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A Change of measure

To show what kind of process the term structure factors follow underQ, I derive the conditional

Laplace transform of Xt+1 under Q. I define the one-period stochastic discount factor (pricing

kernel) as

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tεt+1

)
.

For any one-period pricing kernel the change of measure is implied by

Mt+1 = exp(−rt)fQ(Xt+1|Xt)/f
P(Xt+1|Xt).

Note that the Radon-Nikodym derivative, which relates the densities under the physical and

risk-neutral measure, is given by

fP(Xt+1|Xt)

fQ(Xt+1|Xt)
=

(
dP

dQ

)
(Xt+1;λt) = exp

(
1

2
λ′tλt + λ′tεt+1

)
.

I obtain for the risk-neutral conditional Laplace transform

EQ(exp(u′Xt+1)|Xt) =

∫
exp(u′Xt+1)f

Q(Xt+1|Xt)dXt+1

=

∫
exp

(
u′Xt+1 −

1

2
λ′tλt − λ′tεt+1

)
fP(Xt+1|Xt)dXt+1

= E

[
exp

(
u′(µ+ ΦXt + Σεt+1)−

1

2
λ′tλt − λ′tεt+1

)
|Xt

]
= exp

[
u′(µ− Σλt + ΦXt) +

1

2
u′ΣΣ′u

]
which is recognized as the conditional moment-generating function of a multivariate normal

distribution with mean µ− Σλt + ΦXt = (µ− λ0) + (Φ− λ1)Xt and variance ΣΣ′.

The physical innovations εt, which are a vector martingale-difference sequence (m.d.s.)

under P, are related to the innovations under Q by

εQt = εt + λt−1. (1)

Note that the risk-neutral innovations, while being m.d.s. under Q, can have non-zero mean

and be predictable under P, depending on the risk price specification.
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B Affine bond pricing

Under the assumptions of Section 2.1, model-implied bond prices are exponentially affine

functions of the pricing factors:

P̂m
t = eAm+BmXt ,

and the loadings Am = Am(µQ, φQ, δ0, δ1,Σ) and Bm = Bm(φQ, δ1) follow the recursions

Am+1 = Am + (µQ)′Bm +
1

2
B′mΣΣ′Bm − δ0

Bm+1 = (φQ)′Bm − δ1

with starting values A0 = 0 and B0 = 0. Model-implied yields are determined by ŷmt =

−m−1 logPm
t = Am +BmXt, with Am = −m−1Am and Bm = −m−1Bm.

Risk-neutral yields, the yields that would prevail if investors were risk-neutral, can be

calculated using

ỹmt = Ãm + B̃mXt, Ãm = −m−1Am(µ, φ, δ0, δ1,Σ), B̃m = −m−1Bm(φ, δ1).

Risk-neutral yields reflect policy expectations over the life of the bond, m−1
∑m−1

h=0 Etrt+h, plus

a convexity term. The yield term premium is defined as the difference between actual and

risk-neutral yields, ytpmt = ymt − ỹmt .

C Risk prices as parameters in a restricted VAR

Estimation of λ, for given values of all other parameters, amounts to estimation of the VAR in

(1) subject to the linear constraints in (7). This section lays out the specifics: how to obtain

the least squares estimates of λ, which maximize the likelihood for given values of the other

parameters (C.1), how to carry out Bayesian inference about λ using the exact conditional

posterior (C.2), and how to specify a g-prior in the RVAR context (C.3).

An alternative to RVAR estimation for obtaining estimates of λ is often possible. Sub-

tracting Q-measure expectations from both sides of the VAR in equation (1), the dynamic

system becomes

Xt − EQt−1Xt = λ0 + λ1Xt−1 + Σεt,

which is a system of Seemingly Unrelated Regressions (SUR) (Zellner, 1962). If the DTSM is

estimated using frequentist methods, this formulation can be used to concentrate out λ0 and

λ1 from the likelihood function—this approach is used, for example, by Joslin et al. (2014). If
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the estimation is Bayesian, the conditional posterior for λ can be easily derived (see Zellner

and Ando, 2010, and the references therein). For those cases where all rows of (λ0, λ1) have

at least one non-zero element, the SUR approach is identical to the restricted-VAR approach.

However, when one or more rows contain only zeros, the SUR approach is not applicable,

because it effectively ignores the equation where all parameters are restricted to zero, whereas

the restricted-VAR approach correctly accounts for the inter-equation dependencies of the

residuals.

