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Abstract

This paper examines welfare-maximizing monetary policy in an estimated micro-founded

general equilibrium model of the U.S. economy where the policymaker faces uncer-

tainty about model parameters. Uncertainty about parameters describing preferences

and technology implies uncertainty about the model’s dynamics, utility-based welfare

criterion, and the “natural” rates of output and interest that would prevail absent nom-

inal rigidities. We estimate the degree of uncertainty regarding natural rates due to

parameter uncertainty. We find that optimal Taylor rules under parameter uncertainty

respond less to the output gap and more to price inflation than would be optimal absent

parameter uncertainty. We also show that policy rules that focus solely on stabilizing

wages and prices yield welfare outcomes very close to the first-best.
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1 Introduction

This paper examines welfare-maximizing monetary policy in an estimated dynamic stochas-

tic general equilibrium (DSGE) model of the U.S. economy where the central bank faces

uncertainty about the values of model parameters. The design of optimal monetary policy

depends on the nature of the dynamics of the economy, the natural rates of output and

interest, and the central bank objective function. Traditional analysis of monetary policy

under uncertainty has treated these three factors as independent and studied them in isola-

tion (see, for example, Brainard 1967, and Rudebusch 2001). But, modern micro-founded

models imply that the structural parameters describing preferences and technology jointly

determine all three factors. Therefore, an analysis of monetary policy under parameter un-

certainty requires that these consequences of parameter uncertainty be analyzed in unison.

Recent papers by Giannoni (2002), Levin and Williams (2005), and Levin, Onatski,

Williams and Williams (2005; henceforth LOWW), have studied monetary policy under

parameter uncertainty in micro-founded models. The latter two papers imposed the linkage

between parameter uncertainty and uncertainty about the welfare costs of fluctuations,

but neither examined the role of natural rate uncertainty in the design of optimal policy.

Aoki and Nikolov (2004) highlighted the connection between parameter uncertainty and

uncertainty about the natural rate of interest—defined to be the real interest rate that

would prevail absent nominal rigidities—but did not explore further the role of natural

rates in the design of optimal policy under uncertainty.

We use a small estimated micro-founded model as a laboratory to explore how param-

eter uncertainty and the associated uncertainty about natural rates and welfare costs of

fluctuations affects the design of optimal monetary policy. We use the estimated covariance

of model parameters as a measure of parameter uncertainty. We analyze the implications of

parameter uncertainty on policy design and outcomes, from the perspective of a Bayesian

policymaker who aims to maximize expected household welfare. We first show that parame-

ter uncertainty implies a non-trivial degree of uncertainty about the natural rates of output

and interest and that natural rate misperceptions on the part of the central bank are likely

to be persistent. We then show that optimal Taylor rules under parameter uncertainty

respond less to the output gap and more to price inflation than would be optimal absent

parameter uncertainty. This conclusion is consistent with that found in the literature on

optimal Taylor (1993) rules using traditional models, despite the very different analytical
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frameworks (see Orphanides and Williams, 2002, and references therein). Finally, we show

that policy rules that respond solely to wage and price inflation perform better than the

optimized Taylor rule and yield welfare outcomes very close to the first-best.

The remainder of the paper is organized as follows. Section 2 describes the model that

we use for our analysis. Section 3 describes the model estimation and reports the results.

Section 4 examines optimal monetary policy assuming model parameters are known. Section

5 considers optimal policy under parameter uncertainty. Section 6 reexamines the design

of optimal policy using an alternative model of nominal rigidities. Section 7 concludes.

2 The Model

Our analysis uses a small micro-founded model with various frictions that interfere with

instantaneous full adjustment of quantities and prices to shocks. To make the analysis

tractable, we abstract from many features present in recently developed larger DSGE mod-

els, such as investment, fiscal policy, and international trade (see, for example, Christiano,

Eichenbaum, and Evans, 2005, Smets and Wouters, 2003, and Lubik and Schorfheide, 2005).

We leave for future work the extension of our analysis to richer models.

We first present the model’s preferences and technology and then describe the firms’

and households’ optimization problems. Mathematical descriptions of these problems are

given in Appendix A along with the model’s nonlinear and linearized first order conditions

and steady-state solution. Throughout, we denote the log of variables by lower case letters.

2.1 The production technology

The economy’s final good, Yf,t, is produced according to the Dixit-Stiglitz technology,

Yf,t =

(∫ 1

0
Yf,t(x)

Θp,t−1

Θp,t dx

) Θp,t

Θp,t−1

, (1)

where Yf,t(x) denotes the quantity of the xth differentiated goods used in production and

Θp,t is the time-varying elasticity of substitution between the production inputs.

Final goods producers obtain their production inputs from the economy’s differentiated

intermediate goods producers who supply an output Ym,t(x). Not all of the differentiated

output produced by the intermediate goods producers is realized as final goods’ inputs; some

output is absorbed in price formulation, following the adjustment cost model of Rotemberg
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(1982). We modify the Rotemberg model so that the cost of adjusting prices is relative to a

rule of thumb price adjustment equal to a weighted average of steady-state inflation and last

period’s inflation rate. In this way, we allow for intrinsic inertia in inflation. Specifically,

the relationship between Yf,t(j) and Ym,t(j) is given by

Yf,t(j) = Ym,t(j) −
χp

2

(
Pt(j)

Pt−1(j)
− (1 − γp)Πp,∗ − γpΠp,t−1

)2

Ym,t, (2)

where the second term in (2) denotes the cost of setting prices, Pt(j) is the price charged by

firms j for a unit of its output, Πp,∗ is the steady-state price inflation rate, and Πp,t−1 is the

lagged price inflation rate. Our choice of quadratic adjustment costs for modeling nominal

rigidities contrasts with that of many other recent studies, which rely instead on staggered

contracts as in Calvo (1983). The first-order dynamics of prices and wages are identical

to those derived from Calvo-based models. The second-order approximation to welfare,

however, differs between the quadratic adjustment cost model and the Calvo-based model

and we examine the properties of optimal policies with a Calvo-based model in section 6.

The differentiated intermediate goods, Ym,t(j) for j ∈ [0, 1], are produced by combining

each variety of the economy’s differentiated labor inputs that are supplied to market activ-

ities (that is, {Ly,t(z)} for z ∈ [0, 1]). The composite bundle of labor, denoted Ly,t, that

obtains from this aggregation implies, given the current level of technology At, the output

of the differentiated goods, Ym,t. Specifically, production is given by,

Ym,t(j) = AtLy,t(j) where Ly,t(j) =

(∫ 1

0
Ly,t(x, j)

Θw,t−1

Θw,t dx

) Θw,t

Θw,t−1

. (3)

where Θw,t is the time-varying elasticity of substitution between the differentiated labor

inputs. The log-level of technology, At, is modeled as a random walk:

lnAt = lnAt−1 + ǫA,t, (4)

where ǫA,t is an i.i.d. innovation. We abstract from trend growth in productivity.

2.2 Preferences

Households own shares in the firms in the economy. They derive utility from their purchases

of the consumption good Ct and from their use of leisure time, equal to what remains

of their time endowment L̄ after 0 ≤ Lu,t(i) ≤ L̄ hours of labor are allocated to non-

leisure activities. We assume the household members live forever and there is no population
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growth. Household preferences exhibit an additive habit (equal to a fraction η ∈ [0, 1]

of its consumption last period) and are nonseparable between consumption and leisure.

Specifically, preferences of household i are given by

E0
1

1 − σ

∞∑

t=0

βtΞc,t

[
(Ct(i) − ηCt−1(i))(L̄ − Lu,t(i))

ζ
]1−σ

, (5)

where β is the household’s discount factor and Ξc,t a stochastic preference shifter that is

assumed to follow an AR(1) process in logs. The economy’s resource constraint implies that
∫ 1
0 Ct(x)dx ≤ Yf,t, where Yf,t denotes the output of the economy’s final good.

Household i supplies Ly,t(i) hours to the labor market and devotes time to setting wages.

Consequently, time allocated to non-leisure activities, Lu,t(i), is given by

Lu,t(i) = Ly,t(i) +
χw

2

(
Wt(i)

Wt−1(i)
− (1 − γw)Πw,∗ − γwΠw,t−1

)2

Lu,t, (6)

where the second term in (6) denotes the cost of setting wages in terms of labor time and

is analogous to the cost of setting prices, Wt(i) is the wage charged by household i for a

unit of its time, Πw,∗ is the steady-state wage inflation rate, and Πw,t−1 is the lagged wage

inflation rate.

2.3 Firms’ optimization problems

The final goods producing firm takes as given the prices set by each intermediate-goods pro-

ducer for their differentiated output, {Pt(j)}
1
j=0, and chooses intermediate inputs, {Yf,t(j)}

1
j=0,

to minimize the cost of producing its final output Yf,t, subject to its production technology,

given by equation (1).

Each intermediate-goods producing firm chooses the quantities of labor that it employs

in production and the price that it will set for its output. In deciding the quantities of

the various types of labor to employ, firm j takes as given the wage {Wt(i)}
1
i=0 set by

each household for its variety of labor and chooses {Ly,t(i, j)}
1
i=0 to minimize the cost of

attaining the aggregate labor bundle Ly,t(j) that it needs for production.

In setting its price, Pt(j), the intermediate-goods producing firm takes into account the

demand schedule for its output that it faces from the final goods sectors and the fact—as

summarized in equation (2)—that its price affects the amount of its output that it can

sell to final goods producers. The intermediate-goods producing firm j takes as given the
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marginal cost MCt for producing Ym,t(j), the aggregate price level Pt, and aggregate final-

goods demand Yf,t, and chooses its price Pt(j) to maximize the present discounted value

of its profits subject to the cost of re-setting its price and the demand curve it faces for

its differentiated output. We assume a subsidy on production, equal to (Θp,∗ − 1)−1 that

offsets the distortionary effects of the presence of the markup of prices over costs due to the

presence of monopolistic competition.1

2.4 Households’ optimization problem

The household, taking as given the expected path of the gross nominal interest rate Rt,

the price level Pt, the aggregate wage rate Wt, its profits income, and its initial stock of

bonds, chooses its consumption Ct(i) and its wage Wt(i) to maximize its utility subject to

its budget constraint, the cost of re-setting its wage, and the demand curve it faces for its

differentiated labor. In performing this problem we assume a subsidy on labor supply, equal

to (Θw,∗−1)−1, which, in combination with the production subsidy described above, ensures

that in the absence of nominal rigidities the model’s equilibrium outcome is Pareto optimal.

