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1 Introduction

Despite being commonly held, the empirical validity of the full-information rational expectations

(FIRE) assumption has long been questioned. According to FIRE, forecasts made by economic

agents should not include predictable errors because all information is used efficiently. However,

an expanding empirical literature has found that this prediction does not hold, even for professional

forecasters who presumably have ample information and advanced tools.

In particular, recent studies argue that econometricians can predict errors that forecasters

will make based on the latter’s recent forecast revisions. However, a puzzle emerges. Coibion

and Gorodnichenko (2015) finds that the average forecast tends to undershoot realizations when

forecasters revise their projections upward. In comparison, Bordalo, Gennaioli, Ma, and Shleifer

(2020b) find that when an individual forecaster revises her projection upward, her forecast tends

to overshoot realizations. Of course, the revision of the average forecast is more muted than the

revision of the individual one, as the average forecast averages different views. However, it is not

apparent how to explain the flip in the direction of predictability.

This paper shows that noisy information can account for the seemingly contradictory pattern.

While forecasters have access to a vast amount of information, they have finite capacity to pro-

cess it. I propose that forecasts are based on the mental representation of available information,

not all available information. The mental representation can be considered a noisy summary of

information; it is composed of both the mind’s distilled understanding of available information and

the noise uncorrelated with the distillation. This process is endogenously determined to maximize

forecast accuracy given processing constraints.

To explain these patterns in both average and individual forecasts, I distinguish between two

types of information: external and internal. External information can be looked up; it includes data

releases, news articles, press conferences, and the like. Internal information is stored in forecasters’

memory; it consists in their accumulated knowledge from past forecasting experience. Importantly,

both types of information are noisy: forecasts are formed based on the mental representation of

available external and internal information. Using this model, I estimate the extent of informa-

tion frictions using professional forecasters’ projections of the overall US economy. Furthermore, I

explore the monetary-policy implications of the estimated model.

Conventional models of information frictions assume that only external information is noisy.

These models can explain why consensus forecasts undershoot. When facing a new set of external

information, forecasters, on average, are less responsive than under FIRE because the new infor-

mation is noisy. At the individual level, forecasters make projections efficiently given the noise.

Therefore, such revisions do not predict systematic errors in individual forecasts.

I show that by adding noisy internal information, I can explain the predictability of both average

and individual forecasts. Noisy external information generates the consensus-level pattern, as in

Coibion and Gorodnichenko (2015), while noisy internal information generates the individual-level

pattern. When forecasters cannot freely access their internal information, their prior knowledge

resolves less uncertainty about the forecast variable. Thus, forecasters put extra weight on new
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information. This extra sensitivity to new information explains why individual forecasts tend to

overshoot more than conventional information-friction models predict.

Jointly considering both types of noisy information is crucial for understanding the extent of

information frictions. This is because the sensitivity with which forecasts are revised depends on

both types of information. Forecast revisions can be sensitive for two reasons: external information

is not very noisy, or internal information is quite noisy. I show that the extent of the two types

of noise determines the revision pattern of average and individual forecasts. Not considering both

types of noisy information would lead one to misestimate the degree of information frictions.

A direct implication is that Coibion and Gorodnichenko (2015) underestimates the extent of

information frictions. The authors argue that the severity of information constraints can be in-

ferred from the revision pattern of consensus forecasts. However, since this methodology implicitly

assumes that accessing internal information is costless, it does not account for the extra weight on

new information arising from noisy internal information. Therefore, the methodology proposed by

Coibion and Gorodnichenko (2015) misattributes this extra sensitivity to less severe information

frictions.

To improve the model’s empirical validity, I extend the model along one more dimension: fore-

casters learn about the long-run mean. Instead of assuming that forecasters are fully aware of

where the forecast variable reverts to, I assume they learn about the long-run steady state over

time. While more than one parameter determines the steady state, I focus on the mean because

knowledge about the mean is essential for forecasters making long-term forecasts.

In the proposed model, forecasters are perpetually uncertain about the long-run mean. If ac-

cessing internal information is costless, forecasters eventually learn about the mean. This is the

basis on which many models assume forecasters have perfect awareness of the model parameters.

However, as my other work Azeredo da Silveira et al. (2020) shows, forecasters’ knowledge about

the mean is imperfectly accumulated over time when internal information is not perfectly accessi-

ble. In this case, learning persists even after extensive learning opportunities.

Using the extended model, I estimate the degree of information frictions. The model is applied

to professional forecasters’ projections of US economic variables related to output, the price level,

the labor and housing markets, and borrowing costs. For each macroeconomic variable, the two

constraints — one in processing external information and the other in processing internal informa-

tion — are inferred from the forecast-revision patterns at the consensus and individual levels. I find

that the extent of information frictions is more substantial than what the conventional information-

frictions literature finds: my estimate of the constraint in processing external information is twice

as large as that of Coibion and Gorodnichenko (2015). I also show that the estimated model ex-

plains sizable shares of the variation in forecasts and revisions, both in the cross sections and in the

time series.

Then, I explore the macroeconomic implications of the proposed information frictions — in

particular, the implications for how inflation is determined. I use a standard New Keynesian model

in which firms set prices based on their macroeconomic expectations. Using this framework, I
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show how the inflation process varies with the assumption of the expectation-formation process.

Furthermore, I investigate the operation of monetary policy in balancing the trade-off between

inflation and output stabilization.

If firms are subject to the costly information proposed in this paper, stabilizing inflation can be

more challenging than under FIRE. The key reason is that inflation expectations are unanchored

because internal information is costly to process. Since firms do not have perfect awareness of

the long-run economy, their beliefs about it fluctuate with persistence. This additional fluctuation

is transmitted through their price setting, making aggregate inflation volatile. In this economy, a

monetary policy strongly emphasizing inflation stabilization can more effectively guide economic

agents’ long-run expectations.

In proposing a new expectation-formation model, I provide a parsimonious explanation for

the puzzling features of survey forecasts. In the model I present, one type of information friction

keeps economic agents from making forecasts consistent with FIRE: finite capacity to process a

vast amount of available information. In comparison, previous proposals in the literature resort

to a non-Bayesian assumption in addition to information frictions to explain the forecast-revision

patterns discussed in this paper. For example, representative heuristics (Bordalo, Gennaioli, Ma,

and Shleifer (2020b)), misspecification of the model (Angeletos, Huo, and Sastry (2021)), and

desire to stand out from the crowd (Gemmi and Valchev (2021)) have been proposed. While these

may be plausible and insightful proposals, it is unclear how economic agents come to have such

biases. Furthermore, I show that the model I present explains features of survey forecasts regarding

the forecast horizon that these previous proposals cannot explain.

The findings from this paper also shed light on the formation of long-run inflation expectations.

It has long been recognized that economic agents’ inflation expectations affect the inflation pro-

cess. Thus, the implementation of monetary policy should carefully consider the exact nature of

expectation formation (Orphanides and Williams (2004)). However, recent literature argues that

expectations about long-run inflation are crucial to understanding past inflation dynamics (Car-

valho, Eusepi, Moench, and Preston (2022), Hazell, Herreño, Nakamura, and Steinsson (2022))

and have important monetary-policy implications (Gàti (2021)). A popular proposal in the litera-

ture is that economic agents learn about unobservable stochastic trends from the current economy

(K. Crump, Eusepi, Moench, and Preston (2021), Farmer, Nakamura, and Steinsson (2021)). While

plausible, this idea predicts that economic agents should have well-anchored long-run expectations

in response to a sudden spike in inflation if they have experienced low and stable inflation for a

long period. In this paper, seemingly anchored long-run inflation expectations can start moving

when agents witness bouts of high inflation. This prediction is consistent with experimental stud-

ies documenting fluctuations in long-term beliefs in a stable-trend environment (Afrouzi, Kwon,

Landier, Ma, and Thesmar (2020)).

More generally, this paper contributes to our understanding of how cognitive limitations affect

economic agents’ beliefs and decisions. In various fields of economics, cognitive limitations have

been proposed to explain several seemingly unrelated patterns (Woodford (2020)). In macroeco-
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nomics, rational-inattention theories have been proposed to explain why macroeconomic variables

respond to fluctuations in the economy (for example, monetary-policy shocks) with a long delay

(Sims (2003), Mackowiak and Wiederholt (2009)). In behavioral economics, cognitive uncertainty

has been proposed as a unifying explanation for several patterns often viewed as distinct phenom-

ena (Enke and Graeber (2019)). I contribute to this literature by showing that cognitive limitations

help us understand the puzzling patterns of survey forecasts emphasized in the macroeconomic

literature on expectations.

The paper proceeds as follows. Section 2 presents a model of expectation formation in which

forecasts are based on the mental representation of available information. Section 3 discusses what

representation is optimal given the information constraints. Section 4 presents the model prediction

of the forecast-revision patterns and the estimation strategy. Section 5 describes an extension of

the expectation model. Section 6 presents the structural-estimation results. Section 7 describes

the illustrative macroeconomic model and discusses the monetary-policy implications. Section 8

concludes.

2 A Model of Mental Representation

In this section, I introduce a model of mental representation (that is, a noisy summary of available

information). I describe how a vast amount of information is processed and stored in memory.

2.1 The Forecasting Problem

Consider macroeconomic variable yt, which is the sum of persistent and transitory components. I

assume that

yt = zt + ηt,

where ηt is i.i.d, and

zt = (1− ρ) µ+ ρ zt−1 + ϵt,

where µ is the long-run mean of zt, ρ is the serial correlation of zt (with |ρ| < 1), and ϵt is an

i.i.d. sequence drawn from Gaussian distribution N
(
0, σ2ϵ

)
. I assume yt is observable but zt and ηt

are not directly observed. I assume that all values of parameters describing the stochastic process

are known.

The forecasters’ problem is to produce projections for future realizations of yt. The loss from

incorrectly forecasting is described by the expected value of a quadratic loss function:

E

[ ∞∑
t=0

βt
H∑

h=1

(yt+h − Fi,t yt+h)
2

]
(1)

Here, Fi,t yt+h is decision-maker (DM) i’s forecast of yt+h. Forecasters make projections up to H
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periods ahead. The expectation operator E is over every possible piece of information available at

time t and is described in the remaining section.

Available information. I categorize information into two types: external and internal. Forecast-

ers can look up external information. It includes quantitative and qualitative information, such as

data releases, press conferences, and market reports. Internal information is in forecasters’ memory

—- that is, their past cognitive state.

Cognitive constraints: mental representation. Forecasters’ external and internal information

is high dimensional and complex. They have a finite capacity to process such data. To capture

this constraint, I introduce the notion of mental representation from psychology and cognitive sci-

ence; it can be considered a noisy summary of information. I propose that forecasters base their

projections on the mental representation of available information instead of all available informa-

tion. The original complex data is distilled into a simpler form and compounded with random

noise, which makes the representation imprecise. This representation is optimally determined, as

discussed below.

2.2 Mental Representation of External Information

External information. The underlying state zt is partially revealed by many pieces of quantitative

and qualitative information. Examples of quantitative information are historical realizations of

past yt or other variables relevant for predicting zt. Qualitative information includes opinions and

market commentaries. All such information that is at least somewhat informative about the value

of zt is stored in a large vector Nt. The relationship between Nt and zt is described as follows:

Nt = R · zt + νt (2)

R is a constant vector, and νt ∼ N (0, V ) for some positive definite matrix V .

Imprecise representation. DM uses various kinds of information in Nt when making forecasts of

yt. I assume that how precisely DM’s forecasts depend on this external information is constrained.

In particular, I assume that knowledge from Nt is described as follows:

ni,t = Kt ·Nt + ui,t (3)

Here, Kt is a matrix (possibly with many fewer rows than the number of elements in Nt) and

ui,t ∼ N (O, Σu,t) for some positive semidefinite matrix Σu,t. The noise ui,t is not correlated with

zt and is idiosyncratic to each forecaster.

The matrices Kt and Σu,t are endogenously determined subject to a constraint. The degree

of precision of the mental representation ni,t is measured with the Shannon mutual information
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between ni,t and Nt, denoted as I (ni,t; yt).1 More inaccurate representation is captured by lower

mutual information between the two random variables. I assume that the precision of mental

representation is constrained as follows:2

I (ni,t;Nt) ≤ −1

2
lnϕn (4)

Here, ϕn ∈ (0, 1) parameterizes the upper bound of the mutual information that is taken as given.

One can see that a higher ϕn allows lower mutual information, thereby constraining the accuracy

of the mental representation.

If ϕn → 0, then forecasts are accurately based on information in Nt. In this case, Kt is an

identity matrix (whose dimension is equivalent to the number of rows in Nt) and Σu,t is a zero

matrix (with the same dimension as Kt). With ϕn > 0, forecasts are based on the approximate

representation of Nt, as Kt may have many fewer rows than the number of elements in Nt and at

least some of the diagonal elements of Σu,t are positive. When ϕn → 1, forecasts are not based on

information in Nt, since the representation is infinitely inaccurate.

2.3 Mental Representation of Internal Information

Internal information. In addition to external information Nt, I assume that DM has access to

internal information such as her past cognitive state. I denote the internal information accessible

at t as (mi,t−1, ni,t−1). As discussed earlier, ni,t−1 is the mental representation of the news vector

Nt−1. Meanwhile, mi,t−1 is the knowledge carried through t − 1 before observing Nt−1. One can

think of mi,t−1 as the memory stock of knowledge, and its evolution will be discussed shortly.

Imperfect representation. I assume the internal information can be represented as follows:

mi,t = Λt ·

mi,t−1

ni,t−1

+ ωi,t (5)

Here, Λt is a matrix that may have fewer rows than (mi,t−1, ni,t−1) and ωi,t is an i.i.d. sequence

that is uncorrelated with (mi,t−1, ni,t−1) and drawn from the Gaussian distribution N (O, Σω,t) for

some positive semidefinite matrix Σω,t.

The two matrixes Λt and Σω,t are chosen optimally subject to the constraint. The extent of

noise in the mental representation mi,t is measured with the Shannon mutual information between

1This metric captures how “close” ni,t is to Nt. If I (ni,t; yt) is close to zero, then it means knowing ni,t is not
informative about Nt. If, on the other hand, the metric is close to infinity, then information delivered by ni,t about Nt is
perfectly accurate.

2The proposed cost function is different from what is typically assumed in the rational-inattention literature. There,
it is assumed that DM can arrange to receive a signal ni,t at time t, conditioning on all the signals till time t − 1. That
is, the cost is assumed to be proportional to I(ni,t; yt|ni,t−1, · · · , ni,0). As will be clear from the rest of the model,
I consider an environment in which the past realized values of ni,t are not freely available. Therefore, I assume that
external information is processed independently of the cognitive state.
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mi,t and (mi,t−1, ni,t−1). The lower mutual information captures a more inaccurate representation

of internal information. In parallel with (4), I assume that the accuracy of the representation is

constrained as follows:

I (mi,t;mi,t−1, ni,t−1) ≤ −1

2
lnϕm (6)

Here, ϕm ∈ (0, 1) is taken as given. A higher ϕm means a more constrained representation.

If ϕm → 0, forecasts are accurately based on internal information. The corresponding mental

representation is when Λt is an identity matrix and Σω,t is a zero matrix. With ϕm > 0, forecasts rely

on imperfect representation of (mi,t−1, ni,t−1). When ϕm → 1, forecasts are not based on internal

information, since the represented information is completely inaccurate.

2.4 Forecasts Based on Represented Information

We have seen how external and internal information is mentally represented. For brevity, I refer

to ni,t as noisy news (that is, an imperfect representation of external information) and mi,t as noisy
memory (that is, an imperfect representation of internal information). I consider the representation

to be noisier if the accuracy of representation is more constrained (higher ϕn or ϕm).

Bayesian forecasts subject to information constraints. I assume that forecasts are Bayesian

efficient given the noisy news ni,t and noisy memory mi,t. That is, while the bottleneck is in

processing the complex, high-order information, forecasters have expertise in combining ni,t and

mi,t. The conditional distribution is derived using the usual Kalman filter formula.

Implications of the linear-Gaussian structure. The linear-Gaussian structure of ni,t and mi,t

implies that DM’s beliefs about the past and current realizations of zt take the form of a Gaussian

distribution. In other words, (z0, · · · , zt) |mi,t and (z0, · · · , zt) |mi,t, ni,t are both Gaussian. (The

second moment of the Gaussian distribution captures the uncertainty DM feels, which depends

on the severity of news noise and memory noise.) Since DM’s beliefs about the past and current

realizations are Gaussian, DM’s belief about future realizations is also Gaussian.

I introduce the following notations to denote DM’s beliefs about the state zτ implied by her

cognitive states:

zτ |mi,t ∼ N
(
zmi,τ |t, Σ

m
τ |t

)
zτ |mi,t, ni,t ∼ N

(
zi,τ |t, Στ |t

)
The top distribution refers to the (beginning of period t) prior belief conditioned on the memory

state at time t. The superscript m indicates that beliefs are based on memory alone. The bottom

distribution is the posterior belief after observing ni,t (and is denoted without the superscript m).
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Then, the optimal forecasts of yt+h will be

Fi,t yt+h =
(
1− ρh

)
µ+ ρh zi,t|t,

from which the mean squared error from forecasting yt+h equals

E
[
(yt+h − Fi,t yt+h)

2
]
= ρ2hΣt|t,

where the expectation is over the entire joint probability distribution of possible values of zt, mi,t,

and ni,t. The average losses from inaccurate forecasting are proportional to Σt|t. The loss function

(1) then reduces to

∞∑
t=0

βt
[
q · Σt|t

]
, (7)

where q ≡ ρ2(1−ρ2H)
1−ρ2

is a constant known to DM.

2.5 The Nature of Information Frictions

In conventional models of information frictions, forecasters have noisy (or dispersed) information

about the state of the economy because they observe the state with idiosyncratic errors (Woodford

(2003)). The usual interpretation of this assumption is that forecasters have some fragmented

information about the state and no one knows the state perfectly. It is typical to assume further

that forecasters store their information and access it in any future period.

In contrast, the information friction in this paper is a cognitive constraint. It is not that fore-

casters have different sources of information per se but that random cognitive noise enters while

processing the vast set of information. Therefore, even with access to the same information, fore-

casters have a somewhat different understanding or interpretation of the data, as in Sims (2003).

Importantly, a similar cognitive constraint also applies to information stored in forecasters’

memory. In the same way that basing forecasts on all available external information is costly, it is

mentally costly to base one’s forecasts on all available internal information. Given this constraint,

their prior knowledge is imperfectly accessed when they make new projections.

3 The Optimal Mental Representation

We have seen that DM bases her forecasts on two types of information: mental representation of

internal information (mi,t) and mental representation of external information (ni,t). In this section,

I discuss the optimal structure of mi,t and ni,t.
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3.1 The Optimization Problem

The cognitive process is described by the sequence of {Kt,Σu,t,Λt,Σω,t}∞t=0. The optimal sequence

minimizes the loss function (7) subject to the information environment (3), (4), (5), and (6).

3.2 Optimal Representation of Noisy News ni,t

The optimal ni,t is one-dimensional and has the following structure.

Proposition 1. ñi,t is the optimal representation of Ni,t such that

ñi,t = κt · E [zt|Nt] + ũi,t (8)

for some positive scalar κt ∈ [0, κ̄t] and idiosyncratic noise ũi,t drawn from N
(
0, σ2u,t

)
.

Proof. See Appendix B.

Intuitively, the optimal representation of ni,t should only capture information inNt that is useful

for predicting zt. This is because other information in Nt uses up resources but does not further

increase the forecast accuracy. Since zt|Nt follows a Gaussian distribution, such information is

summarized in the first moment. Therefore, ñi,t encodes E [zt|Nt], which is denoted as follows

without loss of generality:

E [zt|Nt] = zt + ν̃t

Here, ν̃t ∼ N
(
0, σ2ν

)
for some non-negative σ2ν that is taken as given and known to DM.

As one can see from (8), there are combinations of κt and σ2u,t that imply the same posterior

distribution zt|mi,t, ñi,t for any given mi,t. Therefore, I impose a normalization so that κt alone

captures the accuracy of the representation. I assume that

Cov [zt, ñi,t|mi,t] = V ar [ ñi,t|mi,t] ,

in which case the posterior uncertainty is determined as

Σt|t = (1− κt) Σ
m
t|t

for a given prior uncertainty Σm
t|t. That is, observing ñi,t reduces the uncertainty about zt by a factor

of 1− κt. This normalization pins down σ2u,t as the following function of κt:

σ2u,t = κt (1− κt) Σ
m
t|t − κ2t σ

2
ν

One can then see that any κt ∈
[
0,

Σm
t|t

Σm
t|t+σ2

ν

]
ensures that the resulting σ2u,t is non-negative.

