HOUSEHOLD BALANCE SHEETS AND MONETARY POLICY

Aditya Aladagady (Federal Reserve Board)

DISCUSSION

By Yuriy Gorodnichenko (UC Berkeley)

• Classic question

- Classic question
- Lots of channels
 - o Interest rate sensitivity of durables (consumption and investment)
 - o Management of expectations
 - o Financial accelerator
 - o Wealth/Balance sheet effects

- Classic question
- Lots of channels
 - o Interest rate sensitivity of durables (consumption and investment)
 - o Management of expectations
 - o Financial accelerator
 - o Wealth/Balance sheet effects
 - Merge micro (confidential CEX) and macro data

- Classic question
- Lots of channels
 - o Interest rate sensitivity of durables (consumption and investment)
 - o Management of expectations
 - o Financial accelerator
 - o Wealth/Balance sheet effects
 - Merge micro (confidential CEX) and macro data
- Main results:
 - Heterogonous effects of nominal shocks on house prices across MSAs.
 - o Marginal propensity to consume out of housing (MPCH) is 0.06.
 - o MPCH is higher for constrained households.

Starting point:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = \gamma_1 M P_t + error$

Starting point:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = \gamma_1 M P_t + error$

$$MP_t$$
 $Q_{it} \subseteq C_{it}$

Starting point:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = \gamma_1 M P_t + error$

$$MP_t \stackrel{\nearrow}{\searrow} Q_{it} \stackrel{\searrow}{\searrow} C_{it} \implies \text{Under-identification}$$

Starting point:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = \gamma_1 M P_t + error$

$$MP_t \searrow Q_{it} \searrow C_{it} \implies \text{Under-identification}$$

Modified framework:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) * MP_t + error$

 $Z_i * MP_t$ is the "instrument" for ΔQ_{it}

Starting point:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = \gamma_1 M P_t + error$

$$MP_t \nearrow Q_{it} \nearrow C_{it} \implies$$
 Under-identification

Modified framework:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

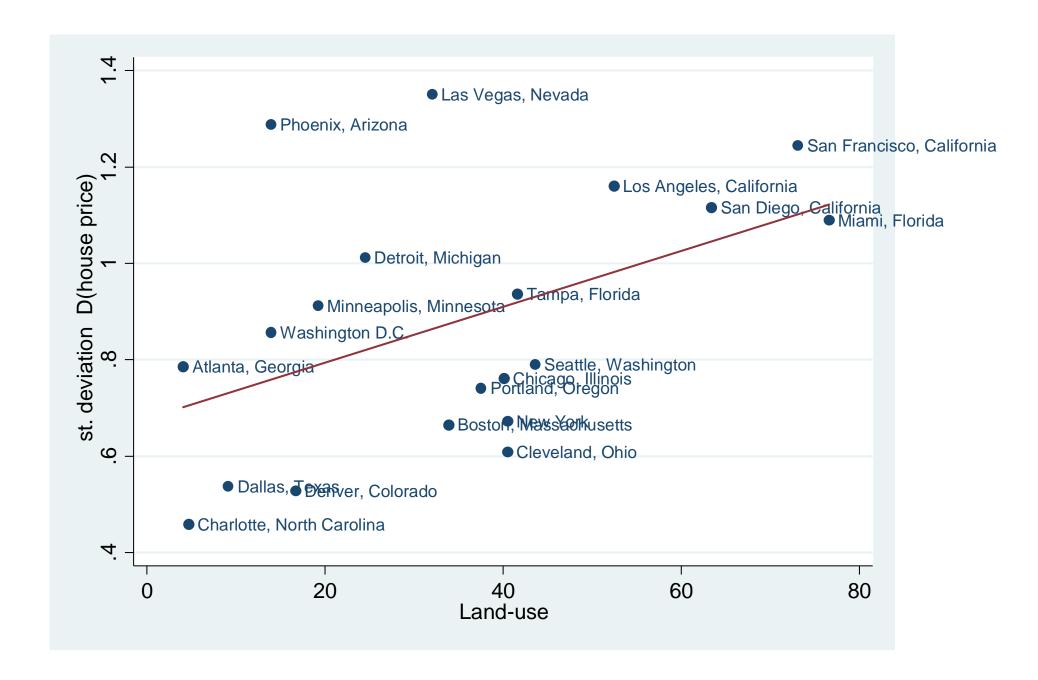
House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) * MP_t + error$

 $Z_i * MP_t$ is the "instrument" for ΔQ_{it}

What's Z_i ?