The model’s subsidies on labor supply and production are funded by lump sum taxes that

are imposed on households by the fiscal authority (which operates in the background of our

model) solely to finance these subsidies.

2.5 Steady-state and natural rate variables

The non-stochastic steady state is summarized by the steady-state levels of the real interest

rate and hours. The steady-state one-period real interest rate is given by R∗ = β−1 while

the steady-state level of hours is given by L∗ =
(
1 + 1−η

1−βη ζ
)−1

L̄. Given the assumed non-

stationarity of the level of technology, in the following we work with normalized variables,

where we normalize the levels of consumption and output by the current level of technology.

The normalized steady-state levels of consumption and output therefore equal the steady-

state level of hours.

The model has a counterpart in which all nominal rigidities are absent, that is, prices

and wages are fully flexible, that is, χp = χw = 0. We refer to the levels of output, hours,

1We acknowledge that such subsidies do not exist in practice, implying that in the real world the steady-

state level of output is inefficient. We leave to future work the study of optimal policy under parameter

uncertainty in an economy characterized by a distorted steady-state allocation.
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and the real one-period interest rate in this equilibrium as the natural rates of output, Ỹt,

hours, L̃t, and interest, R̃t, respectively. We also define log deviations of these variables

from their steady-state values, ỹt ≡ log Ỹt − log Y∗ and r̃t ≡ log R̃t − log R∗. These natural

rates are functions of our model’s structural shocks and are derived in Appendix A.

2.6 Monetary authority

We assume that the central bank uses the short-term interest rate as its instrument, For

estimation purposes, we assume that the short-term interest rate responds to deviations of

price inflation from its steady-state level, πp,t ≡ log Πp,t − log Πp,∗, and to the output gap,

xt = log Yt − log Ỹt. We also allow for policy inertia by including the lagged short-term

interest rate in the feedback equation. In particular, monetary policy is described by

rt = φrrt−1 + (1 − φr) {φpπp,t + φxxt} + ǫr,t, (7)

where rt ≡ log Rt − log R∗, yt ≡ log Yt − log Y∗, and ǫr,t is an i.i.d. policy shock. Note that

we have suppressed the constant that incorporates the steady-state levels of the interest and

inflation rate. In the analysis of optimal monetary policy, we specify a generalized version

of this policy rule, as described in section 4.

2.7 Equilibrium

Our model consists of the first-order conditions (derived in Appendix A) describing firms’

optimal choice of prices and households’ optimal choices of consumption and wages, the

production technology (3), the policy rule (7), the market clearing conditions Yt(j) =
∫ 1
0 Cj,t(i)di ∀j and Lt(i) =

∫ 1
0 Li,t(j)dj ∀i, and the laws of motion for technology and the

preference shock.

3 Estimation

In order to analyze optimal Bayesian monetary policy under parameter uncertainty, we need

a posterior distribution of the model parameters. One approach to obtaining a posterior

distribution, consistent with the Bayesian approach to decision-making we assume for the

policymaker, is to estimate the model using Bayesian methods, as in LOWW and Justiniano

and Preston (this volume). This approach necessitates making specific assumptions regard-

ing the prior joint distribution of the model parameters. Because we want to avoid having
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the choice of the prior distribution overly influence our results, we instead follow a limited-

information approach to estimating the posterior distribution of the model parameters.2 In

particular, we estimate several of the structural parameters of our model using a minimum

distance estimation based on impulse responses to monetary policy and technology shocks.

Specifically, we estimate a VAR on quarterly U.S. data using empirical counterparts to

the theoretical variables in our model, and identify two of the model’s structural shocks

using identifying assumptions that are motivated by our theoretical model. We then choose

model parameters to match as closely as possible the impulse responses to these two shocks

implied by the model to those implied by an structural VAR.3 In this section we first

describe the VAR and the identification of the two shocks, and then discuss our parameter

estimates.

3.1 VAR specification and identification

The specification of our VAR is determined by the model developed in the previous section

and our identification strategy for the structural shocks. Concerning the latter, we follow

Gaĺı (1999) and assume that the technology shock is the only shock that has a permanent

effect on the level of output per hour. The monetary shock is identified by the restriction

that the last variable in the VAR (the funds rate) is Wold-causal for the preceding variables.

Our model and identifying assumptions combined suggest the inclusion of five variables in

the VAR: the first difference of log output per hour, price inflation (the first difference of

the log of the GDP deflator), the log labor share, the first difference of log hours per person,

and the nominal funds rate. Output per hour, the labor share, and hours are the Bureau

of Labor Statistics’ (BLS) measures for the nonfarm business sector, where the labor share

is computed as output per hour times the deflator for nonfarm business output divided by

compensation per hour. Population is the civilian population age 16 and over. Letting Yt

denote the vector of variables in the VAR, we view the data in the VAR as corresponding,

2For various reasons, our approach may over- or under-estimate the degree of parameter uncertainty that

a policymaker faces. The extent to which our estimate of the spread of the posterior distribution is biased

should primarily affect the quantitative aspect of out results, not the qualitative nature.

3Applications of this estimation strategy are found in Rotemberg and Woodford (1997), Amato and

Laubach (2003), and Christiano et al. (2005). This estimation methodology remains the subject of consid-

erable controversy; see e.g. Christiano et al. (2006) and Kehoe (2006).
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up to constants, to the model variables

Yt = [∆(yt − lt), πt, yt − lt − wt, ∆lt, rt]
′ (8)

where lower case letters denote logs of the model variables. We estimate the VAR over the

sample 1966q2 to 2006q2, including four lags of each variable.

The structural form of the VAR is given by

A0Yt = constant + A(L)Yt−1 + εt, (9)

where Yt is defined in (8). The short-run assumption implies that the last column of the

contemporaneous multiplier matrix A0 has all zeros above the main diagonal. The fifth

element of εt is identified as the funds rate shock ǫr,t in (7). The long-run identifying

restriction of Gaĺı (1999) is that permanent shocks to technology are the only shocks to

have a permanent effect on labor productivity. Using this assumption, we identify the first

element of εt as the technology shock ǫa,t in (4). This implies that the first row of the matrix

of long-run (cumulative) effects of εt on Yt, (I − A(1))−1A−1
0 , consists of zeros except for

the first element. Appendix B provides further details.4

The dashed lines in Figure 1 show the impulse responses to a permanent one percent

increase in the level of technology. The dashed-dotted lines are one-standard deviation

bands around the impulse responses, computed by bootstrap methods.5 Figure 2 shows the

impulse responses to a one percentage point positive funds rate shock. The responses to a

funds rate shock are more precisely estimated than those for the technology shock.

4A potentially controversial aspect of our specification is the inclusion of hours per capita in first dif-

ferences. Recent years have witnessed a vigorous debate among macroeconomists whether hours worked

increase or decline following a technology shock. Francis and Ramey (2005) and Altig et al. (2002) have

attributed differences in results among different studies to the issue whether hours per capita are included

in levels – in which case the level of hours is usually found to rise immediately following a technology shock

– or whether hours enter in first differences or some other detrended form – in which case the level of hours

is often found to decline during the first few quarters following the shock. We acknowledge that this is a

further important source of parameter uncertainty, but space constraints prevent us from addressing this

issue in our analysis.

5To prevent the standard error bands from diverging over time, we discard draws for which the implied

reduced-form VAR is unstable, such as draws for which the largest eigenvalue of the coefficient matrix in

the reduced form, written in companion form, exceeds .99. In total, about 14 percent of draws are rejected.

8



3.2 Model parameter estimates

Before estimating the structural and monetary policy parameters of our model, we calibrate

several model parameters that play a small or no role in the model’s dynamics. We set the

discount factor, β = 0.9924, We normalize the time endowment to unity and set the steady-

state rates of price and wage inflation to zero. Because the parameters Θw and χw and Θp

and χp appear only as a ratio in the linearized version of the model (see Appendix A), they

are not separately identified. Following LOWW (2005), we set Θw and Θp to 6. Given these

values, we estimate the coefficients on the driving process in the wage and price Phillips

equations, κw = Θw/(χwΠ2
w,∗) and κp = Θp/(χpΠ

2
p,∗). From these estimates it is possible

to compute the implied values for χw and χp, but for convenience we focus on the values of

κw and κp.

The remaining parameters are estimated by minimizing the squared deviations of the

responses of the five variables [yt, πt, wt, lt, rt] implied by our model from their VAR

counterparts.6 To determine the horizon over which to match the IRFs, we apply the

information criterion of Hall et al. (2007), searching over a minimum horizon of quarters

0 through 4 and a maximum horizon of quarters 0 through 16. This criterion leads us to

match the IRFs of the five variables in quarters 0 through 13 following a technology shock

in quarter 0, and in quarters 1 through 13 following a funds rate shock (the response in the

impact quarter being constrained by the identifying assumption), for a total of 135 moments

to match. These moments are weighted inversely proportional to the standard error around

the VAR responses, as in Christiano et al. (2005). This places more weight on matching

the impulse responses to the monetary shock, which, as noted before, are estimated with

greater precision than the impulse responses to the technology shock.

