What Can Stockouts Tell Us About Inflation? Evidence from Online Micro Data

Discussant: Virgiliu Midrigan

March 2022

Summarize

• Are supply disruptions inflationary?

- Evidence on comovement inflation and stockouts in online retailers
 - significant but gradual response of inflation to increase in stockouts

Model of inventories and stockouts to help interpret evidence

Broader Comments

- Impressive and timely paper
 - careful work with micro data
 - combined with model to alleviate endogeneity concerns

- Inventories, costs and markups closely related in macro models
 - so using data on stockouts informative about drivers of inflation

Comments

- Inflation vs. relative price changes
- Model of inventory adjustment
- Questions and suggestions

Inflation vs. Relative Price Changes

- Paper convincingly documents link stockouts and relative price inflation
- But changes in relative prices per se not inflationary
- With asymmetries sectoral shocks act like cost-push shocks
 - Ball-Mankiw (1995), Guerrieri et al. (2021)
- Nevertheless, aggregate inflation dynamics determined by monetary policy

Model of Inventory Adjustment

- Study inventory choice of retailer. Order inventories to ensure
 - Prob. stockout (inventories) = fn (markup, user cost)
 - user cost: $\Omega_t \frac{1-\delta}{1+r_t}\Omega_{t+1}$
 - tradeoff: inventory holding cost vs. unable to meet consumer demand
- Transitory increase in replacement cost increases user cost
 - so firm buys less inventories, more likely to stockout

- Increase in markups leads to more inventories, fewer stockouts
- So comovement prices, stockouts suggests increase in costs, not markups

Mechanism in Paper

- Paper describes following mechanism
 - ordering larger batch of inventories more costly on the margin
 - so firms that stockout have larger replacement cost, set higher prices
 - perhaps less relevant for smaller individual retailer
- Alternative: linear ordering cost and estimate persistence of costs?
- Model assumes firms know the distribution of v and no delivery lags
 - unexpected increase in mean v will lead to stockouts
 - more so if larger delivery lags
 - larger orders by all firms in the sector increase production costs
- Data on inventories and sales + full info estimation can tell these apart

Alternative Model

- Permanent stockouts suggest model of frequent product replacement
 - decide initial stock at beginning of product life-cycle
 - if demand low, reduce price since lower shadow valuation of goods
 - if demand high, raise price
- Based on dormant work with Golosov-Rodnyansky
 - inventories evolve according to

$$k_{t+1} = k_t - \min [v_t q(p_t), k_t] + x_t$$

- fixed costs of changing prices p_t and ordering x_t
- irreversibility $x_t \geq 0$
- good discontinued after T periods

Firm with Low Demand

Firm with High Demand

Questions and Suggestions

- Do inventory frictions change dynamics of inflation?
 - typically inflation depends on current and expected real marginal costs
 - how do inventories/stockouts change inflation response to sectoral shocks?
- Implication for COL measurement (love-for-variety effects)?
- Why are transitory shortages associated w/ permanent changes in prices?

Conclusions

- Very impressive paper!
- Future work: extend to multi-sector, international setting?
 - use likelihood methods to back out sectoral cost/demand shocks
 - bring in data on inventories, orders, sales
 - understand dynamics of sectoral inflation and implications for aggregate?