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1 Introduction

What drives real interest rates? In recent years, this question has received renewed attention be-

cause of unusually low interest rates across the developed world. A potentially important source

of variation in the real interest rate is the precautionary savings motive, which may vary due

to changes in uncertainty faced by investors or due to changes in investors’ aversion to uncer-

tainty.Variation in the precautionary savings motive has significant implications for both financial

markets and real investment (e.g. Hall (2016), Cochrane (2016)). In this paper, we provide new

evidence from the cross-section of stocks that the precautionary savings channel has historically

played a major role in driving real interest rates. Moreover, we provide evidence that variation in

aversion to uncertainty is a central reason that the economy’s desire for precautionary savings is

itself moving around.

Understanding what drives variation in the real rate - a key asset price for consumption, invest-

ment, and savings decisions - is fundamental to finance and macroeconomics. The precautionary

savings motive, in turn, is important for understanding the origins of business cycles, the effective-

ness of conventional and unconventional monetary policy, and firms’ cash holdings.1 Measuring

variation in the precautionary savings motive is a challenge. The standard approach relies on esti-

mating volatilities of income or consumption and relating them to investment and savings decisions

(e.g. Carroll and Samwick (1998); Lusardi (1998); Banks et al. (2001); Parker and Preston (2005)).

Our key empirical innovation is to use asset prices – specifically the cross section of stock

market valuation ratios – to shed light on the strength of the precautionary savings motive over

time. Relying on asset prices is advantageous because they automatically aggregate over different

agents in the economy and are available at a much higher frequency than income or consumption.

Asset prices are also unique in that they allow us to estimate investors’ willingness to pay to avoid

uncertainty at a given point in time.

We start from the intuition that if investors are differentially exposed to idiosyncratic shocks,

1See, e.g., Bloom (2009); Bloom et al. (2014); Cochrane (2016); Laubach and Williams (2003); McKay, Nakamura,
and Steinsson (2016); Holston, Laubach, and Williams (2016); Riddick and Whited (2009); Duchin et al. (2016).
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for instance due to market segmentation among professional investors or households’ undiversi-

fiable labor income risk, high aversion to uncertainty and strong precautionary savings motives

should drive down valuations for high-volatility relative to low-volatility stocks. Building on this

intuition, we use the price of volatile stocks (henceforth “PV St”) relative to low-volatility stocks,

defined as the book-to-market ratio of low-volatility stocks minus the book-to-market ratio of high-

volatility stocks, as our key proxy for precautionary savings. Intuitively, an increase in precaution-

ary motives means that investors should be investors less willing to hold volatile assets and increase

their demand for real risk-free bonds. This intuition suggests that if investors’ demand for precau-

tionary savings is an important driver of the real rate, we expect the real rate to move in the same

direction as PV St , and PV St should explain substantial time-variation in the real rate.

We begin by establishing several novel empirical facts about the relationship between real

rates and the cross section of stocks. First, we show that PV St is strongly correlated with the

real rate, measured as the 1-year Treasury bill rate net of survey expectations of 1-year inflation.

Put differently, a low risk-free rate typically coincides with low prices for high-volatility stocks

compared to low-volatility stocks, as would be the case if aversion to uncertainty were a major

driver of risk-free bond valuations. The relationship is robust in both levels and changes and is

strongly economically significant. The headline result of the paper is that PV St explains 44% of

the variation in the real rate from 1973 to 2015.

Our emphasis on the cross section is important, as the valuation of the aggregate stock market

has little explanatory power for the real rate. This indicates that PV St is not simply another proxy

for risk aversion to aggregate market fluctuations. Our particular focus on equity volatility is also

critical. Real rate variation is not explained by valuation-ratio spreads generated from sorting

stocks based on size, value, leverage, duration of cash flows, cash flow beta or CAPM beta - all

characteristics that are known to describe the cross section of stock returns.2 The relation between

the real rate and PV St is robust to whether we sort by stock return volatility over the past two

months or past two years, indicating that results are not driven by stocks quickly rotating in and

2The relative valuation of small and big stocks does seem to possess some explanatory power but is subsumed by
PV St .
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out of high- and low-volatility portfolios. Furthermore, the ability of the PV St to explain real rate

variation remains after we account for changes in macroeconomic uncertainty (e.g., total factor

productivity volatility), the business cycle, and inflation.

We then delve deeper into what drives the relationship between the real rate and PV St . Standard

present value identities point to two possible explanations. Because it is a valuation ratio, changes

in PV St must reflect either differential changes in expected cash flow growth or differential changes

in expected returns between low- and high-volatility stocks. In other words, the real rate may

correlate with PV St because it loads on factors that drive expected cash flow growth or factors that

determine expected returns. The data points to expected returns, as the real rate forecasts future

returns on a portfolio that is long low volatility stocks and short high volatility stocks, but does

not forecast ROE for the same low-minus-high volatility portfolio. These findings imply that the

factors driving expected returns on volatility-sorted portfolios also drive real rate variation.

Taken together, these pieces of evidence paint a clear picture. The book-to-market spread

between low and high volatility stocks captures the compensation investors demand for bearing

uncertainty, and thus their demand for precautionary savings. In turn, the relationship between

PV St and the real interest rate implies that variation in precautionary savings is a significant driver

of movements in the real rate.

We next explore why investor compensation for bearing uncertainty varies over time. Changes

in expected returns must reflect either changing investor aversion to volatility or changing quanti-

ties of volatility. We look for evidence that the real rate is correlated with observable quantities of

risk and find little. Real rates are not contemporaneously correlated with the realized return volatil-

ity of the low-minus-high volatility stock portfolio, nor the realized volatility of the aggregate stock

market. Furthermore, real rates do not forecast realized volatility of the low-minus-high volatil-

ity stock portfolio or the realized volatility of the aggregate stock market. Finally, the forecasting

power of the real rate for returns on the long-short portfolio sorted on volatility is robust to control-

ling for volatility itself. It is hard to rule out comovement between real rates and hard-to-observe

components of volatility. However, these results suggest that variation in the precautionary savings
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motive, and hence variation in the real rate, is driven by changing investor aversion to volatility

rather than changing quantities of volatility. To be clear, the quantity of volatility certainly varies

through time in a predictable way. However, the data does not provide a strong indication that this

variation drives PV St or the real interest rate.

The relation between precautionary savings and the real interest rate has important implica-

tions for monetary policy. In a standard New Keynesian framework, the central bank optimally

adjusts interest rates to fully accommodate shocks to the natural real rate – or the interest rate con-

sistent with output at its natural rate and stable inflation – and monetary policy tightness should

be assessed relative to the natural real rate (Clarida et al., 1999). The link between precaution-

ary savings motives and the real interest rate depends only on the investor’s Euler equation and

is hence independent of any price-setting frictions. If the relation between the real rate and time-

varying precautionary savings motives indeed reflects time-variation in the natural real rate, as this

intuition would suggest, output and inflation should respond to precautionary savings shocks very

differently than to independent real rate shocks. Impulse response functions following the recur-

sive identification scheme of Bernanke and Mihov (1998) corroborate this prediction in the data,

supporting the notion that it is important to account for precautionary savings demand in assessing

monetary policy.

Finally, we provide a highly stylized model consistent with our empirical results. In the model,

portfolio volatility – not beta — is the proper measure of risk because markets are segmented and

investors are imperfectly diversified. We think of this assumption as either representing under-

diversified households, consistent with employees’ bias towards their own employer’s stock in

401(k) plans (Benartzi (2001)), or as capturing segmented institutional investors who take con-

centrated positions in individual stocks (Shleifer and Vishny (1997); Gromb and Vayanos (2010);

Cremers and Petajisto (2009); Kacperczyk et al. (2005); Agarwal et al. (2013)). Investors require

time-varying risk premia, which we model as arising from slowly-moving habit (Campbell and

Cochrane (1999); Menzly et al. (2004)), generating volatile and predictable stock returns as in

the data. Investors are borrowing-constrained, so the real risk-free rate is determined by whoever
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values the risk-free asset most highly (Miller (1977)). Marginal bond investors are typically in-

vestors with highly uncertain consumption streams and strong time-varying precautionary savings

motives. A shock to high-volatility investors’ risk aversion raises risk premia and drives down

prices of high-volatility stocks relative to low volatility stocks. Simultaneously, this increase in

risk aversion increases the precautionary savings motive of marginal savers, driving down the risk-

free rate. Book-to-market ratios and expected excess returns for low-minus-high-volatility stocks

hence fall at the same time as the risk-free rate. Market segmentation between high- and low-vol

stock investors implies that only a small fraction of stock market investors are marginal in the bond

market. As a result, the risk-free rate is close to uncorrelated with the aggregate book-to-market

ratio, as in the data. In a calibrated version of the model, the relationships between the real risk-free

rate, PV St , and future low-minus-high-volatility equity excess returns are quantitatively consistent

with the data. We consider the model illustrative and conclude by discussing several alternative

models that are consistent with the channel favored by our empirical evidence.

Our paper is related to several strands of the literature. On the asset pricing side, it contributes

to the literature on the pricing of idiosyncratic risk in the stock market (Ang et al. (2006a, 2009);

Johnson (2004); Fu (2009); Stambaugh et al. (2015); Hou and Loh (2016); Herskovic et al. (2016)).

While this literature has focused on the average returns on low-volatility stocks over high-volatility

stocks, we contribute by studying how the valuation of low-minus-high volatility stocks varies over

time. The relation between risk premia in bonds and stocks has been a long-standing question in

financial economics (Fama and French, 1993; Koijen et al., 2010; Baker and Wurgler, 2012) and

we contribute by showing that the pricing of volatility in the cross-section of stocks can help

understand fundamental drivers of the real risk-free rate. The model most closely related ours is

Herskovic et al. (2016), where idiosyncratic firm-level shocks matter for households with cross-

sectional asset pricing implications. However, Herskovic et al. (2016) focus on a different cross-

section of stocks, sorting stocks by their exposure to the common factor driving idiosyncratic

volatility, and study how this exposure is priced in the cross section of stocks. On the other hand,

our focus is on how the relative valuation of high- and low-volatility stocks connect to real interest
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rates. Indeed, in their model the correlation between the risk-free rate and the model equivalent

of PV St takes the opposite sign of what we find.3 Rationalizing our findings therefore requires a

different pricing mechanism, which we argue can be accomplished with market segmentation and

time-varying attitudes towards volatility.

This paper also contributes to a recent literature in macroeconomics that seeks to estimate the

time-varying natural rate of interest (Laubach and Williams (2003); Cúrdia et al. (2015)), that uses

either long-term historical data or dynamic stochastic equilibrium models. Our findings emphasize

that time-varying precautionary savings play an important role in driving investors’ demand for

savings and are consistent with McKay et al. (2016), who argue that consumers’ precautionary

savings motive helps explain why forward guidance by central banks has been less effective in

stimulating consumption and spending than standard New Keynesian models might suggest, and

with a recent corporate finance literature that attributes high recent corporate cash holdings to a

precautionary savings motive (Riddick and Whited (2009); Duchin et al. (2016)). A closely related

paper is Hartzmark (2016), who estimates changes in expected macroeconomic volatility to argue

that precautionary savings is an important driver of real interest rates. In contrast, our approach pins

down variation in the precautionary savings motive by using information from the cross section of

stocks. Using a stock market based measure of precautionary savings, we contribute over previous

findings by showing that time-varying demand for precautionary savings is not just a result of

time-varying volatility, but that the time-varying price of volatility is important for understanding

the natural real rate of interest.4

The remainder of this paper is organized as follows. Section 2 describes the data and portfolio

construction. Section 3 presents the main empirical results. Section 4 explores monetary policy

3In their model, a positive shock to idiosyncratic volatility drives down the risk-free rate but drives up the price of
high-volatility stocks relative to low-volatility stocks due to a convexity effect. Empirically, we also find little evidence
that their common idiosyncratic volatility factor is correlated with the real rate.

4In contrast to Hartzmark (2016), we do not find a significant relation between variation in volatility itself and
the real rate but instead provide evidence that the pricing of volatility has changed over time. While this might at
first appear in contrast with Hartzmark (2016), we note that our empirical sample is substantively different. We
estimate precautionary savings during normal business-cycle fluctuations, while Hartzmark (2016) includes data from
the 1930s, when both interest rates and uncertainty experienced very large swings. We can therefore reconcile the
results in this paper with Hartzmark (2016) if precautionary savings and the quantity of volatility are unrelated during
normal times, but move together during rare episodes of extreme economic fluctuations.

6



implications. Section 5 describes the model, shows that it can replicate the empirical findings, and

discusses alternative interpretations. Finally, Section 6 concludes.

2 Data

We construct a quarterly data set running from 1973 to 2015. We include all U.S. common equity in

the CRSP-COMPUSTAT merged data set that is traded on NYSE, AMEX, or NASDAQ exchanges.