When we estimate the model using the policy rule (7), we find a slightly negative, but

near zero, response of monetary policy to the output gap, perhaps because the model’s

notion of the output gap bears little resemblance to measures used by policymakers. We

therefore restrict φx to zero. We impose the restriction that φp > 1, which is a necessary

6Specifically, we first cumulate the VAR’s IRFs of ∆(yt − lt) and ∆lt to obtain the IRFs of yt − lt and

lt, and then add the latter to the former to obtain the IRF of yt. We also subtract the IRF of yt − lt − wt

from the IRF of yt − lt to obtain the IRF of wt. Since our VAR includes a constant in each equation, but

allows for permanent shocks to the levels of output, output per hour and the real wage, these levels follow a

unit root process with deterministic drift. The IRFs to a technology shock are therefore interpreted as the

permanent percent deviation from their growth path that would have obtained had the shock not occurred.
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Table 1: Parameter Estimates

Model Point Standard Correlation with

Parameter Estimate Error σ η ζ κw κp

σ 8.209 2.609 1.000 -0.995 0.996 0.716 0.008

η 0.364 0.070 1.000 -0.986 -0.700 -0.019

ζ 1.740 0.179 1.00 0.731 0.019

κw 0.006 0.000 1.000 -0.156

κp 0.010 0.000 1.000

φr 0.840 0.001

φp 1.000 0.019

condition for determinacy in our model.7 Furthermore, unrestricted estimation leads to

estimates of the indexation parameters γw and γp very close to or at the upper limit of 1.8

Because our method of examining parameter uncertainty described below becomes infeasible

when parameters are at boundaries, in the remainder we fix both of these two parameters

at 1. In the end, we therefore estimated the seven parameters {σ, ζ, η, κw, κp, φr, φp}.

The estimated parameters and associated standard errors are shown in the first two

columns of Table 1. The correlation coefficients of the structural parameter estimates are

shown in the final five columns of the table. The covariance matrix of the estimates is

computed using the Jacobian matrix from the numerical optimization routine and the em-

pirical estimate of the covariance matrix of the impulse responses from the bootstrap. The

estimates of the structural parameters are all statistically significant. The parameters asso-

ciated with wage and price adjustment costs are estimated with a great deal of precision. In

contrast, the preference parameters, especially σ and ζ, are relatively imprecisely estimated

and the estimates are very highly correlated with each other, reflecting the difficulty the

data have in separating the influences of these parameters. We analyze this issue below.

The VAR responses of real wages and inflation differ substantially depending on the

7An alternative specification would be to impose the estimated policy rule implied by the VAR, as in

Rotemberg and Woodford (1997). This reduces the number of parameters to be estimated, but can lead to

convergence problems if the VAR rule and some constellation of structural parameters leads to indeterminacy.

8Estimates of γw and γp are sensitive to the horizon of the IRFs that we match. Matching IRFs of

quarters 0 through 4 or 0 through 5, imply γw and γp estimates close to 0; for longer horizons γw and γp are

at or near 1. The information criterion strongly suggests matching IRFs of quarters 0 through 12 or longer.
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source of the shock: with rapid responses to technology shocks, and sluggish ones to funds

rate shocks. This is a feature that our price and wage specification cannot deliver. Our

estimates of κw and κp imply that wages are very slow to adjust, while prices adjust more

quickly to fundamentals. These results are driven by the IRFs to the technology shock;

indeed, the IRFs to monetary policy shocks alone suggest very gradual price adjustment,

consistent with Christiano et al (2005). Despite the greater weight placed on matching the

more tightly estimated responses of inflation and real wage to the funds rate shock, our

model does better at matching the responses to a technology shock, as shown by the solid

lines in Figures 1 and 2. Our estimates of the parameters of the monetary policy rule,

φr and φπ, are broadly consistent with the findings of many other studies that estimate

monetary policy reaction functions, such as that of Clarida, Gaĺı, and Gertler (2000).

One concern with the estimation of structural parameters in DSGE models in general,

and the method of IRF matching in particular, is parameter identification (Canova and

Sala, 2006, Iskrev, 2007). In our case, we are particularly concerned about the separate

identification of the preference parameters σ and ζ, and the adjustment cost parameters

κw and κp. We illustrate the potential for weak identification of each of these two pairs

in Figure 3 by plotting the negative of the objective function while varying two of the

parameters within a range around their final estimates, holding all other parameters fixed

at their estimated values. The upper panel of Figure 3 shows that the objective function is

fairly flat for values of σ above 8, regardless of the value of ζ. The lower panel of the figure

shows that, conditional on κp being at its estimated value of 0.01, κw is poorly identified

anywhere between 0.004 and 0.01. These figures thus underline the substantial degree of

ignorance about the true values of the parameters, which, if anything, our standard errors

based on the Jacobian seem to be understating.

4 Welfare and Optimal Monetary Policy

In this section we compute the optimal monetary policy responses to technology and pref-

erences shock assuming all model parameters are known. We assume that the central bank

objective is to maximize the unconditional expectation of the welfare of the representative

household. We further assume that the central bank has the ability to commit to future pol-

icy actions; that is, we examine optimal policy under commitment, as opposed to discretion.
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We consider only policies that yield a unique rational expectations equilibrium.

By focussing only on technology and preference shocks, we are admittedly examining

only a relatively small source of aggregate fluctuations in output and wage and price inflation

and hence welfare losses in our model. Variance decomposition estimates indicate that these

two shocks account for only a small share of variations in hours at horizons beyond two

years and account for a small share of wage and price variability at all horizons. To conduct

welfare-based monetary policy analysis incorporating other sources of fluctuations, we would

need to take a stand on the source of the other shocks to the economy. This would take us

afield of the primary purpose of the paper, and we therefore leave it to further research.

4.1 Approximating household welfare

We approximate household utility with a second-order Taylor expansion around the deter-

ministic steady state following the approach developed by Rotemberg and Woodford (1997)

and extended to models with nominal wage rigidities by Erceg, Henderson, and Levin (2000).

We denote steady-state values with an asterisk subscript. As shown in Appendix C, the

second-order approximation of the period utility function depends on the squared output

gap, xt, the squared quasi-difference of the output gap, the cross-product of the output

gap and its quasi-difference, and the squared first-difference of the rates of price and wage

inflation. As shown in the appendix, in the linearized model, the natural rate of output,

yn
t , is a function of leads and lags of the technology and preference shocks.

After many steps, the second-order approximation to period utility can be written as

Ξc,t (Ct − ηCt−1)
1−σ (L̄ − Lu,t

)ζ(1−σ)

1 − σ
= T.I.P. − L = T.I.P. − Lx − Lp − Lw

where T.I.P refers to terms that are independent of monetary policy and

Lx = (C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

{
1

2
·
1 − ζ(1 − σ)

ζ
·

(
1 − βη

1 − η

)2

x2
t

+
1

2
·

σ

(1 − η)2
· (xt − ηxt−1)

2

+ (1 − σ) ·
1 − βη

(1 − η)2
xt (xt − ηxt−1)

}
,

Lp = (C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

{
1

2
·
1 − βη

1 − η
·
ΘpΠp,∗

κp
· (πp,t − γpπp,t−1)

2

}
, and

Lw = (C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)
{

1

2
·
1 − βη

1 − η
·
ΘwΠw,∗

κw
· (πw,t − γwπw,t−1)

2
}

.

12



In our welfare calculations, we ignore the T.I.P. terms and focus on the terms related to

the output gap and price and wage inflation rates.

The three elements in Lx correspond to the period welfare costs associated with output

deviating from its natural rate. Owing to habit formation, both the level of the output gap

and its quasi-difference affect welfare. All three preference parameters enter the coefficients

of the welfare loss for these terms. The terms in Lp and Lw correspond to the welfare loss

associated with adjustment costs in changing prices and wages. The coefficients in these

terms depend primarily on the parameters associated with nominal rigidities. The welfare

costs of sticky prices and wages are inversely related to the price and wage sensitivity

parameters, κp and κw. The more flexible are prices, the smaller are the welfare costs

implied by a given magnitude of inflation fluctuations, and similarly for wages.

Based on the parameter point estimates, the weights on wage and price inflation gaps

are significantly greater than those on the output gap terms, reflecting the high estimated

degree of stickiness in wage and price setting (i.e., low estimated values of κw and κp).

Table 2 reports the implied relative weights on the terms related to the output gap and

the first-differences of wage and price inflation, where we have normalized the values of

the weights by the weight on the price inflation term at the point estimate. The first row

reports the sum of the weights on the three terms in the loss associated with the output gap

and its quasi-difference.9 The first column reports the weights computed at the parameter

point estimates. The second column reports the median values of the weights based on the

estimated distribution of the parameter values, approximated using 1000 draws from the

normal distribution with the estimated covariance for the parameter estimates, where we

truncate the parameter values at the lower ends of their distributions as follows: σ at 0.5, ζ

at 0.1, and η at 0. The median values of the weights are close to those implied by the point

estimates. At the point estimates, the variance in wage inflation gets a weight 1.7 times

that of price inflation, due to the estimated value of κw being about 60 percent as large

as that for κp. The weights on the variances of the output gap and the quasi-difference of

the output gap are somewhat smaller than that of inflation, but are somewhat higher than

typically seen in the literature due to our relatively high estimate of σ.

The variation in the weights of the loss function implied by parameter uncertainty is

9At the point estimates, the weights on the squared level of the output gap and on the squared quasi-

difference term are about equal, while that on the cross-product is smaller with the opposite sign.
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Table 2: Relative Weights in Central Bank Loss

Weight Point Median 70 Percent Mean

in Loss Estimate Estimate Interval Estimate

ωx 0.06 0.04 [0.0, 8.7] 8.28

ωp 1.00 0.92 [0.0, 159.1] 132.45

ωw 1.71 1.55 [0.0, 270.6] 211.31

enormous, reflecting the nonlinear relationship between the parameter values and the loss

weights. The third column reports the estimated 70 percent confidence of the weights.

At the lower end of the 70 percent confidence interval, the weights are very close to zero.

However, at the upper end, corresponding to high values of σ and ζ, the weights are about

150 times larger than those implied by the point estimates. The preference parameters have

a large effect on steady-state utility, which affects all loss-function weights and makes them

highly correlated. However, the ratio of the weights varies relatively little over the draws.