C.1 Likelihood function and least squares estimates

Lütkepohl (2006) describes frequentist estimation of restricted VARs (Section 5.2). Here,

I show how inference about λ in a DTSM maps into this context. The VAR in equation

(1) can be written in full-data matrix notation as X = BZ + U , where X = (X1, . . . , XT ),

Z = (Z0, . . . , ZT−1), Zt = (1, X ′t)
′, B = (µ,Φ), and U = (u1, . . . , uT ), ut = Σεt. The linear

constraints are

β := vec(B) = λ+ r = Sλγ + r,

where S is a known N(N + 1) × a matrix of zeros and ones, λγ is an a-vector with the

unrestricted elements of λ (according to γ), and r = vec(µQ,ΦQ). To clarify: λγ contains the

a unrestricted risk prices, λ contains these as well as N(N + 1) − a zeros, and S transforms

one into the other (λ = Sλγ). If there are no zero restrictions on λ—as in the case of a

maximally-flexible DTSM, and for the SSVS model selection approach—we have S = IN(N+1),

λ = λγ, and there are a = N(N + 1) risk prices to estimate.

Plugging in the restrictions and vectorizing the VAR equation we have

x := vec(X) = vec(BZ) + vec(U)

= (Z ′ ⊗ IN)β + u

= (Z ′ ⊗ IN)(Sλγ + r) + u

z := x− (Z ′ ⊗ IN)r = (Z ′ ⊗ IN)Sλγ + u.

The likelihood for z is N((Z ′⊗IN)Sλγ, IT⊗Ω), with Ω = ΣΣ′. This likelihood is maximized

at the generalized least-squares estimate (see Lütkepohl, 2006, eq. 5.2.6) which is given by

λ̂γ =
[
S ′(ZZ ′ ⊗ Ω−1)S

]−1
S ′(Z ⊗ Ω−1)z. (2)
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Its estimated covariance matrix is

V̂γ =
[
S ′(ZZ ′ ⊗ Ω−1)S

]−1
. (3)

C.2 Bayesian inference in a restricted VAR

If we assume a natural conjugate prior for λ, which is a normal prior denoted by N(λγ, V γ),

the conditional posterior can be derived in closed form:

P (λγ|z, . . .) ∝ exp
{
−.5

[
(λγ − λγ)′V −1γ (λγ − λγ)

+(z − (Z ′ ⊗ IN)Sλγ)
′(IT ⊗ Ω)−1(z − (Z ′ ⊗ IN)Sλγ)

]}
∝ exp{−.5[λ′γV

−1λγ − 2λγV
−1λγ + λ′γS

′(ZZ ′ ⊗ Ω−1)Sλγ − 2z′(Z ′ ⊗ Ω−1)Sλγ]}

∝ exp
{
−.5

[
λ′γ(V

−1 + S ′(ZZ ′ ⊗ Ω−1)S)λ− 2(λ′γV
−1 + z′(Z ′ ⊗ Ω−1)S)λγ

]}
.

The last expression is the Kernel of a Normal distribution with covariance matrix

V γ = (V −1γ + S ′(ZZ ′ ⊗ Ω−1)S)−1

and mean

λγ = V γ(V
−1
γ λγ + S ′(Z ⊗ Ω−1)z).

The (conditional) posterior mean can also be written as

λγ = V γ

{
V −1γ λγ + V̂ −1γ λ̂γ

}
.

These results will be used for drawing λ from its conditional posterior distribution, i.e., using

a Gibbs step, in the various MCMC samplers used in this paper.

C.3 g-prior for a restricted VAR

A g-prior for the parameters of a restricted VAR has covariance matrix

V = g
[
S ′(ZZ ′ ⊗ Ω−1)S

]−1
= gV̂

so that the posterior mean becomes

λ =
1

1 + g
λ+

g

1 + g
λ̂
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and the posterior covariance is

V =
g

1 + g

[
S ′(ZZ ′ ⊗ Ω−1)S

]−1
.

The prior used for λ in this paper is an “orthogonalized g-prior” with zero mean. In

particular, I calculate [S ′(ZZ ′ ⊗ Ω−1)S]
−1

for the model without restrictions on λ—in which

case S = IN(N+1)—at the MLE estimates of the remaining parameters (the Q-parameters are

needed to calculate Z, and Σ is needed to calculate Ω), and use the diagonal values of the

resulting matrix, multiplied by g, as the prior variances.

