for the remaining 35 percent.

The confidence bands are wide, though: at most horizons, we cannot reject the hypothesis that the

rv and news shocks account for the same fraction of the variance of uncertainty at even the 32-

percent significance level. Since in the benchmark model the only variable that is assumed to have

predictive power for uncertainty beyond rvt itself is v1,t, this is our most conservative specification

and provides a lower bound on the fraction of variation in uncertainty coming from news shocks.

Even in this case, though, the news shock accounts for a substantial fraction of the total variation

in uncertainty.

To further examine the relative importance of the two shocks for uncertainty, figure 4 plots

fitted uncertainty from the VAR along with the parts driven by the rv and identified uncertainty

shocks. Total uncertainty is calculated from the VAR as Et

[∑24
j=1 rvt+j

]
. Note that in the VAR,

there exists a vector B such that

Et

 24∑
j=1

rvt+j

 = B
[
Ỹ ′t , Ỹ

′
t−1, ..., Ỹ

′
t−4

]′
(11)

where Ỹt ≡
[
Y ′t , RVt

]′
(12)

To find the part of uncertainty driven by the rv shock, then, we construct a vector time series

Ỹ rv using the VAR structure setting all the estimated shocks to zero except for the rv shock.12

Similarly, Ỹ news is constructed by setting all estimated shocks except the news shock to zero. The

parts of uncertainty coming from rv and news are then BỸ rv and BỸ news, respectively. Ignoring

constants, total uncertainty is equal to the sum of those two parts (which follows from the linearity

of the model). The top panel of Figure 4 plots total uncertainty and the parts from rv and news

(all demeaned).

The standard deviation of the part of uncertainty coming from news is only 22 percent smaller

than that coming from rv, which is visible from the similar overall variation in the two series. The

quarters with the largest news shocks are associated with events that are clearly associated with

uncertainty: the 1987 and 2008 market crashes, and the third quarter of 2011 (debt ceiling and

Euro crisis). At lower frequencies, the news-driven component of uncertainty is high around the

12That is, if Ỹt = C + F (L) Ỹt−1 + Aεt, we define εrv to be equal to the fitted values of ε but with all elements
except for the first set to zero. Ỹ rv is then constructed as Ỹ rv = C + F (L) Ỹ rv

t−1 +Aεrvt .
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1990 recession (i.e. around the First Gulf War), in the late 1990’s (Asian financial crisis, Russian

default, LTCM), and following the financial crisis (debt ceiling debates, Euro crisis).

To further evaluate the behavior of the time series of uncertainty implied by the model, the

table below reports the correlation between the three series in figure 4 and three other commonly

used measures of uncertainty: the Economic Policy Uncertainty index of Baker, Bloom, and Davis

(EPU; 2015), a measure of uncertainty from the Michigan Consumer Survey (used by Leduc and

Liu (2016)), and forecast uncertainty measure from Jurado, Ludvigson, and Ng (JLN; 2015).

Correlations with uncertainty indexes:

EPU Michigan JLN

Total uncertainty 0.41 0.26 0.51

rv-driven uncertainty 0.40 0.22 0.76

News-driven uncertainty 0.09 0.12 -0.25

Our overall uncertainty measure is positively correlated with all three of the other measures of

uncertainty, and that correlation is stronger for the rv-driven part. The pure uncertainty shocks

that we identify here, that are separate from realized volatility, are essentially uncorrelated with the

other uncertainty measures and therefore seem to capture feature of the data that is independent

of them.

That said, and crucially for our analysis, the news shock is also not just noise. Again, it forecasts

realized volatility significantly into the future, accounting for a substantial fraction of the variation

in total uncertainty. Moreover, the identified news shock is strongly correlated with returns on the

S&P 500. Specifically, the correlations of the identified rv and uncertainty shocks with S&P 500

returns are:

Correlations with S&P 500 returns:
rv shock: -0.412

Uncertainty shock: -0.405

That is, the correlations with stock returns are almost exactly the same. Both rv and the un-

certainty shock (which are uncorrelated with each other by construction) have substantial negative

correlations with stock returns. So not only is the uncertainty shock significantly associated with

future volatility, but it is also associated with substantial declines in stock returns.13 These facts

make it all the more surprising that the uncertainty shock is not associated with any significant

change in real activity.

6.2.2 Forecast error variance decompositions for employment and IP

In addition to the FEVDs for uncertainty, figure 3 also reports FEVDs for the two real outcomes,

employment and industrial production. The realized volatility shock explains 25 percent of the

13Note that this result is entirely consistent with our identification scheme. The assumption is not that uncertainty
shocks are uncorrelated with returns, but with realized volatility, which is a quadratic function of returns.
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variance of employment and 10 percent of the variance of industrial production at the two-year

horizon, while the point estimates for the fraction of the variance accounted for by second-moment

news are two percent or less, and the upper ends of the 90-percent confidence intervals are near

5 percent for the first year. The upper end of the 90-percent confidence interval for the rv shock,

though, reaches as high as 45 percent for employment and 30 percent for industrial production 24

months ahead, indicating that realized volatility can potentially be an important driver of the real

economy (though this is not a causal statement since realized volatility is an equilibrium object).

Note also that the lack of importance of the uncertainty shock for real outcomes is not simply due

to its size. Again, the pure uncertainty shock in the second row accounts for 35 percent of the total

variance of uncertainty. So if we scale up the variance decompositions for employment and industrial

production by multiplying them by 3, the point estimates still say that all uncertainty variation

accounts for less than 5 percent of the total variance of employment and industrial production.

Looking at the third row, we see that the behavior of the rv and news shocks is again significantly

different. For employment, the variance accounted for by the rv shock is larger at the 90-percent

level, while for IP, they differ at only a 1-standard-deviation level.

In the end, then, figure 3 shows that pure uncertainty shocks account for a substantial fraction

of the total variation in uncertainty about future stock returns, but they account for only a trivial

fraction of the variation in real activity.

6.2.3 Robustness

Figures 5 and 6 report impulse responses for employment and IP to the two identified shocks and

their difference across a number of perturbations of the benchmark specification.

First, we consider alternative orderings of the variables in the VAR. The effects of the ordering

depend ultimately on the correlation matrix of the innovations, which we report below:

rv v1 Fed Funds Empl. IP

rv 1

v1 0.73 1

Fed Funds 0.01 -0.06 1

Empl. 0.01 0.05 0.05 1

IP -0.04 0.01 0.04 0.54 1

The shocks to rv and v1 are correlated with each other, but almost completely uncorrelated

with those in the other variables, implying that if the news shock were orthogonalized not just to

the shock to rvt but to all the macro variables also, its IRF would remain unchanged, which the

top panels of figures confirm by ordering rv and v1 last.

The second row of panels in figures 5 and 6 reports results when we substitute v6 for v1. The

six-month option-implied volatility seems like potentially a more natural variable to include since

it might represent a more realistic economic decision horizon. As the figure shows, in that case
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we find results even less favorable to uncertainty shocks, with these shocks now having slightly

expansionary effects on employment and industrial production.

