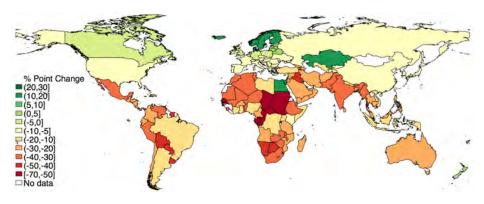
Virtual Seminar on Climate Economics

Federal Reserve Bank of San Francisco

Organizing Committee:

Glenn Rudebusch (Federal Reserve Bank of San Francisco)
Michael Bauer (University of Hamburg)
Stephie Fried (Federal Reserve Bank of San Francisco)
Òscar Jordà (Federal Reserve Bank of San Francisco)
Toan Phan (Federal Reserve Bank of Richmond)


The Food Problem and the Aggregate Productivity Consequences of Climate Change

Ishan Nath

University of Chicago

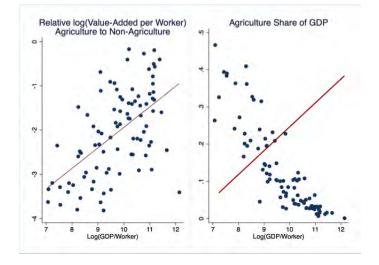
April 1, 2021

Climate Change Expected to Drive Large Changes in Agricultural Productivity

Source: Cline (2007)

Research Question

• How will climate change affect sectoral reallocation between agriculture and non-agriculture and what are the welfare consequences of these changes?


Conditions for Adaptation by Reallocation

- Climate change drives changes in *comparative* advantage of agriculture relative to non-agriculture
 - Use globally representative micro-data to estimate the effects of extreme temperatures on manufacturing and services productivity

Specialization in agriculture responds to comparative advantage

- Estimate a global model of sectoral specialization and trade that matches existing patterns
- Simulate the impact of climate change on sectoral reallocation, trade flows, and welfare in 158 countries

Relative Productivity and Specialization in Agriculture

Source: Tombe (2015)
• Employment Shares

The Food Problem

- Why do poor countries specialize in agriculture despite low absolute and relative productivity?
 - Non-homothetic preferences
 - Low substitutability between food and non-food
- Trade barriers tie local consumption to local production
 - Average person in the poorest quartile of the world consumes 91.3% domestically produced food

Sectoral Reallocation in Response to Climate Change

- Model predictions for an agriculture-biased decline in productivity:
 - $\bullet\,$ Exacerbates the "food problem" \rightarrow labor pulled into agriculture
 - $\bullet\,$ Shifts comparative advantage $\rightarrow\,$ labor pushed out of agriculture
- Climate change driven sectoral reallocation is a horserace between "the food problem" and trade

Results Preview

- Extreme temperatures can substantially reduce manufacturing and services productivity
 - Treatment effects diminish markedly with income and expectations
- The 'food problem' dominates sectoral reallocation
 - Climate change raises ag share of GDP by 2.8 pp for poorest quartile
- WTP to avoid climate change is 1.5-2.7% of global GDP and 6.2-10.0% for poorest quartile
- Trade reduces WTP by only 7.4% relative to autarky
 - In an alternative scenario with increased trade openness, WTP falls by 31% overall and 68% for poorest quartile

Contributions to the Literature

- Contribution: Global empirical micro estimates on the relationship between extreme temperatures and non-agricultural productivity
 - Related literature: Zhang, Deschenes, Meng, & Zhang (2018), Somanathan, Somanathan, Sudarshan, & Tewari (2015), Dell, Jones, & Olken (2012), Burke, Hsiang, & Miguel (2015)
- Contribution: Projecting the impact of climate change on sectoral reallocation and agricultural specialization
 - Related literature GE effects of climate/weather: Costinot, Donaldson, & Smith (2016); Desmet & Rossi-Hansberg (2015); Dingel, Hsiang, & Meng (2019); Gouel & Laborde (2018); Colmer (2018); Henderson, Storeygard, & Deichmann (2017); Hornbeck (2012); Liu, Shamdasani & Taraz (2020)
 - Related literature structural transformation: Gollin, Lagakos & Waugh (2013); Lagakos & Waugh (2013); Gollin, Parente, & Rogerson (2007); Vollrath (2009); Alvarez-Cuadrado & Poschke (2011); Bustos, Caprettini, & Ponticelli (2016); Duarte & Restuccia (2009); Matsuyama (1991); Samaniego & Sun (2016); Comin, Lashkari, & Mestieri (2020); Hicks, Kleemans, Li, & Miguel (2018); Gollin, Hansen, & Wingender (2018); Matsuyama (1992); Tombe (2015); Uy, Yi, & Zhang (2013); Teigner (2018); Fiszbein & Johnson (2020);
- Contribution: Embedding credible micro estimates of temperature effects into quantitative macro model to analyze policy and welfare
 - Related literature empirical estimates: Deschenes & Greenstone (2007, 2011), Lobell & Burke (2010), Schlenker & Roberts (2009), Barreca, Clay, Deschenes, Greenstone, & Shapiro (2016), Heutel, Miller, & Molitor (2017), Graff Zivin & Neidell (2014), Auffhammer (2015), Carleton et al. (2020), & many others
 - Related literature quantitative climate-economy models: Nordhaus (2008), Hope (2006), Tol (2002), Anthoff, Hepburn, & Tol (2009), Golosov, Hassler, Krusell & Tsyvinski (2014), Acemoglu, Akcigit, Hanley & Kerr (2016), Acemoglu, Aghion, Bursztyn, & Hemous (2012)