- Availability of land (Saiz 2010)
- Index of regulations (Wharton)

Modified framework:


Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) * MP_t + error$

Restrictions and caveats:

• Z_i does not affect consumption growth (exclusion restriction)

Modified framework:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) * MP_t + error$

- Z_i does not affect consumption growth (exclusion restriction)
- Heterogeneous response of Q_{it} to MP_t but uniform response of C_{it} to Q_{it} and MP_t .

Modified framework:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) * MP_t + error$

- Z_i does not affect consumption growth (exclusion restriction)
- Heterogeneous response of Q_{it} to MP_t but uniform response of C_{it} to Q_{it} and MP_t .
- We cannot identify γ_1 and so only relative effects are identified
 - In a closed economy, shocks to asset prices can be zero-sum.

Modified framework:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) * MP_t + error$

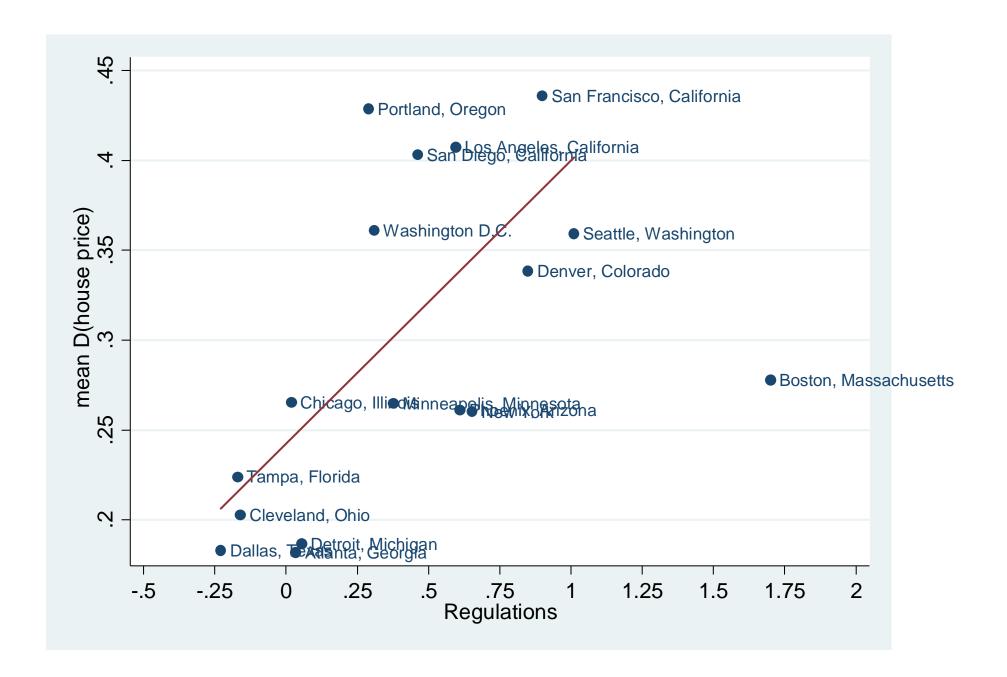
- Z_i does not affect consumption growth (exclusion restriction)
- Heterogeneous response of Q_{it} to MP_t but uniform response of C_{it} to Q_{it} and MP_t .
- We cannot identify γ_1 and so only relative effects are identified
 - In a closed economy, shocks to asset prices can be zero-sum.
- The shock is aggregate \Rightarrow adjust for the Moulton problem
 - cluster two-way (MSA/time) or use Driscoll&Kraay (REStat 1998)

Modified framework:

Consumption: $\Delta C_{it} = \beta_1 \Delta Q_{it} + \beta_2 M P_t + error$

House price: $\Delta Q_{it} = (\gamma_1 + \gamma_2 Z_i) * MP_t + error$

- Z_i does not affect consumption growth (exclusion restriction)
- Heterogeneous response of Q_{it} to MP_t but uniform response of C_{it} to Q_{it} and MP_t .
- We cannot identify γ_1 and so only relative effects are identified
 - In a closed economy, shocks to asset prices can be zero-sum.
- The shock is aggregate \Rightarrow adjust for the Moulton problem
 - cluster two-way (MSA/time) or use Driscoll&Kraay (REStat 1998)
- Dynamic response: need to include lags of ΔC_{it} and ΔQ_{it} on RHS.


SUMMARY

• Great question

• Creative combination of micro and macro data

• Iron out a few wrinkles

