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Abstract

We use arbitrage activity in equity, fixed income, and foreign exchange markets to
characterize the frictions and constraints facing intermediaries. The average pairwise
correlation between the twenty-nine arbitrage spreads that we study is 22%. These
low correlations are inconsistent with models in which an integrated intermediary
sector faces a single constraint and sets all prices. We show that at least two types of
segmentation drive arbitrage dynamics. First, funding is segmented—certain trades rely
on specific funding sources so arbitrage spreads are sensitive to localized funding shocks.
Second, balance sheets are segmented—intermediaries specialize in certain arbitrages so
arbitrage spreads are sensitive to idiosyncratic balance sheet shocks. Our results suggest
specialization on both the asset and liability sides of intermediary balance sheets is
important for understanding their role in capital markets.
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1 Introduction

There is a growing recognition that financial intermediaries play a key role in determining
asset prices. Much of the research on intermediaries treats them as a monolith, assuming
that all financial institutions face the same set of constraints, fund from a homogeneous
household sector, and perfectly share risk with each other. In this paper, we argue that the
assumption of a representative intermediary, while helpful for many applications, understates
the importance of frictions within the intermediary sector and their implications for prices. We
provide empirical evidence that segmentation within the intermediary sector has a first-order
impact on asset prices.

We focus our analysis on arbitrage spreads — riskless returns in excess of riskless rates
— that arise from violations of the law of one price in equity, foreign exchange, and fixed
income markets. We take this approach for three reasons. First, arbitrage is intermediated by
financial institutions such as broker-dealers and hedge funds and cannot be easily performed by
households. Second, the realized returns to arbitrages are accurate measures of their expected
returns, the key objects in any asset pricing theory. Thus, arbitrages offer a high-power
setting for understanding the frictions faced by intermediaries. In contrast, studies analyzing
risky assets must work with average realized returns, a noisy proxy for expected returns
(Merton, 1980). Third, since arbitrage spreads are observable, the agency problems inherent in
financial intermediation are likely smaller in this setting than in others. Frictions constraining
financial institutions in riskless arbitrage are likely to loom larger in the intermediation of
risky assets.

To fix ideas, we begin with a stylized model in which intermediaries determine arbitrage
spreads. In the model, a continuum of intermediaries participates in a set of fundamentally
riskless arbitrage trades. These intermediaries potentially face two types of frictions that break
the Modigliani and Miller (1958) theorem. First, they may face balance sheet constraints
like regulatory capital requirements, which are costly to satisfy due to external financing

frictions. Second, intermediaries may face frictions that prevent them from raising financing



to fund risk-free assets at the risk-free rate. Intermediaries may fund from different sources
with different costs, and certain trades may require them to fund from a specific source (e.g.,
Treasury repo). We model these frictions in reduced form to focus on their implications for
arbitrage spreads.

We first study an integrated intermediary sector. In this case, the factor structure of arbi-
trage spreads reveals the number of constraints and funding sources facing the representative
intermediary. For instance, if the representative intermediary faces a single constraint (e.g.,
a leverage constraint), then all arbitrage spreads are determined by the shadow cost of the
constraint. Thus, spreads will be perfectly correlated and follow a single-factor structure.
Similarly, if the representative intermediary funds itself from a single source, then arbitrage
spreads will again be perfectly correlated since all spreads will be driven by conditions in that
funding market. These kinds of single-factor structures are widely assumed in theoretical
and applied work on intermediaries.!

We then show how segmentation can reduce correlations between arbitrage spreads. We
focus on two types of segmentation. The first is what we call funding segmentation—certain
trades can use certain funding sources while other trades cannot. For instance, Treasury
repo financing can be used for Treasury spot-futures arbitrage but cannot be used for equity
spot-futures arbitrage. This kind of segmentation means that trades that can use the same
funding source will tend to move together, but their correlation with trades that use different
funding sources will be lower. The second type of segmentation that we highlight is balance
sheet segmentation—different trades are performed by different specialist arbitrageurs. For
example, some arbitragers may specialize in equity spot-futures, while others may specialize
in Treasury spot-futures arbitrage. This form of segmentation implies that trades performed
by the same arbitrageurs, and thus subject to the same balance sheet shocks, will be more
correlated with each other than trades performed by different arbitrageurs.

We then turn to the data, focusing on the decade following the 2007-2009 financial crisis.

1See, e.g., He et al. (2017); He and Krishnamurthy (2013); Adrian et al. (2014); Ivashina et al. (2015);
Gromb and Vayanos (2018); Andersen et al. (2019).



We study 29 arbitrage trades that fall into seven broad strategies: (i) equity spot-futures
arbitrage, (ii) equity options arbitrage, which enforces put-call parity (iii) currency spot-
futures arbitrage, which enforces covered interest parity (CIP), (iv) CDS-bond arbitrage,
(v) Treasury spot-futures arbitrage, (vi) Treasury-interest rate swaps arbitrage, and (vii)
Treasury-inflation swaps arbitrage. For each arbitrage trade, we define the spread as the
difference between the risk-free rate implied by no-arbitrage conditions (e.g., spot-futures
parity) and actual short-term money market rates.

Our first result is that the daily correlation of spreads is low on average. The average
pairwise correlation is 0.22 and 75th percentile of pairwise correlations is 0.42. These low
correlations could in principle be driven by measurement error. However, measurement error
would have to be large to explain our results since observed correlations are far from one. We
can easily reject the null that the average pairwise correlation is above 0.67. In addition, we
can reject the null that the individual pairwise correlation is above 0.67 for 87% (355/406) of
trade pairs.? Furthermore, we observe a similar factor structure if we use weekly or monthly
moving averages of arbitrage spreads. For instance, after taking monthly moving averages,
eight principal components are still required to explain 90% of the common variation in
arbitrage spreads. The data are far from the single-factor structure predicted by models with
an integrated intermediary sector facing a single constraint.

We then show that funding segmentation is one reason that correlations between arbitrage
spreads are low. Our analysis starts from the observation that equity spot-futures, equity
options, and CIP arbitrage face relatively higher margin requirements than other strategies.
Because they require more unsecured funding, we refer to these high-margin strategies as
“unsecured” arbitrages, while we call the remaining ones “secured” arbitrages.® Unsecured
arbitrages are more correlated with each other than they are with secured arbitrages. We

provide evidence that these patterns reflect the higher exposure of unsecured arbitrages to

2If true spreads are perfectly correlated and the variance of the measurement error is less than half the
variance of true arbitrage spreads, then the observed pairwise correlation should exceed 0.67.
3Secured arbitrages include Treasury spot-futures, Treasury-swap, TIPS-Treasury, and CDS-bond.



conditions in unsecured funding markets, which we proxy for with the Treasury-Eurodollar
(TED) spread. We find that unsecured arbitrage spreads are nearly five times more sensitive
to movements in the TED spread than secured arbitrages.

While the higher loading of unsecured arbitrage spreads on the TED spread is consistent
with funding segmentation, it could also be driven by a balance sheet segmentation. For
example, if broker-dealers specialize in unsecured arbitrages, then a deterioration of their
balance sheets could cause both the TED spread and unsecured arbitrage spreads to rise.
To isolate the role of funding segmentation, it is therefore useful to trace out how shocks to
the supply of unsecured funding differentially impact unsecured versus secured arbitrages.
Following Du et al. (2019), we take two approaches. First, using a shift-share design, we
instrument for the TED spread with the lagged share of unsecured lending by money market
funds (MMFs) to banks. Second, we build an event study around the 2016 MMF reform,
which resulted in a sharp contraction in unsecured lending by MMFSs. Both designs show that
unsecured arbitrage spreads are sensitive to the supply of unsecured funding, while secured
arbitrage spreads are not. In other words, segmentation in funding markets is an important
driver of segmentation in arbitrage activity.

We next provide evidence that funding markets are more segmented than the simple divide
between secured and unsecured trades. Even within the unsecured lending market, there
are persistent relationships between individual funders and intermediaries (Chernenko and
Sunderam, 2014; Li, 2021; Hu et al., 2021). Thus, shocks to individual funding sources may
move specific arbitrage spreads without moving others. We illustrate this idea by studying
JP Morgan’s role in equity spot-futures arbitrage. We first provide suggestive evidence from
regulatory filings that JP Morgan plays an important role in this market. We then show that
negative shocks to the supply of JP Morgan’s unsecured funding raise equity spot-futures
arbitrage spreads, even relative to other unsecured strategies.”

Our result so far highlight the role of funding segmentation. We next provide evidence

4We find a similar effect when looking at supply shocks to Fidelity MMFs. Hu et al. (2021) show that
Fidelity MMFs are particularly active in equity repo financing.



that balance sheet segmentation also contributes to the overall low correlation of arbitrage
spreads. In other words, it is not the case that a representative intermediary facing segmented
funding engages in all strategies. We first provide event study evidence that the balance
sheet constraints of certain intermediaries affect some trades more than others. One clear
example is the “London Whale” episode, in which JP Morgan lost over $6 billion through its
credit derivatives hedging program in 2012. This event is useful for our purposes because it
did not materially affect the firm’s commercial paper rates but did result in a tightening of
the firm’s risk limits (Senate, 2014). Using a difference-in-difference design, we show that the
episode caused spreads on equity spot-futures arbitrage to rise relative to other spreads. We
find similar results studying Deutsche Bank’s exit from the CDS market in 2014.° CDS-bond
bases rise relative to other arbitrage spreads during this event. Both cases illustrate the
importance of particular intermediary balance sheets for particular arbitrages.