Outline

Introduction

2 Empirical Estimates

- Data
- Empirical Strategy
- Empirical Results

3 Model Simulations

- Model
- Model Calibration
- Model Counterfactuals

4 Conclusion

Empirical Evidence on Temperature and Non-Agricultural Productivity

Criteria for empirical projections of climate damages (Carleton et al. 2020)

- Data with global coverage
- Plausibly causal estimates
- Account for firm's costs and benefits of adapting to extreme temperatures

Outline

Introduction

2 Empirical Estimates • Data

- Empirical Strategy
- Empirical Results

3 Model Simulations

- Model
- Model Calibration
- Model Counterfactuals

4 Conclusion

Global Panel of Firms

Table: Global Firm-Level Panel Microdata

Country	Data Source	Dataset	Years	
Austria	Bureau Van Dijk	Amadeus	1995-2014	
Belgium	Bureau Van Dijk	Amadeus	1995-2014	
China	National Bureau of Statistics	Chinese Industrial Survey	2003-2012	
	National Administrative			
Colombia	Department of Statistics (DANE)	Annual Manufacturing Survey	1977-1991	
Finland	Bureau Van Dijk	Amadeus	1995-2014	
France	Bureau Van Dijk	Amadeus	1995-2014	
Germany	Bureau Van Dijk	Amadeus	1995-2014	
Greece	Bureau Van Dijk	Amadeus	1995-2014	
India	Central Statistical Office	Annual Survey of Industries	1985-2007	
Indonesia	Badan Pusat Statistik	Annual Manufacturing Survey	1975-1995	
Italy	Bureau Van Dijk	Amadeus	1995-2014	
Norway	Bureau Van Dijk	Amadeus	1995-2014	
Spain	Bureau Van Dijk	Amadeus	1995-2014	
Sweden	Bureau Van Dijk	Amadeus	1995-2014	
Switzerland	Bureau Van Dijk	Amadeus	1995-2014	
United Kingdom	Bureau Van Dijk	Amadeus	1995-2014	
		Annual Survey of Manufacturers,		
United States	Census Bureau	Census of Manufacturers	1976-2014	

Climate Data

 Historical 0.25° by 0.25° reanalysis temperature records from Global Meteorological Forcing Dataset (V3) at Princeton University

• Use daily max temperature following Graff Zivin and Neidell (2014)

Outline

Introduction

2 Empirical Estimates

- Data
- Empirical Strategy
- Empirical Results

3 Model Simulations

- Model
- Model Calibration
- Model Counterfactuals

4 Conclusion

Understanding The Firm's Adaptation Decision

• Firms have a production function with variable labor effort following Burnside, Eichenbaum, and Rebelo (1993) (and many others):

$$Y = AK^{lpha}(e*L)^{1-lpha}$$
 with $0 \le e \le 1$

• Rearranging and taking logs gives:

$$\ln\left(\frac{Y}{L}\right) = \ln(e) + \left(\frac{1}{1-\alpha}\right)\ln(A) + \left(\frac{\alpha}{1-\alpha}\right)\ln\left(\frac{K}{Y}\right)$$
(1)

 Effort is a function of exposure to extreme heat and cold and adaptation investments b_h and b_l:

$$e = 1 - CDD * g_h(b_h) - HDD * g_c(b_c)$$
(2)
$$g \ge 0, g' < 0, g'' > 0$$

Understanding The Firm's Adaptation Decision

• The firm maximizes the following profit function:

$$\pi = pAK^{\alpha}(e * L)^{1-\alpha} - wL - rK - c_h b_h - c_c b_c$$

• Taking the FOC for *b_h* gives the following expression for optimal adaptation investment:

$$-g'(b_h) = \frac{c_h * e}{p * MPL * L * CDD}$$
(3)