D Drawing the model parameters

This section provides details on how to draw each block of parameters in the MCMC algo-

rithms. For λ, the approach described here is only used for estimation of a specific model

(i.e., conditional on a fixed value of γ), while in the model selection samplers λ and γ are

drawn jointly as described in Section E. The other parameters—kQ∞, φ
Q,Σ, and σe—are al-

ways drawn as described here, both in the estimation of a specific model and in the model

selection samplers.

D.1 Drawing λ

Conditional on γ and all other model parameters, estimation of the risk-price parameters λ

simply amounts to estimating the parameters of an RVAR. This is very convenient, because

the conditional posterior for λ is available in closed form, and λ can be sampled using a Gibbs

step. The posterior is normal with mean and covariance matrix given in Section C.2. It is a

key advantage of the MCMC sampler proposed here that the majority of parameters can be

sampled very efficiently using a straightforward Gibbs step.

D.2 Drawing kQ∞ and φQ

The parameters kQ∞ and φQ (the eigenvalues of ΦQ) exhibit high posterior correlation, due

to the fact that they jointly determine the cross-sectional behavior of interest rates. The

“grouping-by-correlation” principle for designing efficient MCMC algorithms therefore sug-

gests to draw them jointly as one block. A generally efficient way to do so is to use an

Independence MH step with mean and covariance that are close to those of the conditional

posterior. Fortunately, such moments can easily be obtained in this context, due to the pa-
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rameterization of the term structure model. We can simply take the ML estimates of these

parameters (for the unrestricted model) as the mean of the proposal density, as these estimates

are generally close to the mode of the conditional posterior. To determine the covariance ma-

trix I obtain a numerical approximation to the Hessian of the conditional posterior at these

values and take the negative of its inverse. It turns out to be sufficient to do this only once at

the beginning of the algorithm.1 For the proposal distribution I use a multivariate Student-t

distribution with five degrees of freedom. To tailor the proposal density for an Independence

MH step in this way is inspired by the approach of Chib and Greenberg (1994), Chib and

Ergashev (2009), and Chib and Ramamurthy (2010). In particular, this avoids the need to

tune scaling parameters, automatically leads to acceptance probabilities in the 20-50% range

that is recommended in the MCMC literature (Gamerman and Lopes, 2006, p. 196), and

leads to high efficiency of the sampler (i.e., low autocorrelations of successive draws). Since

my approach avoids the need to find the mode of the conditional posterior using numerical

optimization (such as the Simulated Annealing algorithm used by Chib and Ramamurthy,

2010), it has very low computational cost.

Because it is useful to have the eigenvalues in φQ sorted and to have similar scaling of

parameters that are drawn jointly, I reparameterize them as χ = (1000 · kQ∞, φ
Q
1 − 1, φQ2 −

φQ1 , φ
Q
3 − φ

Q
2 )′. Due to the prior restrictions on φQ, the second through fourth elements of χ

are required to lie between -1 and 0. The proposed values are denoted by χ∗, and the proposal

density as q(·). The acceptance probability is

α(χ(j−1), χ∗) = min

{
P (Y |χ∗, θ−, γ)P (χ∗, θ−)q(χ(j−1))

P (Y |χ(j−1), θ−, γ)P (χ(j−1), θ−)q(χ∗)
, 1

}
,

where θ− denotes all parameters other than kQ∞ and φQ.

D.3 Drawing Σ

To draw Σ I use a similar Independence MH step as for (kQ∞, φ
Q). Using the operator vech(·)

to vectorize the lower triangular of a matrix, the proposal distribution for vech(Σ) is a multi-

variate t-distribution with five degrees of freedom. The mean is equal to vech(ΣMLE), and the

covariance matrix is equal to the negative inverse of the Hessian of the conditional posterior

for vech(Σ) at the MLE in the first iteration of the algorithm. After drawing a proposal Σ∗

1If the approximate Hessian turns out not to be positive definite, it can be replaced by a positive definite
matrix that is close to it, using an eigenvalue decomposition and replacing the negative eigenvalue(s) with
small positive eigenvalues.
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from this distribution, the acceptance probability is calculated as

α(Σ(j−1),Σ∗) = min

{
P (Y |Σ∗, θ−)P (Σ∗, θ−)q(vech(Σ(j−1)))

P (Y |Σ(j−1), θ−)P (Σ(j−1), θ−)q(vech(Σ∗))
, 1

}
,

where θ− denotes all model parameters other than Σ, q(·) is the multivariate-t proposal density,

and the prior for Σ only requires that ΣΣ′ is a valid (i.e., positive semi-definite) covariance

matrix.