Finally, we examine the impact of hedge fund balance sheet constraints on fixed income
arbitrage spreads. We focus on hedge funds because they have become increasingly active in
fixed income arbitrage in recent years (Barth and Kahn, 2021). We measure their balance
sheet constraints indirectly, using monthly returns as a proxy. The idea is that hedge funds
face tighter balance sheet constraints following losses. At these times, arbitrage spreads
should be higher for the trades in which hedge funds are important intermediaries. Consistent
with this hypothesis, we find that aggregate hedge fund returns are negatively correlated
with spreads on secured trades. Moreover, we document that specific hedge funds appear
to matter for specific trades. For example, the hedge funds whose balance sheet shocks are
important for the CDS-Bond basis are not the same as those that matter for the Treasury
swap spread.

Our paper belongs to the rapidly expanding literature on financial intermediaries and their
role in capital markets. One strand of the literature, including Shleifer and Vishny (1997),

Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), Garleanu and Pedersen

SWang et al. (2021) show this event impacted the liquidity of the CDS market.



(2011), Adrian and Boyarchenko (2012), He and Krishnamurthy (2013), and Brunnermeier
and Sannikov (2014), assumes a representative intermediary and theoretically studies how
different constraints on its activity impact equilibrium asset prices or arbitrage spreads. Our
results suggest that these theories most naturally describe market segments, rather than
providing a uniform account of dynamics across all capital markets.® A second strand of
the literature, including Adrian et al. (2014), He et al. (2017), and Du et al. (2019), aims to
empirically link sector-level measures of intermediary constraints to risky asset prices.” Our
results suggest that accounting for which intermediaries are active in a market and how they
fund themselves is likely to improve the performance of these kinds of intermediary-based
asset pricing models. A third strand of the literature studies law of one price violations in
specific markets, including equity options (van Binsbergen et al., 2019), foreign exchange (Du
et al., 2018), short-term money markets (Bech and Klee, 2011; Duffie and Krishnamurthy,
2016), and Treasury markets (Fleckenstein et al., 2014; Jermann, 2020; Barth and Kahn,
2021). Our paper departs from this part of the literature by simultaneously analyzing law of
one price violations across many different markets. In doing so, we are able to characterize
the nature of segmentation within the intermediary sector.

Overall, our results highlight the importance of segmentation in financial intermediation.
We show that segmentation emerges from both sides of the intermediary balance sheet.
Segmented balance sheets and segmented funding both impact arbitrage spreads. In this
respect, we build on research that documents how shocks to specialized risk-bearing capacity
can disconnect risk premia across markets (Shleifer and Vishny, 1997; Froot, 2001; Mitchell
et al., 2007; Gabaix et al., 2007; Duffie, 2010; Chernenko and Sunderam, 2012; Hanson,
2014; Siriwardane, 2018; Eisfeldt et al., 2018). Our focus on fundamentally riskless arbitrage

trades highlights the pervasiveness of these issues. The arbitrages we study are relatively

6 A recent theoretical literature has emphasized the importance of intermediary heterogeneity for macroe-
conomic outcomes and optimal macroprudential policy (Begenau and Landvoigt, 2021; Jamilov, 2021).

"Adrian et al. (2014) and He et al. (2017) argue in favor of integration by failing to reject the null that the
price of risk to intermediary capital differs across market. However, their tests use realized average returns
to proxy for ex-ante risk premia, which lowers their power. Accordingly, Bryzgalova (2015) finds that the
quarterly intermediary capital factor is weak in the sense that it has a small covariance with asset returns.



straightforward to execute and have expected returns that are essentially observable. These
characteristics should mitigate the typical agency problems thought to underlie segmentation
and slow moving capital, yet in practice arbitrage still appears fairly segmented. It seems
natural to expect more segmentation in the intermediation of risky assets where agency

problems are likely to be more severe.

2 Motivating Model

To fix ideas, we begin with a stylized model in which intermediaries determine arbitrage
spreads while potentially facing multiple frictions. Suppose there are N arbitrage trades that
are riskless. Normalize the risk-free rate to zero and assume that trade n has arbitrage spread
sp¢ at time ¢. For simplicity, we assume arbitrageurs have net long positions, which means
that all spreads in the model are positive. In the empirics, we will work with the absolute
value of spreads since arbitrageurs can be net long or net short each trade.

A unit measure of atomistic arbitrageurs engage in these trades and face several frictions,
which we model in reduced form.® First, there are funding frictions. Suppose that there are
L funding sources with associated cost fi4,..., fr+ (in excess of the risk-free rate of zero) per
unit borrowed.” One dollar of trade n can be financed with w,; dollars from funding source
[ € L. This assumption capture violations of the Modigliani and Miller (1958) theorem in
funding markets. Despite the fact that all N trades are riskless, arbitrageurs may not be
able to fund the basket of securities and derivatives that underlie each trade at the risk-free
rate. For instance, the basket of S&P 500 equities and a 3-month futures sale is riskless,
yet arbitrageurs cannot fund that basket at the risk-free rate. In practice, the purchase of

equities is often funding by unsecured borrowing at a rate above the risk-free rate. The

8As discussed in Wallen (2019), market power among intermediaries may be important in certain markets.
The results here would be qualitatively unchanged in oligopolistic market structures if the elasticity of demand
from outside investors is constant over time.

9We assume for simplicity here that funding is elastic, so that arbitrageurs can raise any amount of funding
from source [ at cost f;+. In our empirics, however, we will be careful to distinguish between variation in f; ;
driven by the supply of funding versus the demand for funding.



assumption that w,; does not vary over time corresponds to the empirical notion that rates
on funding fluctuate more than haircuts (Copeland et al., 2010).

Let arbitrageur demand for trade n be ¢,,. In addition to funding frictions, there are
K balance sheet requirements of the form 7, ¢, v, x = Vi, which are meant to capture
equity capital and liquidity constraints. These requirements may be set by regulators or by
arbitrageurs themselves for internal risk-management purposes. The assumption that v,
does not vary over time corresponds to the idea that the way trades enter each constraint
is fixed over time. Arbitrageurs can adjust their balance sheets on each dimension at cost
%ckvtV,f’t, which capture the agency costs of external finance (e.g., signaling or debt overhang
costs) and other adjustment costs.'’

The arbitrageur’s problem is:

N 1 K
max Z <qn,t <3n,t - Z wn,lfl,t)) ~ 35 Z Ck,tvkzt-
l k=1

n=1

Since arbitrageurs are atomistic, they take s, ; as given.

Generic solution. The first order condition for g, ; is

K
St =D Wnifie + D UnkChtViet. (1)
1 k=1

In other words, the spread on trade n is driven by funding costs and the marginal costs of
balance sheet adjustment. To close the model, we assume that outside demand for trade n is
inelastic and given by a,, > 0. Market clearing then requires that ¢, ; = a,;.""

Eq. (1) shows that with a representative intermediary, arbitrage spreads generically have
an L + K factor structure. Since each funding source and balance sheet constraint can move

separately and arbitrage spreads load differently on these factors, there are L + K possible

sources of variation in arbitrage spreads.

0Note that these costs cannot be risk based, as we are only considering riskless arbitrages.
We make the assumption that outside demand is completely inelastic for simplicity. Our key results
would not qualitatively change if outside demand were elastic (e.g., given by an 1 — bpSn,t)-



Single balance sheet constraint. Though it is very stylized, the model allows us to
nest common assumptions in the intermediary asset pricing literature. For instance, many
models of intermediaries feature a single balance sheet constraint, which can be captured by

setting f;, = 0 for all [, ¢, # 0, and ¢, = 0 for all k£ > 1. '? In this case, Eq. (1) reduces to

Snit = Un,lcl,t‘/l,t = Un1C1t (Z an,tvn,1> .

n

From this expression, it is clear that spreads will be perfectly correlated. There is a single
factor ¢; V7, that moves all trades proportionally. This single factor is driven by multiple
shocks (balance sheet shocks ¢;; and outside demand shocks ay, ;).

Single funding factor. Another simple structure used by the intermediary literature
is one with a single funding factor: f,1 > 0, f,,; = 0 for [ > 1 and no balance sheet factors

(ckt = 0,05, = 0). Then we simply have spreads driven by the funding factor:

Snt = wn,lfl,t-

In this case, we again have perfect correlations across spreads.”