The value of κt is determined by the accuracy constraint (4). Given the optimal structure of

ni,t, the mutual information between ni,t and Nt equals I (ñi,t; zt + ν̃t). Then, we can pin down κt
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as a function of ϕn:

κt =
Σm
t|t

Σm
t|t +

ϕn

1−ϕn
(V ar [zt] + σ2ν) + σ2ν

(9)

We can see that noisier news implies lower κt and higher posterior uncertainty. Also note that after

long enough learning, the subjective uncertainty Σm
t|t and Σt|t converge to a positive steady-state

level for all t. Accordingly, κt → κ.

3.3 Optimal Representation of Noisy Memory mi,t

The optimal mi,t is one-dimensional and has the following structure.

Proposition 2. m̃i,t is the optimal representation of (mi,t−1, ni,t−1) such that

m̃i,t = λt · zi,t|t−1 + ω̃i,t+1 (10)

for some positive scalar λt ∈ [0, 1] and idiosyncratic noise ω̃i,t drawn from N
(
0, σ2ω,t

)
.

Proof. See Appendix B.

The intuition for deriving the optimal structure is similar to the derivation of ñi,t. The opti-

mal representation of mi,t captures information in (mi,t−1, ni,t−1) that is useful for predicting zt.

Since zt|mi,t−1, ni,t−1 follows a Gaussian distribution, such information is summarized in the first

moment. Therefore, m̃i,t encodes E [zt|mi,t−1, ni,t−1], which is expressed as zi,t|t−1.

As one can see from (10), there are combinations of λt and σ2ω,t that imply the same prior dis-

tribution zt| m̃i,t. Therefore, I impose a similar type of normalization assumption as I did for noisy

news so that the accuracy of the representation is captured by λt alone. I impose the restriction

that

Cov [zt, m̃i,t] = V ar [m̃i,t] ,

in which case V ar
[
zi,t|t−1

∣∣ m̃i,t

]
= (1− λt)V ar

[
zi,t|t−1

]
. That is, observing m̃i,t reduces the un-

certainty about zi,t|t−1 by a factor of 1− λt. This pins down σ2ω,t as a function of λt in the following

form:

σ2ω,t = λt (1− λt)V ar
[
zi,t|t−1

]
One can then see that any λt ∈ [0, 1] ensures that the resulting σ2ω,t is non-negative.

From the representation structure above, one can see that the forecast accuracy is described

by λt. Given the posterior uncertainty from the previous period, Σt|t−1, the prior uncertainty is

determined as follows:

Σm
t|t = Σt|t−1 + (1− λt)

(
V ar [zt]− Σt|t−1

)
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Uncertainty about zt increases from Σt|t−1 to Σm
t|t because prior knowledge is imperfectly repre-

sented in the new forecasts.

The value of λt is determined by the accuracy constraint (6). Given the optimal structure of

mi,t, the mutual information between mi,t and mi,t−1, ni,t−1 equals I
(
m̃i,t; zi,t|t−1

)
. Then, we can

pin down λt as a function of ϕm:

λt = 1− ϕm

One can see that noisier memory corresponds to lower λt and higher prior uncertainty.

4 Cognitive Noise and Biased Forecasts

In this section, I show that forecasts based on the mental representation exhibit forecast biases

found in Coibion and Gorodnichenko (2015) and Bordalo, Gennaioli, Ma, and Shleifer (2020b). I

illustrate how we can interpret these biases through the proposed model. The model also provides

an estimation strategy to infer the extent of cognitive constraints from the survey forecasts.

4.1 Forecasts Subject to Cognitive Constraints

DM’s time-t prior belief about zt is derived as follows:

zmi,t|t = (1− λ)E [zt] + λ zi,t|t−1 + ω̃i,t

We can see that forecasts are sluggish to incorporate past knowledge because memory is noisy

(ϕm > 0). When processing internal information is costly, remembered knowledge about zt is an-

chored toward the default prior (E [zt]). In the case of perfect memory, zt|mi,t equals zt|mi,t−1, ni,t−1.

Conditional on this prior belief, the posterior belief evolves according to the following formula:

zi,t|t = (1− κ) zmi,t|t + κ zt + κ ν̃t + ũi,t

We can see that forecasts are sluggish to track the current economy when subject to noisy news.

When processing external information is costly, forecasts put less weight on new information and

therefore are slow to catch up with new developments in zt.

Combining these two formulas, beliefs about zt follow the following law of motion:

zi,t|t = (1− λ) (1− κ)E [zt] + λ (1− κ) zi,t|t−1 + κ zt + (1− κ)ωi,t + κui,t (11)

The above equation summarizes the features of forecasts subject to cognitive noise. Because of

noisy news, DM sluggishly recognizes a change in zt. Because of noisy memory, DM sluggishly

incorporates her past knowledge. And the idiosyncratic cognitive noise from noisy news and noisy

memory creates forecast dispersion.

It is helpful to discuss how the noisy-memory assumption changes the predictions of the tradi-
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tional noisy-information model. If memory is perfect, then beliefs about zt evolve according to the

following formula:

zi,t|t = (1− κ∗) zi,t|t−1 + κ∗ zt + κ∗ ui,t (12)

Comparing (11) to this law of motion, we can see three changes. With noisy memory, (1) prior

knowledge receives a smaller weight (λ < 1), (2) new information receives a bigger weight (κ ≤
κ∗), and (3) a new source of cognitive noise appears.

Impulse response function. Figure 1 illustrates the effects of noisy memory when learning about

zt. For this numerical exercise, I use the parameter values ρ = 0.8 and σ2ϵ = 1.0 for the data-

generating process. I fix the extent of noisy news at ϕn = 0.4.

The top panel shows the impulse response to innovation in zt. The black dashed line shows

the response of zt. Other lines show the response of forecasts of zt for varying degrees of noisy

memory ϕm. The blue line is the perfect-memory case: As DM slowly learns about zt, her forecasts

undershoot the true zt. With enough learning opportunities, the undershooting disappears, and

forecasts closely follow the true yt. In comparison, the red line is the no-memory case, in which

DM has no access to her prior knowledge. Two features stand out. First, the initial response is more

significant than the blue line. This is because the Kalman gain is higher when memory is imperfect.

And second, learning is slow. Since DM cannot tap into her prior knowledge, learning takes a long

time, even with the large Kalman gain. The other colored lines show the in-between cases, and the

same intuition applies.

The bottom panel shows the impulse responses of the forecast errors, defined as zt − zi,t|t.

When memory is perfect (the blue line), the initially large, positive response diminishes as learning

accumulates. When memory is noisy, the forecast errors are initially smaller but remain large even

as learning opportunities accrue.
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Figure 1: Impulse response of forecasts

(a) Forecast
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(b) Forecast errors
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The figures show the impulse response to an innovation in zt. The top panel shows the response of zt
and the forecast of zt. The bottom panel shows the response of the forecast errors, defined as zt− zi,t|t.
The data-generating process is described by ρ = 0.8 and σ2

ϵ = 1.0. I fix the extent of noisy news as
ϕn = 0.4. The black dashed line shows the full-information case of perfect news and memory. Lines
with different colors assume a varying degree of noisy memory.
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4.2 Biases in Survey Forecasts

In this section, I revisit two regression specifications that test whether survey forecasts deviate from

FIRE. Then, I discuss what the test results can inform us about the extent of underlying cognitive

noise.

Three building-block assumptions of FIRE. Before investigating the features of survey forecasts,

it is helpful to clarify the three assumptions embedded in FIRE. First, forecasters efficiently use all

available information at hand. Thus, errors in forecasts are not systematically predictable by any

element in the information set. Second, forecasters can access their prior knowledge perfectly.

This means that forecast revisions should be in each individual forecaster’s information set. Third,

forecasters have access to the same complete information.

The first two assumptions predict that an econometrician cannot predict errors that an indi-

vidual forecaster will make based on the latter’s recent forecast revisions. The three assumptions

together predict that an econometrician cannot predict errors in the average forecasts based on

recent revisions in average forecasts.

Coibion and Gorodnichenko (2015) Regression Specification

Coibion and Gorodnichenko (2015) propose the following regression specification as a joint-hypothesis

test for the three FIRE assumptions:

yt+h − yt+h|t = αC + βC
(
yt+h|t − yt+h|t−1

)
+ et+h|t (13)

Here, yt+h|t and yt+h|t−1 are the average forecasts of yi,t+h|t and yi,t+h|t−1.

The authors find a positive βC for many macroeconomic variables and reject the null hypothesis.

They argue that relaxing the full-information assumption can explain the result. Intuitively, if the

population does not have access to complete information, revisions in the average forecasts will be

sluggish, as at least some people make forecasts based on outdated information. Then, on average,

forecasters revise their view about the future sluggishly in response to a change in the economy, and

forecast errors are positively correlated with forecast revisions. Furthermore, the authors argue that

a larger estimate of βC can be interpreted as evidence for more significant information frictions.

The expectation-formation model introduced in Section 2 gives new insight into interpreting

the regression coefficient.

Proposition 3. For forecasts subject to cognitive noise, the asymptotic limit of βC is

βC =
1− κ

κ

{
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

}
if σ2ν → 0. Furthermore, βC has the following properties:

1. βC > 0 if ϕn > 0, and βC = 0 if ϕn → 0.
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2. ∂βC
∂ϕn

> 0, and ∂βC
∂ϕm

< 0 if ϕn ≤ ϕ̄n ≡ ḡ
(
ρ, σ2ϵ

)
.

Proof. See Appendix D.

Because of noisy news, the proposed model generates a positive βC . Forecasters update their

beliefs sluggishly because they do not have perfect awareness of the current state. As discussed in

the previous section, the Kalman gain κ of less than one captures such sluggishness. In addition,

noisier news generates a smaller gain and a larger βC , as argued in Coibion and Gorodnichenko

(2015).

A new insight from the proposed model is that noisy memory and noisy news jointly determine

the Kalman gain. With noisier memory, the recalled prior knowledge is less accurate. Since uncer-

tainty about the state is higher, forecasters put a larger weight on incoming data, which results in

a higher Kalman gain and a lower βC .

Bordalo, Gennaioli, Ma, and Shleifer (2020b) Regression Specification

Bordalo, Gennaioli, Ma, and Shleifer (2020b) propose the following regression specification as a

joint-hypothesis test for the first two FIRE assumptions:

yt+h − yi,t+h|t = αI + βI
(
yi,t+h|t − yi,t+h|t−1

)
+ ei,t+h|t (14)

The authors reject the null hypothesis and find a negative βI for many macroeconomic variables

in contrast to the result from Coibion and Gorodnichenko (2015). They propose a non-Bayesian

expectation model to explain the negative coefficient. The main idea is that forecasters irrationally

put too much weight on new observations and over-revise their forecasts. Based on such a model,

forecasters are not using available information efficiently, which generates a nonzero βI . Further-

more, the authors argue that a more negative estimate of βI can be interpreted as the extent of

irrationality.

In contrast, I propose to relax the perfect-memory assumption while keeping the Bayesian-

efficiency assumption. The proposed model offers an alternative interpretation of the regression

coefficient as follows.

Proposition 4. For forecasts subject to cognitive noise, the asymptotic limit of βI is

βI = − (1− λ) (1− κ)

2 (1− λ) (1− κ) + ρ−2 − 1

if ρ > 0. Furthermore, βI has the following properties.

1. βI < 0 if ϕm > 0, and βI = 0 if ϕm → 0.

2. ∂βI
∂ϕn

< 0, and ∂βI
∂ϕm

< 0.

Proof. See Appendix D.
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The regression coefficient captures the bias in underusing past information. Because of noisy

memory, forecasts put less weight on past knowledge, which is captured by negative βI .

Furthermore, noisy news and noisy memory jointly determine this forecast bias. Noisier mem-

ory leads to more underuse of past information, which generates a more negative βI . With noisier

news, forecasters rely more on their memory when making forecasts. Since external information is

less effective in correcting the bias, βI is more negative.

Identification of the Extent of Cognitive Constraints

From Propositions 1 and 2, we can see that the two regression coefficients can pin down the severity

of noisy news and noisy memory.

Lemma 1. Given levels of βC and βI identify a unique pair of ϕn and ϕm, if it exists.

Proof. We can find the pairs of ϕn and ϕm that generate given levels of βC and βI (that is, the

iso-curve). The iso-curve for βC is upward-sloping, and the iso-curve for βI is downward-sloping.

Therefore, if the two iso-curves cross, they only cross once.

Figure 2 illustrates the lemma. I assume that ρ = 0.8 and σ2ϵ = 1.0. The blue solid line is the

iso-curve when βC = 0.5. And the orange dashed line is the iso-curve when βI = −0.2. We can see

that the iso-curve for βC is upward-sloping; more aggressive belief updating due to noisier memory

is offset by more sluggish belief updating due to noisier news. We can also see that the iso-curve

for βI is downward-sloping; more underuse of past information due to noisier memory is offset if

reliance on memory declines because of less noisy news. These two iso-curves cross once at most,

identifying the extent of noisy news and noisy memory that can jointly predict the two estimated

regression coefficients.
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Figure 2: βC and βI jointly identify the extent of cognitive noise
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This figure shows the iso-curves for the two regression coefficients in (13) and (14). The blue solid line
displays the pairs of noisy-news constraint ϕn and noisy-memory constraint ϕm that generate βC = 0.5.
The orange dashed line displays such pairs that generate βI = −0.2. The point at which the two lines
cross is the estimated extent of noisy news and noisy memory — that is, ϕ∗n = 0.58 and ϕ∗m = 0.28. The
data-generating process is described by ρ = 0.8 and σ2

ϵ = 1.
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5 Extended Model

In Section 2, I assumed that DM is fully aware of the parameters generating zt. In this section, I

assume forecasters are also learning about the long-run mean of the forecast variable. I show that

this extension can improve the model predictions in explaining the features of long-run forecasts.

5.1 Learning about the Long Run

Before I estimate the model, I revisit a commonly made assumption in the literature: that people

are perfectly aware of the model. It is often motivated by the idea that people adapt to their

environment and learn to make optimal economic decisions. However, I show this assumption is

not innocuous in the proposed model. As discussed in Azeredo da Silveira et al. (2020), when

prior knowledge is imperfectly accessed, forecasters do not reach complete awareness of the model

parameters.

One aspect of the environment that is particularly important for making long-horizon forecasts

is the mean of the forecast process. Therefore, I assume that DM does not know the exact level of

µ and has to learn about it, starting from a Gaussian prior:

µ ∼ N (µ̄, Ω)

The state variable relevant for predicting future realizations is expanded from yt to (µ, yt). This is

because forecasts for yt+h depend on DM’s beliefs about µ and yt. I denote this state vector as

xt =

µ
zt

 .

All other assumptions are the same as in Section 2.

5.2 The Optimal Cognitive Process

The optimization problem for deriving the optimal cognitive process is the same as described in

Section 2; the optimal process minimizes the objective function (1) subject to the information

environment (3), (4), (5), and (6). However, the optimal cognitive process differs from the one

introduced in Section 3 because the state variables are multivariate. In this section, I sketch the

optimal cognitive process. Detailed derivations are in Appendix C.

Implications of the linear-Gaussian structure. We can see that the initial prior about xt is Gaus-

sian. Therefore, the linear-Gaussian structure of noisy news and noisy memory again ensures that

DM’s belief about xt follows a Gaussian distribution. DM’s beliefs about xt (based on her cognitive
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state) are described with the following notation:

xτ |mi,t ∼ N
(
xmi,τ |t, Σ

m
τ |t

)
xτ |mi,t, ni,t ∼ N

(
xi,τ |t, Στ |t

)
The loss function. The loss function reduces to

∞∑
t=0

βt trace
(
Σt|tQ

)
.

Q is a matrix defined as Q ≡
∑H

h=1 αh α
′
h, where αh =

(
1− ρh ρh

)
.

Optimal representation of noisy news. I first derive the optimal structure of the noisy news ni,t.

The optimal representation of Nt, denoted as ñi,t, takes the form

ñi,t = K̃t · E [xt|Nt] + ũi,t

for some matrix K̃t and idiosyncratic noise ũi,t ∼ N (O, Σu,t). The structure is similar to the

optimal ni,t in Section 3. Since the forecast accuracy depends on the posterior uncertainty about

xt, the optimal summary of the information in Nt is captured by E [xt|Nt].

Under the assumed structure of the external news Nt in (2), the optimal K̃t and σu,t are deter-

mined as follows:

K̃t = κt ·
Σm
t|t e e

′

e′Σm
t|t e

Σu,t = σ2u,t ·
Σm
t|t e e

′Σm
t|t(

e′Σm
t|t e
)−2

κt and σ2u,t were derived in Section 3. The vector e′ =
(
0 1

)
picks out zt from the state vector

xt. The above expression shows that the information represented in ñi,t is E [zt|Nt] (with random

errors). This is because the information in Nt about the additional state variable µ is subsumed in

E [zt|Nt].

Optimal representation of noisy memory. The optimal representation of (mi,t−1, ni,t−1) is de-

scribed with m̃i,t such that

m̃i,t = Λ̃t · xi,t|t−1 + ω̃i,t

for some matrix Λ̃t and idiosyncratic noise ω̃i,t ∼ N (O, Σω,t). Intuitively, it is optimal to repre-

sent knowledge about xt from the internal information (mi,t−1, ni,t−1), which is summarized as

E [xt|mi,t−1, ni,t−1]. I apply the normalization so that the accuracy of the representation is entirely
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determined by Λ̃t:

Cov
[
xi,t|t−1, m̃i,t

]
= V ar [m̃i,t]

This pins down the memory-noise variance Σω,t as a function of Λ̃t.

Σω,t =
(
I − Λ̃t

)
V ar

[
xt|t−1

]
Λ̃′
t

Any Λ̃t is feasible as long as the resulting Σω,t is a proper variance-covariance matrix (that is,

symmetric and positive-semidefinite).

In the appendix, I describe how Λ̃t can be derived. The complication arises because the infor-

mation constraint (6) cannot completely determine the noisy memory anymore. To see why, note

that the constraint reduces to

I (mi,t; mi,t−1, ni,t−1) = −1

2
det
(
I − Λ̃t

)
≤ −1

2
lnϕn.

That is, this constraint limits the determinant of I − Λ̃t, leaving the elements of Λ̃t to be specified.

When solving for Λ̃t, I consider a myopic case, in which β → 0. I first define a matrix Γt that is

crucial for determining the Λ̃t. I call this matrix a memory-priority matrix and define it as follows:

Γt = (I −Kt+1)
′Q (I −Kt+1)

The matrix Γt roughly captures how some information receives higher priority than other infor-

mation. Two matrices show why I make such interpretations. First, the elements in (I −Kt+1)

would be large if external information oes not resolve much uncertainty about the state, in which

case a more accurate memory would be helpful. Second, the matrix Q is from the loss function of

incorrect forecasting. If some elements in Q were high, more accurate memory would be helpful.

I show in the appendix that V ar
[
xi,t+1|t

] 1
2 Γt V ar

[
xi,t+1|t

] 1
2 can be eigen-decomposed to UtGt U

′
t ,

where Ut is an orthonormal matrix storing the eigenvectors and Gt is a diagonal matrix storing

eigenvalues in descending order (that is, g1,t > g2,t). Then, the optimal Λt satisfies

Λ̃t = V ar
[
xi,t+1|t

] 1
2 UtDt U

′
t V ar

[
xi,t+1|t

]− 1
2 ,

where a diagonal matrix Dt is defined to be

Dt =



1−
(
g2,t
g1,t

ϕm

) 1
2

0

0 1−
(
g1,t
g2,t

ϕm

) 1
2

 if ϕm <
g2,t
g1,t

(
1− ϕm 0

0 0

)
otherwise.

One can easily see that det (I − Λt) = ϕm. The derivation above shows how the rank of the memory

variable is determined. The first case is when the dimension of the remembered knowledge is not
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reduced (that is, mi,t+1 is two-dimensional). In this case, the first diagonal element in Dt is higher

than the second one, indicating that the corresponding orthogonalized factor receives a higher

weight. The second case is when memory stores information in xi,t+1|t in a lower dimension. The

first diagonal element in Dt receives the biggest possible weight satisfying the memory constraint,

while the second element is zero.

