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1. Introduction

The Federal Reserve conducts monetary policy primarily
through open market operations that influence the
overnight interest rate on borrowed reserves among U.S.
banks. The overnight interest rate is known as the federal
funds rate. The target level for the federal funds rate is set
by the Federal Open Market Committee (FOMC), which
meets eight times per year. In deciding the appropriate
level of the funds rate, members of the FOMC carefully
consider the most recent economic data and the implica-
tions for the economy going forward.

Given the way in which monetary policy is actually con-
ducted, it is often useful to think about Federal Reserve be-
havior in terms of a “reaction function’’ or a “policy rule’’
that describes how the federal funds rate responds to key
macroeconomic variables. An example of such a rule is the
one suggested by Taylor (1993). According to the Taylor
rule, the appropriate level of the funds rate is determined
by a particular weighted combination of the deviation of
inflation from a long-run target inflation rate and the “out-
put gap,’’ i.e., the difference between real output and a
measure of trend (or potential) output. Interestingly, the

path of the U.S. federal funds rate largely appears to con-
form to the recommendations of the Taylor rule starting in
the mid- to late 1980s and extending into the 1990s. This
observation has led to a large number of empirical studies
that attempt to estimate the Fed’s policy rule directly from
U.S. data.

Motivated by the form of the Taylor rule, empirical stud-
ies of the Fed’s policy rule typically regress the federal
funds rate on a set of explanatory variables that includes
the inflation rate (or a forecast of future inflation) and a
measure of real economic activity such as the output gap.
Many of these studies also include the lagged value of the
federal funds rate as an additional explanatory variable.
This feature turns out to greatly improve the empirical fit of
the estimated rule. Using quarterly U.S. data, the regres-
sion coefficient on the lagged federal funds rate is gener-
ally found to be around 0.8 and strongly significant.1 One
economic interpretation of this result is that the Fed inten-
tionally “smoothes’’ interest rates, i.e., policymakers move
gradually over several quarters to bring the current level of
the funds rate in line with a desired level that is determined
by consideration of recent economic data. Under this view,
the magnitude of the regression coefficient on the lagged
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funds rate governs the degree of “inertia’’ or “partial ad-
justment’’ in Fed policy decisions.2

Given the apparent degree of interest rate smoothing in
quarterly U.S. data, a large amount of research has been
devoted to understanding why the Federal Reserve might
wish to engage in such behavior.3 Sack and Weiland (2000)
review this research and identify three main arguments that
could help explain the apparent gradual response of Fed
policymakers to quarterly changes in inflation and the out-
put gap. These are (1) forward-looking expectations, (2)
uncertainty about economic data that are subject to revi-
sion, and (3) uncertainty about the structure of the econ-
omy and the transmission mechanism for monetary policy.

In an economy with forward-looking agents, policymak-
ers can influence current economic activity by affecting
agents’ expectations about future policy actions. If agents
are convinced that an initial change in the federal funds
rate will be followed by additional changes in the same di-
rection (as policymakers gradually adjust the funds rate to-
ward the desired level), then the initial policy move will
have a larger impact on agents’ decisions. This feature of
the economy allows policymakers to achieve their stabi-
lization objectives without having to resort to large, abrupt
policy moves, which may be viewed as undesirable be-
cause they increase interest rate volatility.4 Consideration
of uncertainty also favors gradual adjustment because pol-
icymakers tend to be cautious. Aggressive policy actions
are generally resisted because they can lead to severe unin-
tended consequences if the beliefs that motivated such ac-
tions later prove to be unfounded.

Without disputing the potential benefits of interest rate
smoothing laid out in the above arguments, this paper
shows that efforts to identify the Fed’s policy rule using re-
gressions based on final (or ex post revised) data can create
the illusion of interest rate smoothing behavior when, in
fact, none exists. In particular, I show that the lagged fed-
eral funds rate can enter spuriously in final-data policy rule
regressions because it helps pick up the Fed’s serially cor-
related real-time measurement errors which are not taken
into account by the standard estimation procedure.

The framework for my analysis is a small forward-look-
ing macroeconomic model where in each period the
Federal Reserve constructs a current, or “real-time,’’ esti-
mate of the level of potential output by running a regres-
sion on past output data. The Fed’s perceived output gap
(the difference between actual output and the Fed’s real-
time estimate of potential output) is used as an input to the
monetary policy rule, while the true output gap influences
aggregate demand and inflation.

As in Lansing (2000), I allow for the possibility that true
potential output may undergo abrupt shifts in level and/or
slope which are unknown to Fed policymakers until some
years later. In the model, true potential output is calibrated
to match a segmented linear trend fit to U.S. data on real
GDP. I allow for two abrupt trend shifts: the first captures
the well-documented productivity slowdown of the early
1970s while the second captures the postulated arrival of
the so-called “new economy’’ in the mid-1990s, which is
thought by some to be characterized by faster trend pro-
ductivity growth.5 Initially, Fed policymakers interpret
these trend shifts to be cyclical shocks but their regression
algorithm allows them to discover the truth gradually as the
economy evolves by assigning more weight to the recent
data.

Using the model as a data-generating mechanism, I pro-
duce artificial data on interest rates, inflation, and real out-
put for the case where Fed policymakers employ a
Taylor-type rule with no interest rate smoothing whatso-
ever. I then take the perspective of an econometrician who
uses these data to estimate the Fed’s policy rule. I consider
two possible misspecifications of the econometrician’s re-
gression equation. First, the econometrician uses a final-
data potential output series instead of the Fed’s real-time
potential output estimates. To keep things simple, I endow
the econometrician with full knowledge of the true poten-
tial output series defined by the segmented linear trend.
Hence, the econometrician’s final-data potential output se-
ries coincides exactly with the true series (but differs from
the Fed’s real-time estimates). Second, the econometrician
may adopt the wrong functional form for the policy rule,
i.e., one that differs from the Taylor-type rule that Fed pol-
icymakers are actually using in the model. Specifically, I
consider the case where the econometrician includes an ad-
ditional lag of the output gap in the regression equation.
The additional lag would be appropriate if the econometri-

2. The concept of interest rate smoothing is often linked to the idea that
Fed policymakers adjust the funds rate in a series of small steps and re-
verse course only at infrequent intervals. Rudebusch (2002) notes that
while this concept of interest rate smoothing applies to federal funds rate
movements over the course of several weeks or months, it does not nec-
essarily imply a large regression coefficient on the lagged funds rate at
quarterly frequency.

3. The central banks of other countries also appear to exhibit interest
rate smoothing behavior. For some details, see Lowe and Ellis (1997)
and Srour (2001).

4. For a formal theoretical argument along these lines, see Woodford
(1999).

5. Oliner and Sichel (2000) present evidence of a pickup in measured
U.S. productivity growth after 1995 that appears to be linked to spend-
ing on information technology. Gordon (2000) argues that a proper
analysis of the productivity data does not support the views of the new
economy enthusiasts.
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cian believed that Fed policymakers were responding to
the deviation of nominal income growth from a long-run
target growth rate.