Segmented Funding. We next consider the impact of segmentation on spreads. We
consider two types of segmentation: funding segmentation and balance sheet segmentation.
By funding segmentation, we mean that certain trades can use certain funding sources while
other trades cannot. For instance, Treasury repo financing can be used for Treasury spot-
futures arbitrage but cannot be used for equity spot-futures arbitrage. To see the implications
of this kind of segmentation, suppose that trades n =1, ..., Ny < N can be funded only using

source 1 with corresponding cost f; ¢, while trades n = Ny +1, ..., N can be funded only using

12This is equivalent to setting w,; = 0 for all n,! and v, = 0 for all k¥ > 1, which can be interpreted the
ability to fully fund trades at the risk-free rate with trades loading on a single balance sheet requirement
(k=1).

13 Andersen et al. (2019) has this reduced form, though formally they obtain the result by microfounding
the costs of external equity with a debt overhang problem. With this microfoundation, the marginal cost of
external equity funding wy, cquity fequity,t 1S equal to the arbitrageur’s credit spread.



source 2 with corresponding cost fa,. If there are no further frictions (Vj, = 0), we have

B wn’1f17t ifn S Nl
mt Wpofoy if Ny <n’

In this case, all trades that can be funded using source 1 are perfectly correlated and all
trades that can be funded using source 2 are perfectly correlated. The correlation between
the two groups equals the correlation between f;; and fa,.

Segmented Balance Sheets. We next consider balance sheet segmentation. We use
balance sheet segmentation to describe environments in which certain trades are done by
one set of intermediaries and are therefore subject to their balance sheet constraints, while
other trades are done by another set of intermediaries and are therefore subject to their
balance sheet constraints. One could microfound this segmentation with a small amount of
specialization in different trades. For instance, suppose there are small costs €, ; associated
with arbitrageur ¢ doing trade n. Further suppose that for trades n = 1, ..., N; arbitrageurs
i € I have a cost advantage €,,; < €, ; over all other arbitrageurs j ¢ I. Conversely, assume
that for trades n = Ny +1, ..., N the cost advantage is reversed so that arbitrageurs i € I have
higher costs ¢,; > €, ; than arbitrageurs j ¢ I. In other words, one group of arbitrageurs has
a cost advantage in one set of trades, while the other has a cost advantage in a different set
of trades. Finally, suppose there is a single balance sheet constraint (f;; = 0 for all I, ¢;; # 0,
and ¢, = 0). If the sizes of the arbitrageur groups are similar in magnitude to the outside

demand for the trade groups,'* then spreads will be given by

Eni T Unac1Vigr it n < Ny
Snit = . .
En,j + Un71617t‘/1,t7~[ if N1 <n

Intuitively, spreads for trades n = 1, ..., N; will reflect the shadow cost of the balance sheet
constraint of arbitrageurs in group /. For trades n = Ny + 1, ..., N, spreads will reflect the

shadow cost of the balance sheet constraint of arbitrageurs outside group I.

14This condition ensures that differences in marginal balance sheet costs do not swamp cost advantages.
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The model also highlights what we can learn from spreads alone and what conclusions
require ancillary data. For instance, if we observe a high-dimensional factor structure for
spreads, we can reject simple models where a representative intermediary is subject to a
single constraint or funds from a single source. However, a high-dimensional factor structure
does not distinguish a representative intermediary subject to many constraints from either
funding or balance sheet segmentation. In our results below, we will therefore start with the
factor structure of spreads before providing direct evidence of segmentation. For instance, we
will directly show that certain spreads comove with funding costs associated with particular
types of funding. And we will show that certain spreads directly respond to shocks to the

balance sheets of specific intermediaries.

3 The Factor Structure of Arbitrage

3.1 Data and Arbitrage Trades

We analyze 29 arbitrage trades over the period from January 1, 2010 to February 29, 2020.
This period spans the post-financial crisis era and predates the Covid-19 pandemic. For each
arbitrage trade, we construct an implied risk-free rate based on observed asset prices and
then subtract a maturity-matched risk-free rate. For arbitrage trades that mature in less than
2-years, the risk-free rate we use is the overnight indexed swap (OIS) rate; for longer-maturity
trades, we use Treasury yields. We provide a detailed description of each arbitrage and its
associated data source in Appendix A.1. Here, we provide a short description of the trades,

which can be grouped into 7 broad categories or “strategies”.

3.1.1 Arbitrage Strategies

Spot-Futures Arbitrage in Treasuries For Treasury markets, we measure arbitrage
spreads from spot-futures parity violations across the term structure. We study five such

arbitrage trades, associated with 3-month futures on the 2-year, 5-year, 10-year, 20-year, and

11



30-year Treasury. On average, the implied risk-free rate from Treasury futures is higher than
the 3-month OIS rate. To earn this spread, an arbitrageur would sell Treasury futures and

hedge the position by buying Treasuries (see Appendix A.1.7).

Treasury Swap Arbitrage For interest rate swap markets, we measure arbitrage spreads
between the fixed rate on overnight indexed swaps and Treasury yields. We study seven such
arbitrage trades, associated with the 1-year, 2-year, 3-year, 5-year, 10-year, 20-year, and
30-year Treasury. On average, these fixed rates are higher than maturity matched Treasury
yields. To earn this spread, an arbitrageur would pay fixed on interest rate swaps and hedge

the position with cash Treasuries (see Appendix A.1.8).

TIPS-Treasury Arbitrage We follow Fleckenstein et al. (2014) and construct the differ-
ence in yield between a synthetic nominal Treasury, constructed from TIPS and inflation
swaps, and the true nominal Treasury yield. On average the synthetic nominal Treasury yield
is higher than the true nominal Treasury yield. To earn this spread, an arbitrageur would

sell a synthetic Treasury and hedge the position with cash Treasuries (see Appendix A.1.9).

CDS-Bond Basis For U.S. corporate bond and credit default swap (CDS) markets, we
measure arbitrage spreads from the difference between cash-bond implied credit spreads and
CDS spreads. We form CDS-bond bases for both investment-grade and high-yield bonds,
aggregating over bonds in each ratings category. The average number of bonds used to
compute the daily investment grade and high-yield bases is 1683 and 307, respectively. On
average, credit spreads from cash-bonds are larger than those from CDS contracts. To earn
this spread, the arbitrageur would buy corporate bonds and sell maturity-matched CDS

contracts and Treasuries (see Appendix A.1.3).

CIP Arbitrage For foreign exchange (FX) markets, we measure arbitrage spreads from

covered interest parity (CIP) violations, following Du et al. (2018). The cross-currency

12



interest rate spread implied by FX spot and futures prices differs from actual rate spreads.
On average, for the euro-US dollar and Japanese Yen-US dollars currency pairs, foreign
currency futures are too expensive relative to spot and the difference in OIS rates across
currencies. To earn this spread, the arbitrageur would borrow US dollars, exchange to foreign
currency in the spot market, invest in foreign currency deposits, and lock in the future
exchange rate with a futures sale (see Appendix A.1.4). We study 3-month CIP violations
for eight currencies, the G-10 currencies excluding Denmark and Norway, for which we do

not have OIS rates.

Spot-Futures Arbitrage in Equities For U.S. equity markets, we measure arbitrage
spreads from spot-futures parity violations for three major equity indices, S&P500, Dow Jones,
and NASDAQ. Our measure of equity market arbitrage spreads is the difference between the
implied risk-free rates on 3-month futures and OIS rates. On average, the implied risk-free
rate from equity futures is higher than the 3-month OIS rate. To earn this spread, the
arbitrageur sells futures and hedges by purchasing the underlying spot equities (see Appendix
A1.1).

Box Arbitrage in Equity Options We study arbitrage spreads implied by put-call parity
in equity options markets following van Binsbergen et al. (2019). To earn this spread, the
arbitrageur implements a box-spread trade (see Appendix A.1.2), buying and selling put and
call options with the same strike to implement put-call parity. We study three such trades,
based on S&P500 options with maturities of 6 months, 12 months, and 18 months.

Table 1 provides summary statistics on the trades. The data is daily and spreads are
reported in annualized basis points (bps). Unless otherwise specified, we work with absolute
values of spreads since the sign of the spread depends on whether arbitrageurs are net long or
short a particular leg of the trade. Table 1 shows that there is significant variation in spreads
both across trades on average and within trades over time. For many individual trades, the

daily standard deviation of spreads is around half the mean spread. Figure 1 shows average
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spreads by broad strategy. Average spreads vary significantly from 14 bps for the Treasury
spot-futures arbitrage to 44 bps for the CDS-bond basis. While not the focus of our analysis,
it is worth noting that we can easily reject the hypothesis that average spreads are equal

across individual trades or broad strategies.'”

3.1.2 Quantity Data

In addition to data on arbitrage spreads, we use data from the Commodity Futures Trading
Commission (CFTC) on quantities.'® The CFTC publishes weekly “Traders in Financial
Futures” reports, which break down open interest for futures markets in which 20 or more
traders hold large positions. The position data is supplied by clearinghouses and other
reporting firms. The reports break down positions into four trader types: dealers, asset
managers, leveraged funds, and other reporting entities. These classifications are based on

the predominant business purpose self-reported by traders on the CFTC Form 40.