Summary. We have seen the derivation for optimal noisy news and noisy memory, which is de-

scribed by the sequence of {Kt,Σu,t,Λt,Σω,t}∞t=0. The time-t prior belief is described with Λ̃t:

xmt|t = xt|t−1 +
(
I − Λ̃t

) (
E [xt]− xt|t−1

)
+ ω̃i,t

Σm
t|t = Σt|t−1 +

(
I − Λ̃t

) (
V ar [xt]− Σt|t−1

)
And the posterior belief is described with K̃t:

xi,t|t =
(
I − K̃t

)
xmi,t|t + K̃t xt + ν̃t + ũi,t

Σt|t =
(
I − K̃t

)
Σm
t|t

Here, ν̃t ∼ N (O, Σν), whose variance is defined as Σν = κ2t

(
e′Σm

t|t e
)−2

Σm
t|t e e

′Σm
t|t.

5.3 Perpetual Uncertainty about the Long Run

This section briefly discusses how DM learns about the long-run mean when she is subject to cogni-

tive noise. Based on this discussion, I show the model predictions about the forecast-error-revision

test for different forecast horizons.

When DM can access her internal information perfectly, she has complete access to all the past

noisy news. In this case, the subjective uncertainty about the mean is

V ar [µ|ni,t, ni,t−1, · · · , ni,0] =
(
Ω−1 + t× c

)−1
,

where Ω is the prior variance about µ, and c is a constant. We can see that the precision of

knowledge linearly increases in time; the uncertainty eventually converges to zero after a long

learning period.

Noisy memory qualitatively changes this prediction as investigated in Azeredo da Silveira, Sung,

and Woodford (2020). If DM imperfectly accesses internal information, V ar [µ|mi,t, ni,t] does not

converge to zero even after a long learning period. The intuition is straightforward: cognitive

noise prevents forecasters from reaching complete awareness even after an infinitely long learning

period.

Why does it matter that DM is imperfectly aware of the long-run mean? It matters because

DM will continuously update her beliefs about the mean as new data come, although she correctly

understands that the mean is a constant parameter. When yt is high, the DM partly attributes it to
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higher-than-expected µ and expects future yt to be persistently high. This prediction is similar to

extrapolative-expectation models in the finance literature. My model implies that a limited memory

might be the reason such extrapolation occurs.

Impulse response function. Figure 3 illustrates the effect of learning about the long run. I

use the same data-generating process as Figure 1 and set the cognitive parameters as ϕn = 0.4,

ϕm = 0.1, and Ω = 1.

The top panel shows the impulse response to innovation in zt. The black dashed line is the

response of zt. The blue line is the response of forecasts for zt. As in Figure 1, learning about yt
is sluggish because of noisy news.3 The orange line shows the forecast for µ. As discussed earlier,

DM perceives that zt is high partly because the long-run mean is high and revises her belief about

µ upward.

The bottom panel of Figure 3 displays the response of four-quarter-ahead forecasts for varying

degrees of Ω. I realign the lines to compare forecasts to the realized zt+4. We can see whether

forecasts undershoot or overshoot compared to the black dashed line. We see initial undershooting

for all values of Ω because of the noisy news. However, forecasts start overshooting after a few

periods for some Ω. When Ω is high, DM revises her beliefs about the long-run mean too much,

which offsets the undershooting due to noisy news. In this case, the forecast errors, defined as

zt+4 − zi,t+4|t, are initially positive in response to innovation in zt but soon turn negative. This pre-

diction is consistent with findings in Angeletos et al. (2021). The authors analyze the professional

forecasters’ year-ahead forecasts for unemployment and inflation and their impulse response to a

specific shock series constructed by Angeletos et al. (2020).

Error-revision regression. The perpetual uncertainty about the long run also implies that the

regression coefficients in the forecast error-revision test (13) and (14) will not be constant for

different forecast horizons.

Consider the regression coefficient applied to forecasts for µ. Denoting the mean forecasts as

µ̂i,t ≡ E [µ|mi,t, ni,t] and the average forecasts as µ̂t ≡
∫
µ̂i,td i, we can see that

βµC =
Cov [µ− µ̂t, µ̂t − µ̂t−1|µ]

V ar [ µ̂t − µ̂t−1|µ]
= −1

2

βµI =
Cov [µ− µ̂i,t, µ̂i,t − µ̂i,t−1|µ]

V ar [ µ̂i,t − µ̂i,t−1|µ]
= −1

2
.

The derivation is straightforward. We can deduce that βC = − V ar[ µ̂t|µ]−Cov[ µ̂t,µ̂t−1|µ]
2(V ar[ µ̂t|µ]−Cov[ µ̂t,µ̂t−1|µ]) and must

equal −1
2 . The same reasoning applies to βI .4 Forecasters revise their views about µ although µ is

a fixed parameter.
3We can see that the impulse response of zt more closely tracks zt in Figure 3 than in Figure 1. This is because

uncertainty about the long run increases uncertainty about zt, pushing up the Kalman gain.
4Derivations for other horizons are in Appendix F.
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Figure 4 illustrates the model predictions for βC and βI for varying forecast horizons. I fix the

degree of noisy news and noisy memory at levels in Figure 2 that generate the targeted βC and βI .

I use Ω = 0.2; this level corresponds to the posterior variance of µ if DM had access to twenty years

of data. The figure shows that both coefficients become more negative for longer forecast horizons.

As shown earlier, for forecasts far enough ahead, βµC and βµI are close to −1
2 .

The pattern in Figure 4 is in line with empirical findings in the literature. d’Arienzo (2020)

and Wang (2021) analyze professional forecasters’ projections of interest rates. Both authors find

that longer-horizon forecasts feature more negative biases when the regressions (13) and (14)

are estimated. Bordalo, Gennaioli, Porta, and Shleifer (2019) and Bordalo, Gennaioli, La Porta,

and Shleifer (2020a) find a similar pattern for stock analysts’ forecasts for companies’ long-term

earnings.
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Figure 3: Impulse-response functions when learning about the long run

(a) Forecasts of zt and µ

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0 yt / t

Ei, t yt / t

Ei, t / t

(b) Forecasts of zt+4

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0 yt / t

= 2
= 1
= 0.5
= 0

The figures show the impulse response to an innovation in yt. The data-generating process is described
by ρ = 0.8 and σ2

ϵ = 1. The top panel shows the response of yt and the forecast of yt and µ. I
fix the cognitive noise as ϕn = 0.4 and ϕm = 0.1, and I set Ω = 1. The bottom panel shows the
response of four-period-ahead forecasts (yi,t+4|t). Different lines assume varying degrees of Ω, the
initial uncertainty about µ.
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Figure 4: βC and βI when learning about the long run
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This figure shows model predictions of the two regression coefficients in (13) and (14) for different
forecast horizons. The extent of cognitive noise is from Figure 2: ϕ∗n = 0.28 and ϕ∗m = 0.58. The
gray solid line is the model prediction when DM does not have to learn about the long run (Ω = 0).
The black dashed line is when DM learns about the long run (Ω = 1). The data-generating process is
described by ρ = 0.8 and σ2

ϵ = 1.
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6 Estimating the Extent of the Cognitive Constraints

In this section, I estimate the two cognitive constraints by using professional forecasters’ survey

data.

6.1 Data

Survey forecast data are from the Survey of Professional Forecasters (SPF), administered by the

Federal Reserve Bank of Philadelphia. Once every quarter, around forty forecasters (mostly from

academia and banks) participate in this survey. The earliest survey started in 1968. I use survey

forecasts made until the second quarter of 2022.

Among the survey questions, those in the section titled “The U.S. Business Indicators” ask fore-

casters to submit their views about aspects of the overall US economy, which include output, price

level, labor and housing markets, and cost of borrowing. I investigate whether the proposed model

can explain features of survey forecasts made for that section.5 Table 1 lists the variables.

For data on the time series of macroeconomic variables, I use the Real-Time Data Set from

the Federal Reserve Bank of Philadelphia whenever possible. This data set provides the history of

data releases for each variable. Since the variables in the National Income and Product Accounts

are often redefined or reclassified, the final data release (that is, the most recently available data)

often does not include the same variables forecast by the professional forecasters in the data set.

Therefore, I compare the initial releases of each variable to the corresponding SPF forecasts.

6.2 Estimation Strategy

I estimate four parameters that affect how DM makes forecasts about the macroeconomic variables:

ϕn and ϕm (the severity of the two cognitive limitations), σ2ν (the amount of correlated noise), and

Ω (the unconditional prior uncertainty about the long-run mean).6 The parameters describing

the data-generating process are estimated from the realized macroeconomic variables. I assume

that each variable is described as a univariate autoregressive process. Related parameters are in

Appendix E. Finally, I assume that the longest forecast horizon of the loss function (1) is eight

quarters ahead since the SPF asks forecasters to submit their forecasts for up to two years ahead

for the “The U.S. Business Indicators” section.

I transform the survey forecast data so that the unit of forecasts is the log difference from the

previous quarter for most variables. I use change from the previous quarter for the unemployment

rate and the three financial variables in Table 1. Surveyed forecasters make projections for different

horizons, so all forecasts are annualized to make the units consistent. I use forecasts up to four

quarters ahead.
5There have been some categorical changes, as the survey forms changed over time, but I include eleven variables

that are consistently included most of the time.
6Failure to consider the correlated noise νt can bias the model estimation. This is because the estimated regression

coefficient βC from (13) is attenuated when forecast noise is correlated among forecasters (Coibion and Gorodnichenko
(2015) and Gemmi and Valchev (2021)).
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I drop some observations to restrict the influence of a few outlier variables. In each period, I

remove forecasts if they are five quantiles outside the median level. I remove forecasters if they

participate for fewer than ten periods. I further restrict samples to measure the forecast behavior

in the normal business cycle. During periods of big swings in the macroeconomy such as the

COVID-19 pandemic, it is likely that forecasters use different forecasting methods and therefore

exhibit different behaviors. Since my model does not capture such structural changes, I use a

simple algorithm to remove likely structural-change episodes. Namely, I compute the average size

of forecast revisions among forecasters each period and remove the top five percentile periods.

This procedure systematically identifies significant revision episodes, removing the beginning of

the pandemic for unemployment but not for less affected variables.

Estimation targets. The first two data moments I use are the regression coefficients described

earlier: βC from (13) and βI from (14). The forecast error-revision pair is available for the forecast

horizon for up to three quarters. I estimate the regression by pooling the four forecast horizons.7

For the individual-level regression, I include individual and horizon dummies to purge variations

due to the fixed effects.

I panel-bootstrap the SPF individual-forecast data and build bootstrap samples of the targeted

moments. Each sample contains on average forty individual forecasters, as in the survey data. The

first two panels of Table 1 report this coefficient. The table reports the median and confidence in-

terval of 5%–95% estimates. As discussed in Section 4.2, we see positive βC and negative βI across

the variables. These two moments can identify the underlying degree of information constraints,

given the two remaining parameters σ2ν and Ω. I also report the OLS estimates in Table 3. The

bootstrapped estimates and the OLS estimates are similar.

Two more moments are used to estimate the model. These moments are informative about

σ2ν and Ω. Based on Gemmi and Valchev (2021), I measure the size of Kalman gains using the

following specification:(
yi,t+h|t − yi,t+h|t−1

)
−
(
yt+h|t − yt+h|t−1

)
= αK + βK

(
yt+h|t−1 − yi,t+h|t−1

)
+ errori,t+h|t−1 (15)

This specification estimates how forecasters revise their views about the current economy in re-

sponse to news about it. The strategy is to partial out the effects of the correlated noise by de-

meaning individual forecasts. Since the correlated noise attenuates βC , comparing the above re-

gression coefficient to the Kalman gain implied by βC is informative about the degree of correlated

noise.8

I pool the forecast horizons and control for individual-forecaster and forecast-horizon fixed
7I pool the different forecast horizons for two reasons. An obvious reason is to increase power. But more importantly,

I am interested in estimating the constraints in processing information about the near-term economy, not just the current
economy. A literal interpretation of the model is that DM gets news only about the current economy. (Since the time
unit is a quarter, DM gets news about the current quarter only.) However, it would be realistic to assume that forecasters
learn about the near-term economy.

8The authors show that the new estimate of the Kalman gain is smaller for most macroeconomic variables they study.
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effects. The right panel of Table 1 reports the regression coefficient. The table reports the median

and confidence interval of 5%–95% estimates, and the OLS estimates are in Table 3.

I use a similar specification to measure how long-term forecasts are revised in response to news

about the near-term economy. We need frequent long-term forecast data to estimate this regression.

The SPF collects these data for the Consumer Price Index (CPI) but not for other macroeconomic

variables. I use forecasts for the annual average rate of headline CPI inflation over the next ten

years to estimate the regression. The coefficient is estimated to be 0.0862, statistically significant

at the 1% level, with a standard error of 0.0175. More details are in Appendix E. Since data are not

available to conduct a similar analysis for other macroeconomic variables, I target the estimated

coefficient for all variables. While it is not feasible to verify the validity of this assumption, we can

at least see that the estimated regression coefficient for (15) is broadly similar across variables.

6.3 Estimation Results

I now estimate parameters that fit each bootstrapped sample discussed in the previous section. I

report the median estimate and the 5%–95% confidence band in Table 4. Figure 6 reports the

estimates of noisy news ϕn and noisy memory ϕm.

In Section 4, I showed that the methodology in Coibion and Gorodnichenko (2015) underesti-

mates the magnitude of ϕn because it misattributes the extra sensitivity from noisy memory to low

ϕn. To investigate the extent of underestimation, I repeat the estimation procedure while assuming

ϕm = 0. In this case, I estimate two parameters, ϕn and σ2ν , that match the two estimation targets,

βC and βK .

The top panel in Figure 6 compares ϕn estimated using the proposed model to that estimated

assuming perfect memory. As expected, the estimated ϕn is larger with noisy memory. On average,

the baseline ϕn is twice as large as ϕn estimated the using Coibion and Gorodnichenko (2015)

methodology. The bottom panel illustrates the estimated ϕm. For most variables, ϕm is significant

and positive. Overall, the estimated parameters are somewhat stable: the average levels are ϕn =

0.31 and ϕm = 0.24; the median levels are ϕn = 0.34 and ϕm = 0.22.

Table 2 assesses the model fit using the point estimate. The top and bottom panels show the

targeted and untargeted moments, respectively. This table reports the average levels across macroe-

conomic variables.

We confirm that the model matches the targeted moments well. For untargeted moments, I

show variations in forecasts and forecast revisions. For each variable, I report variations in the time

series (that is, dispersion of the consensus forecasts) and in the cross section (that is, dispersion of

the individual forecasts at any given time). All measures are the standard deviation scaled by the

standard deviation of the forecast variable. We can see that the estimated model has a reasonable

quantitative fit.

Figure 5 illustrates the fit of untargeted moments for all macroeconomic variables. Although the

model is too stylized to replicate variations across macroeconomic variables perfectly, it generates

a good fit. The detailed data for this figure are available in Table 6.

28



Table 1: Estimated regression coefficients

βC CI βI CI βK CI

Nominal Gross Domestic Product 0.55 (0.43,0.66) -0.27 (-0.3,-0.24) 0.55 (0.52,0.58)

Real Gross Domestic Product 0.36 (0.26,0.45) -0.24 (-0.27,-0.21) 0.61 (0.58,0.63)

GDP Chain-Weighted Price Index 0.56 (0.43,0.69) -0.32 (-0.36,-0.28) 0.6 (0.57,0.64)

Corporate Profits after Taxes 0.49 (0.32,0.66) -0.44 (-0.48,-0.4) 0.51 (0.49,0.53)

Civilian Unemployment Rate 0.56 (0.51,0.62) -0.05 (-0.08,-0.02) 0.63 (0.6,0.65)

Industrial Production Index 0.53 (0.44,0.61) -0.18 (-0.22,-0.15) 0.57 (0.55,0.61)

Housing Starts 0.41 (0.31,0.49) -0.27 (-0.32,-0.22) 0.58 (0.55,0.6)

Consumer Price Index 0.46 (0.32,0.61) -0.17 (-0.22,-0.12) 0.57 (0.53,0.6)

Treasury Bill Rate, 3-month 0.28 (0.2,0.34) -0.01 (-0.03,0.01) 0.73 (0.69,0.77)

AAA Corporate Bond Yield 0.03 (-0.03,0.09) -0.35 (-0.38,-0.32) 0.68 (0.66,0.7)

Treasury Bond Rate, 10-year 0.26 (0.21,0.33) -0.12 (-0.15,-0.1) 0.7 (0.67,0.73)

Figure 5: Estimated βC and βI
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Table 1 reports the estimated regression coefficients. I study the variables in the SPF’s “U.S. Business
Indicators” section. From left to right, each panel presents the coefficients in (13), (14), and (15). The
last two regressions include individual and horizon fixed effects. I panel-bootstrap the SPF data. The
dot is the median estimate, and the error band shows the 5% and 95% estimates. The OLS estimates are
reported in Table 3. Figure 5 visualizes the estimation of βC and βI , whose x-axis uses the abbreviated
variable names that are in the same order as in the table above.
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Figure 6: Estimated Parameters

(a) Noisy News
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(b) Noisy Memory
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This figure’s full variable names are in Table 1. The top panel reports the estimated extent of noisy
news (ϕn), and the bottom panel reports that of noisy memory (ϕm). Estimation targets the panel-
bootstrapped moments discussed in Table 1. The dot is the median estimate, and the error band con-
tains the 5% and 95% estimates. Table 4 reports the detailed numerical results. In the top panel, I
compare the estimated ϕn (labeled as “Baseline”) to the estimation achieved under the Coibion and
Gorodnichenko (2015) assumption (labeled as “CG”). For the latter, I impose ϕm = 0 and estimate two
parameters (ϕn and σ2

ν) that match two targets (βC and βK).
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Table 2: Model Fit

(a) Targeted moments (average across macroeconomic variables)

βC βI βK βµ,K

Data Model Data Model Data Model Data Model

0.41 0.41 -0.22 -0.2 0.61 0.61 0.08 0.07

(b) Not-targeted moments (average across macroeconomic variables)

Variation in Forecasts Variation in Revisions

Time Series Cross Section Time Series Cross Section

Data Model Data Model Data Model Data Model

0.6 0.6 0.43 0.36 0.31 0.32 0.44 0.38

Figure 7: Not-targeted moments (all macroeconomic variables)
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The tables evaluate the fit of the estimated model when using the median estimates in Table 4. The
upper panel shows the targeted moments, and the lower panel shows untargeted moments. Both panels
report the average value across all macroeconomic variables in Table 1. For untargeted moments, I
report variations of forecasts and forecast revisions in the time series and cross sections, averaged
across four consecutive forecast horizons (current to three quarters ahead). The unit of all measures is
the standard deviation scaled by the standard deviation of the forecast variables. The figure illustrates
the untargeted moments for all macroeconomic variables. The detailed data for this figure are available
in Table 6.
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7 An Illustrative Macroeconomic Model

In this section, I study the macroeconomic implications of the proposed expectation-formation

model. Using a standard New Keynesian model, I show that if expectations are formed as in my

model, inflation may be more variable, worsening the central bank’s policy trade-off in stabilizing

inflation and output. I discuss the efficient monetary policy in this environment and what harm

can be done if the central bank conducts monetary policy that is only efficient under conventional

expectation assumptions.

7.1 Firms’ Decision Problem

Optimal Price Setting

Suppose firm i reconsiders its price Pi,t in period t. The new price that it chooses maximizes the

expected value of the firm’s (current market value) profits. This pricing decision does not constrain

any future decisions. Thus, it suffices to consider the effects of the choice on expected profits in

those future states in which the price has not yet again been re-optimized. The firm’s new price

solves the following problem:

max
Pi,t

Ei,t

[ ∞∑
h=0

αhQt,t+h

(
Pi,t Yi,t+h|t −Ψt+h

(
Yi,t+h|t

))]

Here, α is the probability of not resetting prices, Qt,t+h is the stochastic discount factor for evaluat-

ing the future nominal payoffs generated at t+ h, Yi,t+h|t is the output demanded in period t+ h if

the price remains at the one chosen at time t, and Ψt+h is the (nominal) cost function at time t+h.

Firm i takes into account that the demand Yi,t+h|t is given as

Yi,t+h|t =

(
Pi,t

Pt+h

)η

Ct+h,

where η is the elasticity of substitution among goods, Pt+k is the aggregate price at time t+ h, and

Ct+h is the aggregate consumption at time t+ h.

I use the notation Ei,t to denote firm i’s subjective expectation at time t. While in the conven-

tional New Keynesian model Ei,t refers to full-information rational expectations, I propose that the

firm’s expectations are formed according to the cognitive limitations proposed in earlier sections.