For example, the standard deviation of the ratio of the sum of the output gap weights to

the weight on price inflation gaps is 0.01 and the ratio of the weight on wage inflation gaps

to that on price inflation gaps is about 0.1. The mean values of the weights are dominated

by the upper end of the distribution of weights, which are between two and three times

larger than those based on the point estimates, reflecting the fact that the weights depend

in part on the inverse of some parameter values.

4.2 Optimal monetary policy with no parameter uncertainty

In our analysis of optimal monetary policies, it is important to be clear what information

the central bank has available in making its decision. We assume the central bank knows

the structure of the model. At the time of making its policy decision, the central bank is

assumed to observe all past observable data, but not the realization of the current shock.

In the case of no parameter uncertainty, the central bank is able to infer the past values of

the natural rates of interest, hours, and output from the observable data.

We first compute the optimal certainty equivalent policy based on the point estimates

of the model parameters. The resulting policy and outcomes provide a useful benchmark

for the policy rules that we examine. The optimal certainty equivalent policy maximizes

14



the quadratic approximation of welfare, subject to the constraints implied by the linearized

model. Throughout, in computing the welfare loss we assume a discount rate arbitrarily

close to zero, so that we are maximizing the unconditional measure of welfare. We compute

the fully optimal policy using Lagrangian methods as described in Finan and Tetlow (1999),

adapted to take account of assumption of date t − 1 information in the implementation of

monetary policy. The standard deviations of the technology and preference shocks (the

only stochastic elements in the model) are set to their corresponding estimated values of

0.64 and 6.17 percentage points, respectively. (See Appendix B for the calculation of these

values.)

The results under the optimal policy are shown in the first column of Table 3. The

middle portion of the table shows the resulting welfare losses. The first row of this part

of the table reports the overall welfare loss, L. Because the units of the welfare loss are

difficult to interpret, the next four rows of the table report the welfare losses (and its

component parts) measured in terms “consumption-equivalent” units, denoted by C, equal

to the percentage point reduction in steady-state consumption (absent fluctuations) that

would yield the same welfare loss as implied by fluctuations in the output gap and wage and

price inflation rates around their steady state values. The lower part of the table reports

the resulting unconditional standard deviations of the output gap, the first-differences of

the price and wage inflation rates, and the level of the nominal interest rate.

The “consumption equivalent” welfare loss is extremely small under the optimal mon-

etary policy with no uncertainty, about 1/200th of one percent of consumption. This tiny

loss reflects the fact that the preference and technology shocks do not create significant

tradeoffs between the objectives in the loss. Indeed, were it not for the assumption that

policy acts using lagged information, the preference shock would generate no welfare loss

under optimal policy through its contribution to fluctuations in the output gap and wage

and price inflation while the technology shock would engender only very small welfare losses

(reflecting the tradeoff implied by the presence of sticky wages). The technology shock does

entail a tradeoff owing to the presence of sticky wages, but under the optimal policy, the

resulting loss is very modest. Under the fully optimal monetary policy, variability in the

output gap and the first differences in the rates of wage and price inflation are all reduced to

nearly zero. In terms of the annualized rate, the standard deviations of both wage and price

inflation are about 0.1 percentage point. The optimal policy induces considerable interest
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Table 3: Performance of Alternative Monetary Policies

No Uncertainty Parameter Uncertainty

Optimal Policy Rule Optimal Policy Rule

Policy Coefficients Policy Coefficients

rn .84 1.00

x 27.88 .12 7.02 1.46

πp .01 566.78 391.40 15.39 617.80 480.86

πw 1000.00 693.78 1000.00 780.89

Welfare Losses

L 717.8 771.1 742.5 719.2 1.98E7 5.20e7 2.20E7 1.99E7

C .006 .007 .007 .006 .007 .010 .007 .007

Cx .001 .002 .001 .001 .001 .004 .002 .002

Cp .003 .003 .003 .003 .003 .003 .003 .003

Cw .002 .002 .002 .002 .002 .002 .002 .002

Standard Deviations

x .08 .10 .09 .08 .09 .16 .11 .10

∆πp .03 .03 .03 .03 .03 .03 .03 .03

∆πw .02 .02 .02 .02 .02 .02 .02 .02

r 2.59 2.69 2.38 2.59 2.59 2.22 2.51 2.94

rate variability in response to these two shocks, with the standard deviation of the nominal

(annualized) interest rate of over 10 percentage points. This variability implies that the

zero lower bound on nominal interest rate is a relevant concern, but we leave incorporating

this constraint to future research.

4.3 Alternative monetary policy rules

In the presence of parameter uncertainty, it is useful to analyze monetary policy in terms

of a policy rule in which the policy instrument depends on a small number of variables. For

this purpose, we consider three parsimonious monetary policy rules, each of which yields a

welfare loss that is very close to the fully optimal policy when all parameters are known.

The general specification is a Taylor-type policy rule where the nominal interest rate is

determined by the lagged values of the central bank estimate of the natural rate of interest,
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r̂n
t , the central bank estimate of the output gap, x̂t, and the rates of price and wage inflation:

rt = πp,t−1 + φrn r̂n
t−1 + φx x̂t−1 + φp πp,t−1 + φw πw,t−1. (10)

With known parameters, the central bank estimates of the natural rates are assumed to

equal their respective true values; with parameter uncertainty, these estimates suffer from

measurement error, as discussed in the next section. Note that we have assumed that

policy responds to the lagged values of these variables, in keeping with our assumption that

policy is set using t−1 information.10 Throughout the following, we restrict the policy rule

coefficient on price inflation to be no smaller than 0.01 and we do not allow any coefficients

to exceed 1000.11

We consider three types of policy rules. The first is a version of the standard Taylor Rule,

where the interest rate is determined by inflation and the output gap. The second is a rules

that responds only to wage and price inflation. The third is a generalization of the other

rules that is exactly as specified in equation (10). This rule is used as a close approximation

for the fully optimal rule, but has the advantage that the coefficients are easier to interpret.

We compute the optimal coefficients of each rule to maximize unconditional welfare of

the representative household using a numerical hill-climber routine, as described in Levin,

Wieland, and Williams (1999). Absent parameter uncertainty, the optimized versions of all

three rules yield welfare losses close to that which obtains under the fully optimal policy.

The optimized Taylor rule (the second column of Table 3) acts like a strict output

targeting policy that aims to keep the output gap near zero at all times. This rule has

the minimum allowable coefficient on price inflation and a very large coefficient on the

output gap. The policy rule that responds to wage and price inflation (the third column of

Table 3) behaves like a targeting rule that aims to maintain a negative correlation between

the rates of price and wage inflation, with the latter more tightly controlled. The optimized

coefficients exhibit massive responses to wage and price inflation, with the coefficient on

wage inflation about 1.76 times as large as that for price inflation. This is nearly identical

to the ratio of 1.71 of the weights in the objective function of wage to price inflation.

The optimized generalized policy rule (the fourth column of Table 3) is characterized by a

significant response to the natural rate of interest, a modest response to the output gap,

10Another approach would be to specify the rule in terms of t−1 expectations of current-period variables.

11In the case where this upper bound is a binding constraint, the loss surface is nearly flat in the vicinity

of the reported parameter values and increasing the upper bound has only a trivial effect on welfare.
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and very large responses to the rates of price and wage inflation. This rule behaves much

like the rule that targets a combination of wage and price inflation; the ratio of coefficients

on wage and price inflation are nearly the same in the two cases. This generalized rule

yields a welfare loss that is nearly identical to that under the fully optimal policy.

5 Monetary Policy under Parameter Uncertainty

In this section, we analyze the performance and robustness of monetary policies under

parameter uncertainty where the central bank maximizes expected welfare. The only form

of uncertainty that the policymaker is assumed to face is uncertainty regarding model

parameters owing to sample variation. In particular, we assume that the central bank

knows the true model and that the model is estimated using a consistent estimator and that

the central bank is certain that the model and the estimation methodology are correct.12

We abstract from learning and assume that the policymaker’s knowledge and uncertainty

do not change over time. We assume that private agents know everything, including the

central bank’s parameter estimates. For a given specification of monetary policy, expected

welfare is approximated by numerically integrating the welfare outcomes over a sample

drawn from the distribution of the five estimated structural parameters implied by the

estimated covariance matrix.

5.1 Natural rate uncertainty

Before proceeding with the analysis of monetary policy rules, we first provide some sum-

mary measures of the degree of uncertainty regarding the natural rates of hours, output,

and interest owing to parameter uncertainty. In this model, the responses of the natural

rates to technology and preference shocks depend on three parameters describing household

preferences: σ, η, and ζ. Throughout the remainder of the paper, we assume that the dis-

tribution of model parameters is jointly normal distributed with mean zero and covariance

12The assumption that the policymaker is certain about the correctness of the estimation methodology

likely reduces the degree of parameter uncertainty relative to what policymakers face in reality. For example,

in the model used in this paper, some parameter point estimates can vary significantly, depending on sample

and specifics of the estimation method. We leave the study of this broader form of estimation uncertainty

to future work.
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given by the estimated covariance matrix. We approximate this distribution with a single

set of 1000 draws from the estimated covariance matrix, truncated as described in section 3.

In general, parameter uncertainty implies uncertainty both about the steady-state val-

ues of natural rates as well as their movements over time. However, in the stylized model

that we study here, the steady-state natural rate of interest depends only on the household’s

discount rate, which is assumed to be known by the policymaker. Therefore, uncertainty

about the natural rate of interest is limited to its deviations from steady-state. The steady-

state level of hours (and thereby output) depends on estimated structural parameters and

the value of the time endowment. Our estimation methodology does not use information

on levels of variables, so we do not have an empirical measure of uncertainty regarding

the steady-state level of hours. For simplicity, we assume that the policymaker, by ob-

serving a long time series on hours, is able to estimate the mean level of hours precisely.

We assume that the policymaker has no independent knowledge of the time endowment, so

perfect knowledge of the mean level of hours has no implications for uncertainty about other

preference parameters. We note that under less restrictive assumptions, there exist tight

links between estimated structural parameters and steady-state values, which affect both

model estimation and the analysis of parameter uncertainty. Indeed, Laubach and Williams

(2003) find evidence of considerable uncertainty regarding low-frequency components of nat-

ural rates of interest and output, suggesting that the assumption that the steady-state levels

are known with certainty is untenable in practice. We leave consideration of uncertainty

about steady-state values in a micro-founded model to future research.

The responses of natural rates to technology and preference shocks depend on the pa-

rameter values describing preferences. The thick solid line in the upper panel of Figure 4

plots the impulse response of the log of the natural rate of hours to one standard deviation

positive innovations to technology and preferences, implied by the point estimates of the

model parameters. (Note that the log of the natural rate of hours equals the log of the nat-

ural rate of output minus the log of TFP.) The thin solid lines show the median responses

of the natural rate of hours, calculated from impulse responses from 1000 draws from the

estimated parameter distribution. The dashed and dashed-dotted lines show the bound-

aries of the 70 and 95 percent confidence bands of the impulse responses, respectively. The

lower panel of the figure shows the corresponding outcomes for the natural rate of interest

(measured at an annualized rate). Note that the model implies that there is no uncertainty
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about the long-run effects of technology or preference shocks on the natural rates of hours

and interest, as both of which eventually return to their respective steady-state values.

We assume that the central bank computes its estimates of natural rates based on the

point estimates of the preference parameters.13 We measure natural rate misperceptions as

the difference between the level of the natural rate implied by the actual parameter values

and the level implied by the point estimates of the model parameters. Averaging over the

1000 draws from the parameter distribution, the root mean squared deviation of the true

natural rate of output and the central bank’s estimate (computed using the parameter point

estimates) is a rather modest 0.13 percentage point. The mean first-order autocorrelation of

this difference is 0.84. The root mean squared deviation of the true natural rate of interest

from the central bank’s estimate is a more sizable 1.05 percentage points (measured at an

annual rate), with a mean first-order autocorrelation of 0.35.

5.2 Optimal monetary policy under parameter uncertainty

In order to provide a benchmark for policies under uncertainty, we first compute the optimal

outcome if the policymaker knew all the parameter values and followed the fully optimal

policy in each case. The results in the fifth column of Table 3. Of course, given that

the parameters are uncertain, this outcome is not obtainable in practice, but this exercise

provides a benchmark against which we can measure the welfare costs associated with

parameter uncertainty. As can be seen from comparing the first and fifth columns of the

table, the mean welfare loss under the first-best optimal policy is considerably larger than

that computed at the parameter point estimates. This reflects the fact that the mean

weights in the welfare loss are higher than the weights evaluated at the point estimates.

That said, the consumption-equivalent welfare losses and the the variability of key variables

is about the same on average as under the optimal policy evaluated at the parameter point

estimates.

We now examine the characteristics and performance of the implementable monetary

policy rules introduced in the previous section. We first consider the performance of the

rules that were found to be optimal absent parameter uncertainty, then we reoptimize the

coefficients of these policy rules to minimize the expected welfare loss under parameter

13The central bank could use other methods to estimate the natural rates that take into account parameter

uncertainty, but our approach seems a reasonable benchmark for our analysis.
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uncertainty. As noted above, in implementing these rules, we assume the central bank

computes its estimates of natural rates using the point estimates of the parameters. For

each draw from the parameter distribution, the realizations of the natural rates (and all

other variables) are generated by the model based on the parameter values drawn.

The optimized Taylor rule assuming no parameter uncertainty does not yield a unique

stable rational expectations equilibrium for 17 of the 1000 draws of parameter values drawn

from the posterior distribution. The source of the problem is that the response to the output

gap is excessively large and this creates instability in the system. The other two policies

yield a unique solution for all 1000 draws and deliver mean outcomes that are close to what

obtains if the coefficients of the rules are reoptimized under parameter uncertainty.

Relative to the case of no parameter uncertainty, the optimized standard Taylor rule

under parameter uncertainty responds far less aggressively to the estimate of the output

gap (a coefficient of 7 compared to nearly 28) and more strongly to inflation (a coefficient

of over 15 compared to .01). This rule yields a unique solution in all 1000 draws from

the parameter distribution. The results for this rule are shown in the sixth column of the

table. This dramatic change in the characteristics of the optimal Taylor rule is due to the

mismeasurement of the natural rate of output under parameter uncertainty. In fact, if the

central bank faced parameter uncertainty but somehow knew the true values of the natural

rate of output, the optimized Taylor rule would be characterized by a very small response to

inflation and a very large response to the output gap. However, in the presence of natural

rate uncertainty, a very large response to the output gap generates correspondingly large

policy errors. In order to minimize this source of undesired fluctuations and to offset the

effects of the resulting policy errors on inflation, the optimized Taylor rule under parameter

uncertainty responds much more modestly to the perceived output gap and much more

strongly to inflation.

Optimized policy rules that respond to wage and price inflation, but not output, are very

effective at minimizing the mean welfare loss under parameter uncertainty. The results for

this rule are shown in the seventh column of the table. The optimized rule yields a welfare

loss close to the first-best allocation, and performs better than the optimized Taylor rule.

The coefficients display the same characteristics as in the case of no parameter uncertainty:

the coefficient on wage inflation is at its maximum value of 1000, and the ratio of the wage

inflation coefficient to the price inflation coefficient is about 1.6, slightly smaller than in the
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case of no uncertainty. Evidently, responding to aggressively to the wage and price inflation

rates substitutes for responding to the output gap in this model.

Finally, the generalized rule yields expected welfare nearly the same as the theoretical

first-best. Thus, from a Bayesian perspective, knowledge of the exact draw of parameter

values has little benefit in terms of expected welfare. This rule responds fully to the natural

rate of interest (we imposed an upper bound on this coefficient of one), moderately to the

output gap, and massively to the rates of wage and price inflation. The results are reported

in the final column of the table. Although the response to the output gap is larger than in

the case of no parameter uncertainty, the behavior of policy is dominated by the responses

to wage and price inflation that are two orders of magnitude larger than the response to the

output gap. Interestingly, this rule responds more aggressively to the observable variables

than its counterpart derived assuming no parameter uncertainty. Thus, in this micro-

founded DSGE model, parameter uncertainty leads to a more aggressive monetary policy

rule, rather than a less responsive one, as in Brainard’s (1967) analysis using a traditional

model.

6 Calvo Wage and Price Contracts

We now examine the characteristics of optimal monetary policies assuming Calvo-style con-

tracts that are commonly assumed in the literature, rather than quadratic adjustment costs.

Under suitable assumptions, the Calvo contract model yields the same log-linear first-order

dynamics, but a different second-order approximation to welfare. Unlike the quadratic

adjustment cost model, the assumption of Calvo contracts implies heterogeneity across

agents in wages and prices. Most significantly, this implies differences in labor supply and

consumption across households, which, given our assumption of nonseparable preferences

over consumption and leisure, greatly complicates aggregation of the model. Additional

assumptions, however, such as those made by Smets and Wouters (2003), makes aggrega-

tion of first-order dynamics and welfare more tractable. Specifically, we assume that each

household contains a continuum of members that replicate the distribution of types of labor

in the economy and each household shares its resources across its members optimally. In

this way, we are able to derive tractable analytical expressions for the first-order aggregate

dynamics and the second-order approximation to welfare.
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Table 4: Performance of Monetary Policies: Calvo Contracts

No Uncertainty Parameter Uncertainty

Optimal Policy Rule Optimal Policy Rule

Policy Coefficients Policy Coefficients

rn .78 1.00

x 26.84 8.68 16.16 5.57

πp .01 138.25 15.64 .05 178.58 23.14

πw 1000.00 324.46 1000.00 256.18

Welfare Losses

C .034 .102 .036 .034 .035 .105 .037 .035

Cx .019 .002 .021 .019 .020 .004 .018 .018

Cp .005 .003 .005 .005 .005 .003 .005 .005

Cw .010 .097 .010 .010 .010 .098 .014 .013

Standard Deviations

x .43 .10 .45 .44 .44 .15 .34 .34

∆πp .04 .03 .04 .04 .04 .03 .04 .04

∆πw .01 .02 .01 .01 .01 .02 .01 .01

r 2.53 2.62 2.36 2.53 2.63 2.27 2.48 2.61

The relationship between the coefficient on the driving process in the equation describing

the first-order of product prices, κp, and the coefficient on the variability of price inflation

in the second-order approximation to household welfare is identical for the quadratic ad-

justment costs model and the Calvo contract model. For wages, however, the relationship

differs for the two models. In particular, under Calvo-style wage setting, an additional term,

equal to
(
1 + θw

(
1−ζ(1−σ)

ζ

) (
1−βη
1−η

))
multiplies the coefficient on wage inflation variability

in the loss function. Given the estimated and calibrated parameter values, this additional

term is relatively large and implies notably greater weight on wage inflation than in the

model with quadratic adjustment costs.

Qualitatively, the results regarding the effects of uncertainty on optimal policy are the

same with Calvo contracts as with quadratic adjustment costs. Table 4 reports the results of

our policy experiments using Calvo wage and price contracts. In the case of the Taylor rule,

the optimal coefficient on the output gap is smaller and the coefficient on price inflation is

larger with parameter uncertainty than absent parameter uncertainty, just as with quadratic
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adjustment costs. And, as before, the rule that responds solely to wage and price inflation

come very close to matching the first-best outcome, while the standard Taylor rule performs

less well. The relative response to wage inflation compared to price inflation is significantly

greater than before, owing to the greater welfare costs to fluctuations in wages under Calvo

contracts.