3.2 Money Market Fund Holdings

We use regulatory filings by money market mutual funds to measure their holdings and total
net assets (TNAs). Money market mutual funds are required to file form N-MFP with the
Securities and Exchange Commission (SEC) every month. These filings include detailed

breakdowns on the funds’ portfolios.

3.3 Hedge Fund Returns

We also use hedge fund returns from the Prequin Pro Hedge Fund Database. This database
includes performance data on over 24,000 hedge funds. Importantly for our purposes, the
database contains descriptive information on fund strategies, which allows us to focus on

funds that may be involved in the arbitrages we study.

15This difference in average spreads rules out simple models in which there is one constraint to arbitrage
and each trade has the same weight on the constraint.
6The data are available here: https://www.cftc.gov/MarketReports/CommitmentsofTraders/index.htm.
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3.4 Characterizing Arbitrage Comovement

We now turn to our first main result: the correlation between arbitrage spreads is low. Figure
2 presents this result graphically, depicting a heat map of pairwise correlations between the
absolute value of different spreads. Darker red indicates higher positive correlations. With
the exception of the diagonal, little of the figure is dark red, indicating that correlations are
generally low.

Table 2a provides formal statistical evidence on pairwise correlations. The average pairwise
correlation is 0.22 and 75th percentile of pairwise correlations is 0.42.!” These results are
at odds with simple structures for the intermediary sector. As we showed in Section 2, in
many simple models with a representative intermediary, arbitrage spreads should be perfectly
correlated. In particular, if the representative intermediary has either a single balance sheet
constraint or faces a funding market with a one factor structure, then spreads should be
perfectly correlated. Indeed, the model shows that if a representative intermediary faces a
funding market with an L factor and has K balance sheet constraints, then arbitrage spreads
should have a L + K dimensional factor structure. In Figure 3, we conduct a principal
components analysis of spreads. The figure shows the cumulative percentage of variation
in arbitrage spreads explained as the number of principal components we consider rises.
Consistent with the low correlations we documented above, it takes 11 principal components
to cumulatively explain 90% of the variation in arbitrage spreads. Furthermore, the last
column of Table 2a shows that we can reject the null of equal correlations across all arbitrage
pairs. Thus, the data suggest a complex structure for the intermediary sector. Either the
representative intermediary faces a large number of funding shocks and constraints, or there
is significant segmentation in arbitrage.

A natural concern here is that measurement error biases the observed correlations towards

zero. However, there are three reasons why we think measurement error is unlikely to drive

1"Note that these low correlations apply to spreads. Correlations are higher between implied risk-free rates
derived from arbitrage trades because all of those risk-free rates (imperfectly) track the true riskless rate.
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the low correlations we observe. First, the measurement error would have to be large. To see

why, suppose that the observed spread s;; equals the true spread s;, plus white noise:

*
Sit = S;4 T Eit

Further suppose that the variance of measurement error ¢;, is a fraction 6 of the variance
of the true spread, Var|e; | = 0V ar[s;;]. In this case, the observed correlation between two
spreads would be a fraction 1/(1 4 6) of their true correlation.'® Under the assumption that
all spreads are perfectly correlated and the variance of white noise is less than 50% of the
variance of true spreads (6 < 0.5), then the observed pairwise correlation of spreads should
be greater than 0.67. However, in Table 2a we reject the null that the average pairwise
correlation of all spreads is greater than 0.67. Moreover, we can reject the null that the
individual pairwise correlation is above 0.67 for 87% (355/406) of arbitrage pairs in our
sample.

The second reason that measurement error is unlikely to explain our results is that
they our robust to smoothing. Figure 3 shows that we obtain very similar results if we
compute principal components after taking a five-day or one-month moving average of spreads.
Averaging should increase the ratio of variation driven by true spreads as opposed to noise,
but it has little effect on the principal components analysis. Even after taking one-month
moving averages of spreads, it takes 8 principal components to cumulatively explain 90% of
the variation in our arbitrage spreads.

The final reason we think measurement error is unlikely to be driving our results is that the
correlations are not uniformly low. While spreads are far from perfectly correlated, they do
still have an interesting structure. Figure 3 shows that there is important common variation
in spreads as emphasized by the previous literature, including Du et al. (2018), Du et al.

(2019), and van Binsbergen et al. (2019). The first three principal components of spreads

18Formally, suppose we have two observed spreads s; and s, that are equal to the true spread plus noise:

Sit = ;4 + €i,r. Further suppose Varle; ;] = 0Var([s},]. Then Corr[sy 1, s24] = ﬁCorr[sit, 83 4]
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cumulatively explain about 60% of variation. If spreads were completely uncorrelated, we
would expect them to only explain 33%.' Thus, our principal components analysis suggests
significant underlying economic structure to arbitrage spreads.

Figure 2 and Table 2b suggest two places to look for this structure. First, cross-strategy
correlations are relatively high for the box, CIP, and equity-spot futures spreads. Second,
correlations are higher within strategy than across strategy. For instance, the average pairwise
correlation of our three box trades is 0.87 and the average pairwise correlation of CIP spreads
is 0.37. We explore these sources of correlation further in the next sections of the paper,
arguing that they reflect segmentation in funding markets and segmentation in intermediary

balance sheets.

4 Segmented Funding

In this section, we argue that funding frictions are a key reason that the correlation of
arbitrage spreads is low. As discussed in Section 2, the underlying violation of the Modigliani
and Miller (1958) theorem is that certain riskless portfolios cannot be funded at the risk-free
rate. For instance, the equity spot-futures arbitrage involves holding the underlying equities
and selling equity futures. Taken together, this position is riskless, but it cannot be funded
with (for instance) Treasury repo. This friction opens the door to the debt overhang problem
highlighted by Andersen et al. (2019). As the cost of funding for certain arbitrage trades
moves, spreads will move as well.

We proceed in three steps. We start with suggestive evidence that there are differences in
funding across the the different arbitrage strategies we study. We then provide more formal
empirical evidence that movements in funding costs affect arbitrage spreads. In particular, we
show that they help explain the relatively high degree of comovement between the box, CIP,

and equity-spot futures spreads in Table 2b, and the relatively low degree of comovement

191f spreads were uncorrelated, then the first three principal components would simply be the three spreads
with the largest variance, and the total variance of spreads would be the sum of individual spread variances.
In our data, the ratio of the sum of the largest three variances to the sum of all variances is about 33%.
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between those spreads and the others we study. Finally, we show that segmentation within
funding markets also helps explain why the box, CIP, and equity-spot futures spreads are

not perfectly correlated.

4.1 Suggestive Evidence on Margins

Table 3 shows that there are meaningful differences in the availability of secured financing
across arbitrage strategies. The data primarily come from the Federal Reserve Bank of New
York’s Tri-party Repo Infrastructure Reform Task Force.?” For currencies, little data is
available from this source because the quantity of tri-party repo backed by international
collateral is typically very small (less than 0.5% of total tri-party repo). Therefore we report
data from central bank lending operations by the Bank of England and the European Central
Bank.?! The Treasury spot-futures, Treasury-swap, and TIPS-Treasury arbitrages can be
largely financed with Treasury repo, requiring only a 2% margin. In other words, intermediaries
need little unsecured debt or equity funding to enter into these arbitrages. Conversely, the
box, CIP, and equity spot-futures arbitrages require much higher margins between 8 and
12%. For these arbitrages, unsecured funding conditions are much more important. We will
therefore frequently group these trades together, labeling them “unsecured”, while we label
the remaining trades (Treasury spot-futures, Treasury-swap, TIPS-Treasury, and CDS-bond)

“secured.”’

4.2 Shocks to Unsecured Funding and Arbitrage Activity

In this section, we show that variation in unsecured funding conditions induces comovement
in arbitrage spreads for trades that are unsecured funding intensive. In other words, frictions

in funding markets—the inability to fund a risk-free portfolio at the risk-free rate—induces

20https: //www.newyorkfed.org/data-and-statistics /data-visualization /tri-party-
repo#interactive/margins

2https:/ /www.bankofengland.co.uk/- /media/boe/files/markets /eligible-collateral /summary-tables-of-
haircuts-for-bank-lending-operations.pdf, https://www.ecb.europa.eu/mopo/implement/omo/pdf/EUR-
USD__tender_procedure.pdf
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segmentation in arbitrage.

We start with OLS evidence in Table 4a. We work with implied risk-free rates from
different arbitrages, as opposed to spreads that subtract out a benchmark risk-free rate, to
ensure that the comovement we study is not generated by variation in the benchmark we use.

In the first two columns, we run the following monthly panel regression:

Arije = o+ Bi1Ay + BoATED; + € 4, (2)

where 7; ;, is the implied risk-free rate from individual trade 7 in broad strategy j in month ¢,
Yi+ is the yield on a Treasury with the same maturity as the horizon of the trade—a proxy
for the true risk-free rate, and TED; is the maturity-matched Treasury-Eurodollar (TED,
i.e., Treasury minus LIBOR) spread—a proxy for unsecured funding costs.?> Standard errors
are clustered by broad strategy and month.