The firm’s objective depends only on aggregate conditions at the various dates t + h. Thus, under

rational expectations, the optimal price P ∗
i,t would be the same for all i that reconsider their price at

date t. However, under the expectation-formation model proposed in this paper, the optimal choice

P ∗
i,t may differ across firms because of their differing expectations.

The firm’s optimal price P ∗
i,t is derived using the first-order condition. Below I describe the first-

order Taylor expansion of this condition around the zero-inflation steady state (I use lowercase to
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denote the log of the variable denoted in uppercase):

p∗i,t − pi,t−1 = Ei,t

[ ∞∑
h=0

(αβ)h {(1− αβ) (mct+h −mc) + πt+h}

]

Here, mct+h is the log of real marginal cost at t + h (mc is its steady-state value), and πt+h is

inflation at t + h defined as logPt+h − logPt+h−1. As detailed in Appendix G, the marginal costs

do not depend on the quantity that a firm supplies. This is because of the assumed feature of

the production function that the marginal product of labor does not depend on the quantity of

production. Thus, firm i treats the nominal marginal costs as evolving independently of its own

pricing decision; they only depend on aggregate variables that the firm takes as given.9 Let us

define

zt+h ≡ (1− αβ) (mct+h −mc) + πt+h. (16)

Thus, the firm’s expectations of the current and future zt determine its subjectively optimal price:

p∗i,t − pi,t−1 = Ei,t

[ ∞∑
h=0

(αβ)h zt+h

]
(17)

7.2 Aggregate Economy

Real Marginal Costs

The real marginal costs are derived from the rest of the economy. As detailed in Appendix G, the

household optimization problem and market-clearing conditions imply that

mct −mc = χxt + et. (18)

χ depends on the elasticities of the consumption and labor utility functions, and xt is defined as

yt − yet , where yet is the efficient level of output. Finally, et is the cost-push shock. While I do not

take a stance on the source of cost-push shocks, one example is a time-varying, exogenous wage

markup. The cost-push shock is a transitory i.i.d. shock fluctuating around zero.

Monetary Policy

Because of cost-push shocks, it is infeasible for the central bank to stabilize both inflation and the

output gap fully. Thus, the central bank faces a policy trade-off in stabilizing the two variables. I

assume that monetary policy is specified by a targeting rule of the form

xt = −s πt, (19)

9I introduce this assumption for the sake of simplicity. However, even when the firm’s marginal product of labor
varies with the quantity supplied, the subjectively optimal price will still depend only on its expectations about aggregate
economic variables. See Gali (2008, Chapter 3).
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where s is a constant scalar that I later calibrate to match the relative variability of the output gap

to inflation in the data.

The targeting rule illustrates the relationship between xt and πt that the central bank seeks to

maintain in response to a fluctuation in the economy. The rule implies that the central bank accepts

inflation higher than its long-run target (assumed to be zero in the model) if and only if there is a

negative output gap. Likewise, the targeting rule requires inflation to be lower than the long-run

target when there is a positive output gap at the same time. The implication of such a targeting

rule for the path of interest rates can be derived using the household intertemporal optimization

condition.

Aggregation

Once firms reconsider their price and choose their subjectively optimal price P ∗
i,t, the aggregate

price index is formed according to

Pt =
[
α (Pt−1)

1−η + (1− α) (P ∗
t )

1−η
] 1

1−η
,

where P ∗
t ≡

∫
P ∗
i,t di is the average reset price of firms that reconsider their prices at time t. The

first-order Taylor expansion of the price index implies πt = (1− α) (p∗t − pt−1). Therefore, we can

derive the aggregate inflation by averaging the expectations of the different firms:

πt = (1− α)Ēt

[ ∞∑
h=0

(αβ)h zt+h

]
(20)

Here, Ēt averages the expectations Ei,t of all individual firms.

Determination of zt

By substituting (18) and (19) into (16), we can deduce that zt is determined as follows:

zt = {1− (1− αβ)σ s}πt + (1− αβ) et (21)

Equations (20) and (21) together imply that zt is determined by firms’ expectations about current

and future zt and the exogenous shock et. Thus, once we specify how firms forecast zt, we have a

complete theory of how inflation, the output gap, and zt evolve.

7.3 Firms’ Macroeconomic Expectations

Suppose that firms form their forecasts under the assumption that zt is an i.i.d. process such that

zt ∼ N
(
µ, σ2z

)
. (22)
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As discussed below, this assumption is correct under FIRE. As in the proposed expectation model,

firms are not perfectly aware either of the current value of zt or of the mean µ of the distribution

from which it is drawn. (σ2z is assumed to be known to DM.) Firms’ prior beliefs about µ are

described as

µ ∼ N (0, Ω)

for some positive Ω.

I denote the average beliefs of firms about zt and µ as ẑt and µ̂t, respectively. Then, ẑt and µ̂t
have the following law of motion:

ẑt = λ (1− κ) µ̂t−1 + κ zt (23)

The average expectation about the mean is

µ̂t = λ (1− κµ) µ̂t−1 + κµ zt. (24)

Firms’ beliefs are influenced by the realized zt, which are determined by the rest of the aggregate

economy, including the monetary policy discussed in the following section.

7.4 Expectation Formations and Inflation Dynamics

From (20), we see that inflation is determined by the average expectations of firms about the

current and future courses of zt. As seen from (23) and (24), they are are completely specified by

two state variables: µ̂t−1 (the average belief about µ in the previous period) and the realized value

of zt. Furthermore, πt and the exogenous shock et determine the evolution of zt, as described in

(21). Combining all these equations, we can deduce that the inflation process is a linear function

of et and µ̂t−1:

πt = φe et + φµ µ̂t−1 (25)

We can see that πt is a persistent process since µ̂t−1 is a function of zt−1, zt−2, · · · , z0, which are in

turn functions of lags of πt and et. The coefficients φe and φµ are derived as

φe =
δ

1 + δ σ s+ 1
α

1−κ̂
κ̂

φµ =
1

1 + δ σ s+ 1
α

1−κ̂
κ̂

1− α

α

b̂

κ̂
,

where δ ≡ (1−α)(1−αβ)
α , κ̂ = κ+ κµ, and b̂ = λ(1− κ) + αβ

1−αβλ(1− κµ). See Appendix G for detailed

derivation.
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Comparison of different expectation assumptions. Different assumptions about expectation

formation result in different inflation dynamics, as captured by κ̂ and b̂. I compare three cases:

FIRE (ϕn = 0 and ϕm = 0), the conventional models of information frictions (ϕn > 0 and ϕm = 0),

and finally the proposed expectation model (ϕn > 0 and ϕm > 0).

Under FIRE, firms are perfectly aware of zt and µ. Therefore, firms expect the future marginal

costs to be zero on average (since µ = 0) and set their prices to match the current marginal costs.

Therefore, the aggregate inflation is proportional to the realized zt. The inflation process is derived

as follows:

πt =
δ

1 + δ σ s
et

Under conventional models of information frictions, firms are imperfectly aware of zt but have

come to learn the true mean of the distribution zt is drawn from. Thus, their subjectively optimal

price is equal to the perceived value of the current marginal costs. This is because they correctly

expect that their future marginal costs are zero on average. The inflation process is derived as

πt =
δ

1 + δ σ s+ 1
α

1−κ∗

κ∗
et,

where κ∗ refers to the Kalman gain when updating firms’ belief about zt under the perfect-memory

assumption. Firms’ reset prices are less responsive to the realized cost-push shocks than under

FIRE. This is because firms are not perfectly aware of them when resetting prices. Accordingly,

while aggregate inflation is still proportional to the cost-push shocks, the dependence is more

muted.

Under the proposed model, the inflation process is derived as follows:

πt = ρµ πt−1 + γ0 et + γ1 et−1

Here, the coefficients on the cost-push shocks are derived as γ0 = φe+φmκµ and γ1 = −φe λ (1− κµ).

Inflation is persistent, unlike in the previous two expectation models. This is because of the fluctu-

ating beliefs about the long run, as the coefficient ρµ is the serial correlation of µ̂t.

7.5 Calibration

I now discuss how I choose the model parameters. The parameters describing the expectation

process come from the previous estimation section. I take the median estimates across macroeco-

nomic variables. For the baseline model, I use ϕn = 0.34, ϕm = 0.22, and Ω/σ2y = 0.12. For the

conventional models of information frictions, I use ϕn = 0.15.

I set χ = 2 to reflect that the elasticity coefficients of the consumption and labor utility function

are both one, following the discussion in Hazell et al. (2022). I assume that firms discount their

future revenues with β = 0.99 because I consider the time unit of the model to be a quarter. The

frequency of price changes is matched to the slope of the Phillips curve estimated in the literature.
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The inflation response to a 1% increase in the output gap (holding the expectation terms) is esti-

mated to be 0.024 in Rotemberg and Woodford (1997) and 0.0062 in Hazell et al. (2022). I target

0.01 as a midpoint.

Finally, I pin down s in the central bank’s targeting rule (19) and the variance of the cost-push

shock σ2e to match the empirical volatility of inflation and the output gap. I use the quarterly log

changes of the CPI for inflation. For the output gap, I use the difference between the log of real

gross domestic product (RGDP) and the log of potential RGDP. All data are from Federal Reserve

Economic Data (FRED). The standard deviation of the CPI is 0.35% per quarter, and the standard

deviation of the output gap is 2.48% per quarter.

7.6 Monetary Policy and Inflation Variability

We have seen that the expectation-formation process shapes inflation dynamics. In this section, I

consider the effects of alternative monetary policies on inflation variability and the role of expecta-

tion formation. To do so, I consider values of s in (19) given by

s = s∗
θ

1− θ
, (26)

where s∗ is the calibrated value of s. Thus, θ = 1
2 represents the typical monetary policy, bringing

the model-predicted volatility of inflation and output closer to the data.

The strength of inflation targeting is measured by θ ∈ [0, 1]. Complete inflation stabilization is

captured by θ = 1. In this case, in response to inflationary pressures from the cost-push shock, the

central bank drives output far below the efficient level to stabilize inflation.

The top left panel in Figure 8 shows firms’ subjective uncertainty about the long run. The x-axis

corresponds to the strength of inflation targeting. I discuss the prediction for three different ex-

pectation assumptions: FIRE (black dotted line), the conventional models of information frictions

(blue solid line), and the baseline model (orange solid line). As discussed earlier, firms are per-

fectly aware of the long run under FIRE and the conventional information-frictions model for any

monetary-policy rule, but this prediction changes when noisy memory is also present. Firms con-

tinually feel uncertain about the long run and keep revising their views. In particular, the strength

of inflation targeting matters; more stable inflation means more stable marginal costs, so firms

become less uncertain about the long-run mean.

The top right panel of Figure 8 displays the inflation variability for a given monetary-policy

rule on the x-axis. I confirm that stronger inflation targeting stabilizes the inflation process for all

expectation assumptions. Furthermore, we can see that conventional information-friction models

predict more stable inflation than under FIRE. Since firms are not perfectly aware of the realized

marginal cost, they do not reflect it in their prices. In the baseline model, firms are imperfectly

aware of both the realized marginal cost and its long-run mean. Therefore, their expectations of

future marginal costs fluctuate, inducing more price fluctuations.

The bottom panel in Figure 8 illustrates the central bank’s trade-off in simultaneously stabiliz-
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ing inflation and the output gap. Under the conventional information-frictions model, the policy

frontier shifts inward compared to FIRE; the economy faces less variable inflation at any output

variability. In the baseline model, the policy frontier shifts out, indicating that for any output

variability, the economy bears more variable inflation.

7.7 Efficient Inflation Targeting

We have seen that the effect of monetary policy on inflation variability varies with the expectation

assumptions. In this section, I study the efficient level of inflation targeting that maximizes social

welfare for each expectation assumption.

Let us assume that social welfare depends on how variable the output gap and inflation are.

Let us further assume that the welfare-relevant measure of the output gap is the output gap scaled

by 1
s∗ . Thus, the welfare losses from the output gap and inflation are roughly comparable in size.

Thus:

L = (1− ω) V ar [x̃t] + ω V ar [πt] (27)

Here, x̃t = 1
s∗ xt, and ω reflects the central bank’s preference for stabilizing inflation over stabilizing

the output gap. I find the optimal level of θ that minimizes the loss function.10

The left panel in Figure 9 displays the efficient weight for a given ω (the welfare weight on infla-

tion). Under the conventional information-frictions assumption, it is efficient to put less emphasis

on inflation targeting than under FIRE. Since the inflation process is less responsive to fluctuations

in marginal cost, the central bank can put more weight on stabilizing the output gap. In compari-

son, putting more weight on inflation is efficient in the baseline model. Since the volatile inflation

process feeds into more widely fluctuating beliefs about the long-run economy, the central bank

prioritizes stabilizing inflation.

The right panel in Figure 9 illustrates that conducting monetary policy based on a correct expec-

tation assumption is essential. I show the additional inflation variability that the economy incurs

if the central bank adopts a monetary policy that is only efficient under different expectation as-

sumptions. The increased volatility is especially sizable when the central bank intends to produce

more stable inflation (that is, when the welfare weight on inflation is high). That is, the central

bank can generate volatile inflation because it is not cognizant that fluctuation in marginal costs

will unanchor long-run expectations.

10One can consider the welfare-loss function whose measure of the output gap is not scaled. I propose to use the
scaled output gap to see the effect of different expectation assumptions more clearly for the entire range of ω. In the
current exercise, the standard deviation of the output gap is more than seven times larger than that of inflation. Thus,
the efficient strength of inflation targeting is quite small unless the welfare weight on inflation is sizable.
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Figure 8: The effect of monetary policy

(a) Uncertainty about long run
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(b) Inflation variability
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(c) Stabilization trade-off
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The figures above illustrate the macroeconomic dynamics for varying degrees of strength of inflation targeting (θ). For
all figures, three lines correspond to different expectation-formation assumptions: “Baseline” is the proposed model, “Full
Info” is the full-information model, and “CG” is the conventional models of information frictions. For each targeting rule
θ on the x-axis, the top left panel displays the uncertainty about the long-run mean µ, and the top right panel shows
the inflation variability. The bottom panel reports the policy trade-off between inflation stabilization and output-gap
stabilization. The model parameters are stated in the main text.
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Figure 9: Efficient policy

(a) Efficient inflation targeting
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(b) Increased inflation volatility from naive policy
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The left panel shows the efficient level of inflation targeting that minimizes the welfare loss (27). The welfare
weight on inflation variability (ω) is on the x-axis. Three lines correspond to different expectation-formation
assumptions as in Figure 8. The right panel shows the increased inflation variability from implementing
inefficient targeting rules. The targeting rules are only efficient if expectations are not subject to noisy memory.
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8 Conclusion

I proposed an expectations model in which economic agents make forecasts subject to information

frictions. The proposed model accounts for puzzling patterns that conventional information-friction

models cannot. It also offers an estimation strategy to identify the extent of information frictions.

Using professional forecasters’ overall projections of the US economy, I showed that an influen-

tial methodology previously proposed in the literature underestimates the extent of information

frictions by half. Using the estimated model, I discussed the model’s implications for inflation ex-

pectations and monetary policy. The public’s expectations about the long-run state of the economy

are not as well anchored as conventional information-friction models predict. I showed that the

central bank’s emphasis on inflation stabilization can be more desirable.

To reach these findings, I proposed that the relevant information friction is the cognitive con-

straint in processing the vast amount of information people have access to. Importantly, I proposed

that economic agents process information both external and internal to their minds. This contrasts

with conventional information-friction models, which implicitly assume that internal information is

perfectly accessible. I showed that jointly considering the two information constraints is crucial to

correctly estimating the extent of information frictions. To study the macroeconomic implications,

I introduced the proposed expectation model into a standard New Keynesian model. I showed that

price-setting firms have unanchored expectations about the long run when internal information is

not perfectly accessible. Furthermore, I showed that policies that are efficient under conventional

information-friction models generate excessive inflation volatility.

An important lesson from my analysis is that it is crucial to identify the fundamental bottleneck

that keeps economic agents from making forecasts consistent with FIRE. I showed that finite capac-

ity to process information — both external and internal — explains various features of survey fore-

casts that previous expectation-formation models cannot. Recognition of these constraints allows

one to see that conventional assumptions in macroeconomic models may not be well grounded.

One example is the assumption that agents would be well aware of the long-run economic trends

if the economy were stable. In the proposed model, agents’ long-run expectations perpetually

fluctuate even after extensive learning opportunities. This has the crucial implication that seem-

ingly anchored long-run inflation expectations can start moving when agents witness bouts of high

inflation. Thus, a monetary authority whose policies rely on the prospect of firmly anchored expec-

tations can lose its grip on the economy, leaving economic agents to doubt the authority’s ability

to manage inflation. Empirically relevant expectation-formation models can guide the complex

considerations that conducting monetary policy requires, especially in new environments yet to be

experienced and analyzed.
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9 Accompanying Tables and Figures

Table 3: Estimated regression coefficients using OLS

βC SE p-value βI SE p-value βK SE p-value

Nominal Gross Domestic Product 0.63 0.11 0.0 -0.27 0.04 0.0 0.54 0.03 0.0

Real Gross Domestic Product 0.45 0.12 0.0 -0.25 0.05 0.0 0.6 0.02 0.0

GDP Chain-Weighted Price Index 0.71 0.11 0.0 -0.32 0.04 0.0 0.6 0.03 0.0

Corporate Profits after Taxes 0.68 0.17 0.0 -0.44 0.05 0.0 0.51 0.03 0.0

Civilian Unemployment Rate 0.62 0.08 0.0 -0.05 0.05 0.31 0.62 0.02 0.0

Industrial Production Index 0.61 0.13 0.0 -0.18 0.06 0.0 0.58 0.02 0.0

Housing Starts 0.5 0.12 0.0 -0.25 0.06 0.0 0.58 0.02 0.0

Consumer Price Index 0.55 0.15 0.0 -0.17 0.09 0.04 0.56 0.03 0.0

Treasury Bill Rate, 3-month 0.29 0.05 0.0 -0.01 0.04 0.85 0.73 0.03 0.0

AAA Corporate Bond Yield 0.05 0.07 0.48 -0.35 0.04 0.0 0.68 0.02 0.0

Treasury Bond Rate, 10-year 0.28 0.07 0.0 -0.12 0.05 0.01 0.7 0.03 0.0

The first column shows the variables included in the SPF’s “U.S. Business Indicators” section. The first panel
displays the estimated regression coefficient from (13). The standard errors are robust to the presence of
arbitrary heteroskedasticity and autocorrelation. The second panel shows the regression coefficient estimates
from (14) when individual forecasts are pooled. For this regression, the standard errors are two-way clustered
by forecasters and survey date. The last panel reports the regression coefficient from (15). The standard errors
are similarly clustered two-way. I include individual and horizon fixed effects for the last two regression
specifications.
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Table 4: Estimated parameters

ϕn CI ϕm CI Ω/σ2
y CI σ2

ν/σ
2
y CI

Nominal Gross Domestic Product 0.34 (0.29,0.39) 0.19 (0.15,0.24) 0.16 (0.14,0.18) 0.14 (0.09,0.22)

Real Gross Domestic Product 0.32 (0.28,0.36) 0.27 (0.21,0.34) 0.12 (0.11,0.14) 0.23 (0.15,0.35)

GDP Chain-Weighted Price Index 0.53 (0.46,0.59) 0.45 (0.36,0.52) 0.1 (0.09,0.11) 0.52 (0.25,1.0)

Corporate Profits after Taxes 0.51 (0.43,0.56) 0.44 (0.41,0.48) 0.08 (0.08,0.09) 1.0 (1.0,1.0)

Civilian Unemployment Rate 0.14 (0.13,0.2) 0.0 (0.0,0.1) 1.0 (0.14,1.0) 0.0 (0.0,0.03)

Industrial Production Index 0.27 (0.19,0.32) 0.14 (0.03,0.2) 0.19 (0.14,1.0) 0.1 (0.07,0.16)

Housing Starts 0.38 (0.32,0.47) 0.3 (0.21,0.4) 0.12 (0.1,0.14) 0.32 (0.18,0.64)

Consumer Price Index 0.34 (0.27,0.4) 0.22 (0.1,0.33) 0.12 (0.09,0.27) 0.28 (0.1,0.58)

Treasury Bill Rate, 3-month 0.11 (0.06,0.17) 0.0 (0.0,0.0) 0.27 (0.16,1.0) 0.09 (0.03,0.39)

AAA Corporate Bond Yield 0.38 (0.31,0.42) 0.55 (0.48,0.6) 0.08 (0.08,0.09) 1.0 (0.61,1.0)

Treasury Bond Rate, 10-year 0.14 (0.12,0.19) 0.09 (0.03,0.21) 0.26 (0.12,0.92) 0.08 (0.03,0.13)

Each panel shows the estimated parameter and its confidence interval. The standard error is computed by
panel-bootstrapping the SPF individual-forecast data. I report the 5% and the 95% point estimates from
the bootstrapped samples. I estimate the scaled value of σ2

ν and Ω (divided by the variance of the forecast
variable). I restrict these scaled σ2

ν and Ω to be between zero and one.