7 Conclusion

This paper has examined the implications of parameter uncertainty for the design of optimal

monetary policy in an estimated micro-founded macroeconomic model. In micro-founded

models of this type, parameter uncertainty implies joint uncertainty about model dynamics,

natural rates, and the welfare costs of fluctuations. We find that optimal Taylor rules

respond less to output and more to inflation in the presence of parameter uncertainty. We

also show that policy rules that focus solely on stabilizing wages and prices, rather than

output, perform better than Taylor rules. Our analysis can be extended to model that

include additional features of the economic landscape and associated uncertainty, including

a richer description of the economy, a wider set of sources of aggregate fluctuations, and

uncertainty regarding the structure of the economy. One potentially important direction for

future research is the incorporation of imperfect information on the part of private agents

as well.
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Figure 1: VAR and Model Responses to a Technology Shock
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Notes: The dashed lines show the impulse responses implied by the VAR following an

identified technology shock that raises output per hour permanently by 1 percent. The solid

lines show the impulse responses implied by the model to a permanent shock to technology

that has the same long-run effect on productivity as the technology shock in the VAR. The

dashed-dotted lines are one standard error confidence intervals around the VAR responses.
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Figure 2: VAR and Model Responses to a Funds Rate Shock
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Notes: The dashed lines show the impulse responses implied by the VAR following a one

percent funds rate shock. The solid lines show the impulse responses implied by the model

to the same shock under the assumption that the contemporaneous response of all variables

other than the funds rate is zero. The dashed-dotted lines are one standard error confidence

intervals around the VAR responses.
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Figure 3: Identification of Key Model Parameters
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Notes: The upper panel of the figure shows the negative of the minimand in the parameter

estimation as a function of combinations of σ and ζ, keeping all other parameters at their

estimated values. The lower panel shows the negative of the minimand in the parameter

estimation as a function of combinations of κw and κp, keeping all other parameters at their

estimated values.
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Figure 4: Natural Rate Uncertainty
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Notes: The thick solid lines show the model impulse responses of the natural rates to a one

standard deviation point positive innovations to technology (left column) or preferences

(right column), based on the parameter point estimates. The thin solid lines show the

corresponding median responses computed from the distribution of the parameter estimates.

The dashed and dashed-dotted lines indicate the corresponding 70 percent and 95 percent

confidence intervals, respectively.
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A The Linearized Model

The first sub-section of this appendix gives the mathematical descriptions of the firms’

and households’ optimization problems, the second subsection reports the model’s non-

linear equations, and the third sub-section reports the model’s log-linear equations. We

limit ourselves throughout in reporting just the equations from the symmetric model. The

fourth sub-section reports the model’s natural rates of output and interest.

A.1 The firms’ and households’ optimization problems

The final goods producing firm in each sector, taking as given the prices set by each

intermediate-goods producer for their differentiated output, {Pt(j)}
1
j=0, solves

min
{Yf,t(j)}

1
j=0

∫ 1

0
Pt(x)Yf,t(x)dx s.t. Yf,t ≤

(∫ 1

0
Yf,t(x)

Θp,t−1

Θp,t dx

) Θp,t

Θp,t−1

. (11)

This problem implies a demand function for each of the economy’s intermediate goods given

by Yf,t(j) = (Pt(j)/Pt)
−Θp,t Yf,t, where the variable Pt is the aggregate price level, defined

by Pt = (
∫ 1
0 (Pt(x))1−Θp,tdx)

1

1−Θp,t .

In the cost-minimization part of its problem, each intermediate-goods producing firm j,

taking as given the wages {Wt(i)}
1
i=0 set by each household for its variety of labor, solves:

min
{Ly,t(i,j)}1

i=0

∫ 1

0
Wt(x)Ly,t(x, j)dx s.t. Ym,t(j)≤At

(∫ 1

0
Ly,t(x, j)

Θw,t−1

Θw,t dx

) Θw,t

Θw,t−1

(12)

This cost-minimization problem implies that the economy-wide demand for type i labor

is Ly,t(i) =
∫ 1
0 Ly,t(i, x)dx = (Wt(i)/Wt)

−Θw,t (1/At)
∫ 1
0 Ym,t(x)dx where Wt denotes the

aggregate wage, defined by Wt = (
∫ 1
0 (Wt(x))1−Θw,tdx)

1

1−Θw,t . The marginal cost function

of producing the intermediate goods is MCt(j) = Wt/At.

In the profit-maximization part of the its problem, each intermediate-goods producing

firm, taking as given the marginal cost MCt(j) for producing Ym,t(j), the aggregate price

level Pt, and aggregate final-goods demand Yf,t, solves,

max
{Pt(j)}∞t=0

E0

∞∑

t=0

βtΛc,t

Pt
{(1 + ςθ,p)Pt(j)Yf,t(j) − MCt(j)Ym,t(j)}

subject to

Yf,t(j)=Ym,t(j)−
χp

2

(
Pt(j)

Pt−1(j)
−(1−γp)Πp,∗ − γpΠp,t−1

)2

Ym,t and Yf,t(j)=

(
Pt(j)

Pt

)−Θp,t

Yf,t,

(13)
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In (13) the discount factor that is relevant for discounting nominal revenues and costs

between periods t and t+ j is Etβ
j Λc,t+j/Pt+j

Λc,t/Pt
, where Λc,t is the household’s marginal utility

of consumption in period t. The parameter ςθ,p is the subsidy that we assume equals

(Θp,∗−1)−1), which ensures that in the absence of nominal rigidities the model’s equilibrium

outcome is Pareto optimal.

The household taking as given the expected path of the gross nominal interest rate Rt,

the price level Pt, the aggregate wage rate Wt, its profits income, and its initial bond stock

Bi,0, solves:

max
{Ct(i),Wt(i)}

∞

t=0

E0
1

1 − σ

∞∑

t=0

βtΞc,t

[
(Ct(i) − ηCt−1(i))(L̄ − Lu,t(i))

ζ
]1−σ

subject to

Et

[
β

Λc,t+1/Pc,t+1

Λc,t/Pc,t
Bt+1(i)

]
=Bt(i)+(1+ςθ,w)Wt(i)Ly,t(i)+Profitst(i)−Taxest(i)−PtCt(i),

Ly,t(i) = Lu,t(i) −
χw

2

(
Wt(i)

Wt−1(i)
− (1 − γw)Πw,∗ − γwΠw,t−1

)2

Lu,t, and

Ly,t(i)=

(
Wt(i)

Wt

)−Θw,t∫ 1

0
Ly,t(i, j)dj. (14)

The parameter ςθ,w in the household’s budget constraint is a subsidy (equal to (Θw,∗−1)−1),

which ensures that in the absence of nominal rigidities the model’s equilibrium outcome

is Pareto optimal. The variable Bt(i) in the budget constraint is the state-contingent

value, in terms of the numeraire, of household i’s asset holdings at the beginning of pe-

riod t. We assume that there exists a risk-free one-period bond, which pays one unit of

the numeraire in each state, and denote its yield—that is, the gross nominal interest rate

between periods t and t + 1—by Rt ≡
(
Etβ

Λc,t+1/Pt+1

Λc,t/Pt

)−1
. Profits in the budget con-

straint are those rebated from firms, which are ultimately owned by households. Taxes

in the budget constraint are lumpsum and are raised by the fiscal authority (which oper-

ates in the background of our model) solely to finance the subsidies on labor supply and

production, which ensure the Pareto optimality of the steady-state outcome; specifically,
∫ 1
0 Taxest(i)di = ςθ,w

∫ 1
0 Wt(i)Ly,t(i)di + ςθ,p

∫ 1
0 Pt(j)Yy,t(j)dj
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A.2 First-order conditions

The first-order conditions from the intermediate goods producing firms’ cost-minimization

problem (equation 12), the labor demand curve and marginal cost function, are:

Ly,t =
Ym,t

At
(15)

MCt

Pt
=

Wt

Pt
·

1

At
(16)

The first-order condition from the intermediate goods producing firms profit-maximization

problem (equation 13), the aggregate supply curver, is:

Θp,t ·
MCt

Pt
· Yf,t = (Θp,t−1) (1+ςθ,p) Yf,t+χp (Πp,t−γpΠp,t−1−(1 − γp)Πp,∗)Πp,t ·

MCt

Pt
· Ym,t

− βEt

[
Λc,t+1

Λc,t
· χp (Πp,t+1−γpΠp,t−(1 − γp)Πp,∗) Πp,t+1 ·

MCt+1

Pt+1
· Ym,t+1

]

(17)

The first-order conditions from the household’s utility-maximization problem (equation 14),

the Euler equation and the labor supply curve, are:

Λc,t

Pt
= βRtEt

[
Λc,t+1

Pt+1

]
(18)

Θw,t ·
Λl,t

Λc,t
· Ly,t = (Θw,t−1) (1+ςθ,w)

Wt

Pt
· Ly,t+χw (Πw,t−γwΠw,t−1−(1 − γw)Πw,∗)Πw,t ·

Λl,t

Λc,t
· Lu,t

− βEt

[
Λc,t+1

Λc,t
· χw (Πw,t+1−γwΠw,t−(1 − γw)Πw,∗)Πw,t+1 ·

Λl,t+1

Λc,t+1
· Lu,t+1

]

(19)

where

Λc,t = Ξc,t (Ct−ηCt−1)
−σ(L̄−Lt

)ζ(1−σ)
−Etβη

[
Ξc,t+1 (Ct+1−ηCt)

−σ(L̄−Lt+1
)ζ(1−σ)

]
(20)

Λl,t = ζΞc,t (Ct−ηCt−1)
(1−σ) (L̄−Lt

)ζ(1−σ)−1
. (21)

The model has three market clearing conditions: the labor market clearing condition, the

intermediate-goods market clearing condition, and the final-goods market clearing condi-

tion. In the symmetric equilibrium these are given by:

Lu,t = Ly,t +
χw

2
(Πw,t − (1 − γw)Πw,∗ − γwΠw,t−1)