In the first column of Table 4a, the sample consists of unsecured trades (equity spot-
futures, CIP, and box). These trades load on the Treasury yield with a coefficient close to 1,
but also have a high loading on the TED spread, consistent with the idea that these trades
require a significant amount of unsecured funding. Indeed, the coefficient on the TED spread
is higher than the margin requirements listed in Table 3, which may reflect that these trades
require more unsecured funding on the margin than on average.

The second column of Table 4a shows a stark contrast for secured trades. These trades
also load on the Treasury yield with a coefficient close to 1, but their loading on the TED
spread is much lower, only one-quarter the magnitude (0.12 vs 0.50). In a panel regression
(untabulated) that pools all trades, this difference is statistically significant at the 1% level.
The remaining columns of Table 4a run the regression strategy-by-strategy, showing that
the coefficient on TED is higher for all unsecured strategies than it is for any of the secured

strategies.

22When the trade has a longer horizon than our available LIBOR data, we use the longest maturity
available, which is 12 months.
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Previous literature, including Garleanu and Pedersen (2011), has noted that arbitrage
spreads are sensitive to the TED spread, particularly during periods when the financial
system is stressed like the 2008-09 financial crisis. Our focus here is to highlight differences
in the sensitivity of arbitrage strategies to the TED spread. We interpret these differences
as showing that frictions in funding markets drive cross-sectional differences in arbitrage
spreads.

While the results in Table 4a are consistent with funding segmentation, they are also
consistent with balance sheet segmentation. For instance, suppose dealers specialize in unse-
cured trades. Then a deterioration in their balance sheet health could lead to a simultaneous
rise in the TED spread and unsecured arbitrage spreads. To distinguish the role of funding
segmentation, it therefore helpful to isolate how shocks to the supply of unsecured funding
impact unsecured arbitrages. We take two related approaches to answering this question.

First, we instrument for the change in the TED spread using flows into and out of
money market mutual funds (MMFs), an important source of unsecured funding. We take a
Bartik-style approach, with the instrument in month ¢ defined as the percentage change in
total MMF' assets under management between ¢ — 1 and ¢, multiplied by the share of MMF
assets invested in unsecured lending to banks at time ¢ — k. We measure these quantities in
our N-MFP data. Anderson et al. (2019) also use this instrument, studying how CIP bases
move around the 2016 MMF reform. As shown in Appendix Table Al the first stage for
the instrument is strong. As discussed in Goldsmith-Pinkham et al. (2020), the exclusion
restriction here is that the share of MMF assets invested in unsecured lending to banks at
time ¢ — k is uncorrelated with demand for funding from arbitrageurs at time ¢.* In other
words, we do not require that aggregate flows into MMFs are uncorrelated with arbitrageur
demand, only that past portfolio weights are uncorrelated with current arbitrageur demand.

Table 4b shows the results. The first two columns show results measuring MMF portfolio

23The value-weighted mean share of MMF portfolios in unsecured lending is 21% over our sample with a
standard deviation of 10%. Much of this variation occurs around the time of the 2016 MMF reform, which
we study below. Appendix Table A1l shows that we obtain similar results from the IV if we exclude 2016.
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shares £ = 1 month in the past. In the first column, we see that spreads on our unsecured
trades are strongly related to the instrumented TED spread. The coefficient on the TED
spread is larger than it is for our OLS results in Table 4a. One reason for this would be
that when the TED spread is rising, these arbitrages suffer negative demand shocks. For
instance, suppose that when investor risk aversion rises, investor demand to go long equity
futures falls and the TED spread rises at the same time. Such shocks could drive down the
correlation between the TED spread and the equity spot-futures arbitrage spread, lowering
the coefficient in Table 4a. By isolating true funding supply shocks, our IV analysis in Table
4b reveals a strong relationship between funding and arbitrage spreads.

In the second column of Table 4b, we study spreads on secured trades. The results are
similar to our OLS results, showing that these trades are not sensitive to unsecured funding
conditions as measured by the TED spread. Indeed, the coefficient on the TED spread
is slightly lower in the IV specifications than in OLS regressions and is not statistically
distinguishable from zero.?*

The remaining columns of Table 4b show that we obtain similar results if we measure
MMF portfolio shares with longer lags, setting £ = 12 for a one-year lag or k =t — 1 to
take shares from the first observation in the sample. The coefficients are similar across these
variations, though they are measured with less statistical precision when using MMF portfolio
shares from the beginning of the sample because of a weaker first stage.

To supplement our IV analysis, we follow Anderson et al. (2019) and study the 2016 MMF
reform. This reform modified SEC Rule 2a-7, which governs MMFs. In particular, the reform
required prime MMFs, which lend unsecured to banks, to report floating net asset values
(NAVs) rather than the stable (fixed) NAVs they had previously been allowed to report. Many
MMEF clients strongly prefer stable NAVs and so following the reform, many prime MMFs
converted themselves into government MMFs. This allowed the MMFs to continue reporting

stable NAVs, as their clients preferred, but as shown in Figure 4a, it significantly restricted

24This suggests that some shocks jointly affect secured and unsecured trades. The instrument, however,
isolates shocks to unsecured funding.

21



their ability to lend unsecured to banks. Unsecured MMF lending to banks fell approximately
$550 billion as a result of the reform. Our analysis is similar Anderson et al. (2019); the
key difference is that we examine a cross-section of arbitrage spreads to make the point that
some spreads are affected by the funding shock more than others. In contrast, Anderson et al.
(2019) focus on CIP and the arbitrage banks can perform between the federal funds rate and
the interest rate on excess reserves, showing that both are affected by the shock.

Figure 4b shows that the MMF reform shock generated a significant rise in the TED
spread. As the reform was anticipated, spreads start rising before the reform is implemented.
For example, five months before the reform, MMFs will be more willing to lend to banks
unsecured for four months than six months. Figure 4c¢ shows that around the time of the
reform, spreads on unsecured arbitrages rise relative to secured arbitrages. Again, this is
consistent with the idea that unsecured funding shocks induce comovement in arbitrage
spreads for unsecured trades but result in low correlations between secured and unsecured
trades.

While Figure 4c looks similar to a differences-in-differences analysis, it is formally closer
to a placebo test. In particular, the parallel trends assumption should hold under the null of
perfectly integrated arbitrages. However, under our preferred interpretation—that unsecured-
funding intensive arbitrages are segmented from other arbitrages—there is no reason for the
parallel trends assumption to hold. That is, we do not think that the gap in spreads between
unsecured-funding intensive and other arbitrages would have remained fixed in the absence
of the 2016 MMF reform. Instead, we simply interpret Figure 4c¢ as showing that following a
shock to unsecured funding, only certain arbitrages are affected.

Table 5 provides formal regression evidence corresponding to these figures. We run the

following regression specification:

sit = o +ap + B1[i € Unsecured| x 1]t > October2016] + ¢; ,
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where s;; is the arbitrage spread of trade i on date ¢. Following the reform, spreads on
unsecured-funding intensive arbitrages rise about 20 basis points relative to other arbitrage
spreads.?” Furthermore, the effect appears to be long-lived. We cannot reject the hypothesis
that the difference between unsecured-funding intensive arbitrages and other arbitrages are
the same for all 16 months in our sample after the reform (through December 2017).

Taken together, the analysis in Tables 4b and 5 shows that segmentation in funding market
is one broader driver of segmentation in arbitrage trades. Some trades—equity spot-futures,
box spreads, and CIP—require more unsecured funding than others, and therefore these
trades are more exposed to broad conditions in unsecured funding markets, as measured by
the TED spread. Consequently, these trades tend to comove more with each other, than they

do with secured trades.

4.3 Segmentation within Unsecured Funding

We next provide evidence that funding markets are more segmented than the simple divide
between secured and unsecured trades we documented above. In particular, we argue that
segmentation within unsecured funding markets helps to explain why the equity spot-futures,
box, and CIP trades, while more correlated than other trades, are still not very correlated
with each other. Building on the MMF literature (e.g., (Chernenko and Sunderam, 2014;
Rime et al., 2017; Li, 2021; Hu et al., 2021), (Rime et al., 2017), (Li, 2021), (Hu et al., 2021)),
we argue that relationships between intermediaries and their funding sources mean that
shocks to individual funding sources move specific arbitrage spreads without moving others.

Our analysis proceeds in three steps. First, we use data from bank regulatory filings to
provide suggestive evidence that JP Morgan is a particularly important intermediary for
equity spot-futures arbitrage. According to Coalition Greenwich, a subsidiary of S&P that

provides benchmarks for the financial services industry, JP Morgan has had the largest share

25The 25 bps increase in the TED spread is also consistent with the sensitivity of the TED spread to MMF
flows that we find in Table Al.
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of the market for equity derivatives since 2015.%° This accords with data from the Y-9C
regulatory filings. We use these filings to examine the trading book securities holdings of
the top 25 bank holding companies by size over our sample period. Of those 25 holding
companies, JP Morgan had by far the largest holdings of equity securities in its trading
book over the period, accounting for 37% of all equity holdings. JP Morgan’s dominance
was greater earlier in the sample; for instance, it held 53% of all equities in trading books
in 2010Q1. This evidence suggests that JP Morgan could play an outsized role in equity
spot-futures arbitrage.