Causal Effect of Temperature

• I treat daily output as a function of daily temperature and aggregate to the annual level for firm *i* in year *t*:

$$Y_{it} = \sum_{d=1}^{365} Y_{id} = \sum_{d=1}^{365} f(T_{id}) = F(T)_{it}$$

• Piecewise linear functional form for temperature:

$$f(T) = \begin{cases} \beta_1(5 - T_{max}) & \text{if } T_{max} < 5\\ 0 & \text{if } 0 \le T_{max} \le 30\\ \beta_2(T_{max} - 30) & \text{if } T_{max} > 30 \end{cases}$$
(4)

Causal Effect of Temperature

 I model log revenue per worker at firm *i* in year *t* as a function of the vector of temperature effects, β:

$$ln\left(\frac{Y_{it}}{L_{it}}\right) = \beta F(T)_{it} + \delta_i + \kappa_{rt} + \epsilon_{it}$$
(5)

• In the piecewise linear case, this becomes:

$$ln\left(\frac{Y_{it}}{L_{it}}\right) = \beta_1 HDD_{it} + \beta_2 CDD_{it} + \delta_i + \kappa_{rt} + \epsilon_{it}$$

Heterogeneity and Adaptation

• Estimating climate change damages requires projecting temperature-sensitivity

Heterogeneity and Adaptation

- Estimating climate change damages requires projecting temperature-sensitivity
 - In parts of the world with no data
 - In the future
- I test for heterogeneous temperature-sensitivity using the following interacted regression:

$$ln\left(\frac{Y_{it}}{L_{it}}\right) = \beta F(T)_{it} + \gamma_1 ln(GDPpc)_{rt} \times F(T)_{it} + \gamma_2 TMEAN_i \times F(T)_{it} + \delta_i + \kappa_{rt} + \epsilon_{it}$$
(6)

Heterogeneity and Adaptation

• The piecewise linear interacted specification is:

$$In\left(\frac{Y_{it}}{L_{it}}\right) = \beta_{01}HDD_{it} + \beta_{02}CDD_{it} + \gamma_{11}In(GDPpc)_{rt}HDD_{it} + \gamma_{12}In(GDPpc)_{rt}CDD_{it} + \gamma_{21}TMEAN_iHDD_{it} + \gamma_{22}TMEAN_iCDD_{it} + \delta_i + \kappa_{rt} + \epsilon_{it}$$

• This allows me to predict temperature sensitivity anywhere in the world as a function of two readily available variables:

$$\hat{eta}_2^{Algeria} = \hat{eta}_{02} + \hat{\gamma}_{12}$$
In $(GDPpc)^{Algeria} + \hat{\gamma}_{22}$ TMEAN Algeria

Outline

Introduction

2 Empirical Estimates

- Data
- Empirical Strategy
- Empirical Results

3 Model Simulations

- Model
- Model Calibration
- Model Counterfactuals

4 Conclusion

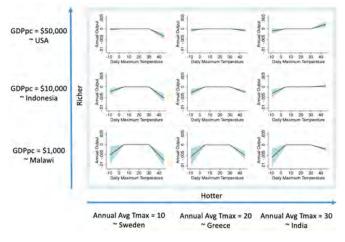
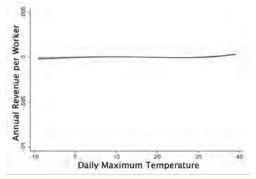

Extreme Temperatures and Output per Worker

Table: Effects of Daily Temperature on Annual Revenue per Worker

	(1) Revenue/Worker	(2) Revenue/Worker	(3) Revenue	(4) Employment	(5) Revenue/Worker
TMax-30	-0.0000311	-0.00119	-0.00250	-0.00131	-0.00100
	(-2.29)	(-4.73)	(-6.80)	(-5.25)	(-4.03)
5-TMax	-0.0000315	-0.000956	-0.00180	-0.000842	-0.000452
	(-2.15)	(-2.15)	(-2.91)	(-1.92)	(-2.07)
(TMax-30) X log(GDPpc)		0.0000715	0.000178	0.000107	0.0000595
		(4.07)	(6.79)	(6.06)	(3.65)
(TMax-30) X TMax		0.0000186	0.0000334	0.0000148	0.0000160
		(4.85)	(6.24)	(3.93)	(3.96)
(5-TMax) X log(GDPpc)		0.0000898	0.000167	0.0000769	0.0000416
		(2.14)	(2.85)	(1.85)	(2.02)
(5-TMax) X TMax		-0.00000292	0.00000212	0.00000504	0.000000703
		(-1.54)	(0.93)	(2.85)	(0.59)
Ν	4,125,776	4,125,776	4,125,776	4,125,776	17,938,084
Manufacturing	Х	Х	Х	Х	Х
Services					Х
Firm FE	Х	Х	Х	Х	Х
Country X Year FE	Х	Х	Х	Х	Х
Inverse Sample Size Weights	Х				
GDP Weights	Х				
Countries Included	15	15	15	15	15