We provide full details of all of the data used in the paper in a separate Data Appendix. Here, we

briefly describe the construction of some of our key variables.

2.1 Construction of Key Variables

Valuation Ratios

The valuation ratios used in the paper derive from the CRSP-COMPUSTAT merged database. At

the end of each quarter and for each individual stock, we form book-to-market ratios. The value

of book equity comes from COMPUSTAT Quarterly and is defined following Fama and French

(1993). We assume that accounting information for each firm is known with a one-quarter lag.

At the end of each quarter, we use the trailing six-month average of market capitalization when

computing the book-to-market ratio of a given firm. This smooths out any short-term fluctuations

in market value. We have experimented with many variants on the construction of book-to-market,

and our results are not sensitive to these choices.

Volatility-Sorted Portfolio Construction

At the end of each quarter, we use daily CRSP stock data from from the previous two months to

compute equity volatility. We exclude firms that do not have at least 20 observations over this

time frame. This approach mirrors the construction of variance-sorted portfolios on Ken French’s
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website. We compute each firm’s volatility using ex-dividend firm returns.5

At the end of each quarter, we sort firms into quintiles based on their volatility. At any given

point in time, the valuation ratio for a quintile is simply the equal-weighted average of the valuation

ratios of stocks in that quintile. One of the key variables in our empirical analysis is PV St , the

difference between the average book-to-market ratio of stocks in the lowest quintile of volatility

and the average book-to-market ratio of stocks in the highest quintile of volatility. Again, PV St

stands for the “price of volatile stocks”, as PV St is high when high-volatility stocks have high

market valuations. Quarterly realized returns in a given quintile are computed in an analogous

fashion, aggregated up using monthly data from CRSP.

The Real Rate

The real rate is the one-year Treasury bill rate net of one-year survey expectations of the inflation

(the GDP deflator) from the Survey of Professional Forecasters. We choose a short maturity interest

rate, because at this horizon, inflation risk is small, and inflation risk premia are unlikely to affect

our measure of the risk-free rate. In the Online Appendix, we conduct formal unit root tests of

the real rate and find that it is trend stationary. Thus, for our main analysis, we use a detrended

version of the real rate to ensure our statistical analysis is well-behaved. Detrending the real

rate throughout our analysis ensures that our results are not driven by secular changes in growth

expectations, which may be significant in explaining low-frequency movements in the natural real

rate (Laubach and Williams, 2003).6

2.2 Summary Statistics

Table 1 contains basic summary statistics on our volatility-sorted portfolios. The first thing to

notice is that, on average, PV St is negative; that is, low volatility stocks have lower book-to-market

5In earlier versions of the paper, we instead sorted stocks on idiosyncratic volatility as in Ang, Hodrick, Xing, and
Zhang (2006b). Our results are essentially unchanged when using idiosyncratic volatility, mainly because the total
volatility of an individual stock is dominated by idiosyncratic volatility (Herskovic et al. (2016))

6In a previous version of the paper, we used the real rate without detrending and all our results go through.
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ratios than high volatility stocks. However, as Fig. 1 shows, this masks considerable variation in

PV St . Indeed, the standard deviation of PV St is bigger in absolute value than its mean. This

variation is at the heart of our empirical work.

Returns on the low-minus-high volatility portfolio are themselves quite volatile, with an annu-

alized standard deviation of 29.95%. While high-volatility stocks in our sample have high book-

to-market ratios, the quintile of the most volatile stocks on average has excess returns that are 0.66

percentage points lower than for the lowest-volatility quintile. This is related to the well-known id-

iosyncratic volatility puzzle of Ang et al. (2006a) and Ang et al. (2009). A number of explanations

have been proposed in the literature, ranging from shorting constraints (Stambaugh et al. (2015)) to

the convexity of equity payoffs (Johnson (2004)). Those papers focus on the unconditional average

level of returns, whereas we focus on time-variation in low-minus-high volatility stock returns and

valuations.

The second-to-last row of Table 1 shows that high-volatility portfolios load onto the SMB

factor, consistent with highly-volatile stocks being smaller on average. Small stocks are more

likely to be traded by individuals and specialized institutions (Lee et al. (1991)), so this finding

supports the notion that markets for these stocks are segmented, exposing specialized investors to

both systematic and idiosyncratic shocks. In turn, market segmentation raises the possibility of

a link between volatility and investors’ desire for precautionary savings. This logic underlies our

interest in how the valuation of high volatility stocks varies through time.

3 Empirical Results

3.1 Valuation Ratios and the Real Rate

We begin by documenting the strong empirical relationship between the real rate and the book-

to-market spread between low and high volatility stocks. Specifically, we run regressions of the

form:

Real Ratet = a+b×PV St + εt , (1)
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where PV St is the difference in book-to-market valuations between low and high volatility stocks.

Because both the real rate and PV St spread are persistent, we compute standard errors in multiple

ways. Specifically, we compute both Hansen and Hodrick (1980) and Newey and West (1987)

standard errors using 12 lags and report the more conservative t-statistic. In the Online Appendix,

we also consider several other methods for dealing with the persistence of these variables (e.g.

maximum likelihood regressions with AR-GARCH errors). Our main conclusions are robust to

these alternative estimation techniques.

Column (1) of Table 2 shows a strong positive correlation between the real rate and PV St .

When market valuations are high, book-to-market ratios are low. Thus, PV St is high when the

price of high volatility stocks are large relative to low volatility stocks. Column (1) of Table 2

therefore indicates that the real rate tends to be high when investors favor high volatility stocks.

Conversely, the real rate tends to be low when investors are averse to high volatility stocks. This is

the first piece of suggestive evidence that PV St spread captures variation in precautionary savings

motives.

The magnitude of the effect is large in both economic and statistical terms. A one-standard

deviation increase in PV St is associated with about a 1.3 percentage point increase in the real rate.

As a point of reference, the standard deviation of the real rate is 1.9 percentage points. The R2

of the univariate regression is 44%, indicating that PV St explains a large fraction of variation in

the real rate. Fig. 2 makes this point visually, plotting the time series of the real rate against the

fitted value from regression in Eq. (1). The figure also shows that the regression is not driven

by outliers — PV St tracks all of the major variation in the real rate since 1970. Fig. 3 displays

the same evidence in a scatter plot. The relationship between the real rate and PV St is robust and

approximately linear throughout the distribution.

Column (2) of Table 2 shows that our focus on the cross section of stock valuations is important.

There is no relationship between the book-to-market ratio of the aggregate stock market and the

real rate. This is not just an issue of statistical precision; the economic magnitude of the point

estimate is much smaller as well: a one-standard deviation increase in the aggregate book-to-
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market ratio is associated with a 49 basis point increase in the real rate. In column (3) of Table

2, we show that the statistical significance and even the magnitude of the coefficient on PV St are

unchanged when controlling for the aggregate book-to-market ratio. We also control for variables

that are often thought to determine a monetary policy rule, namely GDP price deflator inflation and

the output gap from the Congressional Budget Office Clarida et al. (1999); Taylor (1993). While

the output gap enters with a positive coefficient, inflation enters with a slightly negative coefficient.

However, both coefficients on the output gap and inflation are statistically indistinguishable from

the traditional Taylor (1993) values of0.5. The main takeaway is that the relationship between the

real rate and PV St is stable throughout all of these regression specifications.

In Table 3, we rerun the same analysis in changes rather than levels. This helps to ensure

that our statistical inference is not distorted by the persistence of either the real rate or PV St . Be-

cause regression residuals may still be autocorrelated, we again compute both Hansen and Hodrick

(1980) and Newey and West (1987) standard errors using six lags and report the more conservative

t-statistic. Running regression (1) in differences yields very similar results to running it in levels.

As is clear from Table 3, changes in the real rate are strongly correlated with changes in PV St .

Moreover, the magnitudes and statistical significance of the point estimate on PV St are close to

what we observe in Table 2. In contrast, there is little relation between changes in the real rate and

changes in the aggregate book-to-market ratio. Overall, the evidence in Tables 2 and 3 indicate a

robust relationship - both in economic and statistical terms - between the real rate and PV St . This

is the central empirical finding of the paper, and as we show in later sections, these results stand up

to the inclusion of a battery of additional control variables and different regression specifications.

3.2 Alternative Cross-Sectional Sorts

We now explore alternative explanations for the empirical relationship between the real rate and

stock portfolios sorted on volatility. Specifically, we examine the possibility that volatility is sim-

ply correlated with another characteristic that is more important for explaining the real rate. We

sort stocks along a variety of dimensions and form book-to-market spreads based on the sorting
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variable. For instance, when examining size as a characteristic, we sort stocks in quintiles based

on their market capitalization and then compute the difference between the book-to-market ratio

of the smallest and the largest stocks. We then augment the regression in Eq. (1) by adding the

spread in book-to-market based on each sort. For additional robustness, we also run this analysis

in first-differences and 4-quarter differences.

The results are displayed in Table 4. To start, we recompute PVS using a two-year window

of volatility, as opposed to a two-month window. As row (2) shows, this variant of PVS is highly

correlated with the real rate. One might be concerned that our findings are driven by value stocks

rotating in and out of high-volatility and low-volatility portfolios. By computing volatility over a

long period, we ensure that our results are not driven by quickly changing portfolio compositions,

but instead by changes in valuations of stocks with a long history of being volatile. This distinction

will be relevant later when we argue that PVS moves around because of time-varying attitudes

towards risk, not time-varying quantities of risk.

In row (4), we relate the real rate to the spread in book-to-market sorting stocks based on the

expected duration of their cash flows. If low volatility stocks simply have higher duration cash

flows than high volatility stocks, then their valuations should rise relative to high volatility stocks

when real rates rise.7 This is one sense in which low volatility stocks may be more “bond-like”

than high volatility stocks (e.g., Baker and Wurgler (2012)).8 In this case, a mechanical duration

effect could explain our results in Table 2. To examine this possibility, we follow Weber (2016) and

construct the expected duration of cash flows for each firm in our data. We then sort stocks based

on this duration measure and calculate the spread in book-to-market between high and low duration

stocks. As row (1) shows, the relationship between rt and PVS appears robust to controlling for

7This is a particular version of the broader possibility that our results are driven by reverse causality. Our inter-
pretation is that both real rates and the relative valuations of low- and high-volatility stocks are responding to the
same factor, precautionary saving. Alternatively, it could be the case that changes in real rates are driving changes in
valuations. In addition to examining alternative cross-sectional sorts, we have examined this possibility by examining
monetary policy shocks. In untabulated results, we verify that the relationship between the real rate and PV St is un-
affected by controlling for monetary policy shocks, as identified by Romer and Romer (2004), Bernanke and Kuttner
(2005)), and McKay et al. (2016). This gives us some comfort that reverse causality is not driving our results.

8The alternative sense that low volatility stocks are more bond-like because they are less volatile and idiosyncratic
risk matters is exactly what we are trying to capture.
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the duration-based value spread .

Row (5) displays the same exercise after controlling for the valuations of high leverage versus

low leverage stocks. We define leverage as the book value of long-term debt divided by the market

value of equity. It seems natural to think that high leverage firms have high volatility, and since

these firms effectively are short bonds their equity may suffer disproportionately from a decrease

in the real rate. However, as row (5) shows, PVS is not driven out by the leveraged-based value

spread in any of the specifications.

In rows (6)-(9), we run horse races of PVS against spreads based on various measures of “beta.”

Row (6) constructs a value spread based on beta from the past two years of monthly returns. Row

(7) computes beta using the past ten years of semi-annual returns. Row (8) uses the past two

months of daily returns to compute beta, mimicking our construction of volatility. The regression

coefficient on PVS remains statistically significant at a 5% level in nearly all cases, and is signifi-

cant at a 10% level for all cases. Thus, it does not appear that our measure of volatility is simply

picking up on beta. Finally, row (9) runs a horse race against a spread based on the estimated beta

of each firm’s cash flows with respect to aggregate cash flows. Specifically, cash flow betas are

computed via rolling twelve quarter regressions of quarter-on-quarter EBITDA growth on quarter-

on-quarter national income growth. EBITDA is defined as the cumulative sum of operating income

before depreciation. We require a minimum of 80% of observations in a window to compute a cash

flow beta. If high volatility stocks have higher cash flow betas than low volatility stocks, then their

valuations should fall more when aggregate growth expectations are low. In this case, our results in

Table 2 could be explained by changes in aggregate growth expectations rather than change in the

precautionary savings motive. Contrary to this hypothesis, Row (9) shows that the book-to-market

based on cash flow betas does not drive out PVS.