The goal of the main analysis is to identify a pure shock to uncertainty that has no contempo-

raneous impact on realized volatility. A natural question is what happens if we reverse the ordering

of the identification so that the first shock is the entire shock to uncertainty, while the second

captures the residual variation in rv. In this case, then, the first shock is a combined shock to un-

certainty and rv, while the second shock is a pure shock to realized volatility that has no net effect

on uncertainty on impact. Figure A.6 reports results from such a specification. It shows that both

these shocks have essentially the same effect on employment and industrial production, exactly as

should be expected from our main analysis. Recall that in the main analysis, the identified rv and

uncertainty shocks have similar effects on future volatility, but they are identified so that only the

rv shock affects rv on impact. In figure A.6, on the other hand, the shocks have very similar effects

on rv on impact, and they are now distinguished by having different effects on future volatility.14

Overall, then, when two shocks have the same initial effect on rv, they have the same effects on

output (figure A.6) whereas when they have different effects on rv, they have different effects on

output (figure 2). In other words, it is the impact of a shock on contemporaneous realized volatility,

not its effect on uncertainty, that determines how it affects output.

Figures A.9 and A.10 report results from four additional robustness tests:

1. Replacing our volatility measure with the VIX and VXO

2. Limiting the sample to 1988–2006 to remove the jumps in volatility in 1987 and 2008.

3. Controlling for the S&P 500 in the VAR before the identified shocks.

4. Using RV and V1 (i.e. in levels rather than logs).

The results of those robustness tests are qualitatively and quantitatively consistent with our

baseline results.

Figures A.7 and A.8 report results from a quarterly VAR similar to what is estimated in Basu

and Bundick (2016) with the set of variables now rv, v1, GDP, aggregate consumption, aggregate

investment (all in real terms), the GDP deflator, and the Fed funds rate. The large number of

variables and smaller number of time series observations gives this VAR specification much lower

power overall than our benchmark monthly specification. As in our benchmark results, output,

consumption, and investment all fall following an increase in rv. However, in this case the con-

fidence bands around the uncertainty shock are wide enough to render the estimates essentially

uninformative. When we use v1 to help measure uncertainty, the shock appears slightly contrac-

tionary, while using v6 makes it appear actually expansionary. While the quarterly data does not

yield sufficient power to draw firm conclusions, it in no way conflicts with our main results, and it

reinforces the robustness of the findings for the contractionary effects of realized volatility shocks.

Finally, we also estimate a factor-augmented VAR using the first three principal components

14For robustness, we have also repeated the exercise of reversing the ordering of realized volatility and uncertainty
using the VIX instead of our implied volatility measure. The results are in figure A.11 and are qualitatively and
quantitatively consistent with the results of figure A.6.
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from the set of macroeconomic time series studied by Ludvigson and Ng (2007). The advantage

of the FAVAR specification is that incorporates information from an extremely broad range of

variables, instead of just using employment and industrial production (we use the setup of Bernanke,

Boivin, and Eliasz (2005)). Figure A.12 reports results from that estimation, which are again highly

similar to the benchmark.

6.3 Allowing more variables to predict second moments

The benchmark VAR has two key restrictions that this subsection relaxes. First, it assumes that

the vector [rvt, v1,t]
′ is driven only by its own lags (that is, the coefficients in those rows of the VAR

on the other variables are set to zero). Second, it uses information only from a single point on the

term structure of implied volatilities. Those restrictions are both consistent with the data in terms

of the regressions in table 2 and a χ2 test in the VAR, but it is reasonable to ask what happens

when they are relaxed. This section first uses lasso as an alternative method to reduce overfitting,

and second allows v6 to enter the VAR and removes all the coefficient restrictions. In that case, the

uncertainty series appears to be substantially overfit, emphasizing why it is desirable to discipline

how the news shock is constructed.

6.3.1 Lasso

Lasso (Tibshirani (1996)) is a regularization method for regressions. Instead of choosing the set of

coefficients in the VAR just to minimize the residual variance, the objective function in lasso also

includes a penalty on the sum of the absolute values of the coefficients. Because the penalization

function is not differentiable at zero (with a positive slope on both sides of zero), it implies that

coefficients that are sufficiently small are optimally set to zero. The advantage of using lasso for

our purposes is that it is economically agnostic and driven by statistical considerations. It thus

yields restrictions on the VAR to help reduce overfitting similarly to our benchmark specification,

but without imposing the set of restrictions based purely on theory.

The appendix describes the details of our implementation of lasso. We choose the magnitude of

the penalty on the coefficients based on a cross-validation criterion. In our implementation, lasso

restricts many of the coefficients on the macro variables in the equations for rv and v1 to zero, but

not all of them. It also restricts the coefficients on some of the lags of rv and v1 to be zero (they

were not restricted in the benchmark). So it reduces the restrictions on the macro variables but

increases them on the lags of the volatility measures.

The third row in figures 5 and 6 reports results using lasso for the estimation instead of the

benchmark restrictions. The results remain highly similar to the benchmark case, showing that the

restrictions applied in the benchmark model do not drive the results alone.
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6.3.2 Completely unrestricted model

Finally, the bottom rows in figures 5 and 6 report results using the completely unrestricted identifi-

cation scheme from BBL for the news shock and include v6,t as an additional predictor of volatility.

These are thus our most general and least constrained results. Shocks to realized volatility continue

to be contractionary, and we again find no evidence that the news shock has negative effects on

output, but the confidence bands for the news shock in this case become so wide as to be unin-

formative. The difference between the IRFs for rv and news is now statistically insignificant. We

obtain similar results when we include other predictors of future volatility instead of v6,t such as

the default spread.

The unrestricted specification has low power for identifying the effect of news shocks because

the news shock itself is difficult to identify. There are, in this case, 24 potential predictors, and

noise in the estimated coefficients on them is inherited by the identified news shock. That is why

the specifications with restrictions and using lasso, which both have fewer coefficients to estimate,

are much more stable.

Beyond power, though, the unrestricted model is potentially problematic since the news shock

may be overfit. That can be seen partly from the fact that the news shock in this case actually

accounts for a substantially larger amount of the variance of uncertainty than the rv shock does –

up to 60 percent of the total variance at short horizons.

As further evidence of overfitting, the bottom panel of figure 4 plots total uncertainty, Et

[∑24
j=1 rvt+j

]
,

from the benchmark and completely unrestricted specifications. We see that in the unrestricted

specification, uncertainty varies much more – its standard deviation is higher by a factor of 1.6.

Moreover, it rises well in advance of the 2008 financial crisis, even though realized and option-

implied volatility were low. That is, the unrestricted model seems to have seen the crisis coming

before investors, consistent with overfitting. Uncertainty in the restricted model leads the bench-

mark specifications in a number of other episodes. This lead-lag relationship can also be confirmed

by examining cross-correlations. Finally, whereas uncertainty in the restricted model is positively

correlated with alternative measures of uncertainty, the Baker–Bloom–Davis index and the Michi-

gan index, uncertainty in the unrestricted model is actually negatively correlated with those series

(with coefficients of -0.25 and -0.30), again emphasizing the implausibility of this specification.

In the end, then, when we use the most general specification and add no information to the model

to help control the predictive coefficients, we continue to find no evidence that uncertainty shocks

are contractionary, but we no longer have power to statistically distinguish their effects from those

of rv shocks. The most conservative interpretation of our empirical analysis is therefore simply that

realized volatility is followed by contractions and that it is critical to separate realized volatility from

uncertainty when trying to estimate the effects of uncertainty shocks. In the specifications that we

view as most reasonable, though, which add information to the VAR either through economic priors

or through statistical regularization, we can go a step further and argue that there is in fact some

affirmative evidence that uncertainty shocks have effects on the economy that are quantitatively
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close to zero, in terms of both impulse responses and forecast error variance decompositions.