Over the course of 1,000 model simulations, I find that
the econometrician almost always obtains a positive and
strongly significant regression coefficient on the lagged
federal funds rate, even though the Fed in the model is not
engaging in any interest rate smoothing. The average point
estimate of the spurious regression coefficient is around
0.3 or 0.4, depending on the econometrician’s sample pe-
riod and rule specification. The intuition for this result is
straightforward. Since the Fed’s algorithm for estimating
potential output assigns more weight to recent data, the
end-of-sample estimate can undergo substantial changes as
new observations arrive—even without a trend shift in the
underlying economy. The algorithm gives rise to serially
correlated real-time measurement errors that influence the
period-by-period setting of the federal funds rate. By ig-
noring these errors, the econometrician’s final-data regres-
sion equation is subject to a missing variable problem. The
inclusion of the lagged funds rate helps compensate for the
problem by acting as a proxy for the missing error terms.

The simulations show that failure to account properly
for the Fed’s real-time perceptions about potential output
can explain as much as one-half of the apparent degree of
inertia in the U.S. federal funds rate. This finding comple-
ments recent work by Rudebusch (2002), who uses evi-
dence from the term structure of U.S. interest rates to reject
the hypothesis of a large degree of monetary policy inertia.
Under the assumption that longer-term interest rates are
governed by agents’ rational expectations of future short-
term rates, Rudebusch shows that a coefficient of 0.8 on
the lagged federal funds rate is not consistent with U.S.
term structure data. A smaller coefficient on the lagged
funds rate of, say, 0.4 cannot be rejected, however.
Rudebusch draws on a variety of qualitative evidence from
historical episodes to argue that “quarterly interest rate
smoothing is a very modest phenomenon in practice.’’

Finally it should be noted that some recent empirical
studies have made serious efforts to take into account the
Fed’s real-time information set when estimating policy
rules directly from U.S. data. Examples include the studies
by Orphanides (2001), Perez (2001), and Mehra (2001)
who employ reconstructed historical data that is intended
to capture the information available to Fed policymakers at
the time policy decisions actually were made. Orphanides
(2001) and Perez (2001) continue to find a large and statis-
tically significant coefficient on the lagged federal funds
rate even when policy rules are regressed on the recon-
structed real-time data, while Mehra (2001) does not. In
particular, Mehra (2001) shows that the lagged funds rate
actually may be picking up the Fed’s real-time response to

a “smoothed’’ inflation rate which is defined by a four-
quarter moving average of the quarterly inflation rate.

A drawback of the reconstruction approach is that we
cannot know for sure what method was being used by Fed
policymakers to estimate potential output in real time.
Indeed, each of the three studies mentioned above adopts a
different method for defining the Fed’s real-time estimate
of potential output.6 Another drawback of the reconstruc-
tion approach is that we cannot know the exact form of the
policy rule that was being used by Fed policymakers dur-
ing a given period of history. The simulation-based ap-
proach adopted here avoids these drawbacks by
conducting a controlled scientific experiment where we
have full knowledge of all factors that govern the real-time
decisions of Fed policymakers.

The remainder of the paper is organized as follows.
Section 2 describes the model that is used to generate the
artificial data. Section 3 describes the simulation proce-
dure. Section 4 presents the results of the simulations.
Section 5 concludes.

2. The Model

In this paper, the economic model serves as a data-generat-
ing mechanism for the policy rule regressions that are the
main focus of the analysis. I use a small forward-looking
macroeconomic model adapted from Lansing (2000). The
details are contained in Box 1. The model consists of: (1)
an aggregate demand equation that links real economic ac-
tivity to the level of the real interest rate, (2) an equation
that describes how true potential output evolves over time,
(3) a short-run Phillips curve that links inflation to the level
of real economic activity, (4) a term structure equation that
links the behavior of short- and long-term interest rates,
and (5) a monetary policy rule that describes how the fed-
eral funds rate responds to inflation and real economic ac-
tivity. The model is quite tractable and has the advantage of
being able to reproduce the dynamic correlations among
U.S. inflation, short-term nominal interest rates, and devia-
tions of real GDP from trend. Lansing (2000) shows that
the model also can replicate some of the key low-fre-
quency movements in U.S. inflation over the past several
decades.

6. Orphanides (2001) assumes that real-time potential output is defined
by the Federal Reserve staff’s Q* series which is constructed as a seg-
mented linear trend linked to Okun’s law. Perez (2001) assumes that
real-time potential output is defined by the Hodrick-Prescott (1997)
filter. Mehra (2001) assumes that real-time potential output is defined by
a log-linear trend fitted to observations of past output.
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Box 1
Details of the Model

The equations that describe the model are as follows:

Aggregate Demand Equation

(1) yt − yt = a1
(
yt−1 − yt−1

) + a2
(
yt−2 − yt−2

)
+ar (rt−1 − r) + vt , vt ∼ N

(
0, σ 2

v

)
,

where yt is the logarithm of real output (GDP), yt is the loga-
rithm of true potential output, rt−1 is the lagged value of the
ex ante long-term real interest rate, and vt is a shock to aggre-
gate demand that may arise, for example, due to changes in
government purchases. The true output gap is given by
yt − yt . In steady state, the output gap is 0 which implies that
r is the steady-state real interest rate.

True Potential Output

c0 + µ0 · t for t0 ≤ t ≤ t1 ,
(2) yt = � c1 + µ1 · t for t1 < t ≤ t2 ,

c2 + µ2 · t for t > t2 ,

where ci and µi for i = 0, 1, 2 represent the intercept and
slope terms for a segmented linear trend with breakpoints at
t1 and t2 .

Short-run Phillips Curve

(3) πt = 1

2
(πt−1 + Et−1πt)

+γ
(
yt−1 − yt−1

) + zt , zt ∼ N
(
0, σ 2

z

)
,

where πt is the fully observable inflation rate defined as the
log difference of the price level (the GDP price index), Et−1

is the expectation operator conditional on information avail-
able at time t − 1 , and zt is a cost-push shock. The steady-
state version of equation (3) implies that there is no
steady-state trade-off between inflation and real output.

Term Structure Equation

(4) rt−1 = 1

2
Et−1

1∑
i=0

(it−1+i − πt+i )

= 1

2 (it−1 − Et−1πt + Et−1it − Et−1πt+1) ,

where it is the one-period nominal interest rate (the federal
funds rate). Equation (4) summarizes the expectations theory
of the term structure for an economy where the “long-term’’
interest rate corresponds to a two-period Treasury security

(the six-month T-Bill). Private-sector agents use their knowl-
edge of the Fed’s policy rule to compute the expectation
Et−1it . In steady state, equation (4) implies the Fisher rela-
tionship: i = r + π .

Federal Reserve Policy Rule

(5) i∗
t = r + π + gπ (πt−1 − π)

+gy [yt−1 − xt−1 − φ (yt−2 − xt−2)] ,

(6) it = ρit−1 + (1 − ρ) i∗
t ,

where π is the Fed’s long-run inflation target which deter-
mines the steady-state inflation rate. The symbol xt repre-
sents the Fed’s real-time estimate of yt . This estimate is
constructed by applying a regression algorithm to the histori-
cal sequence of real output data {ys}s=t

s=t0 which is fully ob-
servable. The symbol i∗

t represents the desired (or target)
level of the federal funds rate. The parameter 0 ≤ ρ ≤ 1
governs the degree of inertia (or partial adjustment) in the
funds rate.

Equations (5) and (6) capture most of the rule specifi-
cations that have been studied in the recent monetary policy
literature. A simple version of the original Taylor (1993) rule
can be represented by ρ = 0 , gπ = 1.5 , gy = 0.5 , and
φ = 0 .a Taylor (1999) considers a modified version of this
rule which is characterized by a stronger response to the out-
put gap, i.e., gy = 1.0 rather than gy = 0.5 .b In the appen-
dix, I show that a nominal income growth rule can be
obtained by setting gπ = gy with φ = 1 .

When gπ > 1, the desired funds rate i∗
t moves more than

one-for-one with inflation. This feature is generally viewed as
desirable because it tends to stabilize inflation; any increase in
the inflation rate brings about a larger increase in the desired
nominal funds rate which will eventually lead to a higher real
interest rate. A higher real rate restrains aggregate demand
and thereby helps to push inflation back down.c

aThe original Taylor (1993) rule assumes that the funds rate responds
to the average inflation rate over the past four quarters, whereas equa-
tions (5) and (6) imply that the funds rate responds to the inflation rate
in the most recent quarter only.
bLansing and Trehan (2001) consider the issue of whether either ver-
sion of the Taylor rule can be reconciled with optimal discretionary
monetary policy.
cFor additional details, see Taylor (1999) and Clarida, et al. (2000).
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Private-sector agents in the model are completely in-
formed at all times regarding the level of true potential out-
put. This can be justified in one of two ways: (1) the private
sector consists of a large number of identical firms, each of
which knows its own productive capacity, or (2) the
process of aggregating over the distribution of firms yields
an economy-wide description that is observationally
equivalent to (1). Private-sector agents have rational ex-
pectations; they know the form of the monetary policy rule
and the Fed’s estimate of potential output which is used as
an input to the rule.

True potential output in the model is trend stationary but
subject to infrequent shifts in level and/or slope. Perron
(1989) shows that standard statistical tests cannot reject the
hypothesis of a unit root in U.S. real output data when the
true data-generating mechanism is one of stationary fluctu-
ations around a deterministic trend with infrequent shifts.
More recently, Dolmas, et al. (1999) argue that U.S. labor
productivity is more accurately modeled as a deterministic
trend with a sudden change in level and slope around 1973,
rather than as a unit root process. For simplicity, the model
abstracts from any direct theoretical link between the slope
of true potential output (which measures the economy’s
trend growth rate) and the value of the steady-state real in-
terest rate. Even without assumption, however, a sudden
unanticipated change in the level of potential output would
have no theoretical implications for the value of the steady-
state real rate.

Following the framework of Clarida, et al. (2000), I use
the symbol i∗

t to represent the desired (or target) level of
the federal funds rate that is determined by policymakers’
consideration of economic fundamentals. The relevant fun-
damentals include: (1) the level of the steady-state real in-
terest rate, (2) the deviation of recent inflation from the
Fed’s long-run target rate, and (3) the gap between recent
output and the Fed’s real-time estimate of potential output.
The model’s policy rule specification allows for the possi-
bility that the Fed does not immediately adjust the funds
rate to the desired rate but instead engages in “interest rate
smoothing’’ whereby the current federal funds rate it is
moved in the direction of the desired rate i∗

t over time. The
parameter ρ is used here to represent the degree of inertia
(or partial adjustment) in the funds rate. Each period the
Fed moves the actual funds rate by an amount equal to the
fraction (1 − ρ) of the distance between the desired rate
and the actual rate.7 When ρ = 0, the adjustment process
is immediate; the Fed sets the actual rate equal to the de-
sired rate each period.

Fed policymakers in the model cannot directly observe
true potential output or the shocks hitting the economy.
The hidden nature of the shocks is crucial because it pre-
vents policymakers from using any knowledge they may
have about the structure of the economy to back-solve for
true potential output. The assumption of asymmetric infor-
mation between the private sector and the Fed is consistent
with some recent papers that investigate the performance
of alternative policy rules in environments where the out-
put gap that appears in the rule is subject to exogenous sto-
chastic shocks. These shocks are interpreted as “noise’’ or
“measurement error.’’8 Unlike these exercises, however,
the measurement error in this model is wholly endoge-
nous—it depends on the structure of the economy, the form
of the policy rule, and the regression algorithm used by the
Fed to construct the real-time potential output series.

The policy rule specification implies that the Fed reacts
only to lagged variables and not to contemporaneous vari-
ables. This feature addresses the point made by McCallum
(1999) that policy rules should be “operational,’’ i.e., rules
should reflect the fact that policy decisions often must be
made before economic data for the current quarter become
available. Finally, as in most quantitative studies of mone-
tary policy rules, the model abstracts from the zero lower
bound on nominal interest rates.

2.1. Real-Time Estimate of Potential Output

Fed policymakers in the model construct a current, or
“real-time,’’ estimate of potential output by running a re-
gression on the historical sequence of real output data. The
regression algorithm can be viewed as part of the Fed’s
policy rule. In choosing an algorithm, I assume that policy-
makers wish to guard against the possibility that potential
output may undergo trend shifts.9 This feature is achieved
through the use of an algorithm that assigns more weight to
recent data in constructing the end-of-sample estimate. The
result is a flexible trend that can adapt to shifts in true po-
tential output. The Fed’s real-time potential output series is
updated each period so that policymakers continually re-
vise their view of the past as new observations arrive.

The particular regression algorithm used here is known
as the Hodrick-Prescott (HP) filter.10 The HP filter mini-
mizes the sum of squared differences between trend and

7. This can be seen by subtracting it−1 from both sides of equation (6)
to yield it − it−1 = (1 − ρ)

(
i∗
t − it−1

)
.

8. See, for example, Orphanides, et al. (2000).

9. See Parry (2000) for some evidence that real-world policymakers
guard against the possibility of trend shifts.

10. For details, see Hodrick and Prescott (1997).
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the actual series, subject to a penalty term that constrains
the size of the second differences.11 Use of this algorithm
introduces an additional parameter into the model, namely,
the weight assigned to the penalty term. The value of 
controls the smoothness of the resulting trend. When 

= 0 , the HP filter returns the original series with no
smoothing whatsoever. As → ∞ , the HP filter returns
an ordinary least squares (OLS) trend for interior points of
a finite sample, but there can be significant distortions from
OLS near the sample endpoints. When = 1,600, the HP
filter applied to a quarterly series approximates a band-pass
filter that extracts components of the data that are typically
associated with business cycles or high-frequency noise,
i.e., components with fluctuations between 2 and 32 quar-
ters. Again, however, there may be significant distortions
from the ideal band-pass filter near the sample endpoints.12

St-Amant and van Norden (1997) show that when 
= 1,600, the HP filter assigns a weight of 20 percent to

observations at the end of the sample, whereas observa-
tions at the center of the sample receive no more than a 6
percent weight. Real-time estimates of potential output
constructed using the HP filter may therefore undergo sub-
stantial changes as new observations arrive—even without
a trend shift in the underlying economy or revisions to pub-
lished data.13 Orphanides and van Norden (1999) show that
this problem arises with other real-time methods of trend
estimation as well, but with varying degrees of severity.
Unfortunately, the problem cannot be avoided because the
future trajectory of the economy (which cannot be known
in advance) turns out to provide valuable information
about the current level of potential output.