In addition, we compare PVS to book-to-market spreads based on the popular Fama-French

sorting variables, size and value. The book-to-market spread between small and large stocks does

correlate with PVS, as indicated by the fact that the statistical significance of PVS is weakened in

some specifications. This is apparent in row (2) for the value-weighted version of PVS, as well as

13



in the horse races contained row (10). Still, the significance of PVS never drops below 10% when

including the size-based spread, and it is not surprising that the two correlate as it is well known

that smaller stocks have more volatility. Below, we also conduct double-sorts that demonstrate the

explanatory power of PVS is robust to controlling for size. Row (11) repeats the horse races of

PVS against the book-to-market spread between value and growth stocks. Once again, the effect

of PVS is robust in these horse races.

We also explore a complementary method of ruling out alternative explanations based on dou-

ble sorts. Specifically, we construct double sorts based on volatility and another characteristic Y.

We then assemble a Y-neutral version of PVS: the book-to-market spread from sorting stocks on

volatility within each tercile of characteristic Y. This spread measures the difference in valuations

of low volatility and high volatility stocks that have similar values of characteristic Y. In rows

(12)-(16) of Table 4, we show that these double sorted book-to-market spreads are still strongly

correlated with the real rate. Finally, our PVS measure might be simply capturing the value of in-

dustries that are particularly exposed to interest rate changes, like finance. To alleviate this concern,

we construct an industry-adjusted version of PVS. We first sort stocks into one of the forty-eight

Fama-French industries. Within each industry we compute the book-to-market spread between low

and high volatility stocks. The industry-adjusted PVS is then the average of these spreads across

all of the industry. Row (18) shows that this industry-adjusted spread still possesses significant

explanatory power for the real rate.

3.3 Returns on Volatility-Sorted Portfolios and the Real Rate

We next seek to understand what drives the correlation between the real rate and PV St . At any

point in time, PV St simply reflects differences in the valuation of high and low volatility stocks.

It is well known that valuation ratios must reflect either expected cash flow growth or expected

returns (Campbell and Shiller, 1988). Thus, the results in Tables 2 and 3 could be driven by growth

expectations if the cash flows of high volatility stocks are more sensitive to aggregate growth than

the cash flows of low volatility stocks. In this case, PV St may line up with the real rate because
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it is a good proxy for variation in expected aggregate growth. Alternatively, PV St may be driven

by changes in the expected returns of low volatility stocks, relative to high volatility stocks. In

this case, changes in the compensation investors’ demand for bearing uncertainty, and thus their

demand for precautionary savings, is one natural explanation for the observed correlation between

the real rate and PV St .

To disentangle these two possibilities, we run simple return forecasting regressions. Specifi-

cally, we forecast the return on a portfolio that is long low volatility stocks and short high volatility

stocks with either PV St or the real rate. Formally, we run:

Rt→t+k = a+b×Xt +ξt+k (2)

where Xt is either PV St or the real rate. Table 5 contains the results of this exercise. In Panel A, we

set k = 1 and forecast one-quarter ahead returns, while in Panel B we set k = 4 and forecast four-

quarter returns. For regressions with a one-quarter horizon, standard errors are computed using

both Newey and West (1987) and Hansen and Hodrick (1980) with five lags, and we report the

more conservative t-statistic of the two. For regression with four-quarter horizons, we use Hodrick

(1992) standard errors to be maximally conservative in dealing with overlapping returns.

Column (1) of Table 5 Panel A shows that PV St has strong forecasting power for returns on the

long-short portfolio. The economic magnitude of the relationship is also strong. A one-standard

deviation increase in the spread is associated with a 5.9 percentage point increase in returns on

the long-short portfolio. To put this in perspective, the quarterly standard deviation of the long-

short portfolio is 15 percent. Thus, it appears that much of the variation in PV St reflects variation

in expected returns, consistent with much of the empirical asset pricing literature (e.g., Cochrane

(2011)).

Column (2) indicates that this forecasting power remains once we control for the contempo-

raneous realizations of the Fama and French (1993) risk factors. That is, in regression (2), we

control for the realized values of the excess return on the aggregate stock market, HML, and SMB
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at time t + 1. The forecasting power of PV St survives the inclusion of these controls, suggesting

that we are not just picking up the power of PV St to forecast the Fama-French factors - our focus

on volatility sorted portfolios is important. However, the magnitude of the coefficient in column

(2) is smaller than that in column (1). This reflects the fact that both PV St and the real rate have

some forecasting power for excess returns of small stocks (SMB).

Column (3) of Table 5 Panel A makes the connection between the real rate and time-varying

expected returns on the volatility-sorted portfolio directly. It demonstrates that the real rate also

strongly forecasts returns on the long-short portfolio. When the real rate is high, low volatility

stocks tend to do well relative to high volatility stocks going forward. In contrast, a low real rate

means investors require a premium to hold high volatility stocks, as evidenced by the fact that

these stocks tend to do relatively well in the future. A one-standard deviation increase in the real

rate is associated with a 3.7 percentage point increase in returns on the long-short portfolio. Thus,

movements in the real rate forecast returns on the long-short portfolio nearly as well as movements

in PV St . This implies that the correlation between the real rate and PV St documented in Section

3.1 is largely driven by changes in expected returns, not changes in expected cash flow growth.

Column (4) shows that the relationship between the real rate and returns on the long-short

portfolio is weakened when we control for the Fama and French (1993) factors. This again reflects

the fact that returns on the long-short portfolio, the real rate, and returns on small stocks (SMB)

are correlated.

Panel B of Table 5 shows that we obtain similar results once we move to an annual horizon. The

magnitude of the forecasting power of the real rate is again comparable to the forecasting power

of PV St . Taken together, we interpret the forecasting evidence in Table 5 to mean that variation in

the expected return spread between high and low volatility stocks captures precautionary savings,

and in turn, is strongly correlated with the real interest rate.

In Table 6, we explore in more depth the relationship between the real rate and the Fama and

French (1993) factors. The table shows that the real rate and PV St have little forecasting power

for either the aggregate market excess return or value stocks (HML). Again, this highlights the
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importance of our focus on volatility sorts as a proxy for the strength of the precautionary savings

motive. Neither the market excess return nor cross sectional sorts based on valuations (HML) are

strongly related to the real rate. In contrast, there is some evidence that the real rate is related to

the return spread between small and large market capitalization stocks (SMB). Intuitively, small

stocks tend to have high volatility, so the two sorts are somewhat correlated. However, based on

the horse-races and double-sorts in Table 4, the overall evidence suggests that volatility, not size,

is the main driver of our results.

Table 7 further supports the evidence that the relation between the real rate and PV S is driven

by discount rates and not cash flows. Table 7 shows that neither PV S nor the real rate forecast ROE

for low- versus high-volatility stocks.

3.4 Prices versus Quantities of Risk

We next dig deeper into the relationship between the real rate and returns on the long-short portfolio

sorted on volatility. Changes in expected returns must reflect either changing prices of risk or

changing quantities of risk. In other words, aversion to volatility can be moving around over time

or the amount of volatility can be moving around over time. In this section, we look for evidence

that the real rate is correlated with observable quantities of volatility. Finding no such evidence in a

variety of different tests, our evidence supports the view that the relationship between the real rate

and returns on the long-short portfolio sorted on volatility is likely driven by changing aversion to

volatility.

We begin by showing that the relationship between the real rate and the book-to-market spread

is unaffected by controlling for various measures of contemporaneous volatility. Specifically, we

run the regression in Eq. (1) and add controls for contemporaneous realized volatility. Our first

volatility control is the spread in average realized return volatilities between our low volatility

portfolio and our high volatility portfolio in quarter t. We compute this variable using daily data.

To control for macroeconomic volatility, we include the volatility of TFP growth implied from a
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GARCH model as in Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012).9 In addition,

we control for the realized within-quarter volatility of the Fama and French (1993), computed using

daily data.

The results are presented in Table 8. Columns (1) to (3) contain the results in levels, while

columns (4) to (6) use four-quarter changes. Column (1) shows that there is no relationship be-

tween the real rate and the relative realized volatility of high and low volatility stocks. This sug-

gests that it is unlikely that the relationship we document between the real rate and PV St is driven

by changes in the volatilities of our portfolios. Column (2) shows that there is some evidence that

the real rate is related to volatility of the aggregate market and volatility of the SMB portfolio.10

However, this relationship disappears in column (3) when we include PV St . In columns (4) to (6),

we obtain similar results when running the analysis in four-quarter changes. The only variable

robustly correlated with the real rate is PV St , whereas the volatility variables have little impact.

The quantity of risk also has no ability to forecast excess returns on the long-short portfolio

of volatility sorted stocks. In Table 9, we re-run the forecasting regression from Eq. (2) and add

controls for realized volatility in quarter t. That is, we forecast returns from one-year ahead returns

using the current real rate and the current level of volatility.11

Column (1) shows that the spread in average realized return volatilities between our low volatil-

ity portfolio and our high volatility portfolio in quarter t has no forecasting power for returns. Col-

umn (2) shows the forecasting power of the real rate remains unchanged when we add this spread in

average volatility as a control. In the remaining columns, we run horse races between the real rate

and other measures of the quantity of risk: the volatility of TFP growth, the volatility of the market

excess return, and the volatilities of the Fama-French factors. None of these measures impacts the

forecasting power of the real rate for excess returns on the long-short portfolio of volatility sorted

9See Table A.1 of the Online Appendix for further discussion of the estimation of TFP volatility.
10The opposite signs of aggregate market volatility and SMB volatility are due to the fact that the two variables have

an 82% correlation. In untabulated results, where we run univariate regressions of the real rate on either aggregate
market volatility or SMB volatility, we find no statistically or economically significant relationship.

11In untabulated results, we look at the level of realized volatility over the forecast period, t +1 to t +4, as well as
increases in realized volatility from t to t +4. None of these permutations affect the forecasting power of the real rate
for returns on the long-short portfolio.
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stocks. Column (7) shows a kitchen sink regression where we include all of the quantity of risk

measures simultaneously. There is some reduction in the magnitude and statistical significance

of the real rate’s forecasting power for returns. However, given the results of the univariate horse

races in Columns (2) though (6), this likely simply reflects the limited size of the sample relative

to the number of covariates in the regression.

Lastly, one might think that PV St is related to expectations of future volatility, but not neces-

sarily to contemporaneous or lagged volatility. In Table 10, we try to forecast volatility directly

using either PV St or the real rate. Formally, we run:

Volt+1 = a+b×Xt + εt+1, (3)

where Xt is either PV St (Panel A) or the real rate (Panel B). Each column examines a different

volatility measure, as specified by the column header. For instance, column (1) examines the spread

in average realized return volatilities between our low volatility portfolio and our high volatility

portfolio, while column (2) examines realized TFP volatility. PV St does not forecast any of the

volatility variables we examine in Panel A. Similarly, in Panel B, we find that the real rate does not

forecast any of the volatility measures. There is some limited evidence that PV St forecasts market

volatility in Panel A, but this evidence is not robust across to using the real rate instead.

Overall, the results presented in Tables 8, 9, and 10 suggest that our results are not driven by

changes in the quantity of risk. We cannot directly test for time variation in the price of risk.

However, our results are most consistent with the idea that the real rate is strongly correlated with

time variation in investor aversion to volatility, not time variation in the quantity of volatility.

4 Implications for Monetary Policy

The natural rate of interest – or the real interest rate consistent with output at its natural rate and

stable inflation – plays a key role in the design of optimal monetary policy (Woodford, 2003). In

a standard New Keynesian framework, it is optimal for the central bank to adjust interest rates to
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fully accommodate shocks to the natural real rate, but to partly counteract fluctuations due to cost-

push shocks that drive up inflation and drive down output, such as wage-markup shocks (Clarida

et al., 1999). The link between precautionary savings motives and the real interest rate depends

only on the investor’s Euler equation and is hence independent of any price-setting frictions. We

therefore expect the relation between the real rate and time-varying precautionary savings motives

to reflect time-variation in the natural real rate. This logic implies that whether monetary policy

is tight or loose should be evaluated relative to a natural real rate that accounts for precautionary

savings. If precautionary savings shocks drive the natural real rate, they should have very dif-

ferent implications for output and inflation than independent real rate shocks. This section uses

impulse responses to document such differences, thereby providing corroborating evidence that

precautionary savings motives are an important component for assessing the stance of monetary

policy.

In the simplest New Keynesian model, such as Clarida et al. (1999), output equals consumption,

so the Euler equation can be written as (up to a constant)

xt = Etxt+1−ψ (rt− rn
t ) . (4)

Here, xt is the output gap between current output and its natural rate, rt is the actual real rate,

rn
t is the natural real rate, and ψ is the elasticity of intertemporal substitution.