7 Evidence from risk premia

We now show that investors have historically paid large premia for insurance against increases

in realized volatility, but not for insurance against increases in market-implied uncertainty, which

suggests that investors do not view periods in which uncertainty rises as having high marginal

utility (i.e. as being bad times), consistent with our VAR results. This fact has been established

in past work; here we review the evidence and extend the time series further back than in other

analyses.15

A one-month variance swap is an asset whose final payoff is the sum of daily squared log returns

of the underlying index (the S&P 500, in our case) over the next month. That asset gives the buyer

protection against a surprise in equity return volatility (rv) over the next month. If investors are

averse to periods of high realized volatility, then, we would expect to see negative average returns

on one-month variance swaps, reflecting the cost of buying that insurance. A simple way to see

that is to note that in general the Sharpe ratio of an asset, the ratio of its expected excess return

to its standard deviation, is

Et [Rt+1 −Rf,t+1]

SDt [Rt+1]
= −corrt (Rt+1,MUt+1)× std (MUt+1) (13)

for any return Rt+1, where Rf,t+1 is the risk-free rate and MUt+1 denotes the marginal utility

of consumption on date t + 1. Assets that covary positively with marginal utility, and hence are

hedges, earn negative average returns. So if realized volatility is high in high marginal utility states

(in most models, bad times), then one-month variance swaps will earn high Sharpe ratios.

The first point on the left in the left-hand panel of Figure 7 (which is drawn from Dew-Becker

et al. (2017)) plots average annualized Sharpe ratios on 1-month S&P 500 variance swaps between

1996 and 2014.16 The average Sharpe ratio is −1.4, approximately three times larger (with the

opposite sign) than the Sharpe ratio on the aggregate equity market in that period. In other words,

investors have been willing to pay extraordinarily large premia for protection against periods of

high realized volatility, suggesting that they view those times as particularly bad (or as having very

high marginal utility).

Now consider a j-month variance forward, whose payoff, instead of being the sum of squared

returns over the next month (t+ 1), is the sum of squared returns in month t+ j (so then the one-

month variance swap above can also be called a 1-month variance forward). If an investor buys a

15See for example Egloff, Leippold, and Wu (2010); Ait-Sahalia et al. (2015); Dew-Becker et al. (2017). A large
literature in finance studies the pricing of realized and expected future volatility. See, among many others, Adrian
and Rosenberg (2008), Bollerslev et al. (2009), Heston (1993), Ang et al. (2006), Carr and Wu (2009), Bakshi and
Kapadia (2003), Egloff, Leippold, and Wu (2010), and Ait-Sahalia, Karaman, and Mancini (2013) (see Dew-Becker
et al. (2017) for a review).

16The data is described in Dew-Becker et al. (2017); it is obtained from a large asset manager and Markit, but may
be closely approximated by portfolios of options, for which prices are widely available (e.g. from Optionmetrics).
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j-month variance forward and holds it for a single month, selling it in month t+1, then the variance

forward protects her over that period against news about volatility in month t + j. If between t

and t+ 1 investors receive news that volatility will be higher in the future – i.e. if uncertainty rises

– the holding period return on that j-period forward will increase. The left-hand panel of figure 7

also plots one-month holding period Sharpe ratios for variance forwards with maturities from 2 to

12 months. We see that for all maturities higher than 2 months, the Sharpe ratios are near zero,

and in fact the sample point estimates are positive. The Sharpe ratios are also all statistically

significantly closer to zero than the Sharpe ratio on the one-month variance swap.

The left panel of Figure 7 therefore shows that investors have paid large premia for protection

against surprises in realized volatility, but news about future uncertainty has had a premium that

is indistinguishable from zero, and may even be positive. Realized volatility thus appears to have a

large positive correlation with marginal utility, while shocks to expected volatility have a correlation

that is close to zero or negative.

Using the options data described above, it is possible to extend those results further, back to

1983. The right-hand panel of figure 7 reports the average shape of the term structure of variance

forward prices constructed from data on S&P 500 options (we study the term structure with this

data because it is estimated more accurately than returns). The variance forwards are constructed

from synthetic variance swaps, a calculation almost identical to our calculation of V arQt [st+n]. The

term structure reported here is directly informative about risk premia. The average return on an

n-month variance claim is:

E

[
Fn−1,t − Fn,t−1

Fn,t−1

]
︸ ︷︷ ︸

Average return of the forward

≈

Average slope of the forward curve︷ ︸︸ ︷
E [Fn−1]− E [Fn]

E [Fn]
(14)

where Fn,t is the price on date t of an n-maturity volatility forward. The slope of the average term

structure thus indicates the average risk premium on news about volatility n months forward. If

the term structure is upward sloping, then the prices of the variance claims fall on average as their

maturities approach, indicating that they have negative average returns. If it slopes down, then

average returns are positive.

The right-hand panel of Figure 7 plots the average term structure of variance forward prices for

the period 1983–2013. The term structure is strongly upward sloping for the first two months, again

indicating that investors have paid large premia for assets that are exposed to realized variance

and expected variance one month in the future. But the curve quickly flattens, indicating that the

risk premia for exposure to fluctuations in expected variance further in the future have been much

smaller.

The asset return data says that investors appear to have been highly averse to news about high

realized volatility, while shocks to expected volatility do not seem to have been related to marginal

utility. Figure 7 therefore confirms and complements the results from our VAR, that show that
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shocks to rv are associated with recessions but uncertainty shocks are not.

8 Equilibrium model and further evidence

The paper thus far has provided empirical evidence on two basic points: first, surprises in realized

volatility in the stock market are associated with future declines in real activity, while uncertainty

shocks, identified as second-moment news, are not; second, investors have historically paid large

premia to hedge shocks to realized volatility, but have paid premia that have averaged to nearly

zero to hedge shocks to uncertainty.

In this section we present a simple stylized structural model that is consistent with those features

of the data. The key ingredient is asymmetry in fundamental shocks. Intuitively, when fundamental

shocks are skewed to the left, large shocks, which are associated with high realized volatility, tend

to be negative.17 That is simply the definition of left skewness: the squared innovation is negatively

correlated with the level of the innovation. We first discuss evidence that there is left skewness

in economic activity and then describe the model and show that estimated impulse responses to

uncertainty and realized volatility shocks in the model match what we find in the data.

8.1 Skewness

A potential source of negative correlation between output and realized volatility is negatively skewed

shocks. Specifically, if some shock ε is negatively skewed, then E
[
ε3
]
< 0⇒ cov

(
ε, ε2

)
< 0. There

are large literatures studying skewness in both aggregate stock returns and economic growth. We

therefore provide a brief overview of the literature and basic evidence.

Table 3 reports the skewness of monthly and quarterly changes in a range of measures of

economic activity. Nearly all the variables are negatively skewed, at both the monthly and quarterly

levels. One major exception is monthly growth in industrial production, but that result appears to

be due to some large fluctuations in the 1950s. When the sample is cut off at 1960, the results for

industrial production are consistent with those for other variables.

In addition to real variables, table 3 also reports realized and option-implied skewness for S&P

500 returns.18 The implied and realized skewness of monthly stock returns is substantially negative

and similar to the skewness of capacity utilization. The realized skewness of stock returns is less

negative than option-implied skewness, which is consistent with investors demanding a risk premium

on assets that have negative returns in periods when realized skewness is especially negative (i.e.

that covary positively with skewness).

17Skewness in equilibrium quantities could arise because the fundamental shocks are skewed, or because symmetrical
shocks are transmitted to the economy asymmetrically (perhaps because constraints, such as financial frictions, bind
more tightly in bad times; see Kocherlakota (2000), or because firms respond to shocks in a concave manner, as in
Ilut, Kehrig, and Schneider (2016)).