2 Lu,t, (22)

Yf,t = Ym,t −
χp

2
(Πp,t − (1 − γp)Πp,∗ − γpΠp,t−1)

2 Ym,t, (23)

Ct = Yf,t (24)

34



A.3 Log-linearized first-order conditions

The first-order conditions implied by the intermediate goods producing firm’s cost mini-

mization problem, given by equations (15) and (16), log-linearize to

ly,t = ym,t − at (25)

mct = wt − at (26)

The first-order conditions implied by the intermediate goods producing firm’s profit maxi-

mization problem, given by equation (17), log-linearizes to

πp,t =
γp

1 + βγp
· πp,t−1 +

β

1 + βγp
· Etπp,t+1

+
1

1 + βγp
·
(Θp,∗ − 1)(1 + ςθ,p)

Π2
p,∗χp

(
mct −

1

Θp,∗ − 1
· θp,t

)

=
γp

1 + βγp
· πp,t−1 +

β

1 + βγp
· Etπp,t+1 +

1

1 + βγp
· κp

(
mct −

1

Θp,∗ − 1
· θp,t

)
(27)

The first-order conditions implied by the household’s utility maximization problem, given

by equations (18) and (19), log-linearize to

λc,t = rt − Etπp,t+1 + Etλc,t+1 (28)

πw,t =
γp

1 + βγp
· πp,t−1 +

β

1 + βγw
· Etπw,t+1

+
1

1 + βγw
·
(Θw,∗ − 1)(1 + ςθ,w)

Π2
w,∗χw

·

(
λl,t − λc,t − wt −

1

Θw,∗ − 1
· θw,t

)

=
γp

1 + βγp
· πp,t−1 +

β

1 + βγw
· Etπw,t+1

+
1

1 + βγw
· κw ·

(
λl,t − λc,t − wt −

1

Θw,∗ − 1
· θw,t

)
(29)

where

λc,t =
1

1−ηβ

(
−σ

1−η
(ct−ηct−1) + ξc,t−ζ(1−σ)

Lu,∗

L̄−Lu,∗
· lu,t

)

−
ηβ

1−ηβ

(
−σ

1−η
(Etct+1−ηct) + Etξc,t+1−ζ(1−σ)

Lu,∗

L̄−Lu,∗
· Etlu,t+1

)
(30)

λl,t =
1 − σ

1 − η
(ct − ηct−1) + ξc,t + (1 − ζ (1 − σ))

Lu,∗

L̄ − Lu,∗
· lu,t. (31)

The price markup shock θp,t in (27), the wage markup shock θw,t in (29), and the preference

shock ξc,t in (30) and (31) are as usual defined as the logs of their uppercase counterparts.
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The market clearing conditions, equations (22), (23), and (24), log-linearize to:

lu,t = ly,t = lt (32)

yf,t = ym,t = yt (33)

ct = yf,t (34)

Three more equations remain in our model: (i) the process for the shocks At, defined in

equation (4), which log-linearizes to

at = at−1 + ǫt, (35)

(ii) the monetary policy process, which was already given in log-linearized form in equa-

tion (7), and (iii) an identity between price and wage inflation and real wages

Wt

Pt
·

Pt−1

Wt−1
=

Wt

Wt−1
·
Pt−1

Pt
=

Πw,t

Πp,t

which log-linearizes to

wt − wt−1 = πw,t − πp,t

Before concluding this section we note the following about the steady-state solution to

the model. We know from equations (16), (17), (19), (20), and (21) that in the steady state:

1 =
MC∗

P∗
=

W∗

P∗
=

Λl,∗

Λc,∗
=

1 − η

1 − ηβ
·

ζLu,∗

L̄ − Lu,∗

Since L∗ = Lu,∗ = Ly,∗ we can re-write this as:

ζL∗

L̄ − L∗
=

1 − ηβ

1 − η
. (36)

This means that we can re-write equations (30) and (31) as:

λc,t =
1

1−ηβ

(
−σ

1−η
(ct−ηct−1) + ξc,t−(1−σ)

1 − ηβ

1 − η
· lu,t

)

+
ηβ

1−ηβ

(
−σ

1−η
(Etct+1−ηct) + Etξc,t+1−(1−σ)

1 − ηβ

1 − η
· Etlu,t+1

)

λl,t =
1 − σ

1 − η
(ct − ηct−1) + ξc,t +

1 − ζ (1 − σ)

ζ
·
1 − ηβ

1 − η
· lu,t.

Since lu,t = ly,t = ym,t − at = yt − at and ct = yf,t = yt

λc,t =
1

1−ηβ

(
−σ

1−η
(yt−ηyt−1) + ξc,t−(1−σ)

1 − ηβ

1 − η
(yt − at)

)

+
ηβ

1−ηβ

(
−σ

1−η
(Etyt+1−ηyt) + Etξc,t+1−(1−σ)

1 − ηβ

1 − η
(Etyt+1 − Etat+1)

)
(37)

λl,t =
1 − σ

1 − η
(yt − ηyt−1) + ξc,t +

1 − ζ (1 − σ)

ζ
·
1 − ηβ

1 − η
(yt − at). (38)

Equations (37) and (38) will be used in deriving the natural rate.
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A.4 Natural rates in the log-linear model

The natural rate of output, i.e. the level of output in the equilibrium with perfectly flexible

prices and wages, is determined by the condition that the marginal rate of substitution

between consumption and leisure be (up to constants) equal to the marginal product of

labor at all dates t. In log terms, ỹt is determined implicitly by the equation

mrst = mplt (39)

where mrst = λl,t − λc,t and, from the production function (3), mplt = at. Substituting

from (37) and (38) for λc,t and λl,t yields the following expression for ỹt:

[δ1 − δ2(L + βL−1)]ỹt = [δ3 − δ4L
−1]at + δ5[1 − L−1]ξc,t (40)

where L denotes the lag operator, L−1xt ≡ Etxt+1, and

δ1 =
2(1 − σ)

1 − η
+

1 − ζ(1 − σ)

ζ

1 − βη

1 − η
+

σ(1 + βη2)

(1 − βη)(1 − η)

δ2 = η

[
1 − σ

1 − η
+

σ

(1 − βη)(1 − η)

]

δ3 = 1 +
1 − ζ(1 − σ)

ζ

1 − βη

1 − η
+

1 − σ

1 − η

δ4 =
βη(1 − σ)

1 − η
, and δ5 =

βη

1 − βη

The natural rate of interest, denoted r̃t, is the real rate rt − Etπt+1 prevailing in the

equilibrium with perfectly flexible prices and wages. Letting λ̃c,t denote the expression (37)

with ỹt substituted for yt, the Euler equation (28) in this equilibrium can be expressed as

r̃t = λ̃c,t − Etλ̃c,t+1 (41)

But, in this equilibrium, λ̃c,t = λ̃l,t − at. Substituting for λ̃c,t we obtain

r̃t = [δ6 + δ7 − δ6L − δ7L
−1]ỹt + δ8[L

−1 − 1]at + [1 − L−1]ξc,t

= δ6∆ỹt − δ7Et∆ỹt+1 + δ8Et∆at+1 + Et∆ξc
t+1 (42)

with

δ6 =
η(1 − σ)

1 − η

δ7 =
1 − σ

1 − η
+

1 − ζ(1 − σ)

ζ

1 − βη

1 − η

δ8 = 1 +
1 − ζ(1 − σ)

ζ

1 − βη

1 − η
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B VAR Identification and Structural Shocks

As discussed in section 3, we are using one long-run and one short-run restriction to identify

two elements of the vector of shocks εt in (9). In order to estimate the VAR in structural

form, we need a further set of assumptions to just-identify the elements of A0. We follow

Altig et al. (2002) by assuming that the submatrix consisting of columns 2-4 and rows 2-4

of A0 is lower triangular. This assumption is without loss of generality as we do not attach

any structural interpretation to elements 2 through 4 of εt. With these assumptions, we

estimate the first equation of the structural VAR imposing the long-run restrictions in the

manner of Shapiro and Watson (1988) by including contemporaneous and lagged variables

of elements 2 through 4 of Yt in first-differenced form. To control for simultaneity, we

estimate the equation by 2SLS, using a constant and Yt−1, . . . , Yt−4 as first-stage regressors

for elements 2 through 4 of Yt. We then sequentially estimate equations 2 through 4 by

IV, using the residuals from the previous regressions as instruments for contemporaneous

variables. Equation 5 can be estimated by OLS by virtue of our short-run identifying

assumption.

We modify this identification strategy in one respect. Because, in contrast to Altig et al.,

our VAR includes hours per capita in first differences, we would like to assure that the long-

run response of hours to a technology shock is zero, consistent with the observation that

hours worked have remained broadly unchanged despite the secular trend in real wages.

When this second long-run restriction is not imposed, the IRF of ∆l usually does not

integrate to zero. We therefore reorder our vector of endogenous variables to include ∆l

as the second variable, and apply the Shapiro-Watson method to the first two equations.

This leaves the interpretation of the first element of εt unchanged, but the second element

is now the only shock that permanently affects hours per capita. Contrary to the findings

reported by Francis and Ramey (2005), Laubach and Williams (2006) find that imposing

this second long-run restriction can have a substantial effect on the response of hours to a

technology shock.

To compute the historical processes of the remaining three structural shocks ξc,t, θp,t,

and θw,t, we invert the model at our parameter estimates to find the time series for these

processes that would allow us to exactly replicate the historical data used in estimation. In

fact, this method does not work exactly because the absence of capital in our model implies

that the innovation to technology ǫt is identical to the first difference of log output per hour
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∆(yt − lt), which is close to, but not exactly true in the data. In constructing the shock

processes, we therefore replace the log hours data with detrended log output minus the

cumulative sum of the identified technology shock. This replacement also means that the

simulated policy rule, which now responds to this model-consistent hours measure, does not

excatly replicate the historical funds rate series, which is consistent with policy responding

to log hours, but the correlation between the two funds rate series is 0.85. The resulting

shock processes are serially correlated, and in the model simulations we approximate them

as AR(1) processes with coefficients 0.41, 0.67, and 0.57 respectively.