Moreover, in a New Keynesian model, the output gap is linked to inflation through the Phillips

curve, such as a forward-looking Phillips curve that arises from Calvo (1983) staggered price

setting:

πt = βEtπt+1 +κxt . (5)

Here, κ > 0 depends on the frequency of firms’ price setting and the degree of firms’ com-

plementarity in setting product prices. In such a framework, monetary policy can affect the real

interest rate at least in the short-term, because it can control the nominal rate and prices are sticky.
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This simple logic suggests that we would expect very different effects from shocks to rt versus

shocks to the natural real rate rn
t . The Euler equation (4) and Phillips Curve (5) suggest that an

unanticipated increase in the real rate rt while holding rn
t constant, should lead to decreases in

both output and inflation. On the other hand, the effect of a shock to the natural real rate depends

crucially on the monetary policy response. If the central bank fully adjusts interest rates in re-

sponse to a natural rate shock, as optimal policy would require, output and inflation should not

respond at all to such a shock. However, if the central bank does not adjust interest rates fully and

contemporaneously, a positive shock to rn
t may even lead to increases in output and inflation.

4.1 VAR Framework

We estimate impulse responses and test whether the real rate responds contemporaneously to pre-

cautionary savings motives, following the identification strategy in Bernanke and Mihov (1998).

The question of how to best identify macroeconomic effects of monetary policy shocks is by no

means settled. We therefore estimate a VAR that is as simple and transparent as possible, while

following a common set of recursiveness assumptions in the spirit of Bernanke and Mihov (1998)

and Christiano et al. (1999). The key requirements for our identification strategy are that the out-

put gap and inflation respond to the monetary policy variables - precautionary savings demand for

bonds and the real rate – with a lag. While precautionary savings demand is assumed to respond to

real rate innovations only with a lag, the real rate is permitted to respond to macroeconomic vari-

ables and precautionary savings motives contemporaneously, consistent with the Federal Reserve

actively monitoring macroeconomic and financial variables.

We use the following strategy for measuring dynamic effects of monetary policy shocks

Yt = B1Yt−1 +C1Pt−1 +Ayvy,t (6)

Pt =
1

∑
i=0

DiYt−i +
1

∑
i=0

GiPt−i +Apvp,t . (7)

Here, Yt is a vector of quarterly non-policy variables, consisting of the output gap and inflation. Pt
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is a vector of policy variables consisting of PV St and the detrended real rate. Equation (6) describes

a set of structural relationships in the economy, where macroeconomic variables depend on lagged

values of macroeconomic and policy variables. Equation (7) describes the stance of monetary pol-

icy conditional on contemporaneous macroeconomic variables. The vector of shocks vp contains

the monetary policy disturbance vMP. By analogy to the treatment of the money demand shock

in Bernanke and Mihov (1998), we allow vp to contain a precautionary savings demand shock for

the risk-free asset, proxied for by our measure of precautionary savings demand from the stock

market.

We can re-write the system (6)-(7) in VAR form with only lagged variables on the right-hand-

side and estimate by OLS. Let up = Apvp. be the VAR residuals in the policy block that are orthog-

onal to the VAR residuals in the non-policy block. To recover the structural shocks, including vMP,

Bernanke and Mihov (1998) require a specific model relating the VAR residuals and the structural

shocks in the policy block. Taking the real rate as the policy instrument and the PV St as an indica-

tor of demand for the risk-free bond, we assume that the market for the risk-free bond is described

by the following set of equations:

uPV S = αvMP + vPV S, (8)

urr = φvPV S + vMP (9)

Equation (8) is the innovation in investors’ precautionary savings demand for bonds. It states that

the demand for low-voatility assets depends on monetary policy shocks vMP and the structural

innovation vPV S. Equation (9) describes central bank behavior. We assume that the Fed observes

and responds to precautionary savings shocks. The model described by equations (8) and (9) has

four unknown parameters: α,φand the two structural shock variances,σ2
PV S, and σ2

MP.These need

to be estimated from three variances and covariances. We therefore need to impose additional

restrictions and estimate two versions of (8) through (9), one of which is a just-identified model

and the other is an over-identified model.
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Just-Identified Model (α = 0). Similarly to Bernanke and Mihov (1998), we consider the re-

striction that precautionary savings demand does not respond to monetary policy in the short run

(α = 0). This identification assumption is plausible if investors’ risk preferences shift gradually

over time and do not jump in response to monetary policy actions. We make this assumption pri-

marily for identification purposes. However, the plausibility of this assumption is corroborated

by the fact that PV S changes are not correlated with Romer and Romer (1989)’s monetary policy

innovations extracted from the Fed’s records.

Constant Intercept. The assumption that the central bank follows a Taylor (1993)-type rule

with constant intercept corresponds to the parametric assumption φ = 0, that is the central bank

does not allow precautionary savings shocks to enter into the real rate contemporaneously. The

monetary policy shock implied by this restriction is vMP = urr, i.e., the policy shock is simply the

innovation to the real rate. To ensure that this model is nested by the just-identified model and test

over-identifying restrictions, we continue to assume that α = 0.

4.2 Estimation

We estimate the the model using a two-step efficient GMM procedure as in Bernanke and Mihov

(1998). The first step is an equation-by-equation OLS estimation of the VAR coefficients. The

second step consists of matching the second moments to the covariance matrix of the policy block

VAR residuals. We apply GMM with the following three moments:

E
[
u2

PV S−σ
2
PV S
]

= 0, (10)

E [uPV Surr−φσPV SσMP] = 0, (11)

E
[
u2

rr−φσ
2
PV S−σ

2
MP
]

= 0. (12)

We estimate the parameters φ , σPV S and σMP by two-step GMM using a Bartlett kernel with two

lags and the initial weighting matrix equal to the identity.

The hypothesis that the real rate does not react to PV S contemporaneously (φ = 0) is clearly
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rejected both by a Wald test and a Hansen J-test. For the unrestricted model, we estimate a point

estimate for φ = 1.756 with a standard error of 0.611. The over-identifying restriction of the

Constant Intercept model is rejected at any conventional significance level with a p-value of 0.006.

Combined, these test further corroborate the evidence that demand for precautionary savings has an

important effect on the real rate, even on a quarterly innovation basis. The estimated instantaneous

reaction coefficient of the real rate to PV S is φ = 1.756 is about half the estimated coefficient in

our baseline levels regression in Table 2, but similar to the estimated coefficient in changes in Table

3, which is potentially consistent with slow monetary policy adjustment to precautionary savings

shocks. Parameter estimates and p-values are similar if we restrict the sample to the pre-crisis

period.

4.3 Impulse Response Functions

Figure 4 displays impulse responses of output and inflation to one-standard-deviation increases

in vMP and vPV S for the just-identified model. Dashed lines indicate 95% confidence bands. The

first column displays responses to a monetary policy shock. A positive shock vMP corresponds

to an unanticipated monetary policy tightening by the central bank, increasing the real rate. Re-

assuringly, our simple VAR identification scheme produces results that are consistent with a long

literature on monetary policy shocks, summarized in Christiano et al. (1999). Following a con-

tractionary monetary policy shock, output decreases immediately, reaching its trough four quarters

after the shock period. Inflation also declines in response to a contractionary monetary policy

shock, but the response is significantly slower and reaches its trough around seven quarters after

the shock. Interestingly, the response of PV St to monetary policy shocks does not differ signif-

icantly from zero, consistent with the interpretation that shocks to preferences for precautionary

savings drive the real rate, and not vice versa.

Contrasting columns (1) and (2) of Figure 4 shows that a positive shock to vPV S leads to signifi-

cantly different responses in output and inflation, despite being associated with a similar increase in

the real rate as the monetary policy shock. The underlying shock in column (2) is a positive shock
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to the price of volatile stocks, which corresponds to reduction in the precautionary savings motive

and a negative bond bond demand shock, so the real rate increases. We would expect that such a

shock has very different effects on output and inflation, if precautionary savings shocks capture a

component of the real rate that is very different from monetary policy innovations. The temporary

boom in output and inflation following a PV S shock is consistent with the central bank reacting

to PV S shocks slowly over time, with only a partial adjustment within the quarter. Intuitively,

the evidence is consistent with a positive uPV S shock decreasing demand for precautionary sav-

ings, that is only partially reflected in bond prices, inducing investors to increase contemporaneous

consumption and leading to a temporary output boom.

5 Modeling Framework

This section presents a deliberately stylized model to rationalize the empirical findings. Idiosyn-

cratic risk is priced in the model, because markets are segmented and investors are borrowing-

constrained. Broadly interpreted, we think of the segmented markets assumption as representing

households or professional investors who take concentrated bets in labor and financial markets.

While we do not explicitly model why arbitrageurs do not arbitrage away pricing differentials, it

is plausible that short-lived and risk-averse arbitrageurs would have limited arbitrage ability, espe-

cially for high-volatility stocks that typically have smaller market capitalization (Lee et al., 1991).

Alternatively, Merton (1987) argues that agents’ informational differences can drive segmentation

in the stock market. Furthermore, segmented stock markets are also consistent with long-standing

evidence of home or familiarity bias in individual stock holdings (see Barberis and Thaler (2003)

for an overview), which may be either due to superior information or a preference for familiarity.

5.1 Endowments and Preferences

To capture the difference between high-volatility and low-volatility stocks, we assume that the

economy consists of two Lucas trees, which are uncorrelated and differ only in terms of volatilities
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of the endowments. A share pH of stocks is of the high-volatility type and a share pL = 1− pH is

low-volatility. We use lower case letters to denote logs. Both stocks’ log dividends are distributed

i.i.d. around a common trend to ensure that the shares of both stocks in the economy are stationary:

cH,t = µt + εH,t , (13)

cL,t = µt + εL,t , (14) εL,t

εH,t

 iid∼ N

0,

 σ2
L 0

0 σ2
H


 . (15)

We assume that stock markets are segmented. Stock i is priced by agent of type i ∈ {H,L},

who receives an endowment consumption stream equal to ci,t . Assuming market segmentation

helps us explain the empirical results, because it implies that investor-employees cannot diversify

away idiosyncratic consumption risk, which hence generates a precautionary savings motive and is

priced into the corresponding stock. In addition, we assume external habit formation preferences

(Abel, 1990; Constantinides, 1990; Campbell and Cochrane, 1999; Menzly et al., 2004; Santos

and Veronesi, 2010; Wachter, 2006; Lettau and Wachter, 2011). This model element is key to

generating predictable stock returns, as documented in Section 3. Simultaneously, by generating

time-varying curvature of the utility function, habit formation preferences also imply that the desire

to hold the risk-free asset varies over time. This is the source of time-variation in the risk-free rate

in our model. Agent i maximizes the expected discounted sum of log consumption utility relative

to habit Xi,t :

Ui,t = Et

[
∞

∑
τ=t

β
τ log(Ci,τ −Xi,τ)

]
, i = H,L. (16)

We define type i surplus consumption and inverse surplus consumption ratios:

Si,t =
Ci,t−Xi,t

Ci,t
, (17)

Gi,t = S−1
i,t . (18)
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We build on the tractable habit dynamics of Menzly et al. (2004), which generates closed-form so-

lutions for both the risk-free rate and equity premia, by assuming that inverse surplus consumption

of agent i follows a process of the form:

Gi,t+1 = κḠ+(1−κ)Gi,t−α (Gi,t−λ )εi,t+1. (19)

Habit dynamics are defined implicitly via (17) through (19). The advantage of specification (19)

is that it generates closed-form solutions for asset prices, while capturing the essence of Campbell

and Cochrane (1999) habit formation.12 The key role of habit formation in our model is to generate

time-varying risk premia, while holding the quantity of risk constant. We view our empirical

findings as consistent with alternative models of time-varying risk premia, such as Bansal et al.

(2012), if sources of time-varying quantities of risk are hard to observe.

5.2 Equity Markets

Equities are priced by segmented investor clienteles, with investors of type H trading the high-

volatility stock and investors of type L trading the low volatility stock. We obtain closed-form

solutions for the price-dividend ratio of stock i:

Pi,t

Ci,t
= a+bSi,t , (20)

for positive constants a and b that are given in Online Appendix A. Analogously to Campbell and

Cochrane (1999), when agent i’s consumption receives a negative shock that lowers consumption

close to habit, surplus consumption Si,t is low. This raises the local coefficient of relative risk

aversion Gi,t , driving up risk premia on the risky asset traded by agents of type i.

