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Abstract

Consumption-based asset-pricing models have experienced success in recent years by augment-

ing the consumption process in ‘exotic’ ways. Two notable examples are the Long-Run Risk and

rare disaster frameworks. Such models are difficult to characterize from consumption data alone.

Accordingly, concerns have been raised regarding their specification. Acknowledging that both phe-

nomena are naturally subject to ambiguity, we show that an ambiguity-averse agent may behave

as if Long-Run Risk and disasters exist even if they do not or exaggerate them if they do. Conse-

quently, prices may be misleading in characterizing these phenomena since they encode a pessimistic

perspective of the data-generating process.
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1 Introduction

A principal challenge for the early generations of consumption-based asset pricing models

was to generate sufficiently high prices and quantities of risk while respecting a plausible

degree of risk aversion and the apparent smoothness in consumption growth from period

to period (Mehra and Prescott (1985) and Hansen and Jagannathan (1991)). One popular

response to this challenge has been to introduce ‘exotic’ elements in consumption dynamics.

Notably, the Long-Run Risk (LRR) model of Bansal and Yaron (2004) asserts a small but

persistent component in consumption growth that allows the process to exhibit considerable

risk over longer horizons without introducing counterfactual volatility at high frequencies.

An alternative strategy is to appeal to rare disasters in consumption growth (Rietz (1988),

Barro (2006), Gourio (2012), Gabaix (2012), Nakamura, Steinsson, Barro, and Ursa (2013)

and Wachter (2013)). However, despite the success of these approaches, concerns have been

raised as to their specification, or even existence. By definition, direct evidence of the LRR

component is hard to detect in post-war consumption data, leading to the question of whether

the component actually exists (Hansen, Heaton, and Li (2008), Marakani (2009), Beeler and

Campbell (2012) and Croce, Lettau, and Ludvigson (2015)). With regard to disasters, as

noted in Dolmas (2013), the rarity of the phenomenon in question undermines empirical

analysis.

We take a different approach. Rather than positing the existence of Long-run Risk or tak-

ing a firm stance on the calibration of rare disasters we show that an ambiguity averse agent’s

fear of model misspecification can generate or exaggerate these phenomena endogenously in

the mind of the agent. Consequently, one explanation for why these exotic properties appear

to be encoded in prices, but are simultaneously difficult to identify in consumption data di-

rectly, is that prices reflect not only the true model of consumption but also the agent’s fear

of misspecification.

Our agent does not fully trust her ‘benchmark’ model of consumption growth and the

probability distributions it implies. She acknowledges that the benchmark is an approxima-

tion to the true data generating process but fears it is misspecified in some unknown way. She

expresses these fears by envisaging alternative probability distributions (implicitly capturing

misspecifications in her benchmark), which she thinks may plausibly describe consumption.

Formally, we endow the agent with a desire for robustness to model misspecification, as cap-

tured by the multiplier preferences of Hansen and Sargent (2008). To construct a robust

evaluation of random payoffs the agent envisages adverse misspecifications, balancing the

damage they could cause against their plausibility. A particular ‘worst case’ distribution

emerges from the agent’s optimization problem, allowing insight into the sort of misspeci-
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fications against which she desires robustness. The agent then evaluates risky payoffs as if

this worst case is generating the data. We show that this worst case will naturally encode

phenomena akin to LRR and disasters.

We begin with a specification of the benchmark that features white noise consumption

growth with persistent variation in conditional variance. The worst case reflects a fear of

misspecifications that would imply lower growth and higher volatility, as represented by

negative and positive mean shifts in the marginal distributions for endowment and volatility

innovations, respectively. Most importantly, the agent’s pessimism becomes more extreme

when volatility is high, as captured by a greater negative distortion to the mean of the

endowment innovation. Since the volatility process is persistent, the consumption growth

process under the worst case inherits this persistence. Consequently, the worst case exhibits

the hallmark of LRR models - a small but persistent component in consumption growth.

The association of high volatility with low growth under the worst case also induces negative

skewness in the consumption growth process so that ‘disasters’ are more common, in terms

of a longer left tail of the unconditional distribution of consumption growth.

An extreme draw from the unconditional distribution is perhaps not the most natural

concept of a disaster as it does not align with our intuition of an abrupt decline. In order

to allow for more a more standard, ‘conditional’ concept of disasters we go on to consider a

benchmark model featuring a non-normal ‘jump’ component in consumption growth to allow

for occasional dramatic declines in consumption. In this context we show that disasters are a

more powerful phenomenon to interact with robustness, in the sense that a more reasonable

calibration of ambiguity aversion can attain stylized asset pricing facts, such as elevated

premia and prices of risk than in the heteroscedastic Gaussian case. Under our calibrations it

is entirely reasonable for an agent with a plausible degree of ambiguity aversion to behave as

if disasters arrive with significantly greater frequency than implied by the model and, thus,

not allowing for this fear of misspecification could undermine inference. In addition, we show

that allowing for time variation in disaster risk leads to predictability in returns that reflects

in part a tendency for the agent to over-extrapolate shocks to the probability of jumps.

To obtain our characterization of the worst case model we show how one can use im-

portance sampling techniques to draw from the worst case distribution. We also make use

of cumulant generating functions to obtain clear expressions for worst case moments. Both

approaches are founded on an exponential affine approximation to the worst case change in

measure relative to the benchmark. These methods allow Robust Control to be taken to

classes of models beyond simple linear-quadratic or log-linear Gaussian setups that account

for most discrete time models of robustness in the literature.