D.4 Drawing σ2
e

The measurement error variance can be drawn using a Gibbs step, because conditional on the

other parameters and the data, the measurement errors can be viewed as regression residuals.

For an inverse-gamma (IG) prior with shape parameter α0/2 and scale parameter δ0/2, the

conditional posterior is IG with shape and scale determined by α1 = α0 +n and δ1 = δ0 + ssr,

where n is the number of observations and ssr is the sum of squared residuals. Since the

variance is the same across all measurement equations, the measurement errors are pooled.

We have n = T (J−N), because at each point in time there are J−N independent measurement

errors, and ssr =
∑T

t=1 ||Yt − Ŷt||. Furthermore, α0 = δ0 = 0 because the prior is taken to be

completely diffuse.

E Model-selection samplers

This section describes the three model-selection samplers that can alternatively be used to

draw (λ, γ). Sections 3 and 4 in the paper show the robustness of the model-selection results

to the use of different sampling algorithms.

For a recent overview of methods available for joint model-parameter sampling, see Godsill

(2001) and Sisson (2005). For a review of MCMC methods for variable selection, see O’Hara

and Sillanpää (2009).

E.1 Gibbs Variable Selection

The first approach is based on Gibbs Variable Selection (GVS), which was developed by

Dellaportas et al. (2002) and is a special case of the product-space sampling of Carlin and

Chib (1995). In product-space sampling, the parameter space is the product-space of all

models under consideration, which can become very large. For GVS, models are treated as

nested, so that the product-space is simply the parameter space of the unrestricted model.
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The parameter prior for GVS is

P (λ|γ) = P (λγ|γ)P (λ\γ|λγ, γ)

where P (λγ|γ) is the prior for those elements of λ that are included, and P (λ\γ|λγ, γ) denotes

the prior for elements that are not currently included, the so-called “pseudo-prior” or “linking

density” in the parlance of Carlin and Chib (1995). It is generally recommended to use

a pseudo-prior similar to the posterior distribution from the unrestricted model. To this

end, I use independent normal distributions with mean and variance equal to the conditional

posterior moments of λ given the ML estimates of all other parameters.2

In each iteration of the GVS sampler, first λγ is drawn in a Gibbs step from its condi-

tional posterior distribution. Due to prior conditional independence, this only depends on the

prior for λγ, on γ, on the remaining parameters, and on the data. The conditional posterior

distribution is given in Online Appendix C.2. For those elements of λ that are not included

in the current model, λ\γ, the data is not informative and the values are drawn from the

pseudo-prior.

The success probability for the Bernoulli conditional posterior of γ
(i)
i is determined by

P (γ
(j)
i = 1|λ(j), θ(j−1)− , γ

(j)
−i , Y )

P (γ
(j)
i = 0|λ(j), θ(j−1)− , γ

(j)
−i , Y )

=
P (Y |γ(j)i = 1, λ(j), θ

(j−1)
− , γ

(j)
−i )

P (Y |γ(j)i = 0, λ(j), θ
(j−1)
− , γ

(j)
−i )
· P (λ

(j)
i |γ

(j)
i = 1)

P (λ
(j)
i |γ

(j)
i = 0)

·
P (γ

(j)
i = 1, γ

(j)
−i )

P (γ
(j)
i = 0, γ

(j)
−i )

.

To calculate the first term, the ratio of likelihoods, only the P-likelihoods need to be evaluated,

since the parameters of the Q-likelihood remain unchanged and this term cancels out. For the

second term, the numerator is the density of the prior, i.e., a normal distribution with mean

zero and variance vi, and the denominator is the density of the pseudo-prior. The third term

cancels out due to equal prior model probabilities.

E.2 Stochastic Search Variable Selection

Stochastic Search Variable Selection (George and McCulloch, 1993, SSVS) was the first MCMC

sampling approach to variable selection. It was developed by George and McCulloch (1993)

and has since been applied extensively, including for Bayesian VAR estimation (George et al.,

2This is a convenient alternative to the common practice of doing a pilot run for the unrestricted model,
taking advantage of the closed-form availability of conditional posterior moments for λ.
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2008). The idea here is that those parameters that are excluded from the model are taken to

be from a prior that is a tight distribution around zero.

Formally, the parameter prior is specified as the following normal mixture: P (λi|γi) = (1−
γi)N(0, τ 20i) + γiN(0, τ 21i). This can be obtained from the multivariate normal prior P (λ|γ) =

N(0, DγRDγ), where Dγ is a diagonal matrix with elements (1 − γi)τ0i + γiτ1i, and R is a

correlation matrix, here equal to the identity matrix due to prior conditional independence.

Intuitively, for included elements the prior variance, τ 21i, is chosen large so that the posterior

estimate is informed by the data, while for excluded elements the prior variance, τ 20i, is set

to a small value, so that posterior estimates are close to zero. Following common practice, I

choose these variances to be multiples of the variance of the least-squares estimates for the

unrestricted model: τ0i = c0σ̂λi and τ1i = c1σ̂λi , where c0 and c1 are tuning parameters.

Specifically, I will set c1 =
√
g, in line with the prior specification for the other samplers, and

c0 = 1/c1. These choices leads to good convergence speed.

In iteration j, first λ is drawn conditional on the values for all other parameters from

iteration j − 1. All elements of λ are drawn simultaneously in a Gibbs step from the normal

conditional posterior distribution, whose moments are given in Appendix C.2. Note that the

prior covariance matrix is DγRDγ and no zeros are imposed on λ.

The elements of γ are drawn successively, in random order, from their conditional posterior

distributions. Denote by γ
(j)
i the element that is sampled, and by γ

(j)
−i all remaining elements.

The success probability of the Bernoulli conditional posterior is determined by:

P (γ
(j)
i = 1|λ(j), θ(j−1)− , γ

(j)
−i )

P (γ
(j)
i = 0|λ(j), θ(j−1)− , γ

(j)
−i )

=
P (λ(j)|γ(j)i = 1, γ

(j)
−i , θ

(j−1)
− )

P (λ(j)|γ(j)i = 0, γ
(j)
−i , θ

(j−1)
− )

· P (γ
(j)
i = 1)

P (γ
(j)
i = 0)

=
(τ1i)

−1 exp(−.5(λ
(j)
i /τ1i)

2)

(τ0i)−1 exp(−.5(λ
(j)
i /τ0i)2)

,

where the second line follows from the prior conditional independence of the elements of λ

and the equal prior model probabilities. This ratio does not depend on the data because in

the SSVS approach, γ affects the likelihood only through λ.

E.3 Reversible-jump Markov chain Monte Carlo

The Reversible-jump Markov chain Monte Carlo (RJMCMC) sampler developed by Green

(1995) allows moves between parameter spaces of different dimensionality, and therefore can

deal with the setting in which the prior of the excluded elements of λ is simply a point mass

at zero. This approach is extremely flexible, allowing for different types of moves between
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models. I adapt the local reversible-jump sampler of Dellaportas and Forster (1999), where

only local moves are considered. Denote the current state of the chain by (λ(j), γ(j), θ
(j)
− ). First

the decision is made between a “null move” (a within-model move) and a “jump move” (a

between-model move). With 25% probability a null move is undertaken, in which γ remains

unchanged and λ is updated using a Gibbs step. If a jump move is attempted, a proposal

for (λ′, γ′) is constructed by changing only one parameter. The index of the element to be

changed, i, is randomly chosen. If γ
(j)
i = 0, then the element is added to the model, otherwise

it is deleted. When the move involves adding a parameter to the model, the proposal is

λ′ = g(λ(j), u), where u is a scalar drawn from the proposal density qi(u), taken to be N(µi, σ
2
i ),

and g(·) is the identity transformation (such that λ′i = u). The acceptance probability is

α(λ(j), γ(j), θ
(j)
− , λ

′, γ′) =
P (Y |λ′, γ′, θ(j)− )

P (Y |λ(j), γ(j), θ(j)− )

P (λ′|γ′)
P (λ(j)|γ(j))

P (γ′)

P (γ(j))

1

qi(u)

=
P (Y |λ′, γ′, θ(j)− )

P (Y |λ(j), γ(j), θ(j)− )

v
1/2
i exp(−u2/vi)

σi exp(−(u− µi)2/σ2
i )

where the second line follows from prior conditional independence and equal prior model

probability.3 When an element is deleted from the model, we have (λ′, u′) = g(−1)(λ(j)),

meaning that λ′ now has a zero at the i-th position, and λ
(j)
i = u′. In this case,

α(λ(j), γ(j), θ
(j)
− , λ

′, γ′) =
P (Y |λ′, γ′, θ(j)− )

P (Y |λ(j), γ(j), θ(j)− )

σi exp(−(u′ − µi)2/σ2
i )

v
1/2
i exp(−u′2/vi)

.

The choice of the proposal distributions plays an important role for the efficiency of the

sampler. Ideally, they should be close to the conditional posteriors (Goodsill, 2001, Sec. 2.3.2).

Here, the parameter conditionals for each element of λ are in fact available in closed form,

based on standard results.4 I use the moments of these conditional posterior distributions,

calculated anew in each iteration for the chosen element i, for µi and σ2
i . The resulting sampler

achieves good efficiency in that it jumps between models frequently.

3As for GVS, the ratio of the likelihoods only requires calculating the P-likelihood.
4Consider the relevant equation in the system Xt − EQt−1Xt = λ0 + λ1Xt−1 + Σεt. After subtracting all

terms not involving the parameter of interest λi, the conditional posterior moments for λi follow from standard
results for univariate Bayesian regression—see also Geweke (1996) and Kuo and Mallick (1998).
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F Details and additional results for simulation study

The data used to estimate parameters for the DGP is described in Section 4. I estimate a two-

factor DTSM on this data—the two factors correspond to level and slope of the yield curve. To

construct the DGP, I first obtain the maximum likelihood estimates for the unrestricted model,

and determine which elements of λ are significantly different from zero at the 5% level. Only

one out of six parameters is significant. Then in a second step I obtain maximum likelihood

estimates of the model which restricts the other five parameters to zero. The parameters

estimated in this way are used in the DGP. The risk risk-price parameters are

λ0 =

(
0

0

)
λ1 =

(
0 −0.0375

0 0

)
,

and the remaining parameters are kQ∞ = 4.9 · 10−5, φQ = (0.9916, 0.9750), σe = 2/120000 (2

basis points), and Σ = ((2.2 · 10−4, 0.6 · 10−4)′, (0, 1.2 · 10−4)′). The results are discussed in

Section 3 of the paper.

In additional, unreported results, I have found that for longer sample sizes, the model-

selection samplers become even more accurate in recovering the DGP specification when longer

samples are simulated. This indicates that small samples make it more difficult to correctly

identify risk price restrictions, consistent with the notion that small-sample bias plays a role

for both parameter estimates and model selection.

While the DGP described above is chosen based on actual estimates in the data, with

many risk-price parameters restricted to zero, it may be of some interest to also consider a

DGP that leaves all risk-price parameters unrestricted. In this case, there is unfortunately no

obvious way to choose the risk-price parameters. The ML estimates are close to zero for most

risk-price parameters, and simulating from such a model, where elements of λ are non-zero

but very small, would make it impossible for any model selection algorithm to identify all

parameters as truly non-zero. The DGP risk-price parameters therefore have to be chosen in

some other way. I do so by setting them to equal values in absolute magnitude, choosing this

magnitude to be roughly economically reasonable, and taking into account the restriction that

these values do not make the VAR explosive. This leads me to the following parameters:

λ0 = 1200−1

(
.1

.1

)
λ1 =

(
−.1 −.1
.1 −.1

)
.

The remaining DGP parameters are the ML estimates for the unrestricted model, which after

rounding are the same as those reported above. The results for model selection in the simu-
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lated yield data are shown in Table A.1. Bayesian model selection still does reasonably well,

even though choosing restrictions from estimates of the unrestricted model is now somewhat

more accurate. Specifically, choosing a preferred model based on 95%-CIs for the risk-price

parameters from the unrestricted estimation leads to the correct, unrestricted model in 73 out

of 100 simulated samples. Choosing the modal model based on the posterior model proba-

bilities from SSVS, GVS, and RJMCMC leads to the correct model in only 46-48 out of 100

samples. The model prior plays a role in explaining this result. Since it puts equal probability

on each parameter being unrestricted or restricted, it leads to a Binomial distribution over

the number of unrestricted parameters with a mean of three (see Section 2.4). Hence even

if the likelihood favors six unrestricted parameters, the posterior will tend to favor at least

some restrictions due to the prior. It is not possible to specify a completely uninformative

model prior in Bayesian variable selection. One could increase the prior probability of inclu-

sion for the risk-price parameters, in order to favor less restrictive models (Chipman et al.,

2001; Clyde and George, 2004) if there are a priori reasons to do so. However, in the context

of term structure models there are no such reasons—on the contrary, one might want to in-

stead impose more parsimony via the prior to make better use of no-arbitrage via additional

risk-price restrictions.

In sum, the results of the simulation study show that my Bayesian model selection samplers

do reasonably well for alternative DGP specifications. For a plausible DGP based on estimates

from the data, this approach accurately infers the true model specification. It is possible to

write down DGPs for which model choice based on posterior CIs from the estimation of

an unrestricted model performs better than joint-model-parameter sampling, but the latter

approach still performs satisfactory. Of course, only joint-model-parameter sampling can

appropriately incorporate model uncertainty in this context.

G Excess bond returns

The continuously compounded return of holding an n-period bond for h periods, in excess of

the risk-free rate, is

rx
(n)
t,t+h = −(n− h)yn−ht+h + nynt − hyht .

For fitted excess returns, calculated using model-implied yields, we have

r̂x
(n)
t,t+h = −(n− h)ŷn−ht+h + nŷnt − hŷht

= An−h −An +Ah + B′n−hXt+h − (Bn − Bh)′Xt.
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Fitted excess returns are generally close to observed excess returns, because of the accurate

cross-sectional yield fit of the models considered in this paper.

The time-t model-implied expected excess return is

Etr̂x
(n)
t,t+h = An−h −An +Ah + B′n−hEtXt+h − (Bn − Bh)′Xt

= An−h −An +Ah + B′n−h[(IN − Φh)E(Xt) + ΦhXt]− (Bn − Bh)′Xt

= An−h −An +Ah + (B′n−h − B′n + B′h)E(Xt) + (B′n−hΦh − B′n + B′h)(Xt − E(Xt)),

and the surprise component of the excess return is

r̂x
(n)
t,t+h − Etr̂x

(n)
t,t+h = B′n−h(Xt+h − EtXt+h) = B′n−h

h∑
i=1

Φh−iΣεt+i,

see also equation (11) of Duffee (2011).

To gain some intuition about the model’s implications for returns, consider the one-period

excess return, which can be written as follows:

r̂x
(n)
t,t+1 = −1

2
B′n−1ΣΣ′Bn−1 + B′n−1Σλt + B′n−1Σεt+1. (4)

The first term, which corresponds to 1
2
V art(r̂x

(n)
t,t+1), is due to convexity. The second term

captures the actual risk compensation for level, slope, and curvature risk. This can be seen by

rewriting it as λ′tCovt(εt+1, r̂x
(n)
t,t+1), the product of the prices of risk and the quantities of risk.

In a Gaussian model, quantities of risk are constant, and time-variation in expected returns

is due exclusively to movements in λt. The third term in equation (4) captures the surprise

component of the excess return.

Consider now the predictability regression in Section 5.3, for which we want to derive the

model-implied R2. Because the regressors correspond to the risk factors in the DTSMs, the

population R2 is equal to the variance of model-implied expected excess returns divided by

the variance of model-implied realized excess returns, i.e.,

R2
pop =

V ar(Etr̂x
(n)
t,t+h)

V ar(r̂x
(n)
t,t+h)

.

The variance of expected excess returns is given by

V ar(Etr̂x
(n)
t,t+h) = (B′n−hΦh − B′n + B′h)V ar(Xt)(B′n−hΦh − B′n + B′h)′.
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The unconditional covariance matrix is calculated using V ar(Xt) = (IN2 −Φ⊗Φ)−1vec(ΣΣ′).

The variance of realized excess returns is

V ar(r̂x
(n)
t,t+h) = V ar(Etr̂x

h
t,t+h) + B′n−h

(
h∑
i=1

Φh−iΣΣ′(Φh−i)′

)
Bn−h.

Since yield loadings are very similar across models, differences in model-implied return pre-

dictability are due to differences in Φ, which in turn stem from differences in λ1.

14



References

Carlin, Bradley P. and Siddartha Chib (1995) “Bayesian Model Choice via Markov Chain

Monte Carlo Methods,” Journal of the Royal Statistical Society. Series B (Methodological),

Vol. 57, pp. 473–484.