We next show that funding shocks to JP Morgan move equity spot-futures spreads but
not other arbitrage spreads. In Table 6, we show that funding shocks to JP Morgan affect
equity spot-futures spreads over and above the effect of the TED spread. In columns 1-3, we
augment Eq. (2) with flows of unsecured funding to JP Morgan. Similar to Table 4b, we
instrument for these flows using a Bartik-style approach because raw flows mix the demand
for funding from JP Morgan with the supply of funding from MMFs. The instrument, which
isolates supply shocks, is defined in month ¢ as the percentage change in total MMF assets
under management between t — 1 and ¢, multiplied by the share of MMF' assets invested
in unsecured lending to JP Morgan at time ¢ — k. Similar to our analysis in Table 4b,
the exclusion restriction here is that JP Morgan’s share of unsecured funding at ¢t — £ is
uncorrelated with its demand for funding at t.

In column 1 of Table 6, the dependent variable is the spread on equity spot-futures
spreads. The coefficient on flows to JP Morgan is negative and significant. When JP Morgan
receives a positive funding supply shock, equity spot-futures arbitrage spreads decline. A one
percentage point increase in flows to JP Morgan is associated with a one basis point decline
in equity spot-futures spreads. Column 2 shows that JP Morgan funding supply shocks have
no impact on other trades that are unsecured funding-intensive, suggesting that JP Morgan

is not the marginal intermediary for those trades. Column 3 shows that trades that are not

26https:/ /www.bloomberg.com /news /articles/2020-03-26 /jpmorgan-s-equity-derivatives-haul-said-to-
soar-to-1-5-billion?sref=wacugGYd
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unsecured funding-intensive are also not sensitive to JP Morgan’s funding supply shocks.

Finally, to sharpen the analysis, we show that similar results obtain if we focus on Fidelity’s
family of MMFs. During our sample period, Fidelity MMFs were the largest provider of
unsecured funding to JP Morgan, accounting for 22% of the firm’s total unsecured borrowing
on average. Furthermore, Hu et al. (2021) find that Fidelity MMFs were the largest provider
of equity-repo financing from 2010 to 2013. In columns 4-6, we redo the analysis focusing on
shocks to Fidelity. We augment Eq. (2) with flows to Fidelity MMFs, instrumenting for these
flows with the percentage change in total MMF assets under management between ¢ — 1 and
t, multiplied by the share of MMF assets managed by Fidelity at time t — k. We again find
strong evidence that shocks to Fidelity affect equity spot-futures arbitrages, but not other
arbitrages.

Taken together, our results suggest that funding segmentation is an important driver
of segmentation in asset prices. Unsecured-funding intensive trades are broadly segmented
from other trades because unsecured funding is segmented from secured funding, with the
TED spread capturing these differences. Within unsecured funding, there is additional
segmentation, which appears to be driven by relationships between funding sources and
intermediaries. This segmentation means that even unsecured-funding intensive trades are

somewhat segmented from each other.

5 Segmented Balance Sheets

We next provide evidence of a second driver of segmentation in asset prices: balance sheet
segmentation across intermediaries. As discussed in Section 2, if different intermediaries
specialize in different trades, then the tightness of their individual balance sheet constraints
will affect some arbitrage spreads but not others.

We provide three complementary types of analysis. First, we provide suggestive evidence

from CFTC quantity data that different intermediaries are more central for different trades.
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We then examine two event studies: JP Morgan’s London Whale episode in 2012 and Deutsche
Bank’s exit from the CDS market in 2014. Finally, we show that the tightness of fixed income

hedge fund balance sheet constraints are important for certain secured trades.

5.1 Suggestive Evidence from Quantities

Table 7 uses the CFTC data to provide suggestive evidence that different intermediaries
play bigger roles in certain arbitrage trades. The CFTC summarizes positions in different
futures of different types of intermediaries: dealers, hedge funds (labeled by the CEFTC as
“leveraged funds”), and asset managers. For each intermediary type and contract, the CEFTC
reports total gross positions long and short of the intermediary type in the contract, as well
as total positions in the contract netted by intermediary type. The data is silent on the
specific intermediaries that are active in a particular trade, and therefore does not perfectly
reveal the marginal price setter for each contract. It does, however, give us a sense of which
intermediaries are most active in which contract.

We compute three different measures of activity. First, we look at an intermediary type’s
gross share of activity in a contract—the sum of the intermediary type’s long, short, and
spread positions in that contract, divided by the total long, short, and spread positions in the
contract. Second, we net within each intermediary type, taking the difference between gross
long and gross short positions for the intermediary type. We then report the intermediary
type’s net position as a fraction of the total net positions across intermediaries. Finally, we
report the fraction of days the intermediary type’s net position is in the direction that would
earn the arbitrage spread. A high fraction of days earning the spread is suggestive evidence
that the intermediary type is an important arbitrageur for the contract, accommodating
demand from other sectors.

All three measures tell the same story. Dealers are the biggest players in equity futures,
while hedge funds and asset managers play a more important role in Treasury futures. For

instance, dealers are in a net position that earns the arbitrage spread in equity futures on
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87% of days, while hedge funds are in a net position to earn the spread on 45% of days, and
asset managers are only in a net position to earn the spread on 7% of days. Moreover, dealers
have the largest share of equity futures in terms of gross and net positions. In contrast,
hedge funds appear to be the most active in Treasury futures, as their net position earns the
arbitrage spread on 66% of days. Dealers are in a net position to earn the arbitrage spread
on 58% of days, though their share of gross and net outstanding is relatively small compared
to hedge funds and asset managers.

While certainly not definitive, these numbers suggest that dealer balance sheet constraints
are likely to be particularly important for equity futures, while hedge fund balance sheets are
more important for Treasury trades. The notion that hedge funds are particularly active in
Treasury spot-futures arbitrage is also consistent with Barth and Kahn (2021). We next turn

to event studies for more definitive evidence.

5.2 Event Study: the London Whale

As argued in Section 4.3, JP Morgan appears to be a particularly important intermediary for
equity spot-futures arbitrages. In this section, we examine the impact of an exogenous balance
sheet shock to JP Morgan—the so-called London Whale episode—on equity spot-futures
arbitrage spreads.

The London Whale episode was a result of activities in JP Morgan’s Chief Investment
Office (CIO) designed to hedge credit risk in the bank’s lending portfolio. The Senate
Permanent Subcommittee on Investigations issued a detailed report on the episode, from
which we draw the following background information.?” At the beginning of 2012, JP Morgan
wished to reduce the size of its hedges in the credit derivatives market. Rather than simply
exiting its existing positions, the CIO instead sought to offset the credit protection it had
bought by selling credit protection. In doing so, it became one of the biggest players in credit

derivatives markets, with other traders nicknaming it the London Whale. In addition, it

2"The report is available here: https://www.hsgac.senate.gov/imo/media/doc/REPORT %20-
%20JPMorgan%20Chase%20Whale%20Trades%20(4-12-13).pdf
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incurred significant basis risk, both in terms of the credit quality and maturity of the credit
protection it had bought versus sold.

As shown in Figure 5a, this risk taking resulted in significant losses throughout 2012,
reaching over $6 billion by the end of the year.”® Figure 5a shows that losses began to
accelerate in March 2012, with monthly losses totaling $550 million and representing 75% of
the firm’s year-to-date losses. The Senate report also indicates that several internal risk limits
were breached for the first time during the month. Another important event occurred on
June 13, 2012, when JP Morgan CEO Jamie Dimon testified before Congress and announced
that significant additional losses were to be expected at the firm’s next conference call with
shareholders. We therefore use March 1, 2012 and June 13, 2012 as the focal points of our
event study.

Figure 5b shows that around these critical dates equity spot-futures arbitrage spreads
increased relative to other spreads. These results are consistent with the idea that JP
Morgan is a particularly important intermediary for equity spot-futures arbitrages. Losses
incurred in the London Whale episode disproportionately tightened JP Morgan’s balance
sheet constraints, moving equity spot-futures spreads but not other arbitrage spreads.

Figure 5c provides formal regression evidence of the comparison between equity spot-
futures arbitrage spreads and other unsecured-funding intensive trades. In a weekly panel of

spreads on unsecured trades, we run the regression:

24
Sit = ; + oy + Z +03;1[i € Equity Spot-Futures Arbitrage| x 1[t = j| + €;.
j=—4

Figure 5¢ plots the coefficients f3; as well as 95% confidence intervals and shows that the
patterns observed in Figure 5b are statistically significant.

Finally, to bolster the argument that these results are due to balance sheet constraints
and not funding costs, Figure 5d shows the evolution of rates on JP Morgan’s commercial

paper during over the same sample period. There is little evidence that funding costs

28 At the time, the firm’s market capitalization was about $125 billion.
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move substantially, which we take as evidence that the London Whale was primarily a
balance sheet shock. Taken together, this evidence suggests that JP Morgan is an important
intermediary for equity spot-futures arbitrages and shocks to its balance sheet constraints

therefore disproportionately impact those arbitrages.