C Deriving the Welfare Criterion

To derive the welfare criterion we first take a second-order approximation to the within-

period utility function

1

1 − σ
·
Ξc,t (Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

= T.I.P.

+
1

1 − η

(
ct +

1

2
· c2

t

)
+

−η

1 − η

(
ct−1 +

1

2
· c2

t−1

)
−

ζLu,∗

L̄ − Lu,∗

(
lu,t +

1

2
· l2u,t

)

+
1

2
(−σ)

1

1 − η
·

1

1 − η

(
ct +

1

2
· c2

t

)(
ct +

1

2
· c2

t

)

+
1

2
(−σ)

−η

1 − η
·

−η

1 − η

(
ct−1 +

1

2
· c2

t−1

)(
ct−1 +

1

2
· c2

t−1

)

−
1

2
·
1 − ζ(1 − σ)

ζ
·

ζLu,∗

L̄ − Lu,∗
·

ζLu,∗

L̄ − Lu,∗

(
lu,t +

1

2
· l2u,t

)(
lu,t +

1

2
· l2u,t

)

+ (−σ)
1

1 − η
·

−η

1 − η

(
ct +

1

2
· c2

t

)(
ct−1 +

1

2
· c2

t−1

)

− (1 − σ)
1

1 − η
·

ζLu,∗

L̄ − Lu,∗

(
ct +

1

2
· c2

t

)(
lu,t +

1

2
· l2u,t

)

− (1 − σ)
−η

1 − η
·

ζLu,∗

L̄ − Lu,∗

(
ct−1 +

1

2
· c2

t−1

)(
lu,t +

1

2
· l2u,t

)

+
1

1 − η

(
ct +

1

2
· c2

t

)(
ξc,t +

1

2
· ξ2

c,t

)
+

−η

1 − η

(
ct−1 +

1

2
· c2

t−1

)(
ξc,t +

1

2
· ξ2

c,t

)

−
ζLu,∗

L̄ − Lu,∗

(
lu,t +

1

2
· l2u,t

)(
ξc,t +

1

2
· ξ2

c,t

)
(43)

We also make use of the quadratic approximations to the labor demand curve (equation 15)

and the market clearing conditions (equations 23, 22, and 24) which are given by:
(

ly,t +
1

2
· l2y,t

)
=

(
ym,t +

1

2
· y2

m,t

)
−

(
at +

1

2
· a2

t

)
− ym,tat
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(
ly,t +

1

2
· l2y,t

)
=

(
lu,t +

1

2
· l2u,t

)
−

1

2
· χw · Π2

w,∗

(
π2

w,t + γ2
w · π2

w,t−1 − 2 · γw · πw,tπw,t−1

)

(
yf,t +

1

2
· y2

f,t

)
=

(
ym,t +

1

2
· y2

m,t

)
−

1

2
· χp · Π

2
p,∗

(
π2

p,t + γ2
p · π2

p,t−1 − 2 · γp · πp,tπp,t−1

)

(
ct +

1

2
· c2

t

)
=

(
yf,t +

1

2
· y2

f,t

)

Substituting the above equations into the equation (43) and making a number of substitu-

tions yields:

1

1 − σ
·
Ξc,t (Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

= T.I.P.

−
1

2
· σ

(
1

1 − η

)2

((yt − ỹt) − η (yt−1 − ỹt−1))
2

−
1

2
·
1 − ζ(1 − σ)

ζ
·

(
1 − βη

1 − η

)2

(yt − ỹt)
2

− (1 − σ) ·
1 − βη

1 − η
·

1

1 − η
· (yt − ỹt) ((yt − ỹt) − η (yt−1 − ỹt−1))

−
1

2
·
1 − βη

1 − η

{
χpΠ

2
p,∗ · (πp,t − γpπp,t−1)

2 + χwΠ2
w,∗ · (πw,t − γwπw,t−1)

2
}

.

This can also be written as:

1

1 − σ
·
Ξc,t (Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

= T.I.P.

−
1

2
· σ

(
1

1 − η

)2

((yt − ỹt) − η (yt−1 − ỹt−1))
2

−
1

2
·
1 − ζ(1 − σ)

ζ
·

(
1 − βη

1 − η

)2

(yt − ỹt)
2

− (1 − σ) ·
1 − βη

1 − η
·

1

1 − η
· (yt − ỹt) ((yt − ỹt) − η (yt−1 − ỹt−1))

−
1

2
·
1 − βη

1 − η

{
Θp,∗

κr,p
· (πp,t − γpπp,t−1)

2 +
Θw,∗

κr,w
· (πw,t − γwπw,t−1)

2

}
,

which is the equation given in section 4 of the paper.

D The Model’s Calvo Counterpart

As noted in section 2.3 of the paper we preferred to use the quadratic adjustment cost

approach to modeling sticky-prices and sticky-wages in preference to alternatives that imply
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heterogeneity among agents. Naturally, this raises the question of whether this modelling

choice has serious implications for our results.

In this appendix we present our model’s Calvo counterpart. Clearly the principal differ-

ences are that we no longer have the price and wage adjustment cost terms in equations 2 and

6 (so that these equations become simply Yf,t(j) = Ym,t(j) and Lu,t(i) = Ly,t(i)); instead,

however, the model contains Calvo reset probabilities in the firms’ profit-maximization

problem and the households’ utility maximization problems. All of the parts of the model—

that is, the firms’ cost-minimization problem and the process describing monetary policy—

remain the same.

Under Calvo pricing-setting the firm’s profit-maximization problem is:

max
{Pt(j)}∞t=0

{(1 + ςθ)Yf,0(j)P0(j) − Ym,0(j)MC0(j)}

+E0

∞∑

t=1

(βαp)
t Λc,t

Pt

{
(1+ςθ,p)Yf,t(j)Pt(j)

((
Πt

p,∗

)1−γc,p
t∏

l=0

Π
γc,p

p,l

)
− Ym,t(j)MCt(j)

}

subject to Yf,t(j)=Ym,t(j) and Yf,t(j)=(Pt(j)/Pt)
−Θp,t Yf,t. (44)

Under Calvo wage-setting the household’s utility-maximization problem is:

max
{Ct(i),Wt(i)}

∞

t=0

E0
1

1 − σ

∞∑

t=0

βt
[
(Ct(i) − ηCt−1(i))(L̄ − Lu,t(i))

ζ
]1−σ

subject to

E0

[
β

Λc,1/Pc,1

Λc,0/Pc,0
B1(i)

]
=B0(i) + (1 + ςθ,w)Ly,0(i)W0(i) + Profits0(i) − P0C0(i),

Et

[
β

Λc,t+1/Pc,t+1

Λc,t/Pc,t
Bt+1(i)

]
=Bt(i) + (1 + ςθ,w)Ly,t(i)Wt(i) (αw)t

((
Πt

w,∗

)1−γc,w
t∏

l=0

Π
γc,w

w,l

)

+Profitst(i) − PtCt(i), for t = 1, · · · ,∞.

Ly,t(i) = Lu,t(i) and Ly,t(i)=(Wt(i)/Wt)
−Θw,t

∫ 1

0
Ly,t(i, j)dj. (45)

All of the equations in the log-linearized model other than the price and wage Phillips curves

are unaltered by our assumption for price- and wage- setting. Equations (27) and (29) are

however replaced by:

πp,t =
γc,p

1 + βγc,p
· πp,t−1 +

β

1 + βγc,p
· Etπp,t+1

+
1

1 + βγc,p
·
(1 − αp)(1 − βαp)

αp

(
mct −

1

Θp,∗ − 1
· θp,t

)
(46)
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πw,t =
γc,w

1 + βγc,w
· πw,t−1 +

β

1 + βγc,w
· Etπw,t+1

+
1

1 + βγc,w
·
(1 − αw)(1 − βαw)

αw
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(
1 + Θw,∗ ·

1 − ζ(1 − σ)

ζ
·
1 − βη

1 − η
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(

λl,t − λc,t − wt −
1

Θw,∗ − 1
· θw,t

)
(47)

In estimating our model, we could have set:

κc,p =
(1 − αp)(1 − βαp)

αp
and κc,w =

(1 − αw)(1 − βαw)

αw

(
1 + Θw,∗ ·
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1 − η

)−1
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β
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1
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(
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1
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(48)

πw,t =
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β
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· Etπw,t+1

+
1

1+βγc,w
· κc,w

(
λl,t − λc,t − wt −

1

Θw,∗−1
· θw,t

)
(49)

in our estimated model. These would have been identical to equations (27) and (29) which

we did estimate.

Under Calvo pricing the loss function is:

1

1 − σ
·
(Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗
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−
1
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2
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1
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2
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·

1
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· (yt − ỹt) ((yt − ỹt) − η (yt−1 − ỹt−1))
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·

(
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ζ
·
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1 − η

)2

(πw,t − γwπw,t−1)
2,

This can also be written as:

1

1 − σ
·
(Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

= T.I.P.
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−
1

2
· σ

(
1

1 − η

)2

((yt − ỹt) − η (yt−1 − ỹt−1))
2

−
1

2
·
1 − ζ(1 − σ)

ζ
·

(
1 − βη

1 − η

)2

(yt − ỹt)
2

− (1 − σ) ·
1 − βη

1 − η
·

1

1 − η
· (yt − ỹt) ((yt − ỹt) − η (yt−1 − ỹt−1))

−
1

2
·
1 − βη

1 − η
·
Θp,∗

κc,p
· (πp,t − γpπp,t−1)

2

−
1

2
·
1 − βη
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·
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κc,w
·

(
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1 − ζ(1 − σ)

ζ
·
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1 − η

)

︸ ︷︷ ︸
∗

(πw,t − γwπw,t−1)
2,

where the “∗” term is only term that differs from what appears in the loss funciton under

our quadratic adjustment costs assumption.
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