3



2 Literature

Our paper relates to several important bodies of work. Foremost, we build on the Robust

Control (RC) literature and particularly Barillas, Hansen, and Sargent (2009) (BHS) who

also address how allowing for a reasonable degree of model uncertainty can help with asset-

pricing. However, they work with a very particular homoscedastic and log-linear endowment

economy that leads to a highly restricted worst case model, characterized by a pessimistically

shifted mean in endowment growth that is constant over time and analytically expressed. By

introducing heteroskedasticity, we lose the simplicity of the worst case and analytic tractabil-

ity.

Regarding our more elaborate worst case (featuring LRR) it is perhaps undesirable that

the omission by BHS of a fairly uncontroversial phenomenon like stochastic volatility has such

an important impact on the qualitative properties of the worst case, given that robustness is

largely about doubting the specification of the benchmark model. Our heteroscedastic setup

shows how a robust agent will distort dynamics if given enough flexibility and emphasizes

that the benchmark specification can importantly restrict the usefulness of the RC approach.

In response to the loss of tractability, we exploit cumulant generating functions to obtain

characterizations of the worst case in discrete time and develop methods to draw from it

using importance sampling. Setting aside the log-linear setup of BHS, much of the work

in economics on robustness has been LQ-Gaussian, again for tractability, thereby imposing

unnecessary modeling restrictions that can be relaxed using the methods in this paper.1

Alternative formulations of ambiguity have had asset-pricing success. Ju and Miao (2012)

illustrate how smooth ambiguity and learning about latent states can jointly explain an array

of moments. Learning also features in Epstein and Schneider (2008). We choose not to

introduce learning - though surely it is an important phenomenon - as we attempt to remain

within an (extremely) parsimonious RC framework in which the agent’s doubts are expressed

solely in terms of the model’s dynamics. As an example of models using both robustness

and learning, Hansen and Sargent (2010) explore uncertainty over the filtering distribution

of a latent state in addition to uncertainty over dynamics. Allowing a second explicit type

of uncertainty over the filtering distribution provides an extra degree of freedom that we do

1To some degree these restrictions can be overcome if one works in continuous time. Kleshchelski and
Vincent (2008) focus primarily on the term structure with stochastic volatility while Xu, Wu, and Li (2010)
and Anderson, Hansen, and Sargent (2003) are additional treatments of RC in continuous time. However,
since discrete time models are often a workhorse in financial and particularly macro-financial applications
it is useful to develop tools for these contexts. Also applicable to discrete time, Bidder and Smith (2012)
use perturbation methods to approximate worst case moments (which can then be used to enhance proposal
densities for Monte Carlo routines) and one may also solve models beginning with a general discretized shock
distribution, as in Boyarchenko (2012).

4



not exploit here.

Ju and Miao (2012) also have greater freedom via their separation of risk aversion, ambi-

guity aversion and elasticity of intertemporal substitution (EIS), while we operate within a

log-utility case. Their extra degrees of freedom allow empirical success but it is nevertheless

important to show how the most basic RC formulation provides striking insights despite its

parsimony. Furthermore, Ju and Miao (2012)’s framework does not generically yield a ‘worst

case’ model. Their agent retains a pessimistic outlook but, unlike in our case, cannot be

mimicked by a pessimistic agent without ambiguity aversion. It is often useful for insight

into the agent’s behavior to have such an object and in some cases, such as stress testing ap-

plications (see Breuer and Csiszr (2013), Glasserman and Xu (2014) and Bidder, Giacomini,

and McKenna (2016)) the worst case is practically useful. It also helps calibrate ambiguity

aversion by appealing to the difficulty of distinguishing the benchmark and worst case models

through statistical tests using simulated data from each model.

Long-run risk features in several papers on ambiguity aversion. The agent in Hansen and

Sargent (2010) focuses on two explicit models (the latent ‘states’) as possibilities under the

benchmark: an iid consumption growth model and LRR. The agent’s fears of misspecification

are partly represented with distorted filtered probabilities of which model is true. It is

important that in our model LRR emerges endogenously only in the worst case - we do not

need to ‘prime the pump’ by asserting it directly as a primitive, which seems appropriate if

ambiguity is to be about ‘unknown unknowns’. Bidder and Dew-Becker (2016) also generate

long-run risk in the mind of an ambiguity averse agent without including it as a primitive.

However, they formulate an alternative and more flexible approach to ambiguity aversion

while we remain within the popular and axiomatized RC paradigm. Like Bidder and Dew-

Becker (2016), we can also speak to the literature on extrapolative expectations (see Cecchetti,

Lam, and Mark (1997), Fuster, Hebert, and Laibson (2011) and Greenwood and Shleifer

(2014)) as the agent’s worst case features exaggerated persistence.

In analyzing the interaction of ‘jumps’ or disasters with ambiguity aversion our work

relates to Drechsler (2013) and Liu, Pan, and Wang (2004). While there are several differences

between their formulations and ours, most notable is the fact that neither are Hansen-Sargent-

type robustness and both add substantial structure to the class of models considered plausible

by the agent. Both works assert that certain aspects of the model are fully trusted - thereby

focusing ambiguity in a way that the fully unstructured approach of RC does not. Since the

unstructured nature of uncertainty is intuitively an important aspect of a truly ambiguous

situation, it is again worthwhile to consider the more restricted RC framework despite the

cost of reduced flