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Motivation (1)

Understand regulation’s impact on geographic concentrations
of production

• Important consequence of many regulations

• In this paper’s setting in the electricity sector:

- No changes in a static setting

- Can change with dynamics

Weber Dynamic Responses to Carbon Pricing 2 / 33



Introduction Empirical Setting Model Estimation Results Conclusion

Motivation (2)
Does carbon pricing exacerbate hot spots?

• Source of political debate

• Theoretically possible

• Outcomes depend on the cost structure of industry
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Research questions: How does carbon pricing impact the
spatial distribution of local air pollution?

1. Does carbon pricing lead to production re-allocation?

2. Does carbon pricing impact firm efficiencies?

3. How does the carbon price redistribute local air pollutants
compared to a no/more stringent carbon policy scenario?

4. How do market outcomes compare to a more targeted policy
to internalize air pollution costs?

This paper answers these questions in the electricity industry in
California.
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Why this empirical setting?

Why California?

• Implemented cap-and-trade program in 2013

• On-going debates around equity impacts of the program

Why electricity?

• 16% (28%) of greenhouse gas (GHG) emissions in CA
(US); large share of non-transportation sources in CA (US):
30% (39%); also contributes to local air pollution

Emissions by source

• Relatively competitive industry, inelastic demand in
short-term, dynamic production decisions
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Previous work

• GHG and local air quality

Meng & Hernandez-Cortes (w.p. 2019); Walsh (w.p. 2018)
Policy reports: Parry et al. (IMF 2014); Cushing et al. (2018)

• Emissions trading and local air quality

Fowlie, Holland, and Mansur (2014); Fowlie (2010); Muller and
Mendelsohn (2007)

• Electricity markets

Borenstein, Bushnell, and Wolak (2002); Mansur (2008); Mansur and
Cullen (2015); Fabra and Reguant (2014)

• Model and estimation

Rust (1987); Hopenhayn (1992); Ryan (2012); Fowlie, Reguant, and
Ryan (2016); Cullen (2015); Cullen and Reynolds (2017)
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Industry characteristics that motivate modeling choices

• Fossil-portfolio is dominated by natural gas

Unit summary statistics

• Relatively competitive market

- Market significantly reformed since earlier work

• Most electricity bought and sold in hourly wholesale markets

- Substantial variation in hourly demand

• Hourly demand inelastic to wholesale prices in the short term

• Start-up costs make production a dynamic decision Hourly profits
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Supply and demand in hourly markets

Example empirical supply curve
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Impact of carbon price on marginal costs

Firm efficiency, ωi, fuel per KWh, determines marginal
costs, mci .

mci = ωic
f + ωie

f τ

∂

∂τ
mci = ωie

f
(1)

Carbon price increases marginal costs more for less efficient
units.

• ωi : Btu per KWh (heat rate)

• cf : $ per Btu (fuel price)

• ef : emissions per Btu (emissions intensity)

• τ : $ per ton CO2e (carbon price)
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Impact of carbon price in static setting
When marginal costs completely determine supply curve, carbon
price preserves merit order → no production re-allocation.

Start-up costs, κ, allow for production re-allocation.
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Impact of carbon price in dynamic setting

Consider two inframarginal firms A and B with same q and same total
costs:

κA +mcAq = κB +mcBq

mcA < mcb

→ κA > κB

(2)

• Carbon price increases marginal costs more for firm B since mcA < mcB

• What happens to κ? Start-up costs dominated by non-fuel components

• ⇒ A is now more likely to operate.

Average generation and CO2 by unit by hour Engineering estimates of start up costs by component
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Data
Electricity market data

• Production quantities: Unit-specific hourly electricity output from
continuous emissions monitoring systems (CEMS)

• Emission quantities: Hourly emissions of NOx, SO2, and CO2 from
CEMS → emissions intensities

• Unit capacities: EIA reporting requirements

• Unit efficiency (heat rate): EIA reporting requirements; inferred
measure from CEMS → inferred measure of efficiency investment

• Investment costs: Some self-reported capital expenditures from SNL
Financial → use to bound estimate of investment costs

• Prices: Carbon allowance prices from the Intercontinental Exchange
(ICE); fuel prices from federal reporting requirements and Bloomberg
spot prices → average input costs

Marginal damages from air pollutants

• Damages from air pollution: County-specific estimates of marginal
damages by pollutant from Air Pollution Emission Experiments and Policy
(APEEP) analysis model (Muller et al. 2019)
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Model & estimation overview

1. Timing

2. Production decision

3. Investment decision

4. Cost minimization problem

5. Identification

6. Calibration

7. Estimation procedure
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Firm optimization problem and timeline
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Firm optimization problem and timeline
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Firm production decision