In describing the HP filter, Kydland and Prescott (1990,
p. 9) claim that the “implied trend path for the logarithm of
real GNP is close to one that students of business cycles
and growth would draw through a time plot of this 
series.’’ One might argue that Fed policymakers could ob-
tain a more accurate estimate of potential output by taking
into account observations of other variables, such as
inflation, or by solving an optimal signal extraction prob-
lem. I choose not to pursue these options here because their
application hinges on the strong assumption that Fed poli-

λ

λ

λ
λ

λλ

cymakers possess detailed knowledge about key structural
features of the economy such as the slope of the short-run
Phillips curve or the distributions governing unobservable
shocks. Given that simple univariate algorithms such as the
HP filter are commonly used to define potential output in
monetary policy research (see, for example, Taylor 1999),
the idea that Fed policymakers would adopt similar tech-
niques does not seem unreasonable.

2.2. Policy Rule Misspecification

An econometrician who uses final data to estimate the
Fed’s policy rule is implicitly assuming that the final-data
version of potential output is equal to the Fed’s real-time
version of potential output. In the model, this assumption is
false. The Fed’s regression algorithm gives rise to real-time
measurement errors that influence the period-by-period
setting of the federal funds rate. By ignoring these errors,
the econometrician’s final-data estimation procedure is
subject to a missing variable problem (for details, see Box
2). The Fed’s real-time measurement errors turn out to be
highly serially correlated in the quantitative simulations. In
such an environment, the econometrician’s estimate of the
inertia parameter ρ will be biased upward relative to the
true value because the lagged funds rate serves as a proxy
for the missing error terms. This is an example of a well-
known econometric problem originally analyzed by
Griliches (1961, 1967). In particular, Griliches shows that
the OLS estimate of a partial adjustment coefficient (such
as ρ ) will be biased upward relative to its true value if the
econometrician ignores the presence of positive serial cor-
relation in the error term.14 Exploiting this idea, Rudebusch
(2002) demonstrates that a noninertial policy rule with se-
rially correlated errors can be nearly observationally equiv-
alent to an inertial policy rule with serially uncorrelated
errors. Orphanides (2001) demonstrates analytically how a
misspecification of the Fed’s policy rule can lead to the ap-
pearance of a larger inertia parameter.

3. Simulation Procedure

The parameter values used in the quantitative simulations
are described in Box 3. I consider two possibilities for the
exogenous time series that defines true potential output in

11. Qualitatively similar results would be obtained with other regres-
sion algorithms that assign more weight to recent data, such as moving-
window least squares or discounted least squares. For details, see
Lansing (2000).

12. For details, see Baxter and King (1999) and Christiano and Fitz-
gerald (1999).

13. For quantitative demonstrations of this property, see de Brouwer
(1998), Orphanides and van Norden (1999), and Christiano and Fitz-
gerald (1999).

14. Goodfriend (1985) shows how this econometric problem can lead
to a spurious finding of partial adjustment in estimated money demand
equations when the variables that govern demand (interest rates and
transactions) are subject to serially correlated measurement error.
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Box 2
Reduced-Form Version of the Model

Following the procedure outlined in Lansing (2000), the reduced-form version of the aggregate demand equation can be written as
follows:

yt−1 − yt−1
yt−2 − yt−2

(7) yt − yt =
[

a1 + ar
[
(1 − ρ) gy/2 − 2γ

]
1 + γ ar

a2 − ar (1 − ρ) gyφ/2

1 + γ ar

ar [(1 − ρ) gπ/2 − 1]

1 + γ ar

ar (1 + ρ) /2

1 + γ ar

] � πt−1 − π �it−1 − (r + π)

vt

+
[

1
ar (1 − ρ) gy/2

1 + γ ar

−ar (1 − ρ) gyφ/2

1 + γ ar

] � yt−1 − xt−1 � ,
yt−2 − xt−2

where yt−1 − xt−1 represents the Fed’s real-time error in measuring potential output in period t − 1 . The last two terms in
equation (7) show how the real-time errors are transmitted to the true output gap yt − yt .

The reduced-form Phillips curve is given by:

(8) πt = πt−1 + 2γ
(
yt−1 − yt−1

) + zt ,

which shows that the Fed’s real-time measurement errors affect inflation only indirectly through their influence on the true output
gap yt − yt .

Combining equations (5) and (6), we can rewrite the Fed’s policy rule as
it−1

1
(9) it = [

ρ (1 − ρ) (r + π) (1 − ρ) gπ (1 − ρ) gy − (1 − ρ) gyφ
] �πt−1 − π �yt−1 − yt−1

yt−2 − yt−2
+ [

(1 − ρ) gy − (1 − ρ) gyφ
] [

yt−1 − xt−1

yt−2 − xt−2

]
,

where the last two terms show how the Fed’s real-time measurement errors influence the setting of the current funds rate it . An
econometrician who uses final data to estimate the Fed’s policy rule is implicitly imposing the restriction xt = yt for all t. This 
restriction causes the last two terms in equation (9) to drop out, thereby creating a missing variable problem.

The reduced-form version of the model is defined by equations (7), (8), and (9), together with the regression algorithm that
defines the Fed’s real-time potential output series {xt } from observations of {ys}s=t

s=t0 .

Box 3
Parameter Values for Quantitative Simulations

Structural Parametersa Standard Deviation of Shocksb Policy Rule Parametersc

a1 a2 ar γ r σv σz ρ gπ gy φ π

1.25 –0.35 –0.2 0.04 0.03 0.0045 0.0050 0d 1.5 1.0 0 0.043e

aValues are taken from Lansing (2000), who estimates these parameters using quarterly U.S. data for the period 1966:Q1 to 2001:Q2.
bStandard deviations of the two shocks are chosen such that the standard deviations of the output gap and inflation in the simulations are close to the corresponding
values in U.S. data over the period 1966:Q1 to 2001:Q2.

cValues are taken from Lansing (2000) and approximate a modified version of the original Taylor (1993) rule. The modified version (analyzed by Taylor (1999)) 
involves a stronger response to the output gap.

dValue indicates no interest rate smoothing by Fed policymakers in the model.
eValue matches the sample mean of U.S. inflation from 1966:Q1 to 2001:Q2. The annualized inflation rate is measured by  4 ln (Pt/Pt−1) , where Pt is the GDP
price index in quarter t.
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the model. The first, shown in Figure 1A, is a segmented
linear trend fitted to U.S. real GDP data of vintage
2001:Q3.15 The sample starts at t0 = 1947:Q1. I allow for
two structural breaks at t1 = 1973:Q4 and t2 = 1995:Q4.
The first breakpoint is consistent with research on the dat-
ing of the 1970s productivity slowdown. The dating of the
second breakpoint is consistent with the analyses of Oliner
and Sichel (2000) and Gordon (2000) and is intended to
capture the start of the so-called “new economy.’’ In Figure
1A, the postulated new economy break involves a slope
change only; there is no attendant shift in the level of po-
tential output. An unrestricted linear regression over the
period 1996:Q1 to 2001:Q2 would imply a downward shift
in the level of potential output at 1995:Q4. This outcome
seems inconsistent with the mainstream new economy
view that I am trying to capture here.16 The second possi-
bility for the true potential output series, shown in Figure
1B, is a simple linear trend with no breakpoints fitted over
the entire sample period, 1947:Q1 to 2001:Q2. This alter-
native series allows me to gauge the impact of sudden
trend shifts on the estimated value of the inertia parameter
ρ in the model simulations.