Table 5: Estimated parameters using Coibion and Gorodnichenko (2015) approach

ϕn CI σ2
ν/σ

2
y CI

Nominal Gross Domestic Product 0.17 (0.15,0.19) 0.05 (0.02,0.08)

Real Gross Domestic Product 0.15 (0.12,0.17) 0.07 (0.04,0.12)

GDP Chain-Weighted Price Index 0.21 (0.18,0.24) 0.02 (0.0,0.06)

Corporate Profits after Taxes 0.26 (0.2,0.31) 0.17 (0.08,0.27)

Civilian Unemployment Rate 0.21 (0.19,0.23) 0.01 (0.0,0.03)

Industrial Production Index 0.19 (0.17,0.21) 0.04 (0.02,0.08)

Housing Starts 0.17 (0.14,0.2) 0.09 (0.05,0.13)

Consumer Price Index 0.23 (0.18,0.28) 0.11 (0.04,0.19)

Treasury Bill Rate, 3-month 0.11 (0.08,0.12) 0.03 (0.0,0.06)

AAA Corporate Bond Yield 0.02 (0.0,0.05) 0.16 (0.13,0.2)

Treasury Bond Rate, 10-year 0.11 (0.09,0.13) 0.05 (0.02,0.08)

Each panel shows the estimated parameter and its confidence interval. The standard error is computed by
panel-bootstrapping the SPF individual-forecast data. I report the 5% and the 95% point estimates from the
bootstrapped samples. I estimate the scaled value of σ2

ν (divided by the variance of the forecast variable). I
restrict these scaled σ2

ν to be between zero and one.
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Table 6: Model fit

(a) Targeted Moments

βC βI βK βµ,K

Data Model Data Model Data Model Data Model

Nominal Gross Domestic Product 0.55 0.54 -0.27 -0.27 0.55 0.55 0.08 0.08

Real Gross Domestic Product 0.36 0.35 -0.24 -0.24 0.61 0.61 0.08 0.08

GDP Chain-Weighted Price Index 0.56 0.57 -0.32 -0.32 0.6 0.6 0.08 0.08

Corporate Profits after Taxes 0.49 0.5 -0.44 -0.27 0.51 0.57 0.08 0.08

Civilian Unemployment Rate 0.56 0.59 -0.05 -0.05 0.63 0.65 0.08 0.04

Industrial Production Index 0.53 0.52 -0.18 -0.18 0.57 0.58 0.08 0.08

Housing Starts 0.41 0.4 -0.27 -0.27 0.58 0.58 0.08 0.08

Consumer Price Index 0.46 0.47 -0.17 -0.17 0.57 0.57 0.08 0.08

Treasury Bill Rate, 3-month 0.28 0.28 -0.01 -0.01 0.73 0.63 0.08 0.03

AAA Corporate Bond Yield 0.03 0.02 -0.35 -0.34 0.68 0.68 0.08 0.08

Treasury Bond Rate, 10-year 0.26 0.25 -0.12 -0.11 0.7 0.7 0.08 0.08

(b) Not-targeted moments

Variation in Forecasts Variation in Revisions

Time Series Cross Section Time Series Cross Section

Data Model Data Model Data Model Data Model

Nominal Gross Domestic Product 0.73 0.68 0.4 0.41 0.22 0.26 0.39 0.43

Real Gross Domestic Product 0.59 0.63 0.39 0.39 0.26 0.33 0.4 0.42

GDP Chain-Weighted Price Index 0.78 0.4 0.31 0.41 0.17 0.25 0.3 0.44

Corporate Profits after Taxes 0.62 0.35 0.74 0.35 0.31 0.26 0.73 0.36

Civilian Unemployment Rate 0.51 0.75 0.3 0.33 0.23 0.34 0.31 0.37

Industrial Production Index 0.57 0.71 0.4 0.37 0.27 0.31 0.4 0.39

Housing Starts 0.71 0.57 0.55 0.4 0.38 0.31 0.55 0.42

Consumer Price Index 0.38 0.56 0.21 0.37 0.16 0.34 0.2 0.38

Treasury Bill Rate, 3-month 0.54 0.78 0.29 0.25 0.39 0.39 0.34 0.27

AAA Corporate Bond Yield 0.72 0.44 0.73 0.35 0.58 0.34 0.76 0.4

Treasury Bond Rate, 10-year 0.49 0.78 0.43 0.3 0.43 0.39 0.47 0.34

The table compares the predictions of the estimated model to the data moments. The upper panel shows
the targeted moments, and the lower panel shows untargeted moments. For untargeted moments, I report
variations of forecasts and forecast revisions in the time series and cross sections, whose units are standard
deviations scaled by the standard deviation of the forecast variables. For each macroeconomic variable, these
moments are averaged across four consecutive forecast horizons (current to three quarters ahead).
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A Derivation of the Optimal Cognitive Process

For any given state vector xt, I show the optimal structure of the cognitive process, described by the

sequence of {Kt, σu,t,Λt, σω,t}∞t=0, that minimizes the loss function (7) subject to the information

environment (3), (4), (5), and (6).

A.1 Proof: The Optimal Structure for the Representation

I show below that the optimal ni,t and mi,t are one-dimensional. In particular, I show that the

optimal ni,t records E [zt|Nt] with noise while the optimal mi,t stores zi,t|t−1 with noise.

Step 1: Partition of ni,t and mi,t

Partition of ni,t We can partition ni,t = Kt ·Nt + ui,t into the following formn⃗i,t
ñi,t

 =

Ka,t Kb,t

Kc,t Kd,t


 N⃗t

E [x|Nt]

+

u⃗i,t+1

ũi,t+1

 (28)

Note that the elements of N⃗t are not correlated with E [xt|Nt] and that N⃗t and E [xt|Nt] span the

same vector space as Nt. I also impose the following normalization assumption

E [xt|mi,t, ni,t] = ñi,t + cons · E [xt|mi,t]

This relationship holds if and only if E [xt|Nt] − ñi,t is uncorrelated with all the elements in ni,t

conditional on mi,t. That is, the two requirements are

Cov [xt − ñi,t, n⃗i,t|mi,t] = O⃗ (29a)

Cov [xt − ñi,t, ñi,t|mi,t] = O (29b)

We can see that (29b) implies

Cov [xt,Kd,tE [xt|Nt]|mi,t] = V ar
[
Kc,t N⃗t +Kd,tE [xt|Nt] + ũi,t

∣∣∣mi,t

]
⇔ V ar

[
Kc,t N⃗t + ũi,t

∣∣∣mi,t

]
= Cov [xt,Kd,tE [xt|Nt]|mi,t]−Kd,t V ar [E [xt|Nt]|mi,t] K

′
d,t

The feasible set of Kd,t is defined as Kd,t that yields the right-hand-side term to be a proper

variance-covariance matrix (that is, symmetric and p.s.d.).
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Partition of mi,t Similarly, we can also partition mi,t = Λt ·

mi,t−1

ni,t−1

+ωi,t as the following form

m⃗i,t

m̃i,t

 =

Λa,t Λb,t

Λc,t Λd,t


 s⃗i,t−1

xi,t|t−1

+

ω⃗i,t

ω̃i,t

 (30)

Note that the elements of s⃗i,t are not correlated with zi,t|t−1 and that s⃗i,t−1 and xi,t|t−1 span the

same vector space as (mi,t−1, ni,t−1). I also impose the following normalization assumption

E
[
xi,t|t−1

∣∣mi,t

]
= m̃i,t + cons · E

[
xi,t|t−1

]
This relationship holds if and only if xi,t|t−1−m̃i,t is uncorrelated with all the elements in mi,t. Two

requirements summarize this relationship.

Cov
[
xi,t|t−1 − m̃i,t, m⃗i,t

]
= O⃗ (31a)

Cov
[
xi,t|t−1 − m̃i,t, m̃i,t

]
= O (31b)

The second requirement implies that

Cov
[
xi,t|t−1, m̃i,t

]
= V ar [m̃i,t]

⇔ V ar [Λc,t s⃗i,t−1 + ω̃i,t] = (1− Λd,t)V ar
[
xi,t|t−1

]
Λ′
d,t

= (1− Λd,t)
(
V ar [xt]− Σt|t−1

)
Λ′
d,t

The feasible set of Λd,t is defined as the collection of Λd,t under which the resulting right-hand side

is a proper variance-covariance matrix (that is, symmetric and p.s.d.).

Step 2: Forecast accuracy depends only on Kd,t and Λd,t

From the proposed partition (28), we can see that

xt|mi,t, ni,t = xt|mi,t, ñi,t

That is, further knowledge of n⃗i,t does not improve the estimate of xt|mi,t, ñi,t. This follows from

(29a). Furthermore, we can see that Kd,t uniquely determines the posterior uncertainty Σt|t, given

the prior uncertainty Σm
t|t,

Likewise, we can also see from (30) that

xi,t|t−1

∣∣mi,t = xi,t|t−1

∣∣ m̃i,t

The information in mi,t about xi,t|t−1 is completely captured by m̃i,t, which follows from (31a). We

can furthermore see that Λd,t uniquely determines the next-period prior uncertainty given Σt|t−1,
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the time-t posterior uncertainty about xt.

V ar [xt| m̃t] = V ar [xt]− Λd,tCov
[
xt, xi,t|t−1

]
= V ar [xt]− Λd,t

(
V ar [xt]− Σx|t−1

)
= (1− Λd,t)V ar [xt] + Λd,tΣt|t−1

In summary, given Σt|t−1 at any time t, Kd,t and Λd,t uniquely determine Σm
t|t and Σt|t. We can

apply this argument recursively. It must be that the sequence of {Kd,t,Λd,t} uniquely determines

the sequence of
{
Σt|t
}

, given the initial prior uncertainty.

Step 3: The Optimal Choice of Kt and Λt

Since the remaining elements of Kt and Λt do not matter for the forecast accuracy, we can further-

more conclude that it is optimal to have them equal to zero. To see why note that

I (ni,t;Nt) = I
(
(n⃗i,t, ñi,t) ;

(
N⃗t, E [xt|Nt]

))
As discussed in Appendix C.2 of Azeredo da Silveira et al. (2020), the lower bound of this mutual

information is equal to I (ñi,t;E [xt|Nt]). This lower bound is achieved when Ka,t = Kb,t = Kc,t =

O. Likewise,

I (mi,t;mi,t−1, ni,t−1) = I
(
(m⃗i,t, m̃i,t) ;

(
s⃗i,t−1, xi,t|t−1

))
whose lower bound is equal to I

(
m̃i,t;xi,t|t−1

)
. This lower bound is achieved when Λa,t = Λb,t =

Λc,t = O.

B Optimal Covnitive Process When zt is the Only State Variable

In this section, I apply the result from the previous section when xt = zt.

B.1 Optimal representation of noisy news

The optimal ni,t is described as

ñi,t = κt · E [zt|Nt] + ũi,t

for some positive scalar κt. The idiosyncratic noise ũi,t follows a Gaussian distribution N
(
0, σ2u,t

)
,

where σ2u,t is determined by the choice of κt.

σ2u,t = κtCov [zt, E [zt|Nt]|mi,t]− κ2t V ar [E [zt|Nt]|mi,t]
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Without loss of generality, we could assume that E [zt|Nt] can be expressed as

E [zt|Nt] = zt + ν̄t

where ν̄t ∼ N
(
0, σ2ν

)
for some positive σ2ν . Then, σ2u,t is further simplified to

σ2u,t = κt (1− κt) Σ
m
z,t|t − κ2t σ

2
ν

where Σm
z,t|t = V ar [zt|mi,t]. Any κt ∈

[
0,

Σm
z,t|t

Σm
z,t|t+σ2

ν

]
ensures that the resulting σ2u,t is non-negative.

Determination of κt Using the information constraint, we can derive that

I (ni,t;Nt) = I (ñi,t;E [zt|Nt])

= −1

2
log

(
1− κ2t V ar [zt + ν̃t]

κ2t V ar [, zt + ν̃t] + σ2u,t

)

= −1

2
log

1− V ar [zt + ν̃t]

V ar [zt + ν̃t] +
((
κ−1
t − 1

)
Σm
t|t − σ2ν

)
 ≤ −1

2
log ϕn

Rearranging the last inequality yields

κt ≤
Σm
t|t

Σm
t|t +

ϕn

1−ϕn
(V ar [zt] + σ2ν) + σ2ν

(32)

The upper bound is the optimal κt. Then, the resulting σ2u,t is

σ2u,t =

(
Σm
t|t

)2 (
ϕn

1−ϕn

(
V ar [zt] + σ2ν

))
(
Σm
t|t +

ϕn

1−ϕn
(V ar [zt] + σ2ν) + σ2ν

)2 (33)

B.2 Optimal representation of noisy memory

Likewise, we can express the optimal mi,t as

m̃i,t = λt · zi,t|t−1 + ω̃i,t

for some positive scalar λt. The idiosyncratic noise ω̃i,t follows a Gaussian distribution N
(
0, σ2ω,t

)
,

whose variance is determined by the choice of λt as follows.

σ2ω,t = λt (1− λt)V ar
[
zi,t|t−1

]
Any λt ∈ [0, 1] ensures that the resulting σ2ω,t is non-negative.
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Determination of λt Using the information constraint, we can derive that

I (mi,t;mi,t−1, ni,t−1) = I
(
m̃i,t; zi,t|t−1

)
= −1

2
log det (1− λt) ≤ −1

2
log ϕm

Therefore,

λt ≤ 1− ϕm

The optimal λt = 1− ϕm and the resulting σ2ω,t = ϕm (1− ϕm) V ar
[
zi,t|t−1

]
.

C Optimal Cognitive Process When (µ, zt) is the State Vector

In this section, I apply the result from Section A.1 when xt = (µ, zt).

C.1 Optimal representation of noisy news

The optimal ni,t is described as

ñi,t = K̃t · E [xt|Nt] + ũi,t

for some matrix scalar K̃t. The idiosyncratic noise ũi,t follows a Gaussian distribution N (O, σu,t),

where σu,t is determined by the choice of K̃t.

σu,t = Cov [xt, E [xt|Nt]|mi,t] K̃
′
t − K̃t V ar [E [xt|Nt]|mi,t] K̃

′
t

Note that E [xt|Nt] is spanned by E [zt|Nt]. This is because the news vectorNt is informative about

µ only through the information about zt. Therefore, without loss of generality, we can express ñi,t
as

ñi,t =

κµ,t

κt

1

 · (κtE [zt|Nt] + ūi,t)

where the idiosyncratic noise ūi,t is drawn from N
(
0, σ2u,t

)
. The noisy news structure is then

described by three univariate variables, κµ,t, κt, and σ2u,t, which remain to be specified.

We could furthermore see that the normalization assumptionCov [xt, ñi,t|mi,t] = V ar [ ñi,t|mi,t]

implies that

κt

Σm
µ,t|t (κµ,t/κt) Σm

µ,t|t

Σm
z,t|t (κµ,t/κt) Σm

z,t|t

 =
(
κ2t

(
Σm
z,t|t + σ2ν

)
+ σ2u,t

)(κµ,t/κt)
2 (κµ,t/κt)

(κµ,t/κt) 1


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where Σm
µ,t|t = V ar [µ|mi,t]. This condition pins down κµ,t and σ2u,t as a function of κt as follows.

κµ,t =
Σm
µ,t|t

Σm
z,t|t

κt

σ2u,t = κt (1− κt) Σ
m
z,t|t − κ2t σ

2
ν

We can see that any κt ∈
[
0,

Σm
z,t|t

Σm
z,t|t+σ2

ν

]
ensures a non-negative σ2u,t. Using e =

(
0 1

)
to pick out

zt from xt, we have the following expression for ñi,t.

ñi,t = K̃t · E [xt|Nt] + ũi,t, ũi,t ∼ N (O, σu,t)

where K̃t and σu,t are defined as

K̃t = κt
Σm
t|t e e

′

e′Σm
t|t e

σu,t = σ2u,t

(
e′Σm

t|t e
)−2

Σm
t|t e e

′Σm
t|t

for which we use the relationship

κµ,t

κt

1

 =
Σm

t|t e

e′ Σm
t|t e

.

Determination of κt We can observe that the optimal κt and σ2u,t are equal to the ones determined

in Section B. This is because the optimal ni,t under the state vector xt = (µ, zt) is spanned from the

optimal ni,t when xt = zt. The information constraint (4) has the same restriction.

Posterior beliefs It is straightforward to see that the posterior belief evolves as follows, given ñi,t.

xi,t|t =
(
I − K̃t

)
xmi,t|t + K̃t xt + ν̃t + ũi,t

Σt|t =
(
I − K̃t

)
Σm
t|t

where ν̃t ∼ N (O, σν) and σν = κ2t

(
e′Σm

t|t e
)−2

Σm
t|t e e

′Σm
t|t.

C.2 Optimal representation of noisy memory

We can express the optimal mi,t as

m̃i,t = Λ̃t · xi,t|t−1 + ω̃i,t
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The feasibility of Λ̃t is described earlier. The idiosyncratic noise ω̃i,t follows a Gaussian distribution

N (O, σω,t), whose variance is determined by the choice of Λ̃t as follows.

σω,t =
(
1− Λ̃t

) (
V ar [xt]− Σt|t−1

)
Λ̃′
t

Therefore, it remains to specify Λ̃t. The information constraint (6) constrains the choice of Λ̃t. We

can derive that

I (mi,t;mi,t−1, ni,t−1) = I
(
m̃i,t;xi,t|t−1

)
= h (m̃i,t)− h

(
m̃i,t|xi,t|t−1

)
=

1

2
ln det (V ar [m̃i,t])−

1

2
ln det

(
V ar

[
m̃i,t|xi,t|t−1

])
=

1

2
ln det

(
V ar

[
xi,t|t−1

]
Λ̃′
t

)
− 1

2
ln det

((
I − Λ̃t

)
V ar

[
xi,t|t−1

]
Λ̃′
t

)
= −1

2
log det

(
1− Λ̃t

)
≤ −1

2
log ϕm

Therefore,

det
(
I − Λ̃t

)
≥ ϕm

C.2.1 The Choice Variable

Any Λ̃t is feasible as long as (1) the resulting Σm
t|t is a symmetric and positive semidefinite matrix

and (2) the diagonal elements of Σm
t|t are bigger than those of Σt|t−1 and smaller than those of

σx. That is, under any feasible Λ̃t, both Σm
t|t − Σt|t−1 and σx − Σm

t|t are proper variance-covariance

matrices (symmetric and positive semidefinite).

It is useful to define Λ̄t, which is simply a rotation of Λ̃t.

Λ̄t = V ar
[
xi,t|t−1

]− 1
2 Λ̃t V ar

[
xi,t|t−1

] 1
2

We could confirm that the same accuracy constraint (6) applies.

det
(
I − Λ̄t

)
= det

(
I − V ar

[
xi,t|t−1

]− 1
2 Λ̃tV ar

[
xi,t|t−1

] 1
2

)
= det

(
V ar

[
xi,t|t−1

]− 1
2

(
I − Λ̃t

)
V ar

[
xi,t|t−1

] 1
2

)
= det

(
I − Λ̃t

)
Therefore, I use Wt = I − Λ̄t as a choice variable. Any Wt is feasible as long as Wt and I −Wt are

positive semidefinite.