Firm i makes operating decision ait ∈ {0, 1} → qit :

qit =

⎧⎪⎨
⎪⎩

qimax if Pt ≥ mci and ait = 1

qimin if Pt < mci and ait = 1

0 if ait = 0

(3)

• qit : MWh produced by firm i if hour t

• qimax(min): unit-specific max (min) Kernel density generation plots

• Pt : wholesale electricity price in hour t

• mci : ωi c
f + ωi e

f τ
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Per period profits

πt(qit ,Pt ,mci , lit) = ⎧⎪⎨
⎪⎩

qit(Pt −mci ) if ait = 1 and lit = 1

qit(Pt −mci )− κi if ait = 1 and lit = 0

0 if ait = 0

(4)

• lit : ait−1 (lagged operating state)

• κi : start-up costs

Observe everything except κi
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States and transitions in production problem

States

s = {ηt , ht , lit , ωj
i , ic}

{demand shock, hour, lag operating state, efficiency, input costs}

Transitions

ηt+1 = f (ηt |ht) - conditional AR (1)

ht+1 = ht + 1− 1(ht = 24) ∗ 24
lit = ait−1

Deterministic states

ic = c f + ef τ

mc(ωi )|ji
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Choice-specific value functions for production

Value function for each j investment decision:

V 2j(ηt , ht , lit , ω
j
i , ic) =

max
ait∈{0,1}

E

{ ∞∑
t=0

δt [qit(P(ηt)−mc(ωj
i , ic))− (lit = 0, ait = 1) · κi ]

}

(5)

• j : discrete investment choice

• ht : hour of the day

• ic: inputs cost = carbon price τ + fuel costs cf

• δ: discount rate, exogenous and known
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Efficiency investment decision

V 1(s) = max
j∈J

{δ̃E[V 2j(s)]− Γ(ji , vi )} (6)

Γ = γjαi + vi (7)

• γ: investment cost per unit of ji

• α: parameter governing the rate at which marginal investment costs
increase in size of investment

• vi : stochastic shock to investment costs

• δ̃: discount rate between investment and production

One-time investment decision to minimize production costs
over next three years.
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Estimating the model as the solution to a cost
minimization problem

• Use cost minimization problem as a mechanism to find
competitive equilibrium outcomes.

• Equivalence demonstrated to hold in this setting by
Cullen and Reynolds (2017); proof follows intuition in
earlier work (Lucas and Prescott (1971), Jovanovic (1982),
and Hopenhayn (1992)).

• Necessary conditions: Firms are price taking,“small” relative
to market demand, and have rational expectations about
future demand shocks; the demand shock process is consistent
over time.
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The cost minimization problem

• Per period costs of generation G :

G =
N∑
i=1

[mciqi − (lit = 0, ait = 1) · κi ] (8)

• In production decision:

W j2(s) = max
q∈Q

{−G (s,q) + δ [W 2j(s′)]} (9)

• In investment decision:

W 1(s) = max
j∈J

{δ̃ [W j2(s)]− Γ(j , v)} (10)
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Identification and estimation strategy for unknown
parameters

• Start-up costs, κi
Identification: Based on the difference between empirical
production and the solution to the cost minimization problem.

Estimation: Estimates from literature; generalized method of
moments (GMM).

Estimation procedure

• Investment costs, γ
Identification: Based on observed investment and the solution
to the cost minimization problem.

Estimation: Capital expenditures in SNL data; compare
production cost savings to investment conditional choice
probabilities (ICCPs).

Estimation procedure
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Calibrate the model to California’s fossil-fuel electricity
portfolio

Use data to establish representative unit type groups

Kmeans and Scree plot analysis
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Overview of estimation procedure

1. Estimate demand shock process Demand shock process results .

2. Recover policy functions for production using policy function iteration
and initial estimate of start-up costs.

3. Simulate market outcomes with recovered policy functions.

4. Estimate start-up costs by comparing simulations to empirical production.

5. Estimate investment costs by comparing simulated production cost
savings to ICCPs.

6. Simulate counterfactual outcomes in different input cost states.
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Theoretical predictions

1. Market share, ζi , weakly decreasing among less efficient

units, ∂2ζi
∂τ∂ωi

≤ 0.

Intuition: Carbon price increases marginal cost more for less

efficienct units, ∂2mci
∂τ∂ωi

> 0.

2. Investments weakly increase and occur among the more
efficient units.

Intuition: Carbon price increases returns to efficiency
improvement; returns are larger when operating more.
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Comparing market outcomes across carbon prices

• Simulate production and investment across alternative input
cost states, τ = {$0, $13, $42} per ton CO2e .

Model fit
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Production re-allocation across carbon prices
• Current carbon prices lead to minimal spatial re-allocation of

production and emissions.

• Higher carbon prices do re-allocate production, increasing for units
with relatively higher fixed start-up and lower marginal costs.
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High carbon price outcomes by pre-existing pollution score
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Market outcomes with location-specific air pollution tax
and carbon policy

Tax on local air quality leads to new marginal cost for unit type i
in locality k :

mcik = ωi (c
f + ef τghg ) + ωi ιτ

x
k (11)

• ι: NOx emissions per Btu

• τ x
k : tax on NOx for units in locality k
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Impact of tax on marginal costs
Location-specific tax leads to re-ranking of unit types in terms of
marginal cost → change in market shares.
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Pigovian tax on local air pollution scenario

• Changes in marginal cost
ranking and leads to more
production re-allocation
compared to high carbon
price scenario, increasing
air pollution benefits.

• Concentrates air
pollution benefits in
communities with larger
pollution burdens.

Weber Dynamic Responses to Carbon Pricing 31 / 33



Introduction Empirical Setting Model Estimation Results Conclusion

Market outcomes across investment portfolios
Gross private returns increase in carbon price for many but not all
scenarios.
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Conclusion
• Current carbon policy scenario: minimal spatial
re-allocation of production → minimal co-benefits (and
co-costs) from local air quality impacts.

• Stringent carbon policy scenario: some spatial re-allocation
of production → aggregate co-benefits from avoided NOx

damages; some evidence of benefits accruing in heavily
polluted regions

• Pigovian tax on NOx scenario: increases the benefits from
NOx damages avoided; concentrates benefits in
disproportionately polluted regions.

• Efficiency investment scenarios: largest benefits when
efficiency improvements occur in the cleanest, most frequently
utilized units.
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Appendix

Electricity’s contribution to GHG emissions

Source: U.S. EPA (2016), California Air Resources Board (2016).

Back to empirical setting
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Unit summary statistics, CA 2012 - 2015

Back to industry context
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Large unobserved start-up costs make production decisions
dynamic

Back to industry context
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Supply curve for illustrative hour in CA

Source: Data from SNL

Back to supply and demand
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Demand shock process (1)

AR (1) specification conditional on hour is highly predictive of next
period demand.

Back to estimation overview
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Demand shock process (2)
Residual demand provided by fossil-fuel portfolio varies significantly
throughout the day, with “duck”-like shape.

Error bars show the 25th to 75th percentile of hourly demand shocks.

Back to estimation overview
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Kernel density plots of generation for sample units

2013, Q2

Production decision
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Identifying number of unit type groups
Use k-means and scree plot analysis to establish unit type groups.

Performance of K-means Clustering by Number of Groups

Back to Calibration
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Estimating start-up costs with GMM

• Assemble N-length vectors of empirically observed dispatch by unit type
in each state, qe(s).

• Assemble N-length vectors of dispatch implied by production for given
start-up costs from the model, q∗(s, κ0).

• Construct a S-length vector of moments corresponding to S number of
like states: g(s, κ0) =

∑N
i=1(q

∗(s, κ0)− qe(s))2.

• Estimate κ̂:

Z(κ) = g(s, κ)′Ŵ g(s, κ)

κ̂ = argmin
κ∈κ

Z(κ)
(12)

• κ is the set of positive real numbers

• Ŵ is estimated as (g(s, κ̂)g(s, κ̂)′)−1

Back to Identification
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Estimating investment costs with ICCPs
• Recover policy functions for production across J investment scenarios.
• Simulate market outcomes; sum discounted production costs for three years for

each investment scenario, V j .
• Draw an initial investment cost γ0; select optimal investment policy based on

the simulated production costs, V j , and the investment costs, Γ(j, v, γ):

j∗(γ0) = argmax
j∈J

(V j + Γ(j, v, γ0)). (13)

• Use data to estimate investment conditional choice probabilities (ICCPs) across
c unit investment types.

• Use ICCPs to simulate S discrete investment moments, c-length vectors of
investment decisions by unit type; jsim denotes the c by S matrix of simulated
moments.

• Assemble g(·, γ0) = (jsim − j∗(γ0))2, squared deviations from the simulated
moments and optimal investments based on simulated production costs.

• Reshape g(·, γ0) into a M-sized vector; estimate γ̂:

Q(γ) = g(·, γ)′Ŵ g(·, γ)
γ̂ = argmin

γ∈Θ
Q(γ) (14)

• Θ is the set of positive real numbers; Ŵ is estimated as (g(γ̂)g(γ̂)′)−1

Back to Identification
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Model fit Back to Results

• Total generation sensitive to demand shock discretization;

• Market shares not statistically different from empirical dispatch for most
firm types, with exceptions for some higher cost units;

• Fit expected to improve with own estimate of start-up costs.
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Average unit generation and emissions by hour

Back to Impact of carbon price in dynamic setting
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Engineering estimates of start-up costs

Back to Impact of carbon price in dynamic setting
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