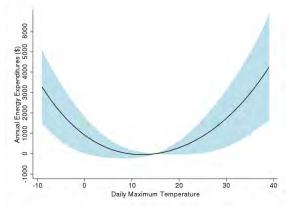
Predicted Response Functions

Figure: Predicted Response of Annual Manufacturing Revenue per Worker to Daily Maximum Temperature


Model Simulations

Robustness

U.S. Results



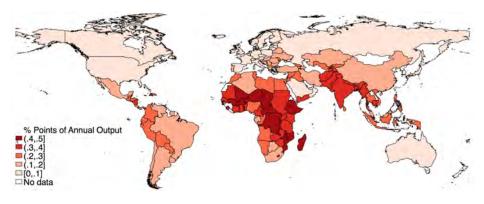
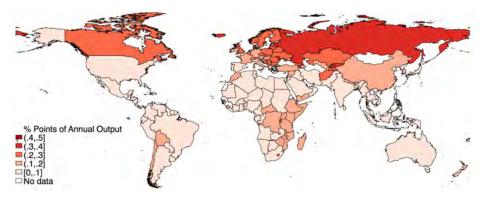

U.S. Results - Energy

Figure: Estimated Response of Annual U.S. Manufacturing Plant-Level Energy Expenditures to Daily Maximum Temperature

Global Sensitivity to Cold Days


Figure: Predicted Effect of a -5°C Day on Annual Manufacturing Revenue per Worker

Global Sensitivity to Hot Days

Figure: Predicted Effect of a 40°C Day on Annual Manufacturing Revenue per Worker

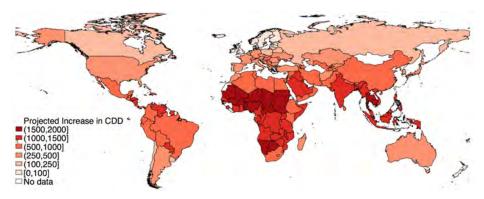
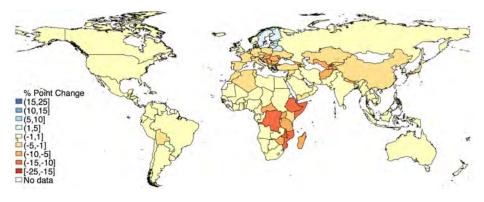

Future Global Sensitivity to Hot Days

Figure: Predicted Effect of a 40°C Day at 2080 Temperatures on Annual Manufacturing Revenue per Worker

Projected Change in Exposure to Extreme Heat

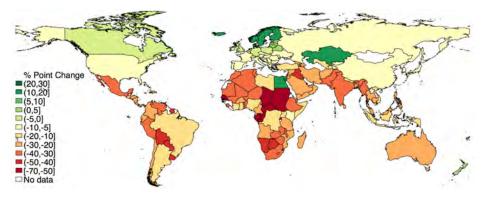
Figure: Projected Change in CDD Above 30°C in Daily Maximum Temperature: 2015 to 2080-99



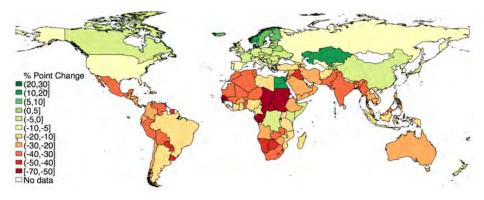
Source: CSIRO-MK-3.6.0 Model Projections - Jeffrey et al. (2013)

▶ Extreme Cold

Global Change in Manufacturing Productivity


Figure: Projected Impact of Climate Change on 2080-2100 Manufacturing Productivity

Global Change in Agricultural Productivity


Figure: Projected Impact of Climate Change on 2080-2100 Agricultural Productivity

Source: Cline(2007)

Global Change in Relative Agricultural Productivity

Figure: Projected Impact of Climate Change on 2080-2100 Relative Agricultural Productivity