C.2.2 The Constraints

The prior uncertainty is formed according to

Σm
t|t = Σt|t−1 +

(
I − Λ̃t

)
V ar

[
xi,t|t−1

]
= Σt|t−1 + V ar

[
xi,t|t−1

] 1
2
(
I − Λ̄t

)
V ar

[
xi,t|t−1

] 1
2
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And the posterior uncertainty can be described as

Σt|t = Σm
t|t −

(
κtΣ

m
t|t e
)(

κt e
′Σm

t|t e
)−1 (

κ e′Σm
t|t

)
= Σm

t|t − Σm
t|t e

(
Ωm
t|t

)−1
e′Σm

t|t

where

Ωm
t|t = e′Σm

t|t e+
ϕn

1− ϕn
(V ar [zt] + σν) + σ2ν

C.2.3 The Optimization Problem

The optimization problem can then be written as

min
Wt

tr
(
σt|tQ

)
subject to the law of motions of the subjective uncertainty

Σm
t|t − Σt|t−1 =

(
σx − Σt|t−1

) 1
2 Wt

(
σx − Σt|t−1

) 1
2

Ωm
t|t = e′Σm

t|t e+
ϕn

1− ϕn
(V ar [zt] + σν) + σ2ν

σt|t = Σm
t|t − Σm

t|t e
(
Ωm
t|t

)−1
e′Σm

t|t

along with the requirement that both Wt and I −Wt are positive semidefinite and symmetric.

Note that when deciding which information to recall at time t (or equivalently, when deciding

which information to store at time t − 1), such a decision takes into account the noisy news that

is available at time t. That is, the availability (and the quality) of extra information not from one’s

memory will affect which information is worthy of remembering. While this is a natural trade-off

given the restriction that memory cannot perfectly store all the past information, it is also one that

has not been investigated in the literature yet.

C.2.4 Setting up the Lagrange Multipliers

Since Wt is symmetric, it can be eigen-decomposed as Wt = U (I −D) U ′ where D is a diagonal

matrix and U U ′ = I. The constraints that Wt and I −Wt are positive semidefinite are equivalent

to the constraints that I − D and D are positive semidefinite. The diagonal elements of I − D

and D should be non-negative. The Lagrange multipliers for each inequality constraint can be

stored in a diagonal matrix, Ῡ1 and Ῡ1. Finally, I can define Υ1 = U Ῡ1 U
′ and Υ2 = U Ῡ2 U

′.

Note that Υ1Wt = U Ῡ1 (I −D) U ′ and Υ2 (I −Wt) = U Ῡ2 (D) U ′. We can see that the in-

equality constraint can be expressed as tr (Υ1Wt) ≥ 0 and tr (Υ2 (I −Wt)) ≥ 0. This is because

tr (Υ1Wt) = tr
(
Ῡ1 (I −D)

)
and tr (Υ2 (I −Wt)) = tr

(
Ῡ2 (D)

)
.

We also have equality constraints on the law of motions of subjective uncertainty. For each

constraint, I construct a symmetric matrix Γi whose kth row contains the Lagrangian multiplier for
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each kth column of the equality conditions.

C.2.5 The Lagrangian Problem and the First Order Conditions

The Lagrangian problem is as follows.

max− tr
(
σt|tQ

)
− tr

(
Γ1

((
σx − Σt|t−1

) 1
2 Wt

(
σx − Σt|t−1

) 1
2 +Σt|t−1 − Σm

t|t

))
− tr

(
Γ2

(
e′Σm

t|t e+
ϕn

1− ϕn
(V ar [zt] + σν) + σ2ν − Ωm

t|t

))
− tr

(
Γ3

(
Σm
t|t − Σm

t|t e
(
Ωm
t|t

)−1
e′Σm

t|t − σt|t

))
+ tr (Υ1Wt) + tr (Υ2 (I −Wt)) + µ (det (Wt)− ϕm)

where the “Langrangian multipliers” Γi and Υi for all i are symmetric matrices.

The first order conditions subject to Wt, Σm
t|t, Ω

m
t|t and σt|t are (in that order)

−
(
σx − Σt|t−1

) 1
2 Γ1

(
σx − Σt|t−1

) 1
2 +Υ1 −Υ2 + µ det (Wt)W

−1
t = O (34a)

Γ1 − eΓ2 e
′ − Γ3 + e

(
Ωm
t|t

)−1
e′Σm

t|t Γ3 + Γ3Σ
m
t|t e

(
Ωm
t|t

)−1
e′ = O (34b)

Γ2 −
(
Ωm
t|t

)−1
e′Σm

t|t Γ3Σ
m
t|t e

(
Ωm
t|t

)−1
= O (34c)

−Q+ Γ3 = O (34d)

and the slackness conditions are

Υ1Wt = O, Υ1 ⪰ O, Wt ⪰ O (35a)

Υ2 (I −Wt) = O, Υ2 ⪰ O, (I −Wt) ⪰ O (35b)

and

µ (det (Wt)− ϕm) = 0, µ ≥ 0,det (Wt) = ϕm (36)

We can first rearrange (34b)-(34d). Note that Γ3 = Q (as implied by (34d)) and using the notation

K̃t ≡ Σm
t|t e

(
Ωm
t|t

)−1
e′, we can express (34b) as

Γ1 − eΓ2 e
′ −Q+ K̃ ′

tQ+QK̃t = O

and (34c) as

eΓ2 e
′ − K̃ ′

tQK̃t = O
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which together result in

Γ1 =
(
I − K̃t

)′
Q
(
I − K̃t

)
Next, I’d like to solve for Wt that characterizes the optimal memory system. First, multiplying (34a)

by Wt (I −Wt) on the left yields

−
(
σx − Σt|t−1

) 1
2 Γ1

(
σx − Σt|t−1

) 1
2 Wt (I −Wt) + µϕm (I −Wt) = O (37)

after applying the slackness conditions (from which (Υ1 −Υ2)Wt (I −Wt) = O). We can observe

that
(
σx − Σt|t−1

) 1
2 Γ1

(
σx − Σt|t−1

) 1
2 should be eigen-decomposed in the form of U GU ′, that is, it

should share the basis with Υ1, Υ2 and Wt. Then, the above expression can be written as

U (µϕm I −G (I −D))DU ′ = O (38)

Note that D should satisfy D ⪰ O, I −D ⪰ O, and det (I −D) = ϕm.

C.2.6 The Solution to the Lagrangian Problem

The solution of D can be found as follows. Let’s first rearrange U and G so that the diagonal

elements in G are in descending order. For k = 1, · · · , n (where n is the dimension of xt), I define

θk =
(
ϕm
∏k

i=1 gi

) 1
k then we can find k such that gk ≥ θk > gk+1 for k < n (or k = n if gk ≥ θk).

Then, the ith element of D, di, is going to be

di =

1− θk
gi

for i ≤ k

0 for i > k

We can see that all di ∈ [0, 1] and det (I −D) = Πk
i=1

θk
gi

= ϕm.

We can express the solution for D more succinctly. Following Afrouzi and Yang (2021), I adopt

the following two matrix operators. For a diagonal matrix D, max (D, θ) replaces the diagonal

elements of D that are smaller than θ with θ. For a symmetric matrix X whose eigendecomposition

is expressed as X = U DU ′, the operator Max (X, θ) is defined as Max (X, θ) = U max (D, θ)U ′.

Using these operators, I can express the optimal I −D as

I −D = θk {Max (G, θk)}−1

Since Wt = U (I −D)U ′, the optimal solution for Wt is expressed as

Wt = θk
{
Max

(
U GU ′, θk

)}−1

From this, the optimal Σm
t|t is derived as

Σm
t|t = Σt|t−1 + V ar

[
xi,t|t−1

] 1
2 θk

{
Max

(
V ar

[
xi,t|t−1

] 1
2 Γ1 V ar

[
xi,t|t−1

] 1
2 , θk

)}−1

V ar
[
xi,t|t−1

] 1
2
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where V ar
[
xi,t|t−1

]
= σX − Σt|t−1 captures the maximum possible increase in the uncertainty due

to forgetting the previous information si,t−1. In summary, the optimal memory system solves the

fixed point problem for Γ1 and Σm
t|t that satisfy the following equations, given the level of Σt|t−1

(and therefore V ar
[
xi,t|t−1

]
).

Σm
t|t = Σt|t−1 + V ar

[
xi,t|t−1

] 1
2 θk

{
Max

(
V ar

[
xi,t|t−1

] 1
2 Γ1 V ar

[
xi,t|t−1

] 1
2 , θk

)}−1

V ar
[
xi,t|t−1

] 1
2

Γ1 =
(
I − K̃t

)′
Q
(
I − K̃t

)
Furthermore, as summarized by Λ̃t, the optimal memory signal is described as follows.

Λ̃t = V ar
[
xi,t|t−1

] 1
2

(
k∑

i=1

(
1− θk

gi

)
ui u

′
i

)
V ar

[
xi,t|t−1

]− 1
2

where gi is the eigenvalues of V ar
[
xi,t|t−1

] 1
2 Γ1 V ar

[
xi,t|t−1

] 1
2 that are rearranged in a descending

order and ui is the corresponding eigenvector. As defined above, k is such that gk ≥ θk ≥ gk+1.
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D Derivations of βI and βC (when the long-run mean is known)

DM i’s forecast of zt evolves according to the following linear law of motion.

zi,t|t = (1− λ) (1− κ)µ+ λ (1− κ) zi,t|t−1 + κ zt + κ ν̃t + ũi,t + (1− κ) ω̃i,t

The consensus forecast of zt evolves according to the following linear law of motion.

zt|t = (1− λ) (1− κ)µ+ λ (1− κ) zt|t−1 + κ zt + κ ν̃t (39)

I define b as the weight on unconditional prior belief.

b ≡ (1− λ) (1− κ) (40)

D.1 Derivations of βI and βC

Derivation of βI

From the regression specification

zt − zi,t|t = αI + βI
(
zi,t|t − zi,t|t−1

)
+ errori,t,

the coefficient βI asymptotically converges to

βI =
Cov

[
zt − zi,t|t, zi,t|t − zi,t|t−1

]
V ar

[
zi,t|t − zi,t|t−1

]
We can see that

Cov
[
zt − zi,t|t, zi,t|t − zi,t|t−1

]
= −Cov

[
zt − zi,t|t, zi,t|t−1

]
= −b V ar

[
zi,t|t

]
The first equality holds because Cov

[
zt − zi,t|t, zi,t|t

]
= 0. The second equality holds because

E
[
zi,t|t

∣∣mi,t−1, ni,t−1

]
= b µ+ (1− b) zi,t|t−1. We can also see that

V ar
[
zi,t|t − zi,t|t−1

]
=
(
ρ−2 − 2 (1− b) + 1

)
V ar

[
zi,t|t−1

]
where I use V ar

[
zi,t|t−1

]
= ρ2 V ar

[
zi,t|t

]
. Combining the two derivations, we get

βI = − b

2 b+ ρ−2 − 1
(41)

Derivation of βC

Rearranging terms, we can express the consensus forecast’s error as follows.

zt − zt|t =
1− κ

κ

(
zt|t − zt|t−1 + (1− λ)

(
zt|t−1 − µ

))
− ν̃t
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From the regression specification

zt − zt|t = αC + βC
(
zt|t − zt|t−1

)
+ errort,

the coefficient βC asymptotically converges to

βC =
Cov

[
zt − zt|t, zt|t − zt|t−1

]
V ar

[
zt|t − zt|t−1

]
Therefore, we can see that

βC =
1− κ

κ

(
1 + (1− λ)

Cov
[
zt|t−1, zt|t − zt|t−1

]
V ar

[
zt|t − zt|t−1

] )
− κσ2ν
V ar

[
zt|t − zt|t−1

]
It remains to derive expressions for Cov

[
zt|t−1, zt|t − zt|t−1

]
and V ar

[
zt|t − zt|t−1

]
.

Note that

(1− λ (1− κ) ρL) zt|t = κ (zt + ν̃t)

⇔ zt|t =
κ

1− λ (1− κ) ρL
(zt + ν̃t)

Therefore, it is straightforward to see that

Cov
[
zt, zt|t

]
=

κ

1− λ (1− κ) ρ2
V ar [zt]

We can also show that

V ar
[
zt|t
]
= V ar

[
κ

1− λ (1− κ) ρL

1

1− ρL
ϵt +

κ

1− λ (1− κ) ρL
ν̃t

]
=

[
1 + λ (1− κ) ρ2

1− λ (1− κ) ρ2
κ2

1− (λ (1− κ) ρ)2
σ2ϵ

1− ρ2

]
+

[
κ2

1− (λ (1− κ) ρ)2
σ2ν

]
=

κ2

1− (λ (1− κ) ρ)2

{
1 + λ (1− κ) ρ2

1− λ (1− κ) ρ2
V ar [zt] + σ2ν

}
And finally,

Cov
[
zt|t, zt|t−1

]
= λ (1− κ) ρ2 V ar

[
zt|t
]
+ κ ρ2Cov

[
zt, zt|t

]
Let’s consider the case σ2ν → 0. Then,

Cov
[
zt, zt|t

]
=

1

k

1− (λ (1− κ) ρ)2

1 + λ (1− κ) ρ2
V ar

[
zt|t
]

Cov
[
zt|t, zt|t−1

]
=

[
κ ρ2 + κ ρ2

1

k

1− (λ (1− κ) ρ)2

1 + λ (1− κ) ρ2

]
V ar

[
zt|t
]

=
ρ2 + λ (1− κ) ρ2

1 + λ (1− κ) ρ2
V ar

[
zt|t
]
≡ c̄ V ar

[
zt|t
]
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Then,

Cov
[
zt|t−1, zt|t − zt|t−1

]
V ar

[
zt|t − zt|t−1

] =

(
c̄− ρ2

)
V ar

[
zt|t
]

(1 + ρ2 − 2 c̄)V ar
[
zt|t
] = c̄− ρ2

1 + ρ2 − 2 c̄
=

λ (1− κ) ρ2

1− λ (1− κ) ρ2

Finally, we can derive that βC is expressed as follows.

βC =
1− κ

κ

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
(42)

D.2 Steady-state Uncertainty

I denote the steady state uncertainty of zt as Σ−1 ≡ V ar [zt|mi,t−1, ni,t−1], Σm ≡ V ar [zt|mi,t], and

Σ ≡ V ar [zt|mi,t, ni,t], which satisfy the following stationary relationship.

Σ−1 = ρ2Σ+ σ2ϵ (43a)

Σm = (1− λ)σ2z + λΣ−1 (43b)

(Σ)−1 = (Σm)−1 +
(
σ̃2u
)−1 (43c)

where σ2z is the unconditional variance of z, which equals = σ2
ϵ

1−ρ2
, and σ̃2u = ϕn

1−ϕn
σ2z captures the

noisy news.

The steady-state κ and b are

κ =
Σm

Σm + σ̃2u
(44)

b = (1− λ)
σ̃2u

Σm + σ̃2u
(45)

And we have shown earlier that λ = 1− ϕm.

D.3 Comparative Statics

Comparative Statics for the Uncertainty

Equations (43) implicitly impose the following relation.

F
(
Σ; σ̃2u, λ

)
= (Σm)−1 +

(
σ̃2u
)−1 − (Σ)−1

=
(
(1− λ)σ2z + λ

(
ρ2Σ+ σ2ϵ

))−1
+
(
σ̃2u
)−1 − (Σ)−1 = 0 (46)

Then, the derivatives of F
(
Σ; σ̃2u, λ

)
= 0 with respect to σ̃2u and λ are

∂F

∂σ̃2u
= − (Σm)−2 λ ρ2

∂Σ

∂σ̃2u
−
(
σ̃2u
)−2

+ (Σ)−2 ∂Σ

∂σ̃2u
= 0

∂F

∂λ
= − (Σm)−2

(
−σ2z + ρ2Σ+ σ2ϵ + λ ρ2

∂Σ

∂λ

)
+ (Σ)−2 ∂Σ

∂λ
= 0
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Rearranging yields the derivatives of σ with respect to σ̃2u and λ.

∂Σ

∂σ̃2u
=

((
Σm

Σ

)2

− λ ρ2

)−1(
Σm

σ̃2u

)2

> 0

∂Σ

∂λ
= −

((
Σm

Σ

)2

− λ ρ2

)−1 (
σ2z − Σ−1

)
= −

((
Σm

σ

)2

− λ ρ2

)−1
Σm

1− λ

(
1− Σ−1

Σm

)
< 0

Additionally, the derivative of Σm with respect to σ̃2u is

∂Σm

∂σ̃2u
= λ ρ2

∂Σ

∂σ̃2u
= λ ρ2

((
Σm

Σ

)2

− λ ρ2

)−1(
Σm

σ̃2u

)2

> 0

and with respect to λ:

∂Σm

∂λ
= −ρ2

(
σ2z − Σ

)
+ λ ρ2

∂Σ

∂λ

= − Σm

1− λ

(
1− Σ−1

Σm

){
1 +

λ ρ2(
Σm

Σ

)2 − λρ2

}

= − Σm

1− λ

1− Σ−1

Σm

1− λρ2
(

Σ
Σm

)2 < 0

Note that 1 > Σ−1

Σm > Σ
Σm > λρ2

(
Σ
Σm

)2
> 0, making the last term be between 0 and 1.

Comparative Statics for κ and b

Now we turn to the comparative statistics of κ and b. First, the derivative of b with respect to σ̃2u is

computed as:

∂b

∂σ̃2u
= (1− λ)

1

(Σm + σ̃2u)
2

{(
Σm + σ̃2u

)
− σ̃2u

(
∂Σm

∂σ̃2u
+ 1

)}
= (1− λ)

Σm

(Σm + σ̃2u)
2

{
1− λ ρ2

Σm

Σ − 1(
Σm

Σ

)2 − λρ2

}
> 0

We can easily see that
Σm

Σ
−1

(Σm

Σ )
2−λρ2

∈ (0, 1), which makes the term inside the bracket be positive.

Next, the derivative of b with respect to λ is derived as:

∂b

∂λ
= − σ̃2u

Σm + σ̃2u
− (1− λ)

σ̃2u

(Σm + σ̃2u)
2

∂Σm

∂λ
= − σ̃2u

Σm + σ̃2u

(
1 +

1− λ

Σm + σ̃2u

∂Σm

∂λ

)
= − σ̃2u

Σm + σ̃2u

(
1− Σm

Σm + σ̃2u

1− Σ−1

Σm

1− λρ2
(

Σ
Σm

)2
)
< 0
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In addition, the derivative of κ with respect to σ̃2u is:

∂κ

∂σ̃2u
= − Σm

(Σm + σ̃2u)
2

{
1− ∂Σm

∂σ̃2u

σ̃2u
Σm

}
= − Σm

(Σm + σ̃2u)
2

{
1− λρ2

Σm

Σ − 1(
Σm

Σ

)2 − λρ2

}
< 0

Finally, the derivative of κ with respect to λ:

∂κ

∂λ
=

σ̃2u

(Σm + σ̃2u)
2

∂Σm

∂λ
< 0

Comparative Statics for βI

Now we combine the above comparative statistics to analyze how βI and βC change with ϕn and

ϕm. Note first from (41) that ϕn and ϕm affect βI through the bias term b. The derivative of βI
with respect to b is:

∂βI
∂b

= −
(
2 b+ ρ−2 − 1

)−2 (
ρ2 − 1

)
< 0

Therefore, we get that

∂βI
∂ϕm

=
∂βI
∂b

∂b

∂ϕm
= −∂βI

∂b

∂βI
∂λ

< 0 (47a)

∂βI
∂ϕn

=
∂βI
∂b

∂b

∂σ̃2u

∂σ̃2u
∂ϕn

< 0 (47b)

Comparative Statics for βC

Next, we analyze the comparative statics for βC . First, the derivative of βC with respect to ϕn is

more straightforward. From (42), we can see that βC decreases in κ, and from above we also know

that κ decreases in σ̃2u. Therefore, we have

∂βC
∂ϕn

=
∂βC
∂κ

∂κ

∂σ̃2u

∂σ̃2u
∂ϕn

> 0 (48)
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The derivative of βC with respect to ϕm is more involved. We can compute that

∂βC
∂ϕm

= − 1

κ2
∂κ

∂ϕm

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
+

1− κ

κ

∂

∂ϕm

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
= − 1

κ2
∂κ

∂ϕm

(
1 + (1− λ)

λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
+

1− κ

κ
(1− λ)

∂

∂ϕm

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
+

1− κ

κ

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
∂(1− λ)

∂ϕm

= − 1

κ2
∂κ

∂ϕm︸ ︷︷ ︸
<0

+
1− κ

κ
(1− λ)

∂

∂ϕm

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
︸ ︷︷ ︸

<0

− 1

κ2

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)(1− λ)
∂κ

∂ϕm︸ ︷︷ ︸
>0

−k (1− κ)


The last equation holds because ∂(1−λ)

∂ϕm
= 1. Since all the terms except the last one are negatively

contributing to ∂βC
∂ϕm

, we can further see that

∂βC
∂ϕm

< − 1

κ2
∂κ

∂ϕm
+

1− κ

κ

(
λ (1− κ) ρ2

1− λ (1− κ) ρ2

)
= −1− κ

κ

(
∂σm

∂ϕm
− λ (1− κ) ρ2

1− λ (1− κ) ρ2

)

= −1− κ

κ

(1− κ) ρ2
(
σ2
z
σ − 1

)
1− λ (1− κ)2 ρ2

− λ (1− κ) ρ2

1− λ (1− κ) ρ2


= −1− κ

κ

λ (1− κ) ρ2

1− λ (1− κ) ρ2

{
1

λ

(
σ2z
Σ

− 1

)
1− λ (1− κ) ρ2

1− λ (1− κ)2 ρ2
− 1

}
I would like to show that we can find σ̂2u such that for any λ, the term in the bracket is positive for

all σ̃2u such that σ̃2u ≤ σ̂2u and negative otherwise.