18We obtain option-implied skewness from the CBOE’s time series of its SKEW index, which is defined as SKEW =
100 − 10 × Skew (R). We thus report 10 − SKEW/10.
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In addition to the basic evidence reported here, there is a large literature providing much more

sophisticated analyses of asymmetries in the distributions of output and stock returns. Morley

and Piger (2012) provide an extensive analysis of asymmetries in the business cycle and review the

large literature. Estimating a wide range of models, they show that those that fit aggregate output

best have explicit non-linearity and negative skewness. Even after averaging across models using a

measure of posterior probability, they find that their measure of the business cycle is substantially

skewed to the left, consistent with the results reported in table 3. More recently, Salgado, Guvenen,

and Bloom (2016) provide evidence that left skewness is a robust feature of business cycles, at both

the macro and micro levels and across many countries.

The finance literature has also long recognized that there is skewness in aggregate equity returns

and in option-implied return distributions (Campbell and Hentschel (1992); Ait-Sahalia and Lo

(1998); Bakshi, Kapadia, and Madan (2003)). The skewness that we measure here appears to

be pervasive and has existed in returns reaching back even to the 19th century (Campbell and

Hentschel (1992)).

Taken as a whole, then, across a range of data sources and estimation methods, there is a

substantial body of evidence that fluctuations in the economy are negatively skewed.

8.2 An equilibrium model

We now present a simple extension to the RBC model consistent with our empirical findings that

(1) shocks to realized volatility are associated with declines in real activity, while shocks to expected

volatility are not; (2) Sharpe ratios on short-term claims to volatility are much more negative than

those on longer-term claims; and (3) output growth and equity returns are negatively skewed. We

deliberately keep the model simple in order to highlight the economic channels that are at work;

it is not rich enough to provide a tight quantitative fit to the economy. But despite its simplicity,

the model is qualitatively consistent with nearly all our results, and it provides further support for

the VAR identification scheme.

8.3 Model structure

Firms produce output with technology, At, capital, Kt, and labor, Nt,

Yt = A1−α
t Kα

t N
1−α
t (15)

We set α = 0.33, consistent with capital’s share of income. Capital is produced subject to adjust-

ment costs according to the production function

Kt =

[
(1− δ) +

It−1
Kagg
t−1
− ζ

2

(
It−1
Kagg
t−1
− I/K

)2
]
Kt−1 exp (−Jνt) (16)
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where It is gross investment, Kagg
t is the aggregate capital stock (which is external to individual

firm decisions), ζ is a parameter determining the magnitude of adjustment costs and I/K is the

steady-state investment/capital ratio. The term exp (−Jνt) is associated with downward jumps in

productivity that are described below – those jumps destroy both technology and capital, similar

to Gourio (2012). We set δ = 0.08/12 (corresponding to a monthly calibration) and ζ = 0.5.19

Given the structure for adjustment costs and production, the equilibrium price and return on a

unit of installed capital are

PK,t =
1

1− ζ
(
It/Kt−1

I/K
− 1
) (17)

RK,t =
αA1−α

t Kα−1
t−1 N

1−α
t + (1− δ)PK,t
PK,t−1

(18)

A representative agent maximizes Epstein–Zin (1991) preferences over consumption and leisure,

Vt = arg max
C,N

log
(
Ct+j − bCaggt+j−1

)
− θ

N1+χ
t+j

1 + χ
+ β logEt exp (−γVt+1) (19)

where Cagg is aggregate consumption, subject to the budget constraint

Ct + It ≤ Yt (20)

Agents have log utility over consumption minus an external habit. We set the magnitude of the

habit to b = 0.8 to help generate smoothness in consumption. β is set to 0.991/12, χ to 1/3 for a

Frisch elasticity of 3, and θ to generate steady-state employment of 1/3. The coefficient of relative

risk aversion, γ, is set to 6 to generate a Sharpe ratio on a claim to capital of 0.35, similar to what

is observed for US equities. Note, though, that the habit will induce variation in effective risk

aversion over time.

The model is closed by the Euler equation and the optimization condition for labor,

1 = Et

[
β

exp ((1− α)Vt+1)

Et exp ((1− α)Vt+1)

Ct − bCaggt−1
Ct+1 − bCaggt

RK,t+1

]
(21)

θNχ
t

(
Ct − bCaggt−1

)
= (1− α)A1−α

t Kα
t−1N

−α
t (22)

We model realized volatility as in the empirical analysis as the square of the levered excess

return on capital,

RVt = (λ (RK,t+1 −Rf,t) +Rf,t)
2 (23)

where Rf,t is the risk-free rate and the parameter λ determines the leverage of equity. We set λ = 9.2

19See, e.g., Cummins, Hassett, and Hubbard (1994) for estimates of adjustment costs similar to this value. Jermann
(1998) use a similar values. ζ = 0.5 is on the lower end of estimates based on aggregate data and more consistent
with micro evidence, but our results are not sensitive to the choice of this parameter.
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to match the volatility of the aggregate stock market. It is then straightforward to construct prices

on claims to future realized volatility.

The only exogenous variable in the model is technology, At, which follows the process

∆ logAt = σt−1σ̄εεt − J (νt − p̄) + µ (24)

log σt = φσ log σt−1 + σσηt + κσ,ννt (25)

εt, ηt ∼ N (0, 1) (26)

νt ∼ Bernoulli (p̄) (27)

Technology follows a random walk in logs with drift, µ, set to 2 percent per year. εt is a normally

distributed innovation that affects technology in each period, while νt is a shock that is equal to

zero in most periods but equal to 1 with probability p̄ – that is, it induces downward jumps in

technology, with J determining the size of the jump and p̄ the average frequency. σt determines

the volatility of normally distributed shocks to technology. It is itself driven by two shocks: an

independent shock ηt (volatility news) and also the jumps νt. Downward jumps in technology can

be associated with higher volatility, generating ARCH-type effects (Engle (1982)). The volatility

process thus has two features that will be important in matching the data: it has news shocks, and

it is countercyclical for κσ,ν < 0.

φσ and σσ are calibrated so that log σt has a standard deviation of 0.35 and a one-month

autocorrelation of 0.91, consistent with the behavior of the VIX. κσ,ν is set to -0.7, which implies that

a jump in technology increases σt by 2 standard deviations, generating countercyclical volatility.

σ̄ε is set so that normally distributed shocks on average generate a standard deviation of output

growth close to the value of 1.92 we observe empirically. Jumps on average reduce technology by

8 percent (which is 3.2 times σ̄ε, the average standard deviation of the Gaussian TFP shocks) and

are calibrated to occur once every 10 years on average. We thus think of them as representing

small disasters or large recessions (consistent Backus, Chernov, and Martin (2011) and with the

view of skewed recessions in Salgado, Guvenen, and Bloom (2016)), rather than depression-type

disasters.20 While the size of the jump seems large initially, recall that the model is calibrated to

match the standard deviation of output growth.

We solve the model by projecting the decision rule for consumption on a set of Chebyshev

polynomials up to the 6th order (a so-called global solution) to ensure accuracy not only for real

dynamics but also for asset prices and realized volatility. Integrals are calculated using Gaussian

quadrature with 20 points. Euler equation errors are less than 10−5.0 across the range of the state

space that the simulation explores and have an average absolute value of 10−5.3. The use of a global

solution method allows for high accuracy in the solution, but also makes it infeasible to search over

many parameters or estimate the model, which is why we explore just a single calibration here.

20A realistic extension of the model would be to allow for jumps to be drawn from a distribution, rather than all
having the same size. See, e.g., Barro and Jin (2011).
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8.4 Simulation results

We examine three sets of implications of the model: VAR estimates, risk premia, and skewness.