Finally, we define book-to-market ratios as simply as possible. We assume that a fixed fraction

of assets are marked to market each year, so the book value represents an exponentially-weighted

12Santos and Veronesi (2010) show that if habit equals an exponentially-weighted moving average of past consump-
tion as in Constantinides (1990) and Detemple and Zapatero (1991), this gives rise to dynamics of the form (19) with
more complicated coefficients.
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moving average of past stock prices. The book-to-market ratio then is computed as

BMi,t =
Bi,t

Pi,t
, Bi,t = (1−ρ)

∞

∑
τ=1

ρ
τPi,t−τ . (21)

5.3 Bond Market

Different investors potentially have different valuations for real risk-free one-period bonds, which

are available in zero net supply. The real risk-free rate in the model is pinned down by assum-

ing that agents are borrowing-constrained, so the risk-free rate is bid down to the minimum of

investors’ indifference points. The risk-free rate takes the tractable form:

r f ,t = min
{

r f ,H,t ,r f ,L,t
}
, (22)

r f ,i,t = µ− logβ − σ2
i

2
− εi,t (23)

− log
(
(1−κ)+ασ

2
i +
(
κḠ−σ

2
i αλ

)
G−1

i,t

)
, i ∈ {H,L} . (24)

The risk-free rate at which investor type i is indifferent about investing in the bond market (24)

can either increase or decrease with surplus consumption, depending on whether σ2
i is greater or

smaller than the threshold κḠ
λα

. If σ2
i > κḠ

λα
, the risk-free rate increases with surplus consumption.

Intuitively, when surplus consumption is low, investors become more risk-averse over future en-

dowment shocks, inducing them to save for a riskier future. As a result, the risk-free rate declines

at the same time as surplus consumption. Alternatively, if σ2
i < κḠ

λα
, the risk-free rate is inversely

related to surplus consumption. This case captures a consumer who faces only little uncertainty

about his future consumption stream. Therefore, a decline in surplus consumption increases the

marginal utility of consumption and the desire to borrow. Since volatility for this consumer is low,

this effect is not offset by the consumer wanting to save for a riskier future. As a result, the investor

wants to borrow, driving up the risk-free rate when surplus consumption is low.13

13The intuition is similar to a standard endowment economy with i.i.d. log consumption growth and power utility
with risk aversion γ , where a decrease in surplus consumption St acts similarly to an increase in risk aversion. In
the standard endowment economy, the consumption Euler equation is r f ,t = − logβ + γµ − γ2

2 σ2. If the endowment
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We assume that for high-volatility investors, the time-varying precautionary savings effect

dominates, while for low-volatility investors, the time-varying intertemporal substitution effect

dominates. In addition, we assume that on average, the low-volatility type’s time-varying intertem-

poral substitution effect balances the high-volatility type’s desire for precautionary savings:

pHσ
2
H + pLσ

2
L =

κḠ
λα

. (25)

Since high-volatility investors have a stronger precautionary savings motive, they tend to value

the risk-free bond more highly. Thus, they are typically the marginal investor in the bond market.

In fact, unless low-volatility investors expect exceptionally low consumption growth from this

period to the next, the risk-free asset is priced by high-volatility investors.14

5.4 Calibration

We calibrate the model to illustrate that the magnitudes of our empirical findings are within the

range of reasonable values. Calibration parameters are reported in Table 11. Most parameters are

set to standard values in the literature. We set the discount rate to 0.96, as in Menzly et al. (2004)

and the consumption growth rate to 0.03. We set λ = 10, corresponding to an upper bound for the

surplus consumption ratio of 0.1 as in Campbell and Cochrane (1999). The share of high-volatility

stocks is pH = 0.2, corresponding to the top quintile of stocks by volatility in the empirical anal-

ysis. We set the standard deviations of consumption volatility to σH = 0.02 and σL = 0.01, so

high-volatility stocks are subject to twice as much volatility as low-volatility stocks, matching the

empirical ratio of return standard deviations of high-volatility and low-volatility portfolios. Condi-

tional on these values, we pick the parameter α , which determines the volatility of marginal utility,

to match the empirical equity volatility of the aggregate stock market. Finally, we set the mean-

volatility σ2 is sufficiently small, the risk-free rate moves positively with utility curvature γ . However, if the endow-
ment volatility σ2 is large, an increase in utility curvature increases the desire for precautionary savings and leads to a
decrease in the risk-free rate.

14This follows from the observation that at εH,t = εL,t = 0 we have that r f ,t = r f ,H,t for any values GH,t ,GL,t ∈
[0,λ−1].
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reversion parameter κ to a small value 0.01 to maximize the persistence of the log price-dividend

ratio. We set the decay parameter for mark-to-market to 0.933, corresponding to a half-life of book

assets of 10 years, or a depreciation rate of 7%. Finally, we obtain the average inverse surplus con-

sumption ratio from condition (25).

Table 12 shows simulated model moments from 1000 simulations of length 36 years, corre-

sponding to our empirical sample size. Model moments are shown in bold if we cannot reject

the null hypothesis that both are equal at the 95% level. The model matches the equity premium,

equity volatility, and book-to-market ratio for the aggregate stock market. The aggregate book-

to-market ratio is persistent, but less persistent than in the data, despite the low value for κ , a

common problem in these types of habit formation models.15 The risk-free rate in the model is

low and comparably volatile to the data.

The third panel in Table 12 shows that in the model the book-to-market ratios and excess

returns of low-volatility stocks are lower than for high-volatility stocks. This might at first seem to

contrast with the well-known idiosyncratic volatility puzzle (Ang et al., 2006a, 2009), which finds

that low-volatility stocks have historically earned higher returns than high-volatility stocks. In our

calibrated model, however, it would not be unusual to observe a positive return comparable to that

in the data. In fact, 14.1% of our simulations generate low-minus-high volatility excess returns that

are as large as the observed data. In addition, a wide range of additional explanations offered in

the literature (Johnson, 2004; Fu, 2009; Stambaugh et al., 2015; Hou and Loh, 2016) may further

contribute to the high average excess returns on low-volatility stocks.

The bottom panel of Table 12 shows that the model can generate the empirical relation between

the risk-free rate and the cross section of equity valuations that we find in the data. Regressing the

risk-free rate on the aggregate book-to-market ratio yields a small slope coefficient. But regressing

the risk-free rate on the book-to-market spread between low- and high-volatility stocks yields a

15Due to the convexity inherent in the analytically convenient Menzly et al. (2004) specification of inverse surplus
consumption as a mean-reverting process, while stock market valuations are a function of surplus consumption, further
decreases in the mean-reversion parameter κ do not increase persistence of book-to-market ratios. Instead, we face a
tension in choosing the volatility of innovations to Gi,t , because more volatile innovations allow us to match the high
volatility of equity returns, but also exacerbate the convex relation between equity valuations and Gi,t , thereby driving
down the persistence of book-to-market ratios.
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strong positive coefficient. In addition, the risk-free rate forecasts excess returns on the low-minus-

high volatility equity portfolio with empirically reasonable magnitudes.

Intuitively, a decrease in high-volatility investors’ surplus consumption makes these investors

more risk averse, raising risk premia on high-volatility stocks relative to low-volatility stocks and

driving down the low-minus-high volatility book-to-market ratio. At the same time, an increase

in high-volatility investors’ risk aversion increases their demand for precautionary savings and

drives down the risk-free rate. This generates a positive relation between low-minus-high volatility

book-to-market and the risk-free rate, as in the data. In the model, time-varying discount rates

due to habit formation drive most of the variation in equity valuations, analogously to Campbell

and Cochrane (1999), so book-to-market forecasts stock returns. Since the risk-free rate is related

to the low-minus-high volatility book-to-market, it then also forecasts excess returns on the low-

minus-high volatility portfolio. Finally, the aggregate book-to-market ratio is largely driven by low

volatility investors, who represent the largest share of the market, while the risk-free rate is driven

by the surplus consumption ratio of high-volatility investors, who tend to be the marginal risk-free

bond investors. Thus, the model generates a low correlation between the aggregate book-to-market

and the risk-free rate.

To illustrate the role of segmented markets and time-varying risk premia for generating our

main results, column (3) and (4) switch these features off one at a time, while holding all other

parameter values constant. Column (3) shows model moments when assets are priced by a repre-

sentative consumer, who consumes aggregate consumption, and with preferences of the form (16)

through (19). With a representative consumer, risk premia for high- and low-volatility stocks move

in lockstep, both being determined by the representative agent’s surplus consumption ratio. As a

result, the representative agent model generates no variation in PV St and no predictability in the

low-minus-high vol excess return. In addition, in the representative agent model time-variation in

the representative agent’s surplus consumption ratio drives both equity risk premia and the risk-

free rate, generating a counterfactually positive relation between the aggregate book-to-market and

the risk-free rate. The assumption of segmented markets is hence essential for generating time-
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variation in PV St , return predictability in low-minus-high vol excess returns, and for replicating

the empirically weak relation between aggregate book-to-market and the risk-free rate.

Column (4) considers the case of segmented investors, who have log utility. This case is nested

in our baseline model if we set α = 0, κ = 1, and Ḡ= 1. Consistent with the equity premium puzzle

of Mehra and Prescott (1985), log utility generates equity volatility and an equity premium much

smaller than observed in the data. Variation in PV St and low-minus-high vol return predictability

is extremely small in magnitude, arising only from temporary fluctuations in log dividend growth.

As a result, the log utility model implies a very large and negative slope of the risk-free rate

onto PV St and the risk-free rate forecasts low-minus-high vol excess returns with a small and

negative coefficient, contrary to the data. Time-varying prices of risk are therefore essential for

generating the relation between the risk-free rate and risk premia on low-minus-high vol stocks,

that we document in the data.

5.5 Alternative Explanations

The novel empirical results in Section 3 provide clear evidence of time-varying demand for precau-

tionary savings as a significant determinant of time-varying real interest rates. We view the con-

tribution of this paper as distinguishing between broad classes of real interest rate drivers without

taking a stand on the exact channel that generates time-varying demand for precautionary savings.

The main ingredients of any model that is consistent with our empirical findings are the following.

First, idiosyncratic risk must give rise to a precautionary savings motive, so idiosyncratic risk must

enter into investors’ pricing kernel. Second, the pricing of idiosyncratic risk must vary over time.

This can be achieved through habit formation as in Section 5, or through a time-varying distribu-

tion of heterogeneous investors as we discuss below. Third, the model must have at least two state

variables. This is necessary to match the close relationship between the real rate and PV St , while

maintaining no relationship between the real rate and aggregate book-to-market.

To give a sense of the range of explanations that could generate our empirical results, this sec-

tion discusses alternative explanations for the empirical findings in addition to the model described
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in Section 5. First, we discuss how shifts in wealth between investors with different levels of risk

aversion could generate time-varying precautionary savings motives. Second, we discuss a model,

where consumers care about the volatility of individual goods in their consumption basket, thereby

linking idiosyncratic stock returns to precautionary savings even in the absence of any market

segmentation.

While the model in Section 5 generates time-varying real rates from habit formation prefer-

ences, shifts in the wealth distribution towards agents who require a higher price of risk may act

similarly on stocks and bonds (Chan and Kogan (2002); Hall (2016); Barro and Mollerus (2014)).

We view this channel as a complementary way of generating time-varying attitudes towards pre-

cautionary savings and within the same broad class of drivers for real rate variation as our model.

Heterogeneity in risk aversion may arise either because agents have different preferences, or be-

cause agents’ labor income is idiosyncratic, linking idiosyncratic stock return volatility with the

quantity of background risk that individual agents are exposed to. Such a model would be able to

match our main empirical result if a relative increase of wealth of investors with high risk aversion

or high background risk increases the precautionary savings demand priced into the risk-free rate

and the cross-section of stocks. At the same time, if different agents are marginal for the majority

of stocks than for the risk-free asset, aggregate market valuations could be relatively unrelated to

the risk-free rate, as in the data.

The literature on heterogeneous agents has argued that risk-averse international investors are

partly responsible for low interest rates (Caballero et al. (2008); Caballero and Krishnamurthy

(2009)). To this end, we note that foreign ownership of Federal Treasury debt has increased fairly

steadily since the 1970s. PV St , on the other hand, isolates a business-cycle frequency component,

indicating that we measure a component of real rates that is different from increasing demand from

abroad. Similarly, demographics tend to change more steadily than the component of precautionary

savings that we isolate from the stock market.

Idiosyncratic stock return volatility may be priced and informative about precautionary savings

even in the absence of segmented markets, provided that consumers care about the volatility of

33



individual goods in their consumption basket. If investors do not form habits over an aggregate

consumption bundle, but instead get used to individual goods, such as cars, refrigerators, coffee,

etc, risk aversion over shocks to a volatile good may increase precautionary savings motives. Such

shocks could move the risk-free rate and the risk premium wedge between high- and low-volatility

stocks in a manner that is consistent with the data.

6 Conclusion

This paper uses the cross-section of equity valuations to provide new empirical evidence for one

broad driver of real interest rates: investors’ time-varying demand for precautionary savings. De-

composing time-varying demand for precautionary savings into price of risk and quantity of risk,

we find evidence of time-varying attitudes towards uncertainty, but little evidence of a link be-

tween the motive for precautionary savings and time-variation in uncertainty itself. We explore the

implications of our findings for monetary policy and present a stylized model of segmented equity

markets to rationalize these empirical findings. The goal of this paper is to distinguish between

broad drivers of real interest rates. Our results indicate that future research on models and drivers

of precautionary savings is likely to be fruitful.