For each of the two potential output series, I simulate the
model 1,000 times with shock realizations drawn randomly
from independent normal distributions with the standard
deviations shown in Box 3. Each simulation starts from the
steady state at t0 = 1947:Q1 and runs for 218 periods (the
number of quarters from 1947:Q1 to 2001:Q2). Fuhrer and
Moore (1995) argue that the federal funds rate can be
viewed as the primary instrument of monetary policy only
since the mid-1960s. Before then, the funds rate traded
below the Federal Reserve discount rate. Based on this rea-
soning, the Fed’s algorithm for constructing the real-time
potential output series is placed in service at 1966:Q1.
Prior to this date, I set the real-time measure of potential
output equal to true potential output. Thus I assume that the
U.S. economy was fluctuating around its steady state be-
fore the Fed sought to exert control through the federal
funds rate in the mid-1960s. Occasionally, a particular se-
quence of shock realizations will cause the federal funds
rate to become negative. Overall, however, I find that this
occurs in only about 3 percent of the periods during the
simulations.

Each model simulation produces a set of artificial data
on interest rates, inflation, and real output. Given the
artificial data, I take the perspective of an econometrician
who estimates the Fed’s policy rule for two different sam-

ple periods. The first sample period runs from 1966:Q1 to
1979:Q2. The second sample period runs from 1980:Q1 to
2001:Q2. These sample periods are representative of those
typically used in the empirical policy rule literature.17 I
consider two possible misspecifications of the econometri-
cian’s regression equation. First, he uses a final-data poten-
tial output series in place of the Fed’s real-time potential
output series. I assume that the final-data potential output
series coincides exactly with the true potential output se-
ries.18 Second, the econometrician may adopt a functional
form that differs from the Taylor-type rule that is being
used by Fed policymakers.

4. Results: The Illusion of Interest Rate Smoothing

The results of the quantitative simulations are summarized
in Tables 1 through 4 and Figures 2 through 7.

Table 1 presents the results of policy rule regressions on
model-generated data for the case where the econometri-
cian employs the correct functional form for the regression
equation, i.e., a Taylor-type rule. In this case, the only mis-
specification involves the use of a final-data potential out-
put series in place of the real-time series. The table shows
that the estimated inertia parameter ρ̂ is positive and 
statistically significant in nearly all of the 1,000 trials, 
even though the Fed is actually using a Taylor-type rule
with ρ = 0 .19 The average magnitude of the spurious re-
gression coefficient is around 0.3 in the first sample period
and 0.4 in the second sample period. As noted in Section
2.2, the econometrician’s estimate of the inertia parameter
is biased upwards because the lagged funds rate helps com-
pensate for missing variables that influence the period-by-
period setting of the funds rate. The missing variables are
the Fed’s serially correlated real-time measurement errors.
With the inclusion of the lagged funds rate, the empirical fit
of the misspecified rule is actually quite good; the average
R̄2 statistic exceeds 90 percent.20

15. The data are described in Croushore and Stark (1999).

16. Allowing for a downward shift in the level of potential output at
1995:Q4 has a negligible impact on the quantitative results.

17. Empirical policy rule studies typically allow for a break in the mon-
etary policy regime sometime in the late 1970s. For evidence of such a
break, see Estrella and Fuhrer (1999).

18. Qualitatively similar results are obtained if the econometrician con-
structs his own final-data potential output series either by applying the
HP filter over the entire sample period 1947:Q1 to 2001:Q2 or by fitting
a quadratic trend over the same period.

19. If the t-statistic associated with a given regression coefficient is
above the critical value of 1.96, then the econometrician rejects the null
hypothesis that the true value of that coefficient is zero.

20. The R̄2 statistic gauges the fraction of the variance in the federal
funds rate that can be explained by the variables on the right-hand side
of the regression equation (with a correction factor applied for the num-
ber of regressors).
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Table 1 also shows that the average point estimate of the
inertia parameter does not change much when the model is
simulated without trend shifts. This is due to the nature of
the regression algorithm (the HP filter) that is used to con-
struct the Fed’s real-time estimate of potential output. As
discussed further below, the regression algorithm gives rise
to serially correlated real-time measurement errors even
when there is no fundamental change in the underlying
economy.

The average point estimate for the inflation response
coefficient ĝπ in Table 1 is around 1.4, only slightly below

the true value of gπ = 1.5 . The estimated coefficient is
statistically significant in 100 percent of the trials. Hence,
the econometrician’s use of the final-data potential output
series does not lead to significantly incorrect conclusions
about the Fed’s desired response to inflation during either
of the two sample periods. This point relates to the studies
by Perez (2001) and Mehra (2001), each of which investi-
gates whether the Fed’s desired response to inflation was
less aggressive during the 1970s. Both authors note that
policy rule regressions based on final data suggest that the
desired funds rate moved less than one-for-one with

Figure 1
U.S. Real GDP, 1947:Q1 to 2001:Q2
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inflation (or expected inflation) during the 1970s.21 Perez
(2001) shows that a policy rule estimated using recon-
structed historical data yields the opposite conclusion, i.e.,
the desired funds rate moved more than one-for-one with
expected inflation during the 1970s.22 Perez adopts a rule
specification where the Fed reacts to real-time forecasts of
future inflation. The real-time forecasts appear to have sys-
tematically underpredicted actual inflation during the
1970s. In contrast, the model-based regressions performed
here apply to an economy where the Fed reacts to lagged
inflation which I assume is observed without error. Also
using reconstructed historical data, Mehra (2001) finds that
the desired response to inflation during the 1970s was less
than one-for-one for a rule where the Fed reacts to the
quarterly inflation rate, but not significantly different from
one-for-one for a rule where the Fed reacts to a
“smoothed’’ inflation rate defined by a four-quarter moving
average of the quarterly inflation rate. Both of these studies
demonstrate the general point, also emphasized here, that

empirical estimates of the Fed’s policy rule are sensitive to
the data vintage and the functional form adopted by the
econometrician.

The average point estimate for the output gap response
coefficient ĝy in Table 1 is substantially below the true
value of gy = 1.0 , particularly during the second sample
period. Moreover, the estimated coefficient is statistically
significant in less than one-half of the trials. This result
shows that quarterly variations in the final-data output gap
do not hold much explanatory power for quarterly move-
ments in the model funds rate.