Outline

Introduction

2 Empirical Estimates

- Data
- Empirical Strategy
- Empirical Results

3 Model Simulations

- Model
- Model Calibration
- Model Counterfactuals

Conclusion

Model Ingredients

- Consumers have non-homothetic CES preferences over three sectoral final goods: agriculture, manufacturing, and services Equations
- Intermediate goods producers draw productivity from sector-country specific Fréchet distributions: Equations

$$Z_{jk} = f(\mu_{jk}, T_k, E(T_k))$$

- Agriculture and manufacturing traded, services nontraded
 Iceberg trade costs vary at the importer-exporter-sector level
- Wages adjust to aggregate productivity so trade balances

Aggregate Productivity & Welfare

• I calculate willingness-to-pay as equivalent variation for each shock:

$$WTP_{k} = -EV_{k} = -\left[E(U_{k}^{1}; P_{ak}^{0}, P_{mk}^{0}, P_{sk}^{0}) - w_{k}^{0}\right]$$
(7)

• I calculate GDP by deflating nominal income by a Tornqvist price index using sectoral expenditure shares to weight prices:

$$P_k^T = \prod P_{jk}^{(X_{jk0} + X_{jk1})/2}$$
(8)

$$GDP_k = \frac{wL}{P_k^T}$$

Labor Market Equilibrium

• Labor market clearing condition:

$$L_k = L_{ak} + L_{mk} + L_{sk}$$

- In autarky, labor shares equal expenditure shares: $p_j c_j = wL_j$
- With trade, labor shares equal income shares accounting for net exports:

$$I_{jk} = \pi_{jkk} X_{jk} + \sum_{n \neq k}^{N} \pi_{jkn} X_{jn} \frac{w_n L_n}{w_k L_k}$$
(9)

Labor Reallocation in Response to Climate Change

- Consider an agriculture-biased negative productivity shock:
 - $\frac{p_{ak}}{P_k}$ \uparrow , $\frac{w_k}{P_k}$ \downarrow
- Agriculture expenditure share:

$$X_{ak} = \Omega_a \left(\frac{p_{ak}}{P_k}\right)^{1-\sigma} \left(\frac{w_k}{P_k}\right)^{\epsilon_a - (1-\sigma)}$$

in logs:

$$log X_{ak} = log(\Omega_a) + \underbrace{(1-\sigma)log\left(\frac{p_{ak}}{P_k}\right)}_{\text{Substitution Effect}} + \underbrace{(\epsilon_a - (1-\sigma))log\left(\frac{w_k}{P_k}\right)}_{\text{Income Effect}}$$

Labor Reallocation in Response to Climate Change

- "The Food Problem"
- Agricultural productivity falls $\rightarrow \frac{p_{ak}}{P_k} \uparrow$, $\frac{w_k}{P_k} \downarrow$

$$log X_{ak} = log(\Omega_a) + \underbrace{(1-\sigma)log\left(\frac{p_{ak}}{P_k}\right)}_{\text{Substitution Effect}} + \underbrace{(\epsilon_a - (1-\sigma))log\left(\frac{w_k}{P_k}\right)}_{\text{Income Effect}}$$

- $\sigma = 0.27 \rightarrow \text{substitution effect raises } X_{ak}$
- $\epsilon_a = 0.29 \rightarrow \text{income effect raises } X_{ak}$

Labor Reallocation in Response to Climate Change

• Agriculture labor share:

$$I_{ak} = \underbrace{\pi_{akk}}_{\downarrow} \underbrace{X_{ak}}_{\uparrow} + \underbrace{\sum_{n \in N} \pi_{akn} X_{an} \frac{w_n L_n}{w_k L_k}}_{\downarrow}$$

- "The Food Problem" agricultural productivity falls $\rightarrow X_{ak}$ rises
- Comparative advantage shifts
 - Import more food (π_{akk} falls)
 - Export less food (π_{akn} falls)

Outline

Introduction

2 Empirical Estimates

- Data
- Empirical Strategy
- Empirical Results

3 Model Simulations

- Model
- Model Calibration
- Model Counterfactuals

4 Conclusion

Simulated Method of Moments

Table: Model Parameters and Target Moments

Parameters	Data Moment	Data Source
σ	Sectoral GDP Shares	World Bank
$\Omega_a, \Omega_m, \Omega_s$	Sectoral GDP Shares	World Bank
$\epsilon_{a}, \epsilon_{m}, \epsilon_{s}$	Sectoral GDP Shares	World Bank
$\theta_{a}, \ \theta_{m}$	Calibrated from Tombe (2015)	
$ au_{jkn}$	Trade Flows	UN Comtrade
Z_{jk}	Sectoral Value-Added per Worker	World Bank
L_k	Population	World Bank