34



References
Abel, A. B. (1990). Asset Prices under Habit Formation and Catching up with the Joneses. The

American Economic Review, 38–42.

Agarwal, V., W. Jiang, Y. Tang, and B. Yang (2013). Uncovering hedge fund skill from the portfolio
holdings they hide. The Journal of Finance 68(2), 739–783.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang (2006a). The Cross-Section of Volatility and
Expected Returns. The Journal of Finance 61(1), 259–299.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang (2006b). The Cross-Section of Volatility and
Expected Returns. The Journal of Finance 61(1), 259–299.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang (2009). High Idiosyncratic Volatility and Low
Returns: International and Further US Evidence. Journal of Financial Economics 91(1), 1–23.

Baker, M. and J. Wurgler (2012). Comovement and Predictability Relationships Between Bonds
and the Cross-Section of Stocks. Review of Asset Pricing Studies 2(1), 57–87.

Banks, J., R. Blundell, and A. Brugiavini (2001). Risk pooling, Precautionary Saving and Con-
sumption Growth. Review of Economic Studies 68(4), 757–779.

Bansal, R., D. Kiku, A. Yaron, et al. (2012). An empirical evaluation of the long-run risks model
for asset prices. Critical Finance Review 1(1), 183–221.

Barberis, N. and R. Thaler (2003). A survey of behavioral finance. Handbook of the Economics of
Finance 1, 1053–1128.

Barro, R. J. and A. Mollerus (2014). Safe Assets. NBER Working Paper wp20652.

Benartzi, S. (2001). Excessive Extrapolation and the Allocation of 401 (k) Accounts to Company
Stock. The Journal of Finance 56(5), 1747–1764.

Bernanke, B. S. and K. N. Kuttner (2005). What Explains the Stock Market’s Reaction to Federal
Reserve Policy? Journal of Finance 60(3), 1221–1257.

Bernanke, B. S. and I. Mihov (1998). Measuring monetary policy. The Quarterly Journal of
Economics 113(3), 869–902.

Bloom, N. (2009). The Impact of Uncertainty Shocks. Econometrica 77, 623–85.

Bloom, N., M. Floetotto, N. Jaimovich, I. Saporta, and S. Terry (2014). Really Uncertain Business
Cycles. Working Paper, Stanford University, University College London, and Duke University.

Bloom, N., M. Floetotto, N. Jaimovich, I. Saporta-Eksten, and S. J. Terry (2012). Really uncertain
business cycles.

Caballero, R. and A. Krishnamurthy (2009). Global Imbalances and Financial Fragility. American
Economic Review 99(2), 584–588.

35



Caballero, R. J., E. Farhi, and P.-O. Gourinchas (2008). An Equilibrium Model of Global Imbal-
ances and Low Interest Rates. American Economic Review 98(1), 358–93.

Calvo, G. A. (1983). Staggered Prices in a Utility-Maximizing Framework. Journal of Monetary
Economics 12(3), 383–398.

Campbell, J. Y. and J. H. Cochrane (1999). By Force of Habit: A Consumption-Based Explanation
of Aggregate Stock Market Behavior. Journal of Political Economy 107(2), 205–251.

Campbell, J. Y. and R. J. Shiller (1988). The Dividend-Price Ratio and Expectations of Future
Dividends and Discount Factors. Review of Financial Studies 1(3), 195–228.

Carroll, C. D. and A. A. Samwick (1998). How Important is Precautionary Saving? Review of
Economics and Statistics 80(3), 410–419.

Chan, Y. L. and L. Kogan (2002). Catching Up with the Joneses: Heterogeneous Preferences and
the Dynamics of Asset Prices. Journal of Political Economy 110(6), 1255–1285.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999). Monetary policy shocks: What have
we learned and to what end? Handbook of Macroeconomics 1, 65–148.

Clarida, R., J. Galí, and M. Gertler (1999). The Science of Monetary Policy: A New Keynesian
Perspective. Journal of Economic Literature 37, 1661–1707.

Cochrane, J. H. (2011). Presidential Address: Discount Rates. The Journal of Finance 66(4),
1047–1108.

Cochrane, J. H. (2016, July). Macro-finance. Working Paper, Stanford University.

Constantinides, G. M. (1990). Habit Formation: A Resolution of the Equity Premium Puzzle.
Journal of Political Economy, 519–543.

Cremers, K. and A. Petajisto (2009). How active is your fund manager? a new measure that
predicts performance. The Review of Financial Studies 22(9), 3329–3365.

Cúrdia, V., A. Ferrero, G. C. Ng, and A. Tambalotti (2015). Has US Monetary Policy Tracked the
Efficient Interest Rate? Journal of Monetary Economics 70, 72–83.

Detemple, J. B. and F. Zapatero (1991). Asset Prices in an Exchange Economy. Economet-
rica 59(6), 1633–1657.

Duchin, R., T. Gilbert, J. Harford, and C. Hrdlicka (2016). Precautionary Savings with Risky
Assets: When Cash is not Cash. Journal of Finance forthcoming.

Fama, E. F. and K. R. French (1993). Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics 33(1), 3–56.

Fu, F. (2009). Idiosyncratic Risk and the Cross-Section of Expected Stock Returns. Journal of
Financial Economics 91(1), 24–37.

36



Gromb, D. and D. Vayanos (2010). Limits of arbitrage. Annual Review of Financial Eco-
nomics 2(1), 251–275.

Hall, R. E. (2016, April). Understanding the Decline in the Safe Real Interest Rate. NBER Working
Paper (22196).

Hansen, L. P. and R. J. Hodrick (1980). Forward Exchange Rates as Optimal Predictors of Future
Spot Rates: An Econometric Analysis. The Journal of Political Economy, 829–853.

Hartzmark, S. M. (2016). Economic Uncertainty and Interest Rates. Review of Asset Pricing
Studies 6(2), 179–220.

Herskovic, B., B. Kelly, H. Lustig, and S. Van Nieuwerburgh (2016). The Common Factor in
Idiosyncratic Volatility: Quantitative Asset Pricing Implications. Journal of Financial Eco-
nomics 119(2), 249–283.

Holston, K., T. Laubach, and J. Williams (2016). Measuring the Natural Rate of Interest: Interna-
tional Trends and Determinants.

Hou, K. and R. K. Loh (2016). Have we Solved the Idiosyncratic Volatility Puzzle? Journal of
Financial Economics 121(1), 167–194.

Johnson, T. C. (2004). Forecast Dispersion and the Cross Section of Expected Returns. Journal of
Finance 59(5), 1957–1978.

Kacperczyk, M., C. Sialm, and L. Zheng (2005). On the industry concentration of actively man-
aged equity mutual funds. The Journal of Finance 60(4), 1983–2011.

Koijen, R. S., H. Lustig, and S. Van Nieuwerburgh (2010). The cross-section and time-series of
stock and bond returns. NBER Working Paper wp15688.

Laubach, T. and J. C. Williams (2003). Measuring the Natural Rate of Interest. Review of Eco-
nomics and Statistics 85(4), 1063–1070.

Lee, C. M. C., A. Shleifer, and R. H. Thaler (1991). Investor Sentiment and the Closed-End Fund
Puzzle. Journal of Finance 46(1), 75–109.

Lettau, M. and J. A. Wachter (2011). The Term Structures of Equity and Interest Rates. Journal of
Financial Economics 101(1), 90–113.

Lusardi, A. (1998). On the Importance of the Precautionary Saving Motive. American Economic
Review 88(2), 449–453.

McKay, A., E. Nakamura, and J. Steinsson (2016). The Power of Forward Guidance Revisited.
American Economic Review 106(10), 3133–3358.

Mehra, R. and E. C. Prescott (1985). The equity premium: A puzzle. Journal of Monetary
Economics 15(2), 145–161.

37



Menzly, L., T. Santos, and P. Veronesi (2004). Understanding Predictability. Journal of Political
Economy 112(1), 1–47.

Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information.
The Journal of Finance 42(3), 483–510.

Miller, E. M. (1977). Risk, uncertainty, and divergence of opinion. The Journal of finance 32(4),
1151–1168.

Newey, W. K. and K. D. West (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix. Econometrica 55(3), 703–708.

Parker, J. A. and B. Preston (2005). Precautionary Saving and Consumption Fluctuations. Ameri-
can Economic Review 95(4), 1119–1143.

Riddick, L. A. and T. M. Whited (2009). The corporate propensity to save. Journal of Fi-
nance 64(4), 1729–1766.

Romer, C. D. and D. H. Romer (1989). Does monetary policy matter? a new test in the spirit of
friedman and schwartz. NBER Macroeconomics Annual 4, 121–170.

Romer, C. D. and D. H. Romer (2004). A New Measure of Monetary Shocks: Derivation and
Implications. American Economic Review 94(4), 1055–1084.

Santos, T. and P. Veronesi (2010). Habit formation, the Cross Section of Stock Returns and the
Cash-Flow Risk Puzzle. Journal of Financial Economics 98(2), 385–413.

Shleifer, A. and R. W. Vishny (1997). The limits of arbitrage. The Journal of Finance 52(1),
35–55.

Stambaugh, R. F., J. Yu, and Y. Yuan (2015). Arbitrage Asymmetry and the Idiosyncratic Volatility
Puzzle. Journal of Finance 70(5), 1903–1948.

Taylor, J. B. (1993). Discretion versus policy rules in practice. In Carnegie-Rochester Conference
Series on Public Policy, Volume 39, pp. 195–214. Elsevier.

Wachter, J. A. (2006). A Consumption-Based Model of the Term Structure of Interest Rates.
Journal of Financial Economics 79(2), 365–399.

Weber, M. (2016). Cash Flow Duration and the Term Structure of Equity Returns. Working Paper,
University of Chicago.

Woodford, M. (2003). Interest and Prices. Princeton University Press.

38



FIGURES

Figure 1: Book-to-Market Spread Between Low- and High-Volatility Stocks (PVS)
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Notes: This figure plots the spread in book-to-market ratios between low and high volatility stocks. For all NYSE, AMEX, and NASDAQ firms in
CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based
on the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM) ratio, which we call PV St . The Data Appendix
contains full details on how we compute BM ratios. The plotted series is the difference in average book-to-market ratios between the low volatility
and high volatility portfolios. Data is quarterly and spans 1973Q1-2015Q4.
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Figure 2: One-Year Real Rate: Actual and Fitted Value
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Notes: This figure plots the one-year real rate and the fitted value from a regression of the real rate on the spread in book-to-market ratios between
low and high volatility stocks (PV St ). For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using
the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Within each quintile, we
compute the average book-to-market (BM) ratio. The Data Appendix contains full details on how we compute BM ratios. The one-year real rate is
the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters,
expressed in percentage terms and linearly detrended. Data is quarterly and spans 1973Q1-2015Q4.
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Figure 3: Scatterplot of One-Year Real Rate against PVS

1973q1

1973q2

1973q3

1973q4

1974q11974q2

1974q3

1974q4
1975q1

1975q2
1975q3

1975q41976q1
1976q2

1976q31976q41977q1 1977q2

1977q31977q41978q1
1978q2

1978q3

1978q4
1979q1

1979q2

1979q3
1979q4

1980q1

1980q2

1980q3

1980q4
1981q1

1981q2
1981q3

1981q41982q11982q2

1982q3
1982q4

1983q1

1983q2
1983q3

1983q4

1984q1

1984q2
1984q3

1984q4
1985q1

1985q2
1985q31985q4

1986q11986q21986q3
1986q41987q11987q2

1987q31987q41988q1
1988q21988q3

1988q41989q1

1989q2
1989q3

1989q4
1990q11990q2

1990q3

1990q4
1991q1 1991q2

1991q3

1991q4 1992q1
1992q21992q3

1992q4
1993q11993q2
1993q3

1993q4

1994q1
1994q2

1994q3

1994q4
1995q1

1995q2
1995q31995q4
1996q11996q21996q31996q4
1997q11997q21997q31997q41998q11998q2

1998q3
1998q4

1999q11999q2
1999q3

1999q4 2000q12000q22000q3

2000q4
2001q12001q2

2001q32001q4
2002q1

2002q22002q3
2002q42003q12003q2 2003q32003q4

2004q1
2004q22004q3

2004q4
2005q12005q2

2005q3
2005q4
2006q12006q2
2006q32006q42007q12007q2

2007q3

2007q4

2008q1
2008q2

2008q3
2008q4

2009q12009q2 2009q32009q4 2010q1 2010q22010q32010q4 2011q1
2011q22011q32011q42012q12012q22012q32012q42013q12013q22013q32013q42014q12014q22014q32014q42015q12015q22015q32015q4