5.3 Event Study: Deutsche Bank’s exit from CDS

In our second event study, we examine Deutsche Bank’s exit from the CDS market. As
discussed in Wang et al. (2021), in late 2014 Deutsche Bank announced that it was exiting the
CDS market and sold a significant fraction of its CDS portfolio to Citigroup. Consistent with
a substantial adjustment in Deutsche Bank’s participation in the CDS market, the notional
value of CDS contracts outstanding fell from 2 trillion euros in its 2013 annual report to 1.4

t.2% The exact timing of Deutsche Bank’s exit is unknown, but

trillion in its 2014 annual repor
Bloomberg reported the sale to Citigroup in September 2014, and Deutsche Bank publicly
announced the exit on November 17, 2014. Wang et al. (2021) study the effects of Deutsche
Bank’s exit on CDS market liquidity. In contrast, we are interested in its affect on CDS-bond
arbitrage spreads, as compared to other arbitrage spreads.

Figure 6a depicts spreads around the exit event. Throughout late 2014, CDS-bond
arbitrage spreads rise, but other arbitrage spreads do not. Figure 6b provides formal
statistical evidence, showing that the difference between CDS-bond arbitrage spreads and
other secured spreads is significant at the 5% level. These results are consistent with the
idea that Deutsche Bank was a particularly important intermediary for CDS-bond arbitrages.

Its decision to exit the market is akin to a tightening of its balance sheet constraints. This

tightening moved CDS-bond arbitrages but not other arbitrage spreads.

29Notionals do not fall to zero because a substantial fraction of derivatives activity is for portfolio risk
management, not arbitrage.
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5.4 Hedge Fund Balance Sheet Constraints

We next turn to the impact of hedge fund balance sheet constraints. We measure hedge fund
balance sheet constraints indirectly, using the monthly hedge fund returns as a proxy. The
idea is that following negative returns hedge funds face tighter balance sheet constraints.
At these times, arbitrage spreads should be higher for the trades in which hedge funds are
important intermediaries.

In Table 8, we first use Barclay’s fixed income arbitrage hedge fund index to measure
returns. Barclays collects monthly return information from funds aiming to profit from price
anomalies between related fixed income securities, including interest rate swap arbitrage,
US and non-US government bond arbitrage, and forward yield curve arbitrage.”” We run

monthly regressions of the form:

Asiy =+ Bfi—1 + €y,

where s, ; is the spread on trade ¢ at time ¢ and f;_; is the return on the fixed income arbitrage
hedge fund index at ¢ — 1. Standard errors are clustered by month and trade in columns 1-3
and by month in the remaining columns. The monthly return series is standardized to have
mean 0 and unit standard deviation.

Column 1 of Table 8 shows that when we pool all arbitrage trades, there is no relationship
between between fixed income hedge fund returns and spreads. Columns 2 and 3 disaggregates
these results to reveal an important distinction between unsecured and secured trades. While
the spreads of unsecured trades do not load on fixed income hedge fund returns, the spreads
of secured trades do. Following a one-standard deviation increase in hedge fund fixed income
arbitrage returns, secured arbitrage spreads decrease by 0.7 bps. This is consistent with the
evidence in Table 7, which suggested that hedge funds are particularly important for secured

trades. The remaining columns of Table 7 examine the relationship between individual

30For more information, see https://portal.barclayhedge.com/cgi-bin /indices/displayHfIndex.cgi?indexCat=Barclay-
Hedge-Fund-Indices&indexName=Fixed-Income-Arbitrage-Index
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arbitrage strategies and hedge fund returns. While none of the unsecured trades load on
hedge fund returns, both Treasury-Swap spreads and CDS-bond bases load strongly.

Since we have individual hedge fund returns, we can explore more granular balance sheet
segmentation. In Figure 7, we examine the relationship between the individual returns of the
10 largest fixed income arbitrage hedge funds. We use the Bonferri adjustment to calculate
critical values because we are running 10 regressions for each arbitrage strategy. Figure 7
shows that different hedge funds appear to be particularly important for different arbitrage
strategies. For instance, the CDS-bond basis is negatively and significantly correlated with
returns of the biggest fixed income arbitrage hedge fund, while the third largest hedge fund
appears to be particularly important for the TIPS-Treasury spread, and the ninth largest
appears to be particularly important for the Treasury-Swap spread. Consistent with the
idea that hedge funds are not particularly important for unsecured-funding intensive trades,
we find no such relationships for these trades in Appendix Figure A3. It is worth noting
that these results do not imply that single hedge funds are the only intermediaries that are
marginal in a particular trade. Instead, they are likely to be representative of a broader set
of intermediaries all following similar strategies and hence subject to similar balance sheet
constraints.

Overall, these results suggest that balance sheet segmentation is important for explaining
the low correlations of arbitrage spreads. Different intermediaries appear to play particularly
important roles in different arbitrage strategies. As a result, when an intermediary playing
an important role in one arbitrage suffers a balance sheet shock, the spread for that arbitrage

can move without other arbitrage spreads being significantly affected.

6 Implications and Conclusion

In this paper, we show that riskless arbitrage is segmented. The average correlation between

arbitrage spreads is low. We show that this low correlation is due to both funding and balance
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sheet factors. Given that riskless arbitrage is segmented, it is natural to think all arbitrage is
segmented.

While we have studied funding segmentation and balance sheet segmentation as two
separate frictions, it is possible that they interact in important ways. One natural interpreta-
tion of our results is that funding segmentation in part drives balance sheet segmentation.
There are good reasons to think that dealers have an advantage in raising unsecured funding
relative to hedge funds and other intermediaries. Given this advantage, it is natural for
dealers to specialize in unsecured trades, which in turn generates balance sheet segmentation
by making dealer balance sheets particularly important for those trades. More broadly, our
results suggest that exploring the boundaries of the firm for financial intermediaries — why
certain trades are grouped together in a market segment — is a promising direction for future

research.
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Figure 1: Arbitrage Spreads by Strategy
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Notes: This figure shows average arbitrage spreads by strategy. Data is daily and spans January 1, 2010 to
February 29, 2020
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Figure 3: The Factor Structure of Arbitrage Spreads
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Notes: This figure summarizes principal component analysis for the arbitrage spreads in our sample. Each
line shows the results of principal component analysis after we smooth each arbitrage spread over a different
moving average window. The z-axis shows the number of components and the y-axis shows the cumulative
proportion of variance captured by those components. The red horizontal line on the plot is at the 90% level.
See section 3.1 for details on each trade. Data is daily and spans January 1, 2010 to February 29, 2020.
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Figure 4: Event Study of the 2016 Money Market Reform
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(c) Unsecured vs Secured Arbitrage Spreads

Notes: This figure summarizes money market fund (MMF) behavior, funding costs, and arbitrage spreads
around the 2016 MMF reform. Compliance for the reform was required by October 2016 and so we define the
reform event as occurring in October 2016. Panel A of the figure shows the time series of bank commercial
paper bought by MMFs. Panel B shows the average maturity-matched TED spread (LIBOR - Treasury)
for the arbitrages in our sample. Panel C shows the average arbitrage spread of trades that rely heavily on
unsecured funding (CIP, Box, and Equity-Spot futures) and those that rely more on secured funding.
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Figure 5: Event Study of the 2012 JPM London Whale
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Notes: This figure summarizes J.P. Morgans’s (JPM) losses, aggregate credit conditions, equity spot-futures
arbitrage spreads, and JPM commerical paper (CP) borrowing rates around the 2012 JPM London Whale
incident. Panel A of the figure shows the 2012 YTD losses on JPM’s credit derivative portfolio, as reported
by the U.S. Senate investigation into the incident. Panel B shows the daily average arbitrage spreads of
equity spot-futures, other unsecured arbitrage (CIP and Box), and secured arbitrages in 2012. The first
vertical line in the plot is March 1, 2012, which is when losses began to accelerate. The second dotted line
is June 13, 2012, the first day on which the CEO of JPM appeared before the U.S. Senate Committee on
Banking, Housing, and Urban Affairs to testify about the Whale trades. Panel C shows the estimated impact
on equity spot-futures arbitrage spreads, relative to other unsecured arbitrages (CIP and Box). The solid
lines show the point estimates from a dynamic difference-in-difference model and the dotted lines show the
associated 95% confidence interval. Panel D shows the estimated impact on JPM’s commercial paper (CP)
rate, relative to the CP rates of other large global banks. See Section 5.2 for more details.
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Figure 6: Event Study of the Deutsche Bank’s 2014 Exit from CDS Trading
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Notes: This figure summarizes the behavior of arbitrage spreads around the 2014 exit of Deutsche Bank (DB)
from the CDS market. Panel B shows the daily average arbitrage spreads of CDS-Bond arbitrage, other
secured arbitrage (Treasury Futures, Treasury Swap, and TIPS-Treasury), and unsecured arbitrages in the
last half of 2014. The first vertical line in the plot is October 1, 2014. The exact timing of DB’s exit is
unknown, but there are reports that they sold a large portion of their CDS portfolio to Citibank in September
2014 and they publicly announced the exit on November 17, 2014. Panel B shows the estimated impact on
CDS-Bond arbitrage spreads, relative to other secured arbitrages. The solid lines show the point estimates
from a dynamic difference-in-difference model and the dotted lines show the associated 95% confidence
interval. See Section 5.3 for more details.
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Figure 7: Fixed Income Arbitrage Hedge Funds and Secured Arbitrages
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Notes: This figure plots the t-statistics of regressing monthly changes in arbitrage spreads on one month lagged
fixed income arbitrage hedge fund returns. We have four secured funding arbitrage strategies (Treasury Futures,
CDS-Bond, Treasury-Swap, and Tips-Treasury) and returns from the 10 largest Fixed Income Arbitrage
Hedge Funds from Preqin. Since we perform 10 regressions, we implement the Bonferroni adjustment to
the standard 5% significance threshold, resulting in a t-statistic threshold of 2.81 (demarcated by the black
reference line). We cluster standard errors by trade and month. There are three different hedge funds whose
returns significantly negatively predict changes to next month CDS-Bond, Treasury-Swap and Tips-Treasury
arbitrage spreads.
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Table 1: Summary Statistics for Arbitrage Spreads