All results are population statistics calculated from a simulation lasting 10,000 years.

Table 4 reports basic moments of returns on capital and growth rates of output, consumption,

and investment. The model generates negative skewness in all four variables in the table, consistent

with the data, but the skewness is much larger than is observed empirically. Mean growth rates of

real variables are similar to the data. The standard deviation of output is very close to the data,

while consumption is more and investment less volatile; the gap between the two is smaller than

observed empirically, however. Table 4 thus suggests that the model generates moments that are

broadly consistent with the data, in particular generating comovement among aggregate variables

(the three growth rate series in table 4 have correlations between 0.53 and 0.96) and volatilities

that are empirically reasonable.

Figure 8 plots the Sharpe ratios of volatility claims in the model that correspond to the forward

volatility claims examined in Figure 7. As in the left panel of Figure 7, the Sharpe ratio of the

one-month asset, which is a claim to realized volatility, is far more negative than the Sharpe ratios

for the claims with longer maturities. Intuitively, this is because shocks to volatility expectations,

ηt, have relatively small effects on consumption and lifetime utility, hence earning a small risk

premium. Shocks to realized volatility, on the other hand, tend to isolate the jumps, νt, (as we will

show below), so they earn larger premia.

Finally, figure 9 plots IRFs from the estimation of our VAR in the simulation of the model.

The gray shaded regions represent confidence bands from the VAR in the empirical data.21 The

red lines are the population IRFs from the VAR estimated in the simulated model. The IRFs here

represent responses to unit standard deviation impulses to the identified shocks.22

The model matches well in terms of how an uncertainty shock predicts future stock market

volatility and output. Most importantly, it generates a large and empirically reasonable decline

in output following the realized volatility shock and an economically small response of output to

the identified uncertainty shock. Both IRFs lie within the confidence bands at most horizons. The

model performs more poorly in matching the behavior of employment. Employment responds little

to either of the shocks, so it matches the empirical IRF for the news shock, but not the realized

volatility shock.

The VAR results are notable because they replicate the behavior of output observed empirically

even though there is no structural “realized volatility shock” in the model. Rather, the identified

RV shock comes from the jump in TFP in the model (Jνt). To see that, we report the correlations

21These confidence bands are slightly different from what is reported in figure 2 because they use the levels of RV
and option-implied volatility instead of their logs (since the model is in discrete time and realized volatility is the
monthly squared return, it can approach zero, causing the log transform to break down).

22Note that this differs from the empirical analysis above, which scaled the realized volatility shock to have the
same effect on uncertainty (expected future volatility) as the news shock. The reason for the difference here is that
realized volatility in the model is a relatively weak predictor of future volatility, making the scaling sometimes explode
to infinity.
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between the VAR-identified shocks and the structural shocks in the model in the bottom section of

table 4. The RV shock is correlated nearly exclusively with Jνt, the jump shock in the model. So

the VAR successfully identifies the jumps as realized volatility shocks, which are then structurally,

but obviously not causally, related to declines in output.

The identified uncertainty shock, as we would hope, is almost purely correlated with ηt, the

volatility news shock. So, as discussed above, and similar to the BB and RUBC models, our main

VAR specification does a good job in this setting – a non-linear production model – of actually

identifying true structural shocks and also fitting the qualitative behavior of our empirical VAR

analysis.

To further illustrate the mechanisms driving the model, the dotted blue lines in figure 9 plot

the dynamic responses of the variables to the true structural shocks in the model. In the top row

the dotted lines plot the responses to the jump shock, νt, while in the bottom row they plot the

responses to the uncertainty shock, ηt (again in both cases scaled to be unit standard deviations). In

four of the cases the response to the structural shock is essentially identical to the estimate from the

VAR. The responses of output are slightly different (since the VAR is not a perfect representation

of the structural model) but still very close to the VAR.

The fact that the response of employment to the jump shock is small is a consequence of the use

of preferences consistent with balanced growth following King, Plosser, and Rebelo (1988). Since

the jumps in technology also involve destruction of capital, they represent essentially a shift along

the balanced growth path. In the absence of habit formation, they would have precisely zero effect

on employment; the habit causes a slight positive response. Obtaining more negative responses of

employment would require adding frictions or changing the preferences, which we leave to future

work.

The results in this section show that two features of the model explain the behavior of the VAR

in the simulations. First, the negative relationship between realized volatility and output comes

from the fact that realized volatility is high in months with jumps, and all jumps are negative.

Second, the lack of a relationship between output and uncertainty comes from the fact that the

true uncertainty shock has essentially zero effect on output.

In the end, then, this section shows that a simple production model can match the basic features

of the data that we have estimated in this paper: output responds negatively to shocks to realized

volatility but not to shocks to uncertainty, there is a much larger risk premium for realized than

expected volatility, and economic activity and stock returns are both skewed to the left.

9 Conclusion

The key distinction that this paper draws is between realized volatility and uncertainty. Volatility

matters for output, but it is the realized part that is robustly followed by downturns. Changes in

expected volatility – uncertainty shocks – appear to have no significant negative effects. Evidence

from asset prices and risk premia is consistent with these findings, and we develop a simple model
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that can rationalize the data and also justifies our identification scheme.

The empirical results are inconsistent with theories in which pure shocks to aggregate uncer-

tainty play an important role in driving real activity. Moreover, the identification scheme used in

this paper is shown to successfully identify true structural shocks to uncertainty in leading recent

models.

More constructively, this paper aims to lay out a specific view of the joint behavior of stock

market volatility and the real economy. There appear to be negative shocks to the stock market

that occur at business cycle frequencies, are associated with high realized volatility and declines

in output, and are priced strongly by investors. The simple idea that fundamentals are skewed

left can explain our VAR evidence, the pricing of volatility risk, and the negative unconditional

correlation between economic activity and volatility.
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Figure 1: Time series of realized volatility and expectations
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Note: Time series of realized volatility (RV ), and 1-month option-implied volatility (V1), in annualized standard
deviation units. Grey bars indicate NBER recessions.
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Figure 2: Impulse response functions from benchmark VAR
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Note: Responses of rv, employment, and industrial production to shocks to rv and the identified uncertainty
shock, in a VAR with rv, v1, federal funds rate, log employment, and log industrial production. The IRFs are
scaled so that the two shocks have equal cumulative effects on rv over months 2–24 following the shock. The
sample period is 1983–2014. The dotted lines are 68% and 90% confidence intervals.
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Figure 3: Forecast error variance decomposition
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Note: Fraction of the forecast error variance of uncertainty (the expected sum of rv over the next 24 months),
employment, and industrial production to shocks to rv and uncertainty in the VAR of figure 2.
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Figure 4: Fitted uncertainty
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(a) Decomposition of total uncertainty in the benchmark specification
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Note: The top panel reports a decomposition of total uncertainty (the conditional expectation of the sum of
rv over the next 24 months) between the component driven by the rv shock and the component driven by the
uncertainty shock in the benchmark model. The bottom panel reports the total uncertainty in the benchmark
model and in the unrestricted specification.