As a benchmark for comparison, Table 2 presents the re-
sults of regressing a Taylor-type policy rule on “final’’ U.S.
data of vintage 2001:Q3. For both sample periods, the esti-
mated coefficient ρ̂ on the lagged federal funds rate is
around 0.8 and strongly significant. This confirms the
statement made earlier that regressions based on final data
imply a high degree of policy inertia at quarterly fre-
quency. The table also shows that the estimated values of
the other policy rule coefficients, ĝ0 , ĝπ , and ĝy , differ
substantially across the two sample periods.23 Placing an

Table 1
Policy Rule Regressions on Model-Generated Data

Actual Taylor-type rule:
it = 0it−1 + (1 − 0) [0.0085 + 1.5 πt−1 + 1.0 (yt−1 − xt−1)]

Estimated Taylor-type rule:
it = ρ̂it−1 + (

1 − ρ̂
) [

ĝ0 + ĝπ πt−1 + ĝy
(
yt−1 − yt−1

)] + εt

Model with Trend Shifts Model without Trend Shifts

Model Sample Period ρ̂ ĝ0 ĝπ ĝy ρ̂ ĝ0 ĝπ ĝy

1966:Q1 to 1979:Q2
Average point estimate 0.34 0.011 1.40 0.22 0.29 0.014 1.37 0.22
Standard deviation of point estimate 0.12 0.008 0.16 0.22 0.12 0.007 0.14 0.20
Average t-statistic 3.81 2.98 18.0 1.99 3.53 4.69 21.5 2.39
% trials with t > 1.96 91.1% 66.3% 100% 46.3% 85.2% 82.5% 100% 31.1%

Average R̄2 = 0.92 , Average σε = 0.006 Average R̄2 = 0.94 , Average σε = 0.005

1980:Q1 to 2001:Q2
Average point estimate 0.39 0.015 1.37 0.03 0.39 0.014 1.37 0.04
Standard deviation of point estimate 0.09 0.004 0.09 0.13 0.09 0.004 0.09 0.14
Average t-statistic 5.75 6.36 28.5 0.08 5.65 6.06 28.4 0.24
% trials with t > 1.96 99.5% 96.2% 100% 31.5% 99.2% 94.8% 100% 31.1%

Average R̄2 = 0.95 , Average σε = 0.006 Average R̄2 = 0.95 , Average σε = 0.006

Notes: Model statistics are based on 1,000 simulations. σε is the standard deviation of a serially uncorrelated zero-mean error εt , added for the purpose of estimation. xt =
Fed’s real-time potential output defined by the HP filter with = 1,600. yt = econometrician’s final-data potential output defined by a segmented linear trend (Figure
1A) or a simple linear trend (Figure 1B).

λ

21. For discussions of this result, see Taylor (1999) and Clarida, et al.
(2000).

22. Perez (2001) obtains this result for two different sample periods: the
first runs from 1975:Q1 to 1979:Q2 and the second runs from 1969:Q1
to 1976:Q3.

23. The regression coefficient ĝ0 is an estimate of the combined
coefficient g0 ≡ r + π (1 − gπ ) . Without additional information, the
data cannot separately identify the values of r and π .
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economic interpretation on these results is problematic,
however, because policymakers did not see the final data—
instead they saw the data that was available at the time pol-
icy decisions were made. The real-time data may have
presented a very different picture of the economy. Indeed,
recent studies by Croushore and Stark (1999), Orphanides
(2000, 2001), Perez (2001), and Mehra (2001) make it
clear that retrospective analyses based on real-time data
often can lead to conclusions that differ from those based
on final data.

Figure 2 compares the average trajectory of the Fed’s
real-time potential output series { xt } with the true poten-
tial output series { yt } for the case where the model in-
cludes trend shifts. In the periods after the first trend shift at
1973:Q4, the incoming data on real output yt (which are
fully observable to policymakers) start to plot below the
Fed’s previously estimated trend because of the unob-
served structural break. Fed policymakers interpret the
data as evidence of a recession. Following the advice of
their policy rule, they lower the federal funds rate in re-
sponse to the perceived negative output gap. The drop in
the funds rate stimulates aggregate demand. Stronger de-
mand, combined with the abrupt reduction in the econ-
omy’s productive capacity, causes the true output gap to
become positive (Figure 3). Later, as more data are re-
ceived, the Fed adjusts its estimated trend, shrinking the
size of the perceived negative output gap.24

By the time of the second trend shift at 1995:Q4, the di-
vergence between the true gap and the perceived gap has

been reduced but not eliminated (Figure 3). In the periods
after the second trend shift, the incoming data on yt start to
plot above the Fed’s previously estimated trend because of
the unobserved structural break. Fed policymakers inter-
pret the data as evidence of a boom. Following the advice
of their policy rule, they raise the federal funds rate in an
effort to restrain aggregate demand. This action, combined
with expansion in the economy’s productive capacity,
pushes the true output gap into negative territory while the
Fed’s perceived gap becomes positive.

The divergence between the perceived real-time gap and
the true gap shown in Figure 3 represents the Fed’s real-
time measurement error. The divergence narrows over time
as the Fed’s regression algorithm detects the trend shift.
Figure 4 plots the trajectory of the real-time error. The real-
time errors are highly serially correlated with an autocorre-
lation coefficient of 0.99. Negative errors tend to be
followed by negative errors while positive errors tend 
to be followed by positive errors. The standard deviation of
the real-time errors over the period 1966:Q1 to 2001:Q2 is
2.6 percent (averaged over 1,000 simulations). The statisti-
cal properties of the real-time errors are similar to those
documented by Orphanides and van Norden (1999) for a
variety of real-time methods of trend estimation. This re-
sult suggests that the basic nature of the results does not de-
pend on the particular regression algorithm used by Fed
policymakers in the model.25

Table 2
Policy Rule Regressions on Final U.S. Data (Vintage 2001:Q3)

Estimated Taylor-type rule:
it = ρ̂it−1 + (

1 − ρ̂
) [

ĝ0 + ĝπ πt−1 + ĝy
(
yt−1 − yt−1

)] + εt

Regression with Trend Shifts Regression without Trend Shifts

U.S. Sample Period ρ̂ ĝ0 ĝπ ĝy ρ̂ ĝ0 ĝπ ĝy

1966:Q1 to 1979:Q2
U.S. point estimate 0.80 0.033 0.45 1.19 0.70 –0.026 0.66 1.06
U.S. t-statistic 8.82 1.69 1.37 2.45 7.38 –1.36 3.26 3.81

R̄2 = 0.83 , σε = 0.009 R̄2 = 0.84 , σε = 0.009

1980:Q1 to 2001:Q2
U.S point estimate 0.77 0.025 1.38 0.24 0.74 0.037 1.17 0.32
U.S. t-statistic 13.0 2.70 6.02 0.98 12.0 3.43 4.92 1.66

R̄2 = 0.91 , σε = 0.010 R̄2 = 0.91 , σε = 0.010

Notes: σε is the standard deviation of a serially uncorrelated zero-mean error εt added for the purpose of estimation. yt = final-data potential output defined by a 
segmented linear trend (Figure 1A) or a simple linear trend (Figure 1B).

24. Further details on the behavior of the output gap, inflation, and the
federal funds rate during the model simulations can be found in Lansing
(2000).