-6
-4

-2
0

2
4

1-
yr

 re
al

 ra
te

-2 -1.5 -1 -.5 0 .5
PVS

1-yr real rate Fitted values

Notes: This figure plots the one-year real interest rate against the spread in book-to-market ratios between low and high volatility stocks (PV St ). For
all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns. We
then form equal-weighted portfolios based on the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM) ratio.
The Data Appendix contains full details on how we compute BM ratios. The one-year real rate is the one-year Treasury bill rate net of one-year
survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage terms and linearly
detrended. Data is quarterly and spans 1973Q1-2015Q4.
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Figure 4: Impulse Responses to Monetary Policy and PVS Shocks
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Notes: This figure plots impulse responses to monetary policy and PVS shocks. Impulse responses to one-standard deviation shocks are estimated
from a four-variable VAR in the output gap, inflation, PVS, and de-trended real rate with one lag using quarterly data 1973Q1-2015Q4. Following
Bernanke and Mihov (1998), structural innovations in the real rate are assumed to affect output, inflation, and precautionary savings demand with
a lag. Precautionary savings (PVS) shocks are assumed to affect output and inflation with a lag, but have a contemporaneous effect on the real
rate. Dashed lines denote 95% confidence bands, generated by simulating 1000 data processes with identical sample length as in the data from the
estimated VAR dynamics.
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TABLES

Table 1: Summary Statistics for Volatility-Sorted Portfolios

Panel A: Book-to-Market Ratios

High-Vol 4 3 2 Low-Vol Low-High

Mean 1.07 0.88 0.84 0.82 0.86 -0.21
Volatility 0.47 0.34 0.28 0.25 0.27 0.36
Min 0.45 0.48 0.48 0.51 0.54 -1.72
Median 0.93 0.77 0.77 0.73 0.76 -0.11
Max 3.16 2.18 1.85 1.69 1.64 0.47

Panel B: Realized Excess Returns

High-Vol 4 3 2 Low-Vol Low-High

Mean 8.89 9.97 12.05 10.77 9.55 0.66
Volatility 39.10 30.70 24.59 19.59 15.15 29.95
Median 3.00 7.04 12.39 13.81 11.73 5.16
Min -44.87 -37.32 -31.57 -29.27 -22.19 -51.02
Max 76.69 56.20 43.42 34.54 25.67 50.52
α -4.58 -1.20 2.27 1.90 2.34 6.91
t(α) -1.77 -0.98 3.07 2.13 1.82 2.13
CAPM-β 1.29 1.18 1.03 0.92 0.74 -0.55
SMB-β 1.84 1.37 1.01 0.60 0.34 -1.50
HML-β 0.23 0.11 0.19 0.34 0.37 0.14

Notes: This table presents summary statistics for portfolios formed on volatility. For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute
volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles
of volatility. Panel A shows summary statistics on the average book-to-market (BM) ratio within each quintile. The Data Appendix contains full
details on how we form portfolios and compute book-to-market ratios. Panel B displays summary statistics on the realized excess returns of each
quintile (in percentage terms). The α is the (annualized) intercept from a regression of excess returns on the Fama and French (1993) factors.
Standard errors are computed via GMM by pooling all portfolios. We allow for within-portfolio heteroskedasticity and cross-portfolio correlations.
The mean, volatility, and median returns are all annualized. Data is quarterly and runs from 1973Q1 to 2015Q4. The riskless rate for computing
excess returns and quarterly returns on the Fama and French (1993) factors are aggregated using monthly data from Ken French’s website.
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Table 2: What Explains Real Rate Variation (Level Regression)?

Dependent Variable: One-Year Real Rate
(1) (2) (3)

PV St 3.49** 3.25**
(4.59) (3.73)

Aggregate BM -1.24 0.32
(-0.56) (0.17)

Output Gap 0.11
(0.77)

Inflation -0.11
(-0.93)

Constant 0.74** 0.75 1.04
(2.64) (0.63) (1.19)

Adj. R2 0.44 0.02 0.45
N 172 172 172

Notes: This table reports regression estimates of the one-year real rate on the spread in book-to-market (BM) ratios between high volatility and low
volatility stocks (PV St ). For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous
sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Within each quintile, we compute the
average book-to-market (BM) ratio. The Data Appendix contains full details on how we compute BM ratios. PV St is defined as the difference in
BM ratios between the bottom and top quintile portfolios. Aggregate BM is computed by summing book equity values across all firms and divided
by the corresponding sum of market equity values. The output gap is the percentage deviation of real GDP from the CBO’s estimate of potential
real GDP. Inflation is the percentage growth in implicit GDP price deflator from the St. Louis Fed (GDPDEF). The one-year real rate is the one-year
Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in
percent and linearly detrended. Standard errors are computed using both Newey-West (1987) and Hansen-Hodrick (1980) with five lags, and we
report the more conservative t-statistic of the two. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is quarterly
and spans 1973Q1-2015Q4.
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Table 3: What Explains Real Rate Variation (First-Differenced Regression)?

Dependent Variable: 1-Qtr ∆Real Rate

(1) (2) (3)

∆Vol BM Spread 1.52** 1.15*
(2.26) (1.81)

∆Agg. BM Ratio -4.82* 0.89
(-1.94) (0.39)

∆Output Gap 0.31**
(2.84)

∆Inflation -0.07
(-1.01)

Constant 0.01
(0.23)

Adj. R2 0.09 0.04 0.14
N 171 171 171

Notes: This table reports regression estimates of the one-year real rate on the spread in book-to-market (BM) ratios between high volatility and low
volatility stocks (PV St ). For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous
sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Within each quintile, we compute the
average book-to-market (BM) ratio. The Data Appendix contains full details on how we compute BM ratios. PV St is defined as the difference in
BM ratios between the bottom and top quintile portfolios. Aggregate BM is computed by summing book equity values across all firms and divided
by the corresponding sum of market equity values. The output gap is the percentage deviation of real GDP from the CBO’s estimate of potential
real GDP. Inflation is the percentage growth in implicit GDP price deflator from the St. Louis Fed (GDPDEF). The one-year real rate is the one-year
Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in
percent and linearly detrended. Columns (1)-(3) run the regression in first differences (i.e. one-quarter changes). Columns (4)-(6) run the regression
in quarter-on-quarter differences (i.e. four-quarter changes). Standard errors are computed using both Newey-West (1987) and Hansen-Hodrick
(1980) with five lags, and we report the results from the specification that delivers the most conservative standard error for the PV St . * indicates a
p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is quarterly and spans 1973Q2-2015Q4.
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Table 4: Robustness: The Real Rate and PV St

Levels 4Q Changes Q-Q Changes
Full Pre-Crisis Full Pre-Crisis Full Pre-Crisis

b t(b) R2 b t(b) R2 b t(b) R2 b t(b) R2 b t(b) R2 b t(b) R2

(1) Baseline 3.45 4.63 0.45 3.95 6.80 0.51 1.77 2.22 0.12 3.32 4.80 0.24 1.40 1.85 0.09 2.25 2.97 0.15
(2) VW 2.99 3.92 0.34 3.63 5.06 0.42 0.97 1.92 0.06 1.67 2.46 0.09 0.70 1.31 0.06 0.94 1.42 0.08
(3) 2YR Vol 4.81 5.39 0.57 5.09 6.04 0.56 2.61 2.64 0.17 4.14 4.68 0.28 1.16 1.22 0.05 2.35 2.27 0.09

Horse-Races
(4) Duration 3.21 3.25 0.45 4.38 6.20 0.51 1.77 1.90 0.12 3.35 4.49 0.23 1.26 2.16 0.09 2.00 3.65 0.16
(5) Leverage 4.81 6.63 0.49 5.25 9.25 0.55 2.24 3.01 0.13 3.52 5.42 0.23 1.33 1.51 0.09 1.98 2.01 0.15
(6) Beta 2.53 3.14 0.47 3.08 5.86 0.54 1.97 2.29 0.12 3.24 4.47 0.23 1.85 2.45 0.11 2.58 3.21 0.17
(7) LR Beta 2.69 2.73 0.46 3.74 3.85 0.50 1.94 1.90 0.12 4.05 4.87 0.24 1.37 1.87 0.09 2.36 3.42 0.15
(8) 2M-Beta 3.51 5.31 0.45 3.90 7.31 0.51 1.92 2.56 0.12 3.33 4.47 0.23 1.66 2.00 0.09 2.58 3.07 0.15
(9) CF Beta 3.65 5.25 0.47 4.00 6.54 0.50 1.75 2.20 0.12 3.26 4.89 0.23 1.43 1.95 0.09 2.28 2.87 0.15
(10) Size 3.02 1.88 0.45 4.88 4.24 0.51 1.84 1.66 0.12 3.52 3.92 0.23 1.65 1.43 0.09 2.22 1.70 0.15
(11) Value 4.84 4.76 0.48 5.73 8.51 0.55 2.51 3.01 0.13 3.89 6.78 0.24 1.72 1.85 0.09 2.10 2.03 0.15

Double-Sorts
(12) Duration 4.29 4.26 0.24 4.52 4.64 0.22 1.70 1.79 0.06 2.77 2.20 0.10 2.00 2.00 0.09 2.81 2.69 0.13
(13) Leverage 5.03 4.98 0.45 5.72 7.47 0.52 2.93 2.58 0.15 4.99 4.78 0.26 1.63 1.94 0.07 2.65 3.05 0.11
(14) 2M-Beta 4.36 5.18 0.45 4.76 7.03 0.48 2.46 2.29 0.13 4.48 4.72 0.24 0.69 0.76 0.04 1.39 1.47 0.06
(15) Size 5.18 3.71 0.38 6.52 6.84 0.48 2.65 2.04 0.11 5.08 3.80 0.21 2.06 1.91 0.08 2.99 2.61 0.12
(16) Value 9.12 4.80 0.42 9.96 5.57 0.43 5.29 2.50 0.15 9.26 4.22 0.26 4.00 1.89 0.09 6.39 2.65 0.14
(17) Industry-Adj 3.71 4.89 0.40 4.04 5.99 0.42 1.47 1.98 0.08 2.88 3.45 0.16 0.91 1.48 0.05 1.69 2.76 0.10

Notes: This table reports a batter of robustness exercises for our main results. Specifically, we report time-series regression results of the following form: Real Ratet = a+b×PVSt t +θXt +εt . We run this
regression directly in levels and in Quarter-on-Quarter changes (Q-Q Changes). For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous
sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM) ratio. The Data Appendix
contains full details on how we compute BM ratios. PV St is defined as the difference in BM ratios between the bottom and top quintile portfolios. Xt is a vector of control variables, which always includes
the Aggregate BM, computed by summing book equity values across all firms and divided by the corresponding sum of market equity values. Row (1) uses our baseline PV St measure and the full sample.
Row (2) uses value weights instead of equal weights when forming our PV St . Row (3) constructs our PV St using the past two years of return volatility, as opposed to the past two months. Columns
(4)-(11) run bivariate horse races by adding book-to-market spreads based on other characteristic sorts to our control variables Xt . See the Online Appendix for a description of each characteristic. In rows
(12)-(17), we instead use a double-sorted PV St , with complete details also contained in the Online Appendix. The one-year real rate is the one-year Treasury bill rate net of one-year survey expectations of
the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended. Standard errors are computed using Hansen-Hodrick (1980) with five lags. Italic
point estimates indicates a p-value of less than 0.1 and bold indicates a p-value of less than 0.05. Data is quarterly and the full sample spans 1973Q1-2015Q4 (pre-crisis ends in 2008Q4).