First, it is straightforward to see that the term in the bracket is positive for σ̃2u = 0 (since Σ → 0)

and negative for σ̃2u → ∞ (since σ → σ2z) for any values of ρ, σϵ, and λ. Next, we can also see

that the term in the bracket is decreasing in σ̃2u for any given ρ, σϵ, and λ: σ2
z
σ decreases in σ̃2u and

1−λ(1−κ)ρ2

1−λ(1−κ)2ρ2
decreases in 1 − k (and accordingly also decreases in σ̃2u). Therefore, there exists a σ̂2u

such that the term in the bracket is positive for any ρ, σϵ, and λ as long as σu ≤ σ̂2u. In practice, we

could find such σ̂2u by finding σ̃2u under which

1

λ

(
σ2z
Σ

− 1

)
1− λ (1− κ) ρ2

1− λ (1− κ)2 ρ2
= 1

for any given ρ, σ2ϵ and λ. For a given value of ρ and σ2ϵ , we can define the minimum σ̂2u for all λ

as σ̂2u ≡ g (ρ, σϵ). Therefore, we can conclude that ∂βC
∂ϕm

< 0 as long as σ̃2u ≤ g
(
ρ, σ2ϵ

)
. Equivalently,

∂βC
∂ϕm

< 0 as long as ϕn ≤ ϕ̄n ≡ ḡ
(
ρ, σ2ϵ

)
, where ḡ

(
ρ, σ2ϵ

)
can be easily defined using the definition

σ̃2u = ϕn

1−ϕn
σ2z .
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E Estimation

E.1 Data Source Description

Survey Forecasts Data

The Survey of Professional Forecasters (SPF) began in 1968:Q4 and was taken over by the Philadel-

phia Fed in 1990:Q2. Forecasters submit their projections in the middle month of each quarter. Two

major new data releases are available to the survey participants before submitting their survey. One

is the release of the Bureau of Economic Analysis’ advance report of the national income and prod-

uct accounts, which contains the first estimate of GDP and its components for the previous quarter.

This is released at the end of the first month of each quarter. The other is the release of the Bureau

of Labor Statistics’ monthly Employment Situation Report, which is released on the first Friday of

each month.

Variable information I use the following eleven variables in the ”U.S. Business Indicators” Sec-

tion. To ease the notation burden, I use the acronym when necessary.

1. Nominal Gross Domestic Product (NGDP)

• Seasonally adjusted, annual rate

• Before 1992, forecasts for nominal GNP

2. Real Gross Domestic Product (RGDP)

• Seasonally adjusted, annual rate

• Chain-weighted real GDP. Before 1992, fixed-weighted real GDP. Before 1981:Q3, RGDP

is computed as NGDP/PGDP*100.

3. GDP Chain-Weighted Price Index (PGDP)

• Seasonally adjusted, annual rate

• Chain-weighted GDP price index. The base year varies. Before 1992, GNP deflator.

4. Corporate Profits After Taxes (CPROF)

• Seasonally adjusted, annual rate

• Before 2006, nominal corporate profits after tax, excluding inventory valuation adjust-

ment (IVA) and capital consumption adjustment (CCAdj)

5. Civilian Unemployment Rate (UNEMP)

• Seasonally adjusted

• Quarterly average of the monthly unemployment rates
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6. Industrial Production Index (INDPROD)

• Seasonally adjusted

• The base year of the index varies

• Quarterly average of the monthly levels

7. Housing Starts (HOUSING)

• Seasonally adjusted, annual rate

• Quarterly average of the monthly levels

8. Consumer Price Index (CPI)

• Seasonally adjusted

• Headline CPI inflation rate. The unit of the quarterly forecasts is a quarter-over-quarter

annualized growth rate of the quarterly average price index level

• Survey starts in 1981:Q3

9. 3-month Treasury Bill Rate (TBILL)

• Quarterly average of the daily levels

10. AAA Corporate Bond Yield (BOND)

• Quarterly average of the daily levels of Moody’s Aaa corporate bond yields

• Before 1990Q4, new, high-grade corporate bond yield

11. 10-year Treasury Bond Rate (TBOND)

• Quarterly average of the daily levels of 10-year Treasury bond rate

Data availability The survey forecasts have been available for most of these variables since

1968Q4. Exceptions are CPI, TBILL, BOND, and TBOND, whose survey forecasts became avail-

able in 1981.

Forecast horizons Forecasters provide (1) quarterly projections for five quarters (current and up

to four-quarter-ahead) and (2) annual projections for the current and the following year. For this

paper, I use quarterly projections.
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Forecast unit Forecasters could provide forecasts using either level or growth rates for most vari-

ables. The exception is the forecasts for CPI and PCE, for which forecasters make quarter-over-

quarter forecasts.

I compute forecasters’ projections about how the variables will change from the previous quar-

ter. For most variables, I take a log difference. For the financial variables and the unemployment,

I take the difference. I annualize this difference to compare across different forecast horizons. For

example, for the variables I take the log-difference, forecasts are defined as

Fi,t yt+h = (log (Fi,t Yt+h)− log (Fi,t Yt−1))×
4

h

Fi,t−1 yt+h = (log (Fi,t−1 Yt+h)− log (Fi,t−1 Yt−1))×
4

h+ 1

For variables I take the difference, forecasts are defined as

Fi,t yt+h = (Fi,t Yt+h − Fi,t Yt−1)×
4

h

Fi,t−1 yt+h = (Fi,t−1 Yt+h − Fi,t−1 Yt−1)×
4

h+ 1

When computing the forecast revision, I compare these forecasts to those made in the previous

quarter. Forecasts from the previous quarters are projections about how the variables will change

in the next quarter. Forecast revisions are defined as

Fi,t yt+h − Fi,t−1 yt+h

Outlier treatment After constructing the forecasts described above, I drop some observations to

restrict the influence of a few outlier variables. First, in each period, I remove forecasts that are

five quantiles outsides of the median forecasts. And I only keep individual forecasts that have more

than ten observations of the error-revision pairs.

I further restrict samples to measure the forecast behavior in the normal business cycle. During

a likely structural change, forecasters might use different forecasting models than the one they

would use during the regular cycle. To systematically identify these episodes, I compute the average

size of forecast revisions among forecasters each period and remove the top 5 percentile periods.

I find such periods of extensive revisions for each forecast horizon. For variables of 200-period

observations, I am dropping ten periods. For example, here is the list of periods removed for the

forecast of the current quarter realizations for each variable.

1. NGDP: 1974q4, 1975q1, 1980q1, 1981q3, 1981q4, 2001q4, 2008q4, 2009q1, 2020q2, 2020q3

2. RGDP: 1970q4, 1974q4, 1975q1, 1980q1, 1980q2, 1981q4, 2001q4, 2009q1, 2020q2, 2020q3

3. PGDP: 1970q2, 1973q4, 1974q2, 1974q4, 1975q2, 1979q3, 1980q2, 1981q3, 2020q2, 2022q2

4. CPROF: 1974q4, 1981q1, 1981q4, 1982q1, 1982q2, 2002q1, 2005q4, 2020q2, 2020q3 2020q4
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5. UNEMP 1974q4, 1975q1, 1980q2, 1981q4, 1982q4, 2001q4, 2009q1, 2009q2, 2020q2,

2020q3, 2020q4

6. INDPROD: 1970q4, 1974q4, 1975q1, 1980q2, 1980q3, 1981q4, 1982q1, 1982q4, 2020q2,

2020q3

7. HOUSING: 1973q4, 1974q4, 1978q2, 1980q2, 1981q1, 1981q3, 1981q4, 2009q1, 2020q2,

2020q3

8. CPI: 1982q1, 1983q1, 1986q2, 1990q4, 2008q4, 2009q1, 2015q1, 2020q2

9. TBILL: 1981q4, 1982q1, 1982q3, 1982q4, 1984q4, 2001q4, 2008q4, 2020q2

10. BOND: 1981q4, 1982q1, 1982q2, 1982q3, 1982q4, 1983q3, 1984q2, 1994q2

11. TBOND: 1992q3, 1994q2, 1996q2, 2002q3, 2008q1, 2020q2, 2022q2

Real-time Macroeconomic Data

I use the real-time data set provided by the Philadelphia Fed. The first release of each variable is

used as the “true” realization, which has two uses for my exercise. First, I use this data to compute

the forecast errors. Second, I estimate the parameters related to the data-generating process using

this data. The last data point I use is 2019:Q4. This is because many variables have an abrupt

change during the Covid period, which I assume is not well described as a stationary distribution.

Using real-time data allows us to compute the forecast error correctly. Macroeconomic variables

are redefined or reclassified, and the base year changes for the real variables. Therefore, we must

compare the forecast data to a correct realized macro variable with a consistent definition. The

real-time data includes the latest data available at any given vintage. The data released for the

same vintage is constructed based on an internally consistent variable definition and the same base

year. At least for data released after 1996 (when the chain weighting replaced the fixed-weighing

method), the change of base year doesn’t affect the growth rate of variables.

E.2 Regression Estimation

As discussed in the main text, I estimate three regressions. First, following the specification pro-

posed in Bordalo, Gennaioli, Ma, and Shleifer (2020b), I estimate the following regression.

yt+h − Fi,t yt+h = αi,I + βI (Fi,t yt+h − Fi,t−1 yt+h) + Ih + errori,t,h (49)

Fi,t yt+h is forecaster i’s projected h-quarter-ahead change of yt from the previous quarter, and

the revision variable captures how her belief changed from the previous quarter. αi,I is a dummy

variable for each forecaster, and Ih is a dummy variable for each forecast horizon that ranges from

h = 0 to h = 3. I pool all forecast horizons when estimating βI . The top panel in Table 7 reports

the results.
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The second regression is from Coibion and Gorodnichenko (2015).

yt+h − Ft yt+h = αC + βC (Ft yt+h − Ft−1 yt+h) + Ih + errort,h (50)

Ft yt+h is the average forecast of Fi,t yt+h, for which I use the sample mean of individual forecasts

at any given time t. Again, I pool all forecast horizons when estimating βC . The middle panel in

Table 7 reports the results.

Finally, the last regression follows the specification from Gemmi and Valchev (2021).

Fi,t yt+h − Fi,t−1 yt+h = αi,K + βK (Ft−1 yt+h − Fi,t−1 yt+h) +Dt + Ih + errori,t (51)

where Dt is the time dummy. This specification, in essence, regresses the de-meaned forecast

revision on de-meaned forecast surprises (defined as yt+h − Fi,t−1 yt+h). All forecast horizons are

pooled. The bottom panel in Table 7 reports the results.

I also report the estimated regression coefficients using only a single forecast horizon. Table

8 shows the coefficients estimated from the current quarter forecasts. And Table 9 shows the

coefficients estimated from the three-quarter-ahead forecasts. Finally, I also report the coefficients

using the entire sample period in Table 10. For this version, I do not drop the high-mean-squared-

error periods identified in the previous section.

CPI long-term forecasts

To estimate the uncertainty about the long-run mean, I estimate how forecasts of µ are revised

in response to news about the current quarter. I use the following specification to build on the

intuition of Gemmi and Valchev (2021).

(Fi,t µ− Fi,t−1 µ)− (Ft µ− Ft−1 µ) = αi,µ,K + βµ,K (Ft−1 µ− Fi,t−1 µ) + errori,µ,t (52)

where Fi,t µ is the forecast about the long-run, and Fi,t µ is the average of Fi,t µ across forecasters

at time t.

Among the forecast data, the only variable that allows the estimation of the above regression

specification is that of the CPI. SPF asks panelists to submit their views about the annual average

rate of headline CPI inflation over the next five and ten years. The five-year forecast data started

in 2005Q3, and the ten-year forecast data started in 1991Q4. Table 11 reports the estimation

results. I also report the response of the three-quarter-ahead and the current-quarter forecasts

in response to the news about the current quarter’s CPI as a comparison. Unlike the previous

regression specifications in Table 7, I transform the quarterly forecast data to reflect the annual

average inflation rate to maintain the definition consistent with the long-term forecast data.
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Table 7: Baseline Regression Coefficients

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.271∗∗∗ -0.249∗∗∗ -0.318∗∗∗ -0.440∗∗∗ -0.0476 -0.180∗∗∗ -0.252∗∗∗ -0.174∗∗ -0.00757 -0.349∗∗∗ -0.124∗∗

(0.0446) (0.0515) (0.0445) (0.0465) (0.0470) (0.0607) (0.0603) (0.0853) (0.0390) (0.0438) (0.0478)

N 20919 20875 20657 14646 21279 19364 20126 14722 14993 12551 12645

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.632∗∗∗ 0.452∗∗∗ 0.706∗∗∗ 0.685∗∗∗ 0.617∗∗∗ 0.610∗∗∗ 0.505∗∗∗ 0.548∗∗∗ 0.294∗∗∗ 0.0528 0.283∗∗∗

(0.106) (0.129) (0.129) (0.181) (0.0913) (0.139) (0.113) (0.164) (0.0459) (0.0719) (0.0573)

N 797 796 799 791 800 796 795 604 614 613 455

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.545∗∗∗ 0.600∗∗∗ 0.600∗∗∗ 0.513∗∗∗ 0.623∗∗∗ 0.576∗∗∗ 0.579∗∗∗ 0.560∗∗∗ 0.727∗∗∗ 0.678∗∗∗ 0.701∗∗∗

(0.0256) (0.0227) (0.0277) (0.0289) (0.0190) (0.0239) (0.0241) (0.0303) (0.0319) (0.0234) (0.0275)

N 21302 21268 20950 14896 21560 19684 20463 15008 15157 12638 12727

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 8: Regression Coefficients for Current-quarter Forecasts Only

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.300∗∗∗ -0.310∗∗∗ -0.365∗∗∗ -0.438∗∗∗ -0.0794∗ -0.193∗∗∗ -0.292∗∗∗ -0.0795 -0.0742∗∗ -0.327∗∗∗ -0.0546

(0.0473) (0.0536) (0.0508) (0.0618) (0.0448) (0.0684) (0.0609) (0.0762) (0.0370) (0.0412) (0.0394)

N 5346 5357 5289 3722 5305 4918 5155 3757 3794 3183 3175

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.524∗∗∗ 0.243 0.553∗∗∗ 0.879∗∗∗ 0.455∗∗∗ 0.483∗∗ 0.369∗∗∗ 0.567∗∗ 0.182∗∗∗ 0.0351 0.293∗∗∗

(0.159) (0.185) (0.199) (0.264) (0.0892) (0.190) (0.139) (0.229) (0.0447) (0.0921) (0.0587)

N 202 202 203 201 202 202 202 153 155 155 114

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.591∗∗∗ 0.669∗∗∗ 0.666∗∗∗ 0.533∗∗∗ 0.756∗∗∗ 0.669∗∗∗ 0.673∗∗∗ 0.653∗∗∗ 0.921∗∗∗ 0.851∗∗∗ 0.861∗∗∗

(0.0312) (0.0267) (0.0321) (0.0387) (0.0244) (0.0298) (0.0257) (0.0382) (0.0405) (0.0289) (0.0281)

N 5400 5414 5316 3764 5332 4964 5203 3786 3794 3183 3175

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 9: Regression Coefficients for three-quarter-ahead Forecasts Only

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.236∗∗∗ -0.140 -0.206∗∗∗ -0.461∗∗∗ 0.111 -0.147 -0.285∗∗ -0.302∗∗∗ 0.0998 -0.407∗∗∗ -0.291∗∗∗

(0.0721) (0.0951) (0.0629) (0.0604) (0.117) (0.0888) (0.111) (0.112) (0.0873) (0.0653) (0.0823)

N 4994 4920 4954 3496 5101 4592 4810 3570 3611 3080 3061

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.977∗∗∗ 0.858∗∗ 1.090∗∗∗ 0.181 1.306∗∗∗ 1.002∗∗∗ 0.347 0.453 0.504∗∗ -0.113 0.188

(0.365) (0.352) (0.375) (0.509) (0.392) (0.378) (0.444) (0.418) (0.252) (0.266) (0.261)

N 194 194 195 193 195 193 194 149 152 152 113

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.500∗∗∗ 0.509∗∗∗ 0.545∗∗∗ 0.489∗∗∗ 0.439∗∗∗ 0.467∗∗∗ 0.449∗∗∗ 0.466∗∗∗ 0.507∗∗∗ 0.481∗∗∗ 0.491∗∗∗

(0.0291) (0.0341) (0.0316) (0.0286) (0.0195) (0.0305) (0.0318) (0.0332) (0.0254) (0.0228) (0.0282)

N 5131 5059 5060 3579 5212 4706 4931 3683 3691 3130 3115

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 10: Regression Coefficients Using All Sample Periods

(a) Bordalo et al. Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision -0.114∗∗ -0.130∗∗ -0.230∗∗∗ -0.393∗∗∗ -0.278∗∗∗ -0.149 -0.259∗∗∗ -0.0499 -0.0226 -0.362∗∗∗ -0.114∗∗

(0.0573) (0.0631) (0.0554) (0.0660) (0.0382) (0.0931) (0.0698) (0.123) (0.0443) (0.0446) (0.0439)

N 21925 21904 21547 15391 22362 20309 21017 15366 15516 12871 13192

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(b) Coibion-Gorodnichenko Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Revision 0.152∗ 0.105 0.772∗∗∗ 0.483∗∗∗ -0.209∗∗∗ 0.318∗∗∗ 0.201 0.463∗∗∗ 0.162∗∗∗ -0.147∗∗ 0.204∗∗∗

(0.0835) (0.0809) (0.148) (0.183) (0.0369) (0.121) (0.138) (0.107) (0.0536) (0.0737) (0.0429)

N 837 837 837 833 841 837 837 638 646 646 478

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are robust to arbitrary heteroskedasticity and autocorrelation.

Dummy variables for forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.

(c) Gemmi-Valchev Specification

NGDP RGDP PGDP CPROF UNEMP INDPROD HOUSING CPI TBILL BOND TBOND

Surprise 0.578∗∗∗ 0.631∗∗∗ 0.611∗∗∗ 0.498∗∗∗ 0.783∗∗∗ 0.601∗∗∗ 0.628∗∗∗ 0.589∗∗∗ 0.752∗∗∗ 0.698∗∗∗ 0.704∗∗∗

(0.0350) (0.0277) (0.0275) (0.0323) (0.0782) (0.0371) (0.0360) (0.0408) (0.0313) (0.0256) (0.0267)

N 22308 22297 21916 15641 22643 20629 21354 15652 15680 12976 13354

Significance: *=10%, **=5%; ***=1%. Standard errors in parentheses are two-way clustered in forecaster and time.

Dummy variables for time, forecaster and forecast horizon are controlled. Variables have different sample periods. The longest sample is 1968Q1-2022Q2.
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Table 11: Estimationg Using the Long-term CPI Forecasts

10-Year 5-Year 3-quarter Current quarter

Surprise 0.0828∗∗∗ 0.129∗∗∗ 0.460∗∗∗ 0.855∗∗∗

(0.0183) (0.0413) (0.0599) (0.0310)

N 2672 1613 3496 3602

Significance: *=10%, **=5%; ***=1%.
Standard errors in parentheses are two-way clustered in forecaster and time.
Dummy variables for the forecaster and forecast horizon are controlled.
Variables have different sample periods. The longest sample is 1968Q4-2022Q2.
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E.3 Data Generating Process: AR(1)

I use the following steps to set the parameters for each macroeconomic variable yt. Using the

actual realization, I first get the OLS estimates of the AR(1) parameter ρ and σ2ϵ . Table 12 reports

the parameters.