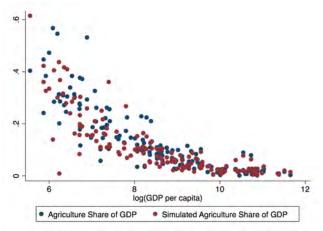

Parameter Estimates

Table: Consumption Parameter Estimates

Parameter	Description	Estimate
σ	Cross-Sector Elasticity of Substitution	0.27
		(0.21)
ϵ_{a}	Agriculture Utility Elasticity	0.29
		(0.39)
ϵ_m	Manufacturing Utility Elasticity	1.00
		(0.27)
ϵ_s	Services Utility Elasticity	1.15
		(0.41)
Ω_a	Agriculture Taste Parameter	11.7
		(0.51)
Ω_m	Manufacturing Taste Parameter	3.70
		(0.35)
Ω_s	Services Taste Parameter	10
		(-)

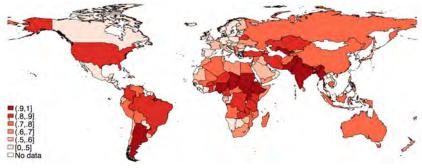

Model Fit - Agriculture Share of GDP

Figure: Agriculture Share of GDP - Data vs. Simulation

Simulated Domestic Share of Ag Expenditures

Figure: Simulated Domestic Production Share of Agriculture Expenditures

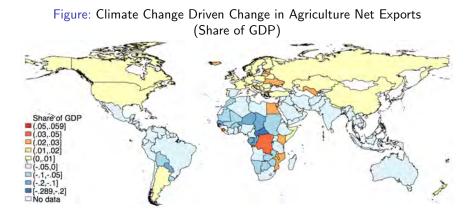
Outline

Introduction

2 Empirical Estimates

- Data
- Empirical Strategy
- Empirical Results

3 Model Simulations

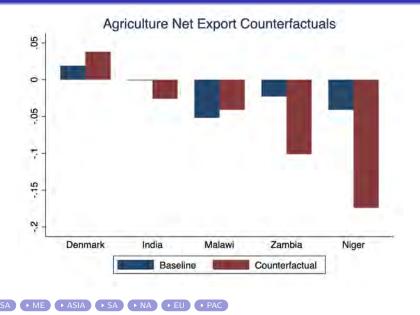

- Model
- Model Calibration
- Model Counterfactuals

Conclusion

Model Simulations

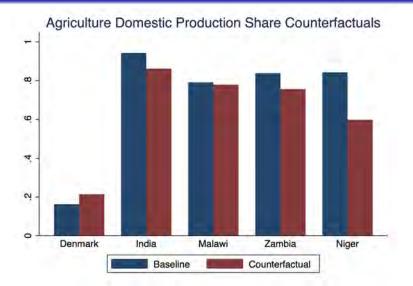
- Adjust Z_{jk} for all 3 sectors in all 158 countries using empirically estimated climate change productivity losses
- Re-estimate equilibrium and calculate effects of climate change

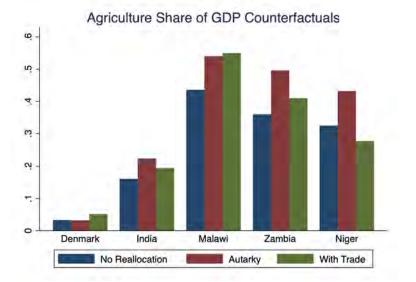
Climate Change Effect on Agriculture Net Exports



Climate Change Effect on Manufacturing Net Exports

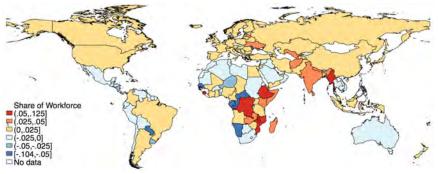
Domestic Production Share of Consumption