Table 5: Forecasting Returns of Portfolios Sorted on Volatility

Panel A - Quarterly Forecasting Returnst→t+1

(1) (2) (3) (4)

PVSt 16.32** 9.45**
(5.98) (4.17)

Real Ratet 1.92** 0.56
(2.85) (1.17)

Constant 3.58** 3.69** 0.11 1.81**
(3.13) (4.37) (0.10) (2.31)

Fama-Frencht→t+1 N Y N Y
Adj. R2 0.15 0.59 0.05 0.55
N 171 171 171 171

Panel B - Annual Forecasting Returnst→t+4

(1) (2) (3) (4)

PVSt 45.92** 30.03**
(4.09) (2.46)

Real Ratet 5.77** 2.58
(2.52) (0.91)

Constant 9.51** 9.01* -0.33 3.91
(2.25) (1.91) (-0.07) (0.92)

Fama-Frencht→t+4 N Y N Y
Adj. R2 0.31 0.61 0.13 0.52
N 168 168 168 168

Notes: This table reports forecasting regressions of portfolios formed on volatility. For all NYSE, AMEX, and NASDAQ firms in CRSP, we
compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the
quintiles of volatility. Within each quintile, we compute the average book-to-market (BM) ratio. The Data Appendix contains full details on how
we compute BM ratios. PV St is defined as the difference in BM ratios between the bottom and top quintile portfolios. Returns in the forecasting
regression correspond to the low-minus-high volatility portfolio. The real rate is the one-year Treasury bill rate net of one-year survey expectations
of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended. Columns (2) and (4)
include the three Fama-French factors as controls. For quarterly regressions, standard errors are computed using both Newey-West (1987) and
Hansen-Hodrick (1980) with five lags, aand we report the results from the specification that delivers the most conservative standard error for the
PV St or the real rate. For annual horizons we use Hodrick (1992) standard errors. * indicates a p-value of less than 0.1 and ** indicates a p-value
of less than 0.05. Data is quarterly and spans 1973Q2-2015Q4. Returns are in percentage points.
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Table 6: Forecasting Annual Returns of the Fama-French Factors

Mkt-Rft→t+4 SMBt→t+4 HMLt→t+4

(1) (2) (3) (4) (5) (6)

PV St -8.40 -11.16** 1.44
(-1.16) (-3.25) (0.29)

Real Ratet -0.49 -2.13** 0.38
(-0.39) (-3.06) (0.41)

Constant 5.38* 7.17** 0.31 2.69* 4.95** 4.64**
(1.95) (2.75) (0.21) (1.86) (2.39) (2.58)

Adj. R2 0.02 0.00 0.15 0.15 -0.00 -0.00
N 168 168 168 168 168 168

Notes: This table reports forecasting regressions of annual returns on the Fama and French (1993) factors. PV St is the spread in book-to-market
ratios between stocks with low and high volatility. For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each
quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based on the quintiles of volatility. Within each
quintile, we compute the average book-to-market (BM) ratio. The Data Appendix contains full details on how we compute BM ratios. The real rate
is the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters,
expressed in percent and linearly detrended. Standard errors are computed according to Hodrick (1992). * indicates a p-value of 0.1 and ** indicates
a p-value of 0.05. Data is quarterly and spans 1973Q2-2015Q4. Returns are in percentage points.
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Table 7: Forecasting ROE of Volatility-Sorted Portfolios

Dep. Variable ROEt→t+4

(1) (2)
PV St -2.72

(-0.82)

Real Ratet 0.51
(0.86)

Constant 9.99** 10.55**
(6.30) (6.31)

Adj. R2 0.01 0.00
N 168 168

Notes: This table reports ROE forecasting regressions of the portfolios formed on volatility. For all NYSE, AMEX, and NASDAQ firms in CRSP,
we compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based on
the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM) ratio. The Data Appendix contains full details on
how we compute BM ratios. PV St is defined as the difference in BM ratios between the bottom and top quintile portfolios. ROE in the forecasting
regression correspond to the low-minus-high volatility portfolio, which we compute following Cohen, Polk, and Vuolteenaho (2003). The real rate
is the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters,
expressed in percent and linearly detrended. Standard errors are computed using both Newey-West (1987) and Hansen-Hodrick (1980) with five
lags, and we report the results from the specification that delivers the most conservative standard error for the PV St or the real rate. * indicates a
p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is quarterly and spans 1973Q2-2015Q4. ROEs are in percentage points.
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Table 8: Contemporaneous Real Rate Variation and the Quantity of Risk

Dependent Variable: Real Rate (Level) 4-Q ∆Real Rate

(1) (2) (3) (4) (5) (6)

σ (LMH-Vol Portfolio) -0.00 -0.02 -0.00 0.01
(-0.08) (-0.67) (-0.08) (0.42)

σ (TFP Growth) -0.09 0.21 -0.37* -0.09
(-0.18) (0.93) (-1.85) (-0.48)

σ (Mkt-Rf) -0.19** -0.06 -0.06* -0.06**
(-3.20) (-1.63) (-1.79) (-2.07)

σ (SMB) 0.28** 0.05 0.09* 0.04
(3.41) (1.37) (1.92) (0.99)

σ (HML) 0.10 0.12** 0.11 0.10
(1.03) (2.68) (1.50) (1.33)

CIVt 0.01 0.04* -0.04* -0.01
(0.49) (1.83) (-1.93) (-0.59)

PV St 4.00** 1.42**
(7.62) (2.54)

Adj R2 -0.01 0.14 0.57 -0.01 0.10 0.16
N 172 172 172 168 168 168

Notes: This table reports regression estimates of the one-year real rate on various measures of risk. σ (TFP Growth) is the volatility of TFP growth
that is implied by a GARCH model (see Table A1 of the Online Appendix). σ (Mkt-Rf), σ (SMB), and σ (HML) are the within-quarter annualized
volatility (percentage terms) of the three Fama and French (1993) factors, which we compute using daily data. CIVt is the average idiosyncratic
volatility factor of Herskovic et al. (2016). PV St is the difference in book-to-market ratios between high volatility and low volatility stocks. For
all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns.
We then form equal-weighted portfolios based on the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM)
ratio. The Data Appendix contains full details on how we compute BM ratios. σ (LMH-Vol Portfolio) is the annualized percentage volatility of
the low-minus-high volatility portfolio, which we compute using daily data. The real rate is the one-year Treasury bill rate net of one-year survey
expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percent and linearly detrended. Columns
(1)-(3) run the regression in levels. Columns (4)-(6) run the regression in quarter-on-quarter differences (i.e. four-quarter changes). Standard errors
are computed using both Newey-West (1987) and Hansen-Hodrick (1980) with five lags. We report the more conservative t-statistic of the two. *
indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. All regressions have a constant, but we omit the estimates to save
space. Data is quarterly and spans 1973Q1-2015Q4.
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Table 9: Forecasting Returns of Volatility-Sorted Portfolios with the Quantity of Risk

Dependent Variable: Returnst→t+4

(1) (2) (3) (4) (5) (6) (7)

Real Ratet 5.77** 5.58** 5.41** 5.84** 5.92** 3.89**
(2.50) (2.62) (2.38) (2.64) (2.61) (2.19)

σ (LMH-Vol Portfolio) -0.18 -0.17 0.72
(-0.20) (-0.22) (0.74)

σt (TFP Growth) -3.03 -0.20
(-0.60) (-0.04)

σt (Mkt-Rf) -0.94 -2.59**
(-1.58) (-2.29)

σt (SMB) -0.30 4.00*
(-0.25) (1.94)

σt (HML) -1.30 -0.63
(-1.05) (-0.36)

Constant 1.79 1.61 9.30 13.56* 2.12 8.73 2.87
(0.21) (0.20) (0.54) (1.77) (0.25) (1.14) (0.16)

Adj. R2 -0.01 0.13 0.13 0.18 0.13 0.16 0.27
N 168 168 168 168 168 168 168

Notes: This table reports annual return forecasting regressions of portfolios formed on volatility. For all NYSE, AMEX, and NASDAQ firms in
CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns. We then form equal-weighted portfolios based
on the quintiles of volatility. Returns in the forecasting regression correspond to the low-minus-high volatility portfolio. σ (LMH-Vol Portfolio)
is the realized return volatility for the low-minus-high volatility portfolio, which we compute using daily data. σ (TFP Growth) is the volatility of
TFP growth that is implied by a GARCH model (see Table A1 of the Online Appendix). σ (Mkt-Rf), σ (SMB), and σ (HML) are the within-quarter
volatility of the three Fama and French (1993) factors, which we compute using daily data. All volatility measures are annualized and expressed in
percentage terms. The real rate is the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the
Survey of Professional Forecasters, expressed in percent and linearly detrended. Column (2) includes the three Fama-French factors as controls.
Standard errors are computed according to Hodrick (1992). * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data
is quarterly and spans 1973Q2-2015Q4. Returns are in percentage points.
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Table 10: Forecasting Realized Volatility

Panel A: Forecasting Volatility Using the PV St

Dependent Variable: Realized Volatilityt→t+1

LMH-Vol TFP MktRf SMB HML

(1) (2) (3) (4) (5)

PVSt -2.51 -0.64 -4.20* 0.21 -2.54
(-0.96) (-1.10) (-1.68) (0.14) (-0.87)

Constant 10.77** 3.03** 13.98** 8.14** 6.48**
(7.45) (9.18) (12.73) (13.15) (8.14)

Adj. R2 0.01 0.07 0.03 -0.00 0.04
N 171 171 171 171 171

Panel B: Forecasting Volatility Using the Real Rate

Dependent Variable: Realized Volatilityt→t+1

LMH-Vol TFP MktRf SMB HML

(1) (2) (3) (4) (5)

Real Ratet 0.09 -0.07 -0.05 0.32 0.23
(0.16) (-0.61) (-0.09) (1.12) (0.61)

Constant 11.30** 3.17** 14.87** 8.09** 7.02**
(10.16) (16.39) (12.00) (16.53) (8.64)

Adj. R2 -0.01 0.02 -0.01 0.02 0.00
N 171 171 171 171 171

Notes: This table reports forecasting regressions of realized volatility. TFP volatility is the volatility of TFP growth that is implied by a GARCH
model (see Table A1 of the Online Appendix). MktRf Vol, SMB Vol, and HML Vol are the within-quarter volatility of the three Fama and French
(1993) factors, which we compute using daily data. PV St is the difference in book-to-market ratios between high volatility and low volatility stocks.
For all NYSE, AMEX, and NASDAQ firms in CRSP, we compute volatility at the end of each quarter using the previous sixty days of daily returns.
We then form equal-weighted portfolios based on the quintiles of volatility. Within each quintile, we compute the average book-to-market (BM)
ratio. The Data Appendix contains full details on how we compute BM ratios. LMH-Vol is the realized return volatility of the low-minus-high
volatility portfolio, which we compute using daily data. All volatility measures are expressed in annualized percentage terms. The real rate is
the one-year Treasury bill rate net of one-year survey expectations of the inflation (the GDP deflator) from the Survey of Professional Forecasters,
expressed in percent and linearly detrended. Standard errors are computed using both Newey-West (1987) and Hansen-Hodrick (1980) with five
lags, and we report the more conservative t-statistic of the two. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05.
Data is quarterly and spans 1973Q2-2015Q4.
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Table 11: Model Parameters

Variable Name Parameter Value

Share High-Volatility Stocks pH 0.20
Discount Rate β 0.96
Consumption Growth µ 0.03
Lower Bound G λ 10
Heteroskedasticity Parameter α 350
Average G Ḡ 56
Mean-Reversion G κ 0.01
High Consumption Vol. σL 0.01
Low Consumption Vol. σH 0.02
Decay Parameter Mark-to-Market ρ 0.933

Notes: This table displays the parameter values for the calibrated version of the model in Section 4.
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Table 12: Model Moments

(1) (2) (3) (4)
Data Model Rep. Agent Log Utility

Equity Market
Equity Premium E

(
re
t+1− r f ,t

)
5.52 6.03 4.31 0.91

Equity Volatility Std
(

re
L,t+1

)
17.90 15.64 19.78 1.27

Agg. Book/Market Ratio E (Bt/Pt) 0.62 0.63 0.64 0.62
AR(1) Agg. Book/Market AR(Bt/Pt) 0.91 0.48 0.47 0.92

Risk-Free Rate
Risk-Free Rate E(r f ,t) 2.40 0.72 3.08 6.18
Std. Risk-Free Rate Std(r f ,t) 1.90 1.76 1.37 1.30

Low-Minus-High Volatility Portfolio
PV St E (BL,t/PL,t−BH,t/PH,t) -0.23 -0.01 0.00 0.00
Std. PV St Std (BL,t/PL,t−BH,t/PH,t) 0.35 0.25 0.00 0.01
Low-Minus-High Return E (rL,t− rH,t) 1.32 -1.24 0.00 -0.02

The Risk-Free Rate and Equity Risk Premia

Risk-Free Rate on Agg. Book-Market slope
(

r f ,t ,
Bt
Pt

)
2.05 -1.11 7.77 9.87

Risk-Free Rate on PV St slope
(

r f ,t ,
BL,t
PL,t
− BH,t

PH,t

)
3.36 3.35 NaN -45

Return Spread on Lag Risk-Free Rate slope
(
rL,t+1− rH,t+1,r f ,t

)
6.02 5.22 0.00 -0.88

Notes: Model moments are averaged over 1000 simulations of length 36 years. Simulations use a burn-in period of 20 years. Bold indicates a one-sided p-value > 0.05. One-sided p-values are computed
as the percentage of simulations where the model moments is less than the data moment. The entries corresponding to the risk-free rate and equity risk premia report regression results. For instance, “Slope
Risk-Free Rate on Book-Market” reports the estimated coefficient from a regression of the risk-free rate on the aggregate book-to-market ratio. Average equity premium and low-minus-high return include
Jensen’s inequality adjustments. Column (3) reports model moments when assets are priced by a representative agent with habit formation preferences. Column (4) reports model moments when assets are
priced by segmented investor clienteles with log utility, switching off the habit formation channel in the baseline model.
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