25. The standard deviation of the final-data output gap in the model is
2.37 percent. The standard deviation of the final-data output gap in U.S.
data (defined by a segmented linear trend) is 2.24 percent. For additional
details, see Lansing (2000).
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Figure 5 shows that the Fed’s regression algorithm ex-
hibits overshooting behavior. Overshooting occurs because
the HP filter assigns a relatively high weight to the most re-
cent data. If a sequence of recent data observations hap-
pens to fall mostly above or mostly below the Fed’s
previously estimated trend, then the Fed’s real-time esti-
mate of potential output can undergo a substantial revision
even when there is no trend shift in the underlying econ-

omy. This point is illustrated in Figures 4 and 5 by the
fairly wide standard error bands that can be observed
around the average trajectories even before the first trend
shift takes place at 1973:Q4. The errors induced by the
Fed’s regression algorithm during normal times are a trade-
off for being able to detect a trend shift more quickly when
it does occur.

Figure 2
Model Potential Output
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Figure 3
Model Output Gap
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Figure 4
Fed’s Real-Time Measurement Error
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Figure 5
Fed’s Estimated Growth Rate of Potential Output
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Table 3 presents the results of policy rule regressions on
model-generated data for the case where the econometri-
cian adopts the wrong functional form for the Fed’s policy
rule. The econometrician estimates a general rule that in-
cludes the twice-lagged output gap

(
yt−2 − yt−2

)
. As be-

fore, the econometrician employs a final-data potential
output series in place of the Fed’s real-time series. The re-
sults are broadly similar to those reported in Table 1.
Notice, however, that the average magnitude of the spuri-
ous regression coefficient ρ̂ is slightly higher than before.
As would be expected, the econometrician’s use of the
wrong functional form contributes to the upward bias 
in ρ̂. This effect is partially offset, however, by the pres-
ence of the twice-lagged output gap, which helps to reduce
the dependence on the lagged funds rate when fitting the
misspecified rule to the data. The twice-lagged gap is
strongly significant in nearly all of the trials with an aver-
age point estimate of φ̂ ≈ 1. The intuition for the spurious
significance of the twice-lagged gap is straightforward.
Since the true output gap is highly serially correlated, a
point estimate of φ̂ ≈ 1 allows successive true output
gaps (which contain little explanatory power for it ) to off-
set one another. Given that the average point estimates
imply ĝπ ≈ ĝy and φ̂ ≈ 1, the econometrician may con-
clude that Fed policymakers are using a smoothed nominal

income growth rule when, in fact, they are using an un-
smoothed Taylor-type rule.26

Table 4 presents the results of regressing the general pol-
icy rule on final U.S. data (vintage 2001:Q3). The esti-
mated coefficient ρ̂ on the lagged funds rate is again in
the neighborhood of 0.8. The estimated coefficient φ̂ on
the twice-lagged output gap is statistically significant in
both sample periods. In the sample period that runs from
1980:Q1 to 2001:Q2, it is unlikely that one could reject the
hypothesis of ĝπ = ĝy and φ̂ = 1. Hence, just as in the
model-based regressions described above, the time path of
the U.S. federal funds rate since 1980 appears to be well
approximated by a smoothed nominal income growth
rule.27 Unlike the model, however, we cannot know for
sure what policy rule (if any) was being used by Fed poli-
cymakers during this sample period.

It is important to recognize that the value of ρ̂ reported
in Tables 1 and 3 is an average point estimate computed
over the course of many simulations. In any given simula-

Table 3
Policy Rule Regressions on Model-Generated Data

Actual Taylor-type rule:
it = 0it−1 + (1 − 0) {0.0085 + 1.5πt−1 + 1.0 [(yt−1 − xt−1) − 0 (yt−2 − xt−2)]}
Estimated general rule:

it = ρ̂it−1 + (
1 − ρ̂

) {
ĝ0 + ĝπ πt−1 + ĝy

[(
yt−1 − yt−1

) − φ̂
(
yt−2 − yt−2

)]} + εt

Model with Trend Shifts Model without Trend Shifts

Model Sample Period ρ̂ ĝ0 ĝπ ĝy φ̂ ρ̂ ĝ0 ĝπ ĝy φ̂

1966:Q1 to 1979:Q2
Average point estimate 0.39 0.006 1.51 1.39 0.88 0.33 0.010 1.47 1.31 0.88
Standard deviation of point estimate 0.11 0.008 0.16 0.44 0.16 0.10 0.006 0.12 0.31 0.13
Average t-statistic 5.26 1.88 19.1 4.26 14.5 5.36 3.88 25.9 5.74 18.5
% trials with t > 1.96 98.2% 45.4% 100% 99.6% 99.7% 98.1% 75.7% 100% 100% 100%

Average R̄2 = 0.95 , Average σε = 0.005 Average R̄2 = 0.96 , Average σε = 0.004

1980:Q1 to 2001:Q2
Average point estimate 0.40 0.010 1.49 1.40 1.00 0.40 0.009 1.48 1.40 0.99
Standard deviation of point estimate 0.07 0.004 0.08 0.29 0.08 0.07 0.003 0.08 0.28 0.08
Average t-statistic 8.04 5.02 34.3 6.39 31.6 7.97 4.74 34.7 6.56 31.7
% trials with t > 1.96 100% 90.1% 100% 100% 100% 100% 87.7% 100% 100% 100%

Average R̄2 = 0.97 , Average σε = 0.004 Average R̄2 = 0.98 , Average σε = 0.004

Notes: Model statistics are based on 1,000 simulations. σε is the standard deviation of a serially uncorrelated zero-mean error εt added for the purpose of estimation. xt =
Fed’s real-time potential output defined by the HP filter with = 1,600. yt = econometrician’s final-data potential output defined by a segmented linear trend (Figure
1A) or a simple linear trend (Figure 1B).

λ

26. Recall that a nominal income growth rule can be represented as a
special case of equation (5) with gπ = gy and φ = 1 . See the appendix
for details.

27. This result confirms the findings of McCallum and Nelson (1999).
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tion, the estimated coefficient on the lagged funds rate may
turn out to be higher or lower than the average value.
Figures 6 and 7 show the distribution of point estimates
generated by the model for each of the two sample peri-
ods.28 The mean of the distribution is slightly higher in the
second sample period because the Fed’s regression algo-
rithm has been running longer at that point.29 This in-
creases the probability that the regression algorithm will
generate serially correlated real-time measurement errors.
For the sample period that runs from 1966:Q1 to 1979:Q2
(Figure 6), the 95 percent confidence interval for the esti-
mated inertia parameter ranges from a low of 0.09 to a high
of 0.57.30 For the sample period that runs from 1980:Q1 to
2001:Q2 (Figure 7), the 95 percent confidence interval
ranges from a low of 0.20 to a high of 0.57. These
confidence intervals suggest that the model-generated dis-
tributions can be approximated by standard normal distri-
butions with the means and standard deviations shown in
Tables 1 and 3.