38



Figure 5: Response of employment to rv and uncertainty shocks across specifications
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Note: Response of employment to RV shocks (left panels) and news shocks (middle panels) with the difference
in the right panel and different model specifications in each row. Row (a) orders rv and v1 last. Row (b) uses
v6 instead of v1. Row (c) uses lasso to estimate the VAR (see section A.2 for details). Row (d) estimates the
benchmark VAR without any coefficient restrictions.
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Figure 6: Response of IP to rv and uncertainty shocks across specifications
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Figure 7: Forward variance claims: returns and prices
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Note: Panel A shows the annualized Sharpe ratio for the forward variance claims, constructed using variance
swaps. The returns are calculated assuming that the investment in an n-month variance claim is rolled over
each month. Dotted lines represent 95% confidence intervals. All tests for the difference in Sharpe ratio between
the 1-month variance swap and any other maturity confirm that they are statistically different with a p-value
of 0.03 (for the second month) and < 0.01 (for all other maturities). The sample used is 1996–2013. For more
information on the data sources, see Dew-Becker et al. (2017). Panel B shows the average prices across maturities of
synthetic forward variance claims constructed from option prices for the period 1983–2014. All prices are reported
in annualized standard deviation units. Maturity zero corresponds to average realized volatility.

Figure 8: Annual Sharpe ratios on forward claims (simulated structural model)
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Note: Annual Sharpe ratios on forward variance claims in the simulated model of section 8. The Sharpe ratios
are constructed as in Figure 7.
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Figure 9: IRFs from structural model
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Note: Impulse response functions from data simulated from the model in Section 8. Solid lines correspond to
IRFs estimated using our VAR methodology as in Figure 2. Dashed lines correspond to IRFs for the two structural
shocks Jνt and ηt.
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Table 1: Relationship between employment, industrial production and volatility

Employment Industrial Production

V1 -0.12** 0.05 -0.06* 0.12*

(0.04) (0.07) (0.03) (0.07)

RV -0.20** -0.21**

(0.09) (0.09)

Note: Results from regressions of employment and industrial production on the current value and four lags of
implied and realized volatility. The coefficients and standard errors in the table are for the sum of the coefficients
on each variable. Standard errors are calculated using the Newey–West (1987) method with 12 lags.

Table 2: Predictability of 6-month rv

Predictors (1) (2) (3) (4) (5)

rvt 0.16* 0.15 0.16* 0.14 0.09

(0.10) (0.09) (0.09) (0.09) (0.09)

v1,t 0.57*** 0.46*** 0.60** 0.56*** 0.60***

(0.14) (0.16) (0.29) (0.14) (0.15)

v6,t -0.03

(0.30)

rvt−1 0.12**

(0.05)

FFR 0.01

(0.02)

∆empl -2.93

(10.92)

∆ip -5.74

(3.52)

PC1 -0.010

(0.009)

PC2 -0.017

(0.012)

PC3 -0.011

(0.007)

RS&P 0.12

(0.41)

Default spread 0.07

(0.09)

Adj. R2 0.44 0.45 0.44 0.45 0.46

Note: Results of linear predictive regressions of realized volatility over the next six months on lagged rv, option-
implied volatility, and various macroeconomic variables, with Hansen–Hodrick (1980) standard errors using a
6-month lag window. PC1–3 are principal components from the data set used in Ludvigson and Ng (2007). The
default spread is the difference in yields on Baa and Aaa bonds. The sample is 1983–2014.
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Table 3: Skewness

Panel A: real economic activity Monthly Quarterly Start of sample (year)

Employment -0.41 -0.41 1948

Capacity Utilization -1.02 -1.30 1967

IP 0.17 -0.16 1948

IP, starting 1960 -0.93 -1.28 1960

Y -0.11 1947

C -0.28 1947

I -0.03 1947

Panel B: skewness of S&P 500 monthly returns

Implied (since 1990) -1.81

Realized (since 1926) 0.36

Realized (since 1948) -0.42

Realized (since 1990) -0.61

Note: Panel A reports the skewness of changes of employment, capacity utilization, industrial production (be-
ginning both in 1948 and in 1960), GDP, consumption and investments. The first column reports the skewness
of monthly changes, the second column the skewness of quarterly changes. Panel B reports the realized skewness
of S&P 500 monthly returns in different periods, as well as the implied skewness computed by the CBOE using
option prices.

Table 4: Model Calibration

Panel A: Moments Model Data

Mean Std. Skewness Mean Std. Skewness

Returns 6.50 15.00 -4.92 7.46 14.77 -0.48

Output 1.99 2.02 -4.48 1.33 1.92 -0.11

Investment 1.99 3.64 -4.46 2.35 7.43 -0.03

Consumption 1.99 1.58 -3.41 1.20 1.06 -0.28

Panel B: Corr. of VAR and structural shocks Structural shocks

Jvt ηt εt

VAR identified shocks

RV 0.96 0.01 0.00

Uncertainty -0.01 0.91 -0.14

Note: Panel A reports the mean, standard deviation, and skewness of financial and macroeconomic variables in
the data and in the model. Panel B shows the correlation between the structural shocks in the model and the
shocks identified in the VAR.
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A.1 Construction of option-implied volatility, Vn

In this section we describe the details of the procedure we use to construct model implied uncertainty

at different horizons, starting from our dataset of end-of-day prices for American options on S&P

500 futures from the CME.

Our implied volatility is written as a function of option prices,

Vn,t ≡ V arQt [st+n] (A.1)

= 2

ˆ ∞
0

1− log
(

K
ertSt

)
Bt (n)K2

O (K) dK −
(
ert
ˆ ∞
0

O (K)

Bt (n)K2
dK

)2

(A.2)

Note that this formula holds generally, requiring only the existence of a well-behaved pricing mea-

sure; there is no need to assume a particular specification for the returns process. V arQt [st+n] is

calculated as an integral over option prices, where K denotes strikes, Ot (n,K) is the price of an

out-of-the-money option with strike K and maturity n, and Bt (n) is the price at time t of a bond

paying one dollar at time t + n. Vn,t is equal to the option-implied variance of log stock prices n

months in the future.

The result for V arQt [st+n] is obtained from equation 3 in Bakshi, Kapadia, and Madan (2003) by

first settingH (S) = log (S) to obtain EQt [logSt+n] and then definingG (S) =
(

log (S)− EQt [logSt+n]
)2

and inserting it into equation 3 in place of H.

A.1.1 Main steps of construction of Vn

A first step in constructing the model-free implied volatility is to obtain implied volatilities corre-

sponding to the observed option prices. We do so using a binomial model.1 For the most recent

years, CME itself provides the implied volatility together with the option price. For this part of

the sample, the IV we estimate with the binomial model and the CME’s IV have a correlation of

99%, which provides an external validation on our implementation of the binomial model.

Once we have estimated these implied volatilities, we could in theory simply invert them to yield

implied prices of European options on forwards. These can then be used to compute Vn directly as

described in equation (10).

In practice, however, an extra step is required before inverting for the European option prices

and integrating to obtain the model-free implied volatility. The model-free implied volatility defined

in equation (10) depends on the integral of option prices over all strikes, but option prices are only

observed at discrete strikes. We are therefore forced to interpolate option prices between available

strikes and also extrapolate beyond the bounds of observed strikes.2 Following the literature, we

fit a parametric model to the Black–Scholes implied volatilities of the options and use the model to

then interpolate and extrapolate across all strikes (see, for example, Jiang and Tian (2007), Carr

1See for example Broadie and Detemple (1996) and Bakshi, Kapadia, and Madan (2003), among others.
2See Jiang and Tian (2007) for a discussion of biases arising from the failure to interpolate and extrapolate.
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and Wu (2009), Taylor, Yadav, and Zhang (2010), and references therein). Only after this extra

interpolation-extrapolation step, the fitted implied volatilities are then inverted to yield option

prices and compute Vn according to equation (10). To interpolate and extrapolate the implied

volatility curve, we use the SVI (stochastic volatility inspired) model of Gatheral and Jacquier

(2014).