Mean pb0 Std. Dev Min Max  First Last N

Box 6m 34 34 11 0 82 Jan-10 Mar-18 2,048
Box 12m 33 32 10 0 87 Jan-10 Mar-18 2,048
Box 18m 31 31 9 2 64 Jan-10 Mar-18 2,048
Dow SF 46 45 22 0 128 Jan-10 Feb-20 2,491
NDAQ SF 38 39 21 0 115 Jan-10 Feb-20 2,482
SPX SF 42 41 19 0 102  Jan-10 Feb-20 2,534
AUD CIP 12 10 10 0 59  Jan-10 Feb-20 2,541
CAD CIP 12 9 10 0 62 Jan-10 Feb-20 2,541
CHF CIP 53 51 30 11 199 Jan-10 Dec-17 2,000
EUR CIP 35 33 21 0 120 Jan-10 Feb-20 2,539
GPB CIP 17 12 14 0 93 Jan-10 Feb-20 2,541
JPY CIP 45 41 24 10 125 Jan-10 Feb-20 2,541
NZD CIP 11 10 6 0 69 Jan-10 Feb-20 2,538
SEK CIP 27 21 22 0 100 Jan-10 Feb-20 2,507
Treasury 2Y SF 13 12 9 0 59  Jan-10 Feb-20 2,538
Treasury 5Y SF 12 9 10 0 54  Jan-10 Feb-20 2,538
Treasury 10Y SF 17 14 14 0 114  Jan-10 Feb-20 2,538
Treasury 20Y SF 17 13 15 0 79  Jan-10 Feb-20 2,530
Treasury 30Y SF 11 9 9 0 65  Jan-10 Feb-20 2,515
Treasury-Swap 1Y 6 5 5 0 32 Jan-10 Feb-20 2,541
Treasury-Swap 2Y 10 9 6 0 34 Jan-10 Feb-20 2,541
Treasury-Swap 3Y 12 10 8 0 36 Jan-10 Feb-20 2,541
Treasury-Swap 5Y 17 15 10 0 44  Jan-10 Feb-20 2,541
Treasury-Swap 10Y 26 25 12 0 59  Jan-10 Feb-20 2,541
Treasury-Swap 20Y 35 35 15 8 71 Sep-11 Feb-20 2,105
Treasury-Swap 30Y 54 51 19 23 100 Sep-11 Feb-20 2,105
TIPS-Treasury Basis 28 27 7 9 55 Jan-10 Feb-20 2,541
CDS-Bond IG 22 20 13 0 79  Jan-10 Feb-20 2,540
CDS-Bond HY 65 59 36 1 188 Jan-10 Feb-20 2,540

Notes: This table presents summary statistics on different arbitrage spreads, which are all converted to
absolute values. All trades are grouped by strategy (e.g., CIP). All CIP trades are for 3 month tenors. SPX,
DJX, and NDAQ SF are spot-futures arbitrages (mid-contract minus near-contract) for the S&P 500, Dow
Jones, and Nasdaq indices, respectively. Treasury iY SF is the Treasury-Futures arbitrage for i-year maturity
Treasuries. CDS-Bond denotes the average CDS-Bond basis for all firms with available data. See Section 3.1
for details on the construction of arbitrage trades. The columns First and Last are the month and year of the
first and last observation for each series.
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Table 2: Correlations Within and Across Arbitrage Strategies

(a) Distribution of All Pairwise Correlations

Pij p-value
Mean Sd  Min p25 pd0 p7d5 Max N p>0.67 pj;=p

0.22 032 -0.51 -0.03 0.20 0.42 0.97 406 0.00 0.00
87% of pairs reject Ho: p;; > 0.67

(b) Average Within and Across-Strategy Correlations

CIP Box Equity-SF  Treasury-SF  Treasury-Swap TIPS-Treasury CDS-Bond

CIP 0.37  0.36 0.23 0.06 0.38 -0.07 0.00
Box 0.36  0.87 0.36 -0.09 0.31 0.05 -0.14
Equity-SF 0.23 0.36 0.83 -0.05 0.05 -0.10 -0.39
Treasury-SF 0.06 -0.09 -0.05 0.22 0.22 -0.07 0.29
Treasury-Swap  0.38  0.31 0.05 0.22 0.62 -0.16 0.30
TIPS-Treasury -0.07  0.05 -0.10 -0.07 -0.16 - 0.00
CDS-Bond 0.00 -0.14 -0.39 0.29 0.30 0.00 0.70

(c) Within-Strategy Factor Structure

Cum. Variance

PC1 pPC2 kN
Treasury-Futures Basis 0.39 0.61 5 2,507
Treasury-Swap Spread 0.68 0.88 7 2,105
Equity S-F 0.89 0.96 3 2475
BOX-OIS 0.91 0.98 3 2,048
CIP 0.64 0.82 8 1,980
CDS-Bond Basis 0.85 1.00 2 2,540

Notes: Panel A summarizes the distribution of pairwise correlations for all arbitrage strategies. Panel B shows
the average pairwise correlation within and across trades in each strategy. Panel C shows the cumulative
percent of variation captured by the first and second principal component within each arbitrage strategy.
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Table 3: Margin Requirements for Arbitrage Strategies

Margin Requirement (%)

Arbitrage Collateral pl0 Median p90
Treasury S-F Treasuries 2 2 2
Treasury-Swap Treasuries 2 2 2
TIPS-Treasury Treasuries 2 2 2
IG CDS-Bond IG Corporate Bond 3 5) 8
HY CDS-Bond HY Corporate Bond 3 8 15
Equity Box Equities 5 8 15
Equity S-F Equities 5 8 15
CIP Foreign Currency 6 6-12 12

Notes: This table shows the margin requirements for trades within each strategy. Margin data primarily
come from the Federal Reserve Bank of New York’s Tri-party Repo Infrastructure Reform Task Force. For
currencies, we report data from central bank lending operations by the Bank of England and the European
Central Bank.
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Table 5: Analysis of 2016 MMF Reform

Dep Variable: Arb. Spread (bps)
(1) (2)

3 10.83**
(2.09)
Bj=—a -5.19
(-0.71)
Bj=—3 1.19
(0.13)
Bi——2 6.80
(0.72)
Bj=—1 10.46
(1.35)
Bi=0 16.67*
(2.01)
Bj=1 17.76*
(2.02)
Bj=2 21.89**
(2.55)
Bi=3 14.76*
(1.99)
Bj>a 8.08
(1.67)
p: B;=0,Yj <0 0.00
p: Bo = B1 = Pa... 0.03
Adjusted R? 0.59 0.60
N 55,822 55,822

Notes: This table showsestimates of the effect of the 2016 money market reform on arbitrage spreads. Column
(1) presents estimates of the following regression: s;; = a; +a; + 81[i € Unsecured] x 1[t > October2016] + ¢,
where s;; is the arbitrage spread of trade i on date t, 1[i € Unsecured] is a dummy variable that equals 1 if
trade ¢ relies heavily on unsecured funding (CIP, Box, and Equity spot-futures), and 1[t > October2016] is
a dummy variable that equals 1 on or after October 2016. Column (2) shows estimates of the regression:
Sit = a; + oy + 23:_4 Bi1[i € Unsecured] x 1[t = October2016 + j] + B;>41[i € Unsecured] x 1}t >
February2017] 4 €;;.. In column 2, we also report p-values from the null hypothesis that coefficients prior to
October 2016 (8; for j < 0) are equal to zero, as well as the null hypothesis that the coefficients on or after
October 2016 are equal to each other (5; are equal for j > 0). All regressions include fixed effects for trade
(o;) and date (ay). t-statistics are reported under point estimates and are based on standard errors clustered
by date and trade. Data is daily and all arbitrage spreads are expressed in basis points.
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