In contrast to the model simulations, the point estimate
for the U.S. inertia parameter reported in Tables 2 and 4

Table 4
Policy Rule Regressions on Final U.S. Data (Vintage 2001:Q3)

Estimated general rule:

it = ρ̂it−1 + (
1 − ρ̂

) {
ĝ0 + ĝππt−1 + ĝy

[(
yt−1 − yt−1

) − φ̂
(
yt−2 − yt−2

)]} + εt

Regression with Trend Shifts Regression without Trend Shifts

U.S. Sample Period ρ̂ ĝ0 ĝπ ĝy φ̂ ρ̂ ĝ0 ĝπ ĝy φ̂

1966:Q1 to 1979:Q2
U.S. point estimate 0.93 0.033 0.40 8.50 0.73 0.80 –0.044 0.79 2.68 0.51
U.S. t-statistic 10.1 0.64 0.45 0.73 6.37 7.61 –1.27 2.60 1.64 3.06

R̄2 = 0.86 , σε = 0.008 R̄2 = 0.86 , σε = 0.009

1980:Q1 to 2001:Q2
U.S point estimate 0.76 0.021 1.51 1.63 0.91 0.74 0.030 1.37 1.54 0.85
U.S. t-statistic 13.2 2.33 6.69 2.24 6.76 12.3 2.70 5.41 2.40 6.44

R̄2 = 0.91 , σε = 0.010 R̄2 = 0.92 , σε = 0.010

Notes: σε is the standard deviation of a serially uncorrelated zero-mean error εt added for the purpose of estimation. yt = final-data potential output defined by a 
segmented linear trend (Figure 1A) or a simple linear trend (Figure 1B).

28. In constructing the histograms in Figures 6 and 7, the number of
model simulations was increased to 5,000 in order to provide a more ac-
curate picture of the true distribution governing the point estimates.

29. Recall that the Fed’s regression algorithm is placed in service at
1966:Q1.

30. In other words, the estimated inertia parameter fell within this 
interval in 4,750 simulations out of a total of 5,000 simulations(

4, 750

5, 000
= 0.95

)
.
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Figure 6
Distribution of Point Estimates Generated 
by Model with Trend Shifts, 
Simulated Sample Period 1966:Q1 to 1979:Q2
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represents the outcome of a single regression. The point es-
timate is influenced by the particular sequence of random
shocks that hit the U.S. economy during a given period of
history. In Table 2, for example, the point estimate for the
U.S. inertia parameter is ρ̂ = 0.77 when the sample pe-
riod runs from 1980:Q1 to 2001:Q2 and the regression al-
lows for trend shifts.

By comparing the U.S. point estimate to the distribution
of point estimates generated by the model, one may con-
clude that there is less than a 1 percent chance that the
model would produce a point estimate as high as ρ̂ = 0.77
during a single simulation. This tells us that the model can-
not explain all of the inertia that we observe in the U.S.
federal funds rate. Nevertheless, there is a 50 percent
chance that the model would produce a point estimate as
high as ρ̂ = 0.39 during a single simulation and a 25 per-
cent chance that the model would produce a point estimate
as high as ρ̂ = 0.46. Hence, the model can easily explain
about one-half of the inertia that we observe in the U.S.
federal funds rate.

One might argue that it makes sense for the model not to
explain all of the U.S. inertia because the model abstracts
from real-time errors in observing inflation or real output.
Noise or measurement error in these variables may have
influenced the setting of the U.S. federal funds rate during

a given sample period. Indeed, Orphanides (2000) presents
evidence which suggests that the Fed’s real-time measures
of inflation (based on a GDP price index) and real output
were both too low in the early 1970s. The model also ab-
stracts from any persistent changes in the real interest rate
term r which appears in the policy rule equation (5).
Rudebusch (2002) notes that a variety of economic
influences (e.g., credit crunches, financial crises) can be in-
terpreted as involving a temporary but persistent shift in
the real interest rate. A perceived shift in r would induce
movements in the funds rate that cannot be explained by
observable changes in inflation or the output gap. Finally,
the model abstracts from the difficult issue of determining
which particular price index policymakers actually use
when deciding whether current inflation has deviated from
the Fed’s long-run target rate. Unlike the model, there are
many possible ways to define inflation in the U.S. econ-
omy.31 The above considerations, if incorporated into the
model, would contribute to an upward bias in the estimated
inertia parameter beyond that which is due solely to the
Fed’s real-time errors in estimating potential output.

5. Conclusion

Empirical estimates of the Fed’s policy rule based on quar-
terly U.S. data typically find that the lagged federal funds
rate is a significant explanatory variable. The standard in-
terpretation of this result is that the Fed intentionally
“smoothes’’ interest rates, i.e., policymakers move gradu-
ally over time to bring the current level of the funds rate in
line with a desired level that is determined by economic
fundamentals. This paper employed simulations from a
small macroeconomic model to demonstrate that efforts to
identify the Fed’s policy rule using regressions based on
final data can create the illusion of interest rate smoothing
behavior when, in fact, none exists. I showed that failure to
account properly for policymakers’ real-time perceptions
about potential output can explain as much as one-half of
the apparent degree of inertia in the U.S. federal funds rate.
Interestingly, the simulated policy rule regressions sug-
gested that Fed policymakers were using a smoothed nom-
inal income growth rule when actually they were using an
unsmoothed Taylor-type rule. Overall, the findings pre-
sented here lend support to a growing view within the eco-
nomics profession that empirical results derived solely
from an analysis of final data can provide a distorted pic-
ture of the monetary policy process.
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31. This point has been emphasized recently by Federal Reserve Chair-
man Alan Greenspan (2001).

Figure 7
Distribution of Point Estimates Generated 
by Model with Trend Shifts, 
Simulated Sample Period 1980:Q1 to 2001:Q2
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Appendix

Here I show that a nominal income growth rule can be rep-
resented by a special case of equation (5). Imposing
gπ = gy = θ > 0 ,  φ = 1 , and then rearranging yields

(A1) i∗
t = r + π

+θ [πt−1 + yt−1 − yt−2 − (xt−1 − xt−2) − π] ,

where all rates are expressed initially on a quarterly basis.
Quarterly inflation is given by πt = ln (Pt/Pt−1) for all t, where
Pt is the GDP price index. We also have yt = ln Yt for all t,
where Yt is quarterly real GDP. Substituting these expressions
into equation (A1) and rearranging yields

(A2) i∗
t = r + π + θ [Gt−1 − (xt−1 − xt−2) − π] ,

where Gt−1 ≡ ln (Pt−1Yt−1) − ln (Pt−2Yt−2) is the observed
quarterly growth rate of nominal income.

Recall that xt−1 and xt−2 represent the Fed’s estimate of the
logarithm of potential output for the periods t − 1 and t − 2 , re-
spectively. Both of these quantities are computed at t − 1 , how-
ever, because the Fed runs a regression each period and updates
its entire potential output series. Since xt−1 and xt−2 both 
lie on the best-fit trend line computed at t − 1 , we have
µ̂t−1 = xt−1 − xt−2 , where µ̂t−1 is the Fed’s real-time estimate
of the quarterly growth rate of potential output. Substituting this
expression into equation (A2) yields

(A3) i∗
t = r + π + θ

[
Gt−1 − (

µ̂t−1 + π
)]

,

which shows that the desired federal funds rate i∗
t will be above

its steady-state level (r + π) whenever observed nominal in-
come growth Gt−1 exceeds the target growth rate of µ̂t−1 + π .
Multiplying both sides of equation (A3) by 4 converts all quar-
terly rates to an annual basis.
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