In the next sections, we describe in more detail the interpolation-extrapolation step of the

procedure (SVI fitting) as well as our construction of Vn after fitting the SVI curve. Finally, we

report a description of the data we use and some examples and diagnostics on the SVI fitting

method.

A.1.2 SVI interpolation: theory

There are numerous methods for fitting implied volatilities across strikes. Homescu (2011) provides

a thorough review. We obtained the most success using Gatheral’s SVI model (see Gatheral and

Jacquier 2014). SVI is widely used in financial institutions because it is parsimonious but also known

to approximate well the behavior of implied volatility in fully specified option pricing models (e.g.

Gatheral and Jacquier (2011)); SVI also satisfies the limiting results for implied volatilities at very

high and low strikes in Lee (2004), and, importantly, ensures that no-arbitrage conditions are not

violated.

The SVI model simply assumes a hyperbolic relationship between implied variance (the square

of the Black–Scholes implied volatility) and the log moneyness of the option, k (log strike/forward

price).

σ2BS (k) = a+ b

(
ρ (k −m) +

√
(k −m)2 + σ2

)
where σ2BS (k) is the implied variance under the Black–Scholes model at log moneyness k. SVI has

five parameters: a, b, ρ, m, and σ. The parameter ρ controls asymmetry in the variances across

strikes. Because the behavior of options at high strikes has minimal impact on the calculation of

model-free implied volatilities, and because we generally observe few strikes far above the spot, we

set ρ = 0 (in simulations with calculating the VIX for the S&P 500 – for which we observe a wide

range of options – we have found that including or excluding ρ has minimal impact on the result).

We fit the parameters of SVI by minimizing the sum of squared fitting errors for the observed

implied volatilities. Because the fitted values are non-linear in the parameters, the optimization

must be performed numerically. We follow the methodology in Zeliade (2009) to analytically

concentrate a and b out of the optimization. We then only need to optimize numerically over

σ and m (as mentioned above, we set ρ = 0). We optimize with a grid search over σ × m =

[0.001, 10]× [−1, 1] followed by the simplex algorithm.

For many date/firm/maturity triplets, we do not have a sufficient number of contract obser-

vations to fit the implied volatility curve (i.e. sometimes fewer than four). We therefore include

strike/implied volatility data from the two neighboring maturities and dates in the estimation. The
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parameters of SVI are obtained by minimizing squared fitting errors. We reweight the observations

from the neighboring dates and maturities so that they carry the same amount of weight as the

observations from the date and maturity of interest. Adding data in this way encourages smooth-

ness in the estimates over time and across maturities but it does not induce a systematic upward

or downward bias. We drop all date/firm/maturity triplets for which we have fewer than four total

options with k < 0 or fewer than two options at the actual date/firm/maturity (i.e. ignoring the

data from the neighboring dates and maturities).

When we estimate the parameters of the SVI model, we impose conditions that guarantee the

absence of arbitrage. In particular, we assume that b ≤ 4
(1+|ρ|)T , which when we assume ρ = 0,

simplifies to b ≤ 4
T . We also assume that σ > 0.0001 in order to ensure that the estimation is

well defined. Those conditions do not necessarily guarantee, though, that the integral determining

the model-free implied volatility is convergent (the absence of arbitrage implies that a risk-neutral

probability density exists – it does not guarantee that it has a finite variance). We therefore

eliminate observations where the integral determining the model-free implied volatility fails to

converge numerically. Specifically, we eliminate observations where the argument of the integral

does not approach zero as the log strike rises above two standard deviations from the spot or falls

more than five standard deviations below the strike (measured based on the at-the-money implied

volatility).

A.1.3 Construction of Vn from the SVI fitted curve

After fitting the SVI curve for each date and maturity, we compute the integral in equation (10)

numerically, over a range of strikes from -5 to +2 standard deviations away from the spot price.3

We then have Vn for every firm/date/maturity observation. The model-free implied volatilities are

then interpolated (but not extrapolated) to construct Vn at maturities from 1–6 months for each

firm/date pair.

A.1.4 Data description and diagnostics of SVI fitting

Our dataset consists of 2.3 million end-of-day prices for all American options on S&P 500 futures

from the CME.

When more than one option (e.g. a call and a put) is available at any strike, we compute IV at

that strike as the average of the observed IVs. We keep only IVs greater than zero, at maturities

higher than 9 days and lower than 2 years, for a total of 1.9 million IVs. The number of available

options has increased over time, as demonstrated by Figure A.2 (top panel), which plots the number

of options available for Vn estimation in each year.

The maturity structure of observed options has also expanded over time, with options being

introduced at higher maturities and for more intermediate maturities. Figure A.1 (top panel)

3In general this range of strikes is sufficient to calculate Vn. However, the model-free implied volatility technically
involves an integral over the entire positive real line. Our calculation is thus literally a calculation of Andersen and
Bondarenko’s (2007) corridor implied volatility. We use this fact also when calculating realized volatility.
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reports the cross-sectional distribution of available maturities in each year to estimate the term

structure of the model-free implied volatility. The average maturity of available options over our

sample was 4 months, and was relatively stable. The maximum maturity observed ranged from 9

to 24 months and varied substantially over time.

Crucial to compute the model-free implied volatility is the availability of IVs at low strikes,

since options with low strikes receive a high weight in the construction of Vn. The bottom panel

of Figure A.1 reports the minimum observed strike year by year, in standard deviations below the

spot price. In particular, for each day we computed the minimum available strike price, and the

figure plots the average of these minimum strike price across all days in each year; this ensures that

the number reported does not simply reflect outlier strikes that only appear for small parts of each

year.

Figure A.1 shows that in the early part of our sample, we can typically observe options with

strikes around 2 standard deviations below the spot price; this number increases to around 2.5

towards the end of the sample.

These figures show that while the number of options was significantly smaller at the beginning

of the sample (1983), the maturities observed and the strikes observed did not change dramatically

over time.

Figure A.3 shows an example of the SVI fitting procedure for a specific day in the early part of

our sample (November 7th 1985). Each panel in the figure corresponds to a different maturity. On

that day, we observe options at three different maturities, of approximately 1, 4, and 8 months. In

each panel, the x’s represent observed IVs at different values of log moneyness k. The line is the

fitted SVI curve, that shows both the interpolation and the extrapolation obtained from the model.

Figure A.4 repeats the exercise in the later part of our sample (Nov. 1st 2006), where many

more maturities and strikes are available.

Both figures show that the SVI model fits the observed variances extremely well. The bottom

panel of Figure A.2 shows the average relative pricing error for the SVI model in absolute value.

The graph shows that the typical pricing error for most of the sample is around 0.02, meaning that

the SVI deviates from the observed IV by around 2% on average. Only in the very first years (up

to 1985) pricing errors are larger, but still only around 10% of the observed IV.

Overall, the evidence in this section shows that our observed option sample since 1983 has

been relatively stable along the main dimensions that matter for our analysis – maturity structure,

strikes observed, and goodness of fit of the SVI model.

A.2 Lasso

Lasso is a regularization method for regressions that penalizes coefficients based on their absolute

values. Specifically, the objective that is minimized under lasso is the sum of squared residuals

plus a tuning parameter, which we denote λ, multiplied by the sum of the absolute values of the

coefficients.
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Lasso is not invariant to the scaling of the variables in the regression. We therefore rescale the

variables as follows. rv, v6, and slope are all translated into z-scores. The three macro variables

(FFR, emp, and ip) are multiplied by constants so that their first differences have unit variances. We

use that transformation because those three variables have approximate unit roots in our sample.