Chib, S. and B. Ergashev (2009) “Analysis of Multifactor Affine Yield Curve Models,” Journal

of the American Statistical Association, Vol. 104, pp. 1324–1337.

Chib, Siddhartha and Edward Greenberg (1994) “Bayes Inference in Regression Models With

ARMA(p,q) Errors,” Journal of Econometrics, Vol. 64, pp. 183–206.

Chib, Siddhartha and Srikanth Ramamurthy (2010) “Tailored randomized block MCMC meth-

ods with application to DSGE models,” Journal of Econometrics, Vol. 155, pp. 19–38.

Chipman, Hugh, Edward I. George, and Robert E. McCulloch (2001) “The Practical Imple-

mentation of Bayesian Model Selection,” in P. Lahiri ed. IMS Lecture Notes – Monograph

Series, Vol. 38: Institute of Mathematical Statistics, pp. 65–116.

Clyde, Merlise and Edward I. George (2004) “Model Uncertainty,” Statistical Science, Vol. 19,

pp. 81–94.

Dellaportas, Petros and Jonathan J. Forster (1999) “Markov chain Monte Carlo model deter-

mination for hierarchical and graphical log-linear models,” Biometrika, Vol. 86, pp. 615–633.

Dellaportas, Petros, Jonathan J. Forster, and Ioannis Ntzoufras (2002) “On Bayesian model

and variable selection using MCMC,” Statistics and Computing, Vol. 12, pp. 27–36.

Duffee, Gregory R. (2011) “Information In (and Not In) the Term Structure,” Review of

Financial Studies, Vol. 24, pp. 2895–2934.

Gamerman, Dani and Hedibert F. Lopes (2006) Markov Chain Monte Carlo: Chapman &

Hall/CRC, 2nd edition.

George, Edward I. and Robert E. McCulloch (1993) “Variable Selection Via Gibbs Sampling,”

Journal of the American Statistical Association, Vol. 88, pp. 881–889.

George, Edward I., Dongchu Sun, and Shawn Ni (2008) “Bayesian stochastic search for VAR

model restrictions,” Journal of Econometrics, Vol. 142, pp. 553–580.

15



Geweke, John (1996) “Variable selection and model comparison in regression,” in J. M.

Bernando, J. O. Berger, A. P. Daviw, and A. F. M. Smith eds. Bayesian Statistics 5:

Oxford University Press, pp. 609–620.

Godsill, Simon J. (2001) “On the Relationship Between Markov Chain Monte Carlo Methods

for Model Uncertainty,” Journal of Computational and Graphical Statistics, Vol. 10, pp.

230–248.

Goodsill, Simon J. (2001) “On the Relationship Between Markov Chain Monte Carlo Methods

for Model Uncertainty,” Journal of Computational and Graphical Statistics, Vol. 10, pp.

230–248.

Green, Peter J. (1995) “Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination,” Biometrika, Vol. 82, pp. 711–732.

Joslin, Scott, Marcel Priebsch, and Kenneth J. Singleton (2014) “Risk Premiums in Dynamic

Term Structure Models with Unspanned Macro Risks,” Journal of Finance, Vol. 69, pp.

1197–1233.

Kuo, Lynn and Bani Mallick (1998) “Variable selection for regression models,” Sankhya Ser. B,

Vol. 60, pp. 65–81.

Lütkepohl, Helmut (2006) New introduction to multiple time series analysis: Springer Verlag.
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Table A.1: Simulation study for alternative unrestricted DGP: risk-price restrictions

Element of γ Freq. of
(1) (2) (3) (4) (5) (6) corr. model

DGP 1 1 1 1 1 1

MCMC 0.99 1.00 0.92 1.00 0.81 1.00 73%
SSVS 0.86 0.99 0.75 0.96 0.69 0.96 46%
GVS 0.86 0.99 0.75 0.95 0.69 0.96 47%
RJMCMC 0.85 0.99 0.72 0.94 0.71 0.95 48%

Risk-price specification of the data-generating process (DGP), and estimation results in simulated
data. For MCMC (estimation of unrestricted model), the fraction of samples in which the
95%-credibility interval for the corresponding element of λ did not straddle zero. For
model-selection samplers, average posterior means for γ across simulations. Last column shows the
percentage of samples in which the correct model was chosen—for MCMC model choice is based on
95%-credibility intervals and for the model-selection samplers on posterior model probabilities.
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