Climate Change Effect on Agriculture Net Exports


Model Simulations

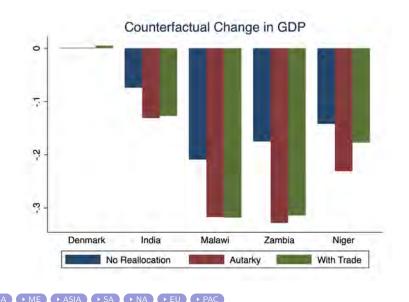
Conclusion

Climate Change Effect on Agriculture Domestic Production Shares

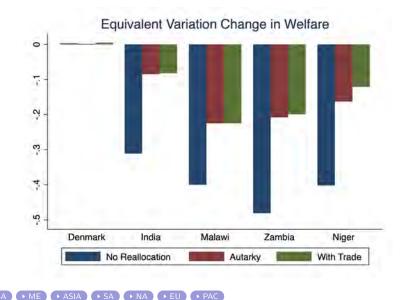

Climate Change Effect on Agriculture Share of GDP

Climate Change Effect on Agriculture Share of GDP

Figure: Climate Change Driven Change in Agricultural Share of Labor



Agriculture Reallocation Summary


Table: Counterfactual Agriculture Share of GDP

	No Reallocation	Autarky	With Trade
Poorest Quartile	.199	.256	.227
World	.038	.044	.043

Climate Change Effect on GDP

Willingness-to-Pay

Summary of Climate Change Impacts

Table: Percent Change in GDP

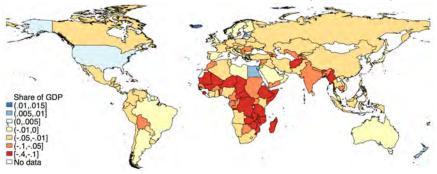

	No Reallocation	Autarky	With Trade
Poorest Quartile	083	132	126
World	019	023	021

Table: Equivalent Variation Change in Welfare (Share of GDP)

	No Reallocation	Autarky	With Trade
Poorest Quartile	277	092	088
World	04	018	017

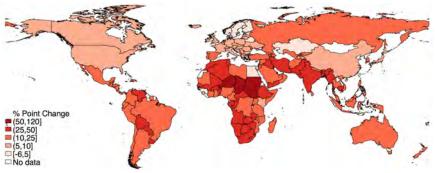

Willingness-to-Pay

Figure: Equivalent Variation Change in Welfare (Share of GDP)

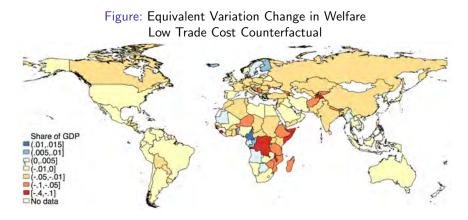
Food Prices

Figure: Climate Change Driven Change in Food Prices

Results Summary

Table: Climate Change Counterfactual Summary

Country	∆ Ag Labor Share	Δ GDP	EV	Δ Food Prices
Poorest Quartile	.028	126	088	.377
World	.005	021	017	.223


Model Simulations

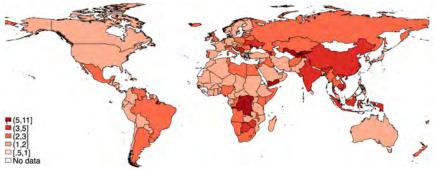
Conclusion

Low Trade Cost Counterfactual

- Replace all τ_{ikn} with standard small value
- Rescale all Z_{jk} to match initial levels of income
- Repeat climate change counterfactuals

Low Trade Cost Counterfactual

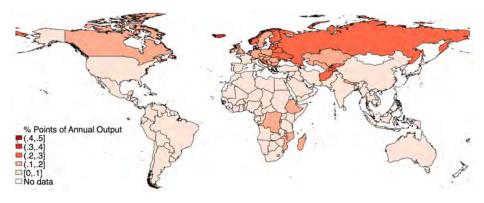
Low Trade Cost Case Results Summary


Table: Climate Change Counterfactual Summary Alternative Trade Cost Cases

	Δ Ag Labor Share	Δ GDP	EV	Δ Food Prices
Estimated Trade Cost Case				
World	.005	021	017	.223
Poorest Quartile	.028	126	088	.377
Low Trade Cost Case				
World	.002	015	013	.1
Poorest Quartile	012	034	029	.109

• Example Countries

Predicted Economic Growth


Figure: Projected Per Capita Income - 2080 Relative to Present

Source: Shared Socioeconomic Pathway 3 - IIASA Energy Program

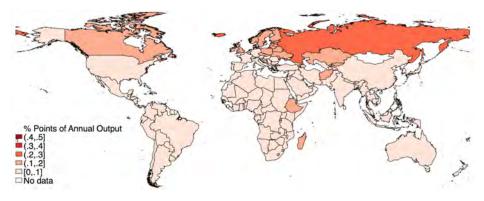

Global Non-Agricultural Sensitivity to Hot Days -Current Incomes

Figure: Predicted Effect of a 40°C Day at 2020 Incomes on Annual Manufacturing Revenue per Worker