We examine two methods to select λ. The first is to use leave-one-out cross validation. We

choose λ separately for the three volatility and three macro series. The cross-validation criterion

implies setting λ = 0.013 for the volatility series and λ = 0 (i.e. no lasso) for the macro series. the

results reported in the text use this choice of λ.

The second method is to choose the smallest (i.e. least restrictive) value of λ that causes the

coefficients on all the lags of the macro variables in the rv equation to be zero, consistent with the

benchmark specification. The motivation for this method is that it takes the restrictions that we

impose on economic grounds and then essentially tries to impose similar restrictions on the other

equations, for the sake of parity. In this case we find a value of λ of 0.055. The results with this

value are not reported here but are consistent with out main findings. In this case we find slightly

negative effects for uncertainty shocks, but they are still statistically significantly less negative

than those for rv shocks, and the forecast error variance decompositions put an upper bound on

the fraction driven by uncertainty shocks of 15 percent.
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Figure A.1: Maturities and strikes in the CME dataset
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Note: The top panel reports the distribution of maturities of options used to compute implied volatility in each
year, in months. The bottom panel reports the average minimum strike in each year, in standard deviations below
the forward price. The number is obtained by computing the minimum observed strike in each date and at each
maturity (in standard deviations below the forward price), and then averaging it within each year to minimize the
effect of outliers.
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Figure A.2: Number of options to construct implied volatility and pricing errors
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Figure A.3: SVI fit: 11/7/1985
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Note: Fitted implied variance curve on 11/7/1987, for the three available maturities. X axis is the difference in
log strike and log forward price. x’s correspond to the observed implied variances, and the line is the fitted SVI
curve.
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Figure A.4: SVI fit: 11/1/2006

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

0.06
Maturity (months): 1

Observed IVs
Fitted IVs

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055
Maturity (months): 2

Observed IVs
Fitted IVs

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06
Maturity (months): 3

Observed IVs
Fitted IVs

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Maturity (months): 8

Observed IVs
Fitted IVs

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Maturity (months): 11

Observed IVs
Fitted IVs

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Maturity (months): 14

Observed IVs
Fitted IVs

Note: Fitted implied variance curve on 11/1/2006, for the three available maturities. X axis is the difference in
log strike and log forward price. x’s correspond to the observed implied variances, and the line is the fitted SVI
curve. On 11/1/2006 also a maturity of 5 months was available (not plotted for reasons of space).

A.9



Figure A.5: Impulse response functions from VAR with v1 but not rv
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Note: The figure shows responses of volatility (measured by v1), log employment, and log industrial production to
a reduced-form shock to v1 in a VAR with v1, the Fed funds rate, log employment, and log industrial production
with 68% and 90% confidence intervals. Sample period 1986-2014.

Figure A.6: Impulse response functions from VAR ordering uncertainty first and rv second
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Note: See figure 2. Unlike in the baseline identification, the identified uncertainty shock is not orthogonalized
with respect to rv. The rv shock in this case is the remaining part of reduced-form innovation to rv that is not
spanned by the uncertainty shock.
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Figure A.7: Robustness: data from Basu and Bundick (2016), using v1
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Note: See figure 2. Here we use the quarterly data from Basu and Bundick (2016) as the macro time series.
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Figure A.8: Robustness: data from Basu and Bundick (2016), using v6
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Note: See figure 2. Here we use the quarterly data from Basu and Bundick (2016) as the macro time series. We
use v6 instead of v1.
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Figure A.9: Robustness: response of Employment to rv and uncertainty shocks across specifications
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(b) Subperiod 1988-2006 (excluding 1987 crash and financial crisis)
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(c) Adding the S&P 500 level as first shock
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Note: Response of employment to RV shocks (left panels) and uncertainty (middle panels) with the difference in
the right panel and different model specifications in each row. Row (a) detrends the macroeconomic time series via
HP filter. Row (b) estimates the VAR in the subsample 1988-2006, which excludes both RV peaks (1987 crash and
financial crisis). Row (c) orthogonalizes both the rv and the uncertainty shocks with respect to the reduced-form
innovation in the S&P 500, as in Bloom (2009). Row (d) uses RV and V1 in levels, not logs.

A.13



Figure A.10: Robustness: response of IP to rv and uncertainty shocks across specifications
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Note: See figure A.9. In this case the responses of IP are reported instead of employment.
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Figure A.11: Impulse response functions from VAR ordering uncertainty first and rv second, using
the CBOE VIX
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Note: See figure 2. Unlike in the baseline identification, the identified uncertainty shock is not orthogonalized
with respect to rv. The rv shock in this case is the remaining part of reduced-form innovation to rv that is not
spanned by the uncertainty shock. In this figure, we use the CBOE VIX instead of v1. Sample period is 1990-2014.
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Figure A.12: Impulse response functions from FAVAR
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Note: Responses of rv and the first principal component from Ludvigson and Ng (2007) to shocks to rv and the
identified uncertainty shock, in a VAR with rv, v1, federal funds rate, and the PC. The IRFs are scaled so that
the two shocks have equal cumulative effects on rv over months 2–24 following the shock. The sample period is
1983–2014. The dotted lines are 68% and 90% confidence intervals.
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Table A.1: Predictability of rv with and without v1 as predictor

Predictors (1) (2) (3) (4)

rv 0.14 0.09

(0.09) (0.09)

v1 0.56*** 0.60***

(0.14) (0.15)

FFR 0.01 0.01

(0.03) (0.02)

∆emp -31.03* -2.93

(17.67) (10.92)

∆ip -5.27 -5.74

(5.37) (3.52)

PC 1 -0.029** -0.010

(0.013) (0.009)

PC 2 -0.014 -0.017

(0.018) (0.012)

PC 3 -0.014 -0.011

(0.010) (0.007)

RS&P -1.56*** 0.12

(0.43) (0.41)

Def 0.21 0.07

(0.14) (0.09)

N 377 377 377 377

Adj. R2 0.10 0.45 0.20 0.46

Note: Regressions of 6-month realized volatility on lagged rv, option-implied volatility, and various macroeconomic
variables, with Hansen-Hodrick standard errors using a 6-month lag window. PC 1 – PC3 are the first three principal
components from a large set of macroeconomic time series. RS&P is the return on the S&P 500. Def is the default
spread, the gap between yields on Aaa and Baa bonds.
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Table A.2: Predictability of 6-month-ahead v1

Predictors (1) (2) (3) (5) (6)

rvt 0.02 0.01 0.03 0.01 0.01

(0.09) (0.09) (0.09) (0.09) (0.08)

v1,t 0.57*** 0.49*** 0.51** 0.54*** 0.60***

(0.13) (0.15) (0.26) (0.13) (0.13)

v6,t 0.06

(0.27)

rvt−1 0.10*

(0.06)

FFR 0.02

(0.015)

∆empl -11.94

(9.75)

∆ip -0.15

(3.22)

PC1 -0.010

(0.008)

PC2 -0.010

(0.010)

PC3 -0.008

(0.006)

RS&P 0.78**

(0.38)

Default spread -0.05

(0.08)

Adj. R2 0.35 0.36 0.35 0.37 0.37

Note: Regressions of 6-month-ahead v1 on lagged rv, option-implied volatility, and various macroeconomic vari-
ables, with Hansen–Hodrick (1980) standard errors using a 6-month lag window. PC1–3 are principal components
from the data set used in Ludvigson and Ng (2007). The default spread is the difference in yields on Baa and Aaa
bonds. The sample is 1983–2014.
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