Discussion of Doshi, Jacobs and Liu "Loss Functions for Forecasting Treasury Yields"

> Francis X. Diebold University of Pennsylvania

> > November 4, 2015

There's a Lot to Like in This Paper

- Prediction under the relevant loss function deserves lots of attention

- The yield curve model used for prediction deserves lots of attention

- Maybe even yield curve curvature deserves lots of attention

Prediction Under the Relevant Loss Function

Prediction is Key in an Evidence-Based Macro-Finance

History: $\{y_t\}_{t=1}^T$

Realization and prediction: y_{T+h} , $\hat{y}_{T+h,T}$

Error:
$$e_{T+h,T} = y_{T+h} - \hat{y}_{T+h,T}$$

Loss: $L(e_{T+h,T})$

Accuracy comparison via expected loss: $E(L(e_{T+h,T}))$

What is the Relevant Loss Function, $L(e_{T+h,T})$?

What is the horizon, h? Short term? Long term?

– Doshi et al. (2015) (this paper)

What is the loss function L? $L(e) = e^2$? L(e) = |e|?

- Diebold and Shin (2015),

"Assessing Point Forecast Accuracy by Stochastic Error Distance"

Estimation Under the Relevant Loss Function: Shines in Principle

Correct specification:

- We learn the truth asymptotically

- It is best for all purposes

Incorrect specification:

- We never learn the truth, even asymptotically Instead we learn a "best approximation," induced by *L*

– MLE effectively ties our hands and picks L

- Instead, think hard about the relevant loss function

– Best approximation for one purpose generally very different from (and not implied by) best approximation for another purpose e.g., mis-specified AR(1): $\hat{\rho}^{10} \neq \widehat{\rho^{10}}$, even as $T \to \infty$

Estimation Under the Relevant Multi-Step Loss Function: Flops in Practice

Of course everyone knows Weiss (1996, J. Applied Econometrics)

But there's a "file drawer problem"

Marcellino-Stock-Watson (2006, *Journal of Econometrics*) is very clearly negative and not cited ("A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series")

The Yield Curve Model Used for Prediction

Successful Time-Series Prediction Requires Parsimony

- Selection

- Bayesian shrinkage

– Lasso

"The Parsimony Principle"

For prediction, "maximally-flexible" models are not appealing

An Appealing Predictive Model

Arbitrage-Free Nelson-Siegel (AFNS) (Christensen et al., 2011, *Journal of Econometrics*)

 $y_t = \Lambda f_t + \varepsilon_t$ $f_t = \Phi f_{t-1} + \eta_t$

- Three (latent) factors; provably level, slope, curvature

- Factors are latent but estimation is trivial and reliable

- Easily accommodates the zero lower bound, non-spanning, etc.

Structure placed on factor loadings (A matrix)
[Equivalently, structure on Duffie-Kan state-transition dynamics]
[Equivalently, structure on maximally-flexible A₀(3)]

– Joslin et al. (2011, Review of Financial Studies) test the restrictions and find $p \approx 1/2$

Yield Curve Curvature

???

In Conclusion: What I'd Like to See

- 1-step vs. h-step estimation

- Squared-error vs. absolute-error loss

- AFNS $A_0(3)$ vs. JSZ maximally-flexible $A_0(3)$ (and drop the latent-state maximally-flexible affine models)

 Robustness to sample start date, sample end date, in-sample / out-of-sample split, estimation method, etc.

- Progress in understanding curvature