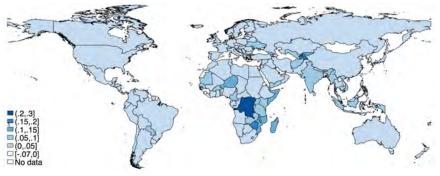

Global Non-Agricultural Sensitivity to Hot Days -Future Incomes

Figure: Predicted Effect of a 40°C Day at 2080 Incomes on Annual Manufacturing Revenue per Worker

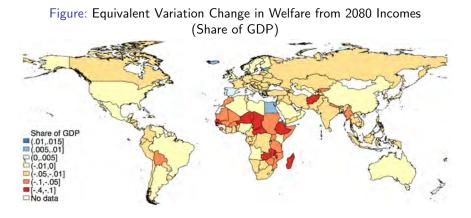

Change in Simulated Agriculture Share of GDP -Current vs. Future Incomes

Figure: Projected Reduction in Agriculture Share of GDP - Present to 2080

Willingness-to-Pay At Future Incomes

Adaptation Costs & Benefits Summary

Table: Climate Change Counterfactual Summary

	Equivalent Variation Change in Welfare
<i>Current Income Baseline</i> World Poorest Quartile	017 088
<i>Current Income Baseline Plus Adaptation Costs</i> World Poorest Quartile	027 100
<i>Future Income Baseline Plus Adaptation Costs</i> World Poorest Quartile	015 062

.

Robustness

Table: Climate Change Counterfactual Summary Alternative Model Assumptions

Country	Δ Ag Labor Share	Δ GDP	EV	∆ Food Prices
Baseline				
World	.005	021	017	.223
Poorest Quartile	.028	126	088	.377
Lognormal Productivity				
World	.005	023	018	.209
Poorest Quartile	.022	131	09	.338
Stone-Geary Preferences				
World	.003	018	015	.219
Poorest Quartile	.028	107	07	.371

▶ Heterogeneous Workers

Stone-Geary Consumer Preferences

Supporting Evidence on Reallocation

- Gollin, Hansen, & Wingender (2018), Bustos, Caprettini, & Ponticelli (2016) - agricultural productivity ↑, agricultural labor share ↓ across countries and within Brazil
 - Fiszbein & Johnson (2020) heterogeneous effects on reallocation depending on trade openness
- Colmer (2020) & Liu, Shamdasani, & Taraz (2020) weather shocks and agricultural labor share in Indian districts
- I add my own country level regressions to this body of evidence

Model Simulations

Conclusion

Country-Level Panel Regressions

Table: Country-Level Panel Regression

	(1) log(GDP)	(2) Food Share of Imports	(3) Ag Share of GDP	(4) Ag Labor Shar
KDD X 100	-0.121 (-2.31)	0.00258 (0.64)	0.00875 (1.08)	0.00991 (1.55)
GDD X 100	0.0505 (1.64)	-0.00429 (-2.45)	-0.00140 (-1.54)	-0.00138 (-0.38)
Observations	3602	2916	3171	3715
Country FE	Х	Х	Х	Х
Year FE	Х	Х	Х	Х
Ag Labor Weights	Х	Х	Х	Х

Unweighted Specification

● Outcome Data)

🛭 🚺 🕨 Climate Data 🌖

Regression Equation

Outline

Introduction

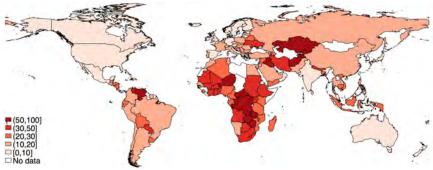
2 Empirical Estimates

- Data
- Empirical Strategy
- Empirical Results

3 Model Simulations

- Model
- Model Calibration
- Model Counterfactuals

4 Conclusion


Policy Implications

- Benefits of climate change mitigation
- Optimal investments in climate change adaptation
- Importance of trade openness for climate change adaptation

Barriers to Trade

Figure: Days to Import a 20-Foot Container

Source: World Bank Ease of Doing Business Index

Barriers to Trade

Figure: Non-Tariff Costs to Import a 20-Foot Container (USD)

Source: World Bank Ease of Doing Business Index

Summary & Conclusion

- Extreme temperatures harm non-agricultural productivity, but limited effects in rich countries and to expected shocks
- Climate change likely to exacerbate 'the food problem' and raise agricultural share of production hot, poor countries
- Trade does little for climate change adaptation under current policy but freer trade could dramatically reduce damages in poor countries