Table 12: Data Generating Process: AR(1) process

ρ σϵ

Nominal Gross Domestic Product 0.89 1.31

Real Gross Domestic Product 0.84 1.32

GDP Chain-Weighted Price Index 0.83 1.31

Corporate Profits After Taxes 0.75 8.03

Industrial Production Index 0.85 2.49

Housing Starts 0.84 11.68

Consumer Price Index 0.75 2.0

AAA Corporate Bond Yield 0.83 0.51

Treasury Bond Rate, 10-year 0.82 0.63

76



F A Stationary Relationship

In summary, the posterior mean for xt evolves according to

xi,t|t = (I −Kt)x
m
i,t|t +Kt xt + ν̄t + ūi,t

= (I −Kt)
(
(I − Λt)µx + Λt xi,t|t−1 + ωi,t

)
+Kt xt + ν̄t + ūi,t

= (I −Kt) (I − Λt)µx + (I −Kt) ΛtAxi,t−1|t−1 +Kt xt + ν̄t + ω̄i,t + ūi,t

where ω̄i,t ≡ (I −K)ωi,t. To ease the notation burden, I define ∆t ≡ (I −Kt) (I − Λt), ĉt ≡ ∆t µx

and Ât ≡ (I −Kt −∆t)A. Then,

xi,t|t = ĉt + Ât xi,t−1|t−1 +Kt xt + ν̄t + ω̄i,t + ūi,t (53)

Stationary relationship As t → ∞, these matrixes converge to a steady state level. Let’s denote

this as K̄t → K̄, Kt → K and Λt → Λ. Then, forecasts for xt evolve according to

xi,t|t = ĉ+ Â xi,t−1|t−1 +K xt + ν̄t + ω̄i,t + ūi,t (54)

where the variance of the noise is

V ar [ν̄t] = V ar
[
K̄ νi,t

]
= σ2ν K̄ K̄ ′

V ar [ūi,t] = V ar
[
K̄ ui,t

]
= σ2u K̄ K̄ ′

V ar [ω̄i,t] = V ar [(I −K)ωi,t] = (I −K)σω,t (I −K)′ = (I −K) (I − Λ) V ar
[
xi,t|t−1

]
Λ′ (I −K)′

= ∆V ar
[
xi,t|t−1

]
(I −K −∆)′

Statistical properties of xi,t|t

Since xi,t|t is a conditional expectation of xt given available information at time t, we can easily see

that following holds.

Cov
[
xi,t|t, xt

]
= V ar

[
xi,t|t

]
= σx − Σt|t

Cov
[
xi,t|t, xi,t−1|t−1

]
= Cov

[(
Â+KA

)
xi,t−1|t−1, xi,t−1|t−1

]
= (I −∆)A

(
σx − Σt|t

)
Evolution of the average forecasts for xt

The average forecasts for xt evolve according to

xt|t = ĉ+ Â xt−1|t−1 +K xt + ν̄t (55)

Therefore, we can see that

xi,t|t − xt|t = Â
(
xi,t−1|t−1 − xt−1|t−1

)
+ ω̄i,t + ūi,t
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By iterating backward, we can also see that the difference between xi,t|t and xt|t is the history of

noise realizations.

xi,t|t − xt|t =

∞∑
j=0

Âj (ω̄i,t−j + ūi,t−j) ≡ NoiseHistoryi,t

Therefore, the covariance between xt|t and xt is the same as the covariance between xi,t|t and xt.

Also, we can express the variance of xt|t as the variance of xi,t|t subtracted by the variance of the

history of noises.

V ar
[
xi,t|t

]
= V ar

[
xt|t
]
+ V ar [NoiseHistoryi,t]

where V ar [NoiseHistoryi,t] = V ar

[∑∞
j=0 Â

j (ω̄i,t + ūi,t)
(
Âj
)′]

. Finally, the serial correlation of

xt|t is derived.

Cov
[
xt|t, xt−1|t−1

]
= Â V ar

[
xt|t
]
+KACov

[
xt, xt|t

]
=
(
Â+KA

)
V ar

[
xi,t|t

]
− Â

(
I − Â

)−1
V ar [ω̄i,t + ūi,t]

= Cov
[
xi,t|t, xi,t−1|t−1

]
− Â

(
I − Â

)−1
V ar [ω̄i,t + ūi,t]

Perceived covariance of individual forecast errors and revisions

Given the prior xt|mi,t ∼ N
(
xmi,t|t, Σ

m
t|t

)
, posterior distribution of xt|si,t is chosen so that it satisfies

Cov
[
xt − xi,t|t, xi,t|t − xmi,t|t

]
= O. However, we are interested in the covariance between the fore-

cast error and revision observed by an econometrician. To see the difference, it is useful to express

the law of motion of xi,t|t as follows.

xi,t|t = (I −K)xmi,t|t +K xt + ν̄t + ūi,t

= (I −K)xi,t|t−1 +K xt − (I −K) (I − Λ)
(
xi,t|t−1 − µx

)
+ ν̄t + ūi,t + ω̄i,t

From this, we can see that

Cov
[
xt − xi,t|t, xi,t|t−1

]
= Cov

[
E
[
xt − xi,t|t

∣∣ si,t−1

]
, E
[
xi,t|t−1

∣∣ si,t−1

]]
= Cov

[
E
[
xt − xi,t|t

∣∣ si,t−1

]
, xi,t|t−1

]
= (I −K) (I − Λ)V ar

[
xi,t|t−1

]
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Therefore,

Cov
[
xt − xi,t|t, xi,t|t − xi,t|t−1

]
= Cov

[
xt − xi,t|t,

(
xi,t|t − xmi,t|t

)
−
(
xi,t|t−1 − xmi,t|t

)]
= −Cov

[
xt − xi,t|t, xi,t|t−1 − xmi,t|t

]
= −Cov

[
xt − xi,t|t, xi,t|t−1

]
(I − Λ)′ − Cov

[
xi,t|t, ωi,t

]
= − (I −K) (I − Λ)V ar

[
xi,t|t−1

]
(I − Λ)′ − (I −K)V ar [ωi,t]

= − (I −K) (I − Λ)V ar
[
xi,t|t−1

]
= − (I −K)

(
σmt|t − σt|t−1

)
the last equality follows from V ar [ωi,t] = (I − Λ)V ar

[
xi,t|t−1

]
Λ′. If memory is perfect, we can

confirm that forecast error would not be predicted by forecast revision.

Perceived covariance of average forecast errors and revisions

The statistical properties of the average forecast xt|t are determined from the following law of

motion.

xt|t = (I −K)xt|t−1 +K xt − (I −K) (I − Λ)
(
xt|t−1 − µx

)
+ ν̄t

Rearranging terms yields

K
(
xt − xt|t

)
= (I −K)

{(
xt|t − xt|t−1

)
+ (I − Λ)

(
xt|t−1 − µx

)}
− ν̄t

If K is invertible,

Cov
[
xt − xt|t, xt|t − xt|t−1

]
= K−1 (I −K)

{
V ar

[
xt|t − xt|t−1

]
+ (I − Λ)Cov

[
xt|t−1, xt|t − xt|t−1

]}
−K−1Vnoise

Correct covariance of forecast errors and revisions

While DM is uncertain about the value of µ, in reality, µ is a fixed parameter. Therefore, the OLS

regression of forecast error on revision will asymptotically converge to the covariance of forecast

error and revision arising from a fixed parameter. I show here how such statistics differ from the

one derived above (where the covariances are averaged across all possible values of µ according to

DM’s prior about µ). For individual forecasts,

Cov
[
xt − xi,t|t, xi,t|t − xi,t|t−1

∣∣µ]
= Cov

[
xt − xi,t|t, xi,t|t − xi,t|t−1

]
− Cov

[
E
[
xt − xi,t|t

∣∣µ] , E [xi,t|t − xi,t|t−1

∣∣µ]]
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Likewise, for average forecasts,

Cov
[
xt − xt|t, xt|t − xt|t−1

∣∣µ]
= Cov

[
xt − xt|t, xt|t − xt|t−1

]
− Cov

[
E
[
xt − xt|t

∣∣µ] , E [xt|t − xt|t−1

∣∣µ]]
Note that the subtracted terms in the above two cases are the same since it must be thatE

[
xi,t|t

∣∣µ] =
E
[
xt|t
∣∣µ] at all t. This term is non-zero because forecasts are biased even in the long run, as DM

fails to learn the correct level of µ. Using the fact that forecasts for xt are stationary, that is

E
[
xi,t|t

∣∣µ] = E
[
xi,t−1|t−1

∣∣µ], we have

E
[
xi,t|t

∣∣µ] = (I − Â
)−1

(∆µx +KE [x|µ])

Since we can express E
[
xi,t|t

∣∣µ] = cons + DE [xt|µ], where D ≡
(
I − Â

)−1
K, the correction

term can be derived as

Cov
[
E
[
xt − xi,t|t

∣∣µ] , E [xi,t|t − xi,t|t−1

∣∣µ]] = (I −D)V ar [E [xt|µ]] D′ (I −A)′

Correct variance of revisions

The individual and average forecast revision variances are derived and can be computed using the

previously derived stationary relationship.

V ar
[
xi,t|t − xi,t|t−1

]
= V ar

[
xi,t|t

]
+ V ar

[
xi,t|t−1

]
− Cov

[
xi,t|t, xi,t|t−1

]
− Cov

[
xi,t|t−1, xi,t|t

]
V ar

[
xt|t − xt|t−1

]
= V ar

[
xt|t
]
+ V ar

[
xt|t−1

]
− Cov

[
xt|t, xt|t−1

]
− Cov

[
xt|t−1, xt|t

]
The correct variance of the forecast revision (conditional on a fixed µ) is

V ar
[
xi,t|t − xi,t|t−1

∣∣µ] = V ar
[
xi,t|t − xi,t|t−1

]
− V ar

[
E
[
xi,t|t − xi,t|t−1

∣∣µ]]
V ar

[
xt|t − xt|t−1

∣∣µ] = V ar
[
xt|t − xt|t−1

]
− V ar

[
E
[
xt|t − xt|t−1

∣∣µ]]
The correction term is the same for average and individual forecasts and is derived as follows.

V ar
[
E
[
xi,t|t − xi,t|t−1

∣∣µ]] = V ar [(I −A)DE [xt|µ]] = (I −A)DV ar [E [xt|µ]] D′ (I −A)′

Gemmi-Valchev Proposal

From (54) and (55), forecast revisions are expressed as follows.

xi,t|t − xi,t|t−1 = ĉ+K
(
xt − xi,t|t−1

)
−∆xi,t|t−1 + ν̄t + ω̄i,t + ūi,t

xt|t − xt|t−1 = ĉ+K
(
xt − xt|t−1

)
−∆xt|t−1 + ν̄t
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Then, the difference between individual and consensus forecast revisions (in other words, de-

meaned individual forecast revisions) can be derived as(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)
= (K +∆)

(
xt|t−1 − xi,t|t−1

)
+ ω̄i,t + ūi,t

The authors propose to estimate the covariance between the de-meaned forecast revisions and the

difference between consensus and individual forecasts from the previous period.

Cov
[(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)
, xt|t−1 − xi,t|t−1

]
= (K +∆)V ar

[
xt|t−1 − xi,t|t−1

]
Note that this regression coefficient is well-defined only if individual forecasts deviate from the

consensus forecasts (that is, when ϕn > 0 or ϕm > 0).

Furthermore, we can see that the perceived covariance (based on DM’s prior about µ) is the

same as the correct covariance (given a fixed µ), unlike the other covariances I derived earlier.

Cov
[(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)
, xt|t−1 − xi,t|t−1

∣∣µ]
= Cov

[(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)
, xt|t−1 − xi,t|t−1

]
This is because the correction term cancels out by de-meaning. That is,

E
[(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)∣∣µ] = 0

E
[
xt|t−1 − xi,t|t−1

∣∣µ] = 0

This result follows from E
[
xi,t|t

∣∣µ] = E
[
xt|t
∣∣µ] and E

[
xi,t|t−1

∣∣µ] = E
[
xt|t−1

∣∣µ].
To compute the regression coefficient, it remains to derive an expression for V ar

[
xt|t−1 − xi,t|t−1

]
.

Note that

xt|t − xi,t|t = Â
(
xt−1|t−1 − xi,t−1|t−1

)
− (ω̄i,t + ūi,t)

Therefore, V ar
[
xt|t − xi,t|t

]
satisfies the following fixed-point relation.

V ar
[
xt|t − xi,t|t

]
= ÂV ar

[
xt|t − xi,t|t

]
Â′ + V ar [ω̄i,t + ūi,t]

We can then derive

V ar
[
xt|t−1 − xi,t|t−1

]
= AV ar

[
xt|t − xi,t|t

]
A′

Finally, for a given c′,

β =
c′ (K +∆)V ar

[
xt|t−1 − xi,t|t−1

]
c

c′ V ar
[
xt|t−1 − xi,t|t−1

]
c

Furthermore, the variance of the de-meaned forecast revisions is derived as

V ar
[(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)]
= (K +∆)V ar

[
xt|t−1 − xi,t|t−1

]
(K +∆)′ + V ar [ω̄i,t + ūi,t]
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and it must be that V ar
[(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)∣∣µ] = V ar
[(
xi,t|t − xi,t|t−1

)
−
(
xt|t − xt|t−1

)]
.
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G Monetary Model

I describe a textbook model below, but more details can be found in Gali (2008, Chapter 3).

G.1 Household Problem

A representative, infinitely-lived household maximizes the lifetime utility from consumption and

labor.

E0

β∑
t=0

[
C1−σ
t

1− σ
− N1+φ

t

1 + φ

]

where Ct is the quantity of the basket of goods consumed at time t, and Nt is the number of hours

worked. The consumption/savings and labor-supply decisions are subject to the budget constraint

that should be met every period.

PtCt +QtBt ≤ Bt−1 +WtNt + Tt

where Pt is the aggregate price index, Bt is the one-period bond and Qt its price, Wt is the nominal

hourly wage, and finally Tt is a lump-sum income. The household should also be solvent after all,

which is captured by the condition that limT→∞ EtBt ≥ 0.

The first order conditions and their Taylor expansion around the zero-inflation steady state

imply

wt − pt = σ ct + φnt (56)

ct = Et ct+1 −
1

σ
(−qt − Et πt+1 + log β) (57)

where the lowercase denotes the log of the variable denoted in uppercase.

G.2 Firm Problem

A continuum of firms indexed by i ∈ [0, 1] produces a differentiated goods. The production function

is described as

Yt(i) = AtNt(i)

where At is the level of production technology, assumed to be common to all firms and evolve

exogenously over time.

Each firm reconsiders its price with probability 1−α, independent of when its price is readjusted

in the past. Thus, at any period, a mass of 1−α firms resets their prices and the remaining mass of
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α firms keep their old prices. The aggregate price index is then formed according to

Pt =

[
α (Pt−1)

1−η + (1− η)

(∫
P ∗
i,t di

)1−η
] 1

1−η

G.3 Optimal Price Setting

Suppose firm i chooses the price P ∗
i,t in period t. This price maximizes the current market value of

the profits if the firm cannot reoptimize the price forever.

max
Pi,t

Ei,t

[ ∞∑
h=0

αhQt,t+h

(
Pi,t Yi,t+h|t −Ψt+h

(
Yi,t+h|t

))]

where α the probability of not resetting prices, Qt,t+h is the stochastic discount factor for evaluating

the future nominal payoffs generated at t+ h, Yi,t+h|t is the output demanded in period t+ h if the

price remains the one chosen at time t, and Ψt+h is the (nominal) cost function at time t+ h. Firm

i takes into account that the demand Yi,t+h|t is given as

Yi,t+h|t =

(
Pi,t

Pt+h

)η

Ct+h

where θ is the elasticity of substitution among goods, Pt+k is the aggregate price at time t+ h and

Ct+h is the aggregate consumption at time t+ h.

The first-order condition implies that

Ei,t

[ ∞∑
h=0

αhQt,t+hYi,t+h|t
(
P ∗
i,t −Mψt+h

)]
= 0

where M ≡ η
η−1 and ψt+h is the nominal marginal cost at t + h. Dividing by Pt−1 and letting

Πt,t+h ≡ Pt+h

Pt
, we can rewrite the first order condition as

Ei,t

[ ∞∑
h=0

αhQt,t+hYi,t+h|t

(
P ∗
i,t

Pt−1
−MMCt+hΠt,t+h

)]
= 0

First-order Taylor expansion around the zero-inflation steady state implies that

p∗i,t − pt−1 = Ei,t

[
(1− αβ)

∞∑
h=0

(αβ)h ((mct+h −mc) + (pt+h − pt−1))

]

= Ei,t

[ ∞∑
h=0

(αβ)h {(1− αβ) (mct+h −mc) + πt+h}

]

where mc is the steady state value of mct+h. From this expression, we can see that the optimal

reset price p∗i,t equals mc over a weighted average of the current and expected nominal marginal

costs.
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Note that the marginal cost at t + h does not depend on the quantity firm i supplies. This is

because the marginal product of labor does not depend on quantity, as mpnt = at. Thus,

mct+h = wt+h − pt+h −mpnt+h = wt+h − pt+h − at+h

G.4 Equilibrium

Since market clears for all i goods, it follows that

Ct = Yt

which implies ct = yt. And the labor market clears, requiring

Nt =

∫
Nt(i) di

which can be shown to imply nt = yt − at in the first order approximation. Thus, using the

household’s optimality condition,

wt − pt = (σ + φ) yt − φat

Denoting ynt as the efficient level of output, we can show that ynt = 1+φ
σ+φ at. I define the output gap

as

xt = yt − ynt

Thus, the marginal costs are derived as

mct+h = (σ + φ)xt

G.5 Firms’ Macroeconomic Expectations

Substituting (22), we can see that inflation is determined as

πt = (1− α)

(
ẑt +

αβ

1− αβ
µ̂t

)
Substituting (23) and (24), we get

πt = (1− α)

{
(κ+ κµ) zt +

(
λ(1− κ) +

αβ

1− αβ
λ(1− κµ)

)
µ̂t−1

}
Defining κ̂ = κ+ κµ and b̂ = λ(1− κ) + αβ

1−αβλ(1− κµ), we can describe the above expression as

πt = (1− α)
{
κ̂ zt + b̂ µ̂t−1

}
(58)
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G.6 Inflation Determination

We can solve for the equilibrium inflation process using a guess-and-verify approach. The equation

(21) states that zt is determined by πt and et, and the equation (58) states that πt is determined

by zt and µ̂t−1. Thus, it is straightforward to see that two state variables, et and µ̂t−1, determine

inflation, and the relationship is linear. We guess the following inflation process.

πt = φe et + φµ µ̂t−1 (59)

Combining (21), (58), and (59), we can find the coefficients φe and φµ that verify our initial guess.

They are derived as below.

φe =
δ

1 + δ σ s+ 1
α

1−κ̂
κ̂

φµ =
1

1 + δ σ s+ 1
α

1−κ̂
κ̂

1− α

α

b̂

κ̂

where δ ≡ (1−α)(1−αβ)
α , κ̂ = κ+ κµ, and b̂ = λ(1− κ) + αβ

1−αβλ(1− κµ). When exploring alternative

monetary policies, I consider values of s such as

s = s∗ · θ

1− θ

in which case, we could express the coefficients φe and φµ as

φe =
1− θ

1− θ + θ δ̂ s∗ + 1−θ
α

1−κ̂
κ̂

δ

φµ =
1− θ

1− θ + θ δ̂ s∗ + 1−θ
α

1−κ̂
κ̂

1− α

α

b̂

κ̂

This expression makes it clear that a complete inflation stabilization (θ = 1) is supported by φe =

φm = 0.

G.7 Variability of Inflation

From (59), we can see that the variability of inflation is derived as

V ar [πt] = φ2
e V ar [et] + φ2

µ V ar [µ̂t−1]

Therefore, it remains to derive the variability of µ̂t. First, note that from (21), zt is also determined

by two state variables.

zt = ϖe et +ϖµ µ̂t−1
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where ϖe and ϖµ are defined as

ϖe =
α

1− α

((
1

α
− 1− θ + θδ̂

1− θ

)
φe + δ

)

ϖµ =
α

1− α

(
1

α
− 1− θ + θδ̂

1− θ

)
φµ

Using this expression, we can then describe the law of motion of µ̂t as

µ̂t = (λ (1− κµ) + κµϖµ)︸ ︷︷ ︸
≡ρµ

µ̂t−1 + κµϖe et

From this, we can see that

V ar [µ̂t] =
(κµϖe)

2

1− ρ2µ
V ar [et]

Therefore, the variability of inflation is derived as

V ar [πt] =

(
φ2
e +

(κµϖe)
2

1− ρ2µ

)
V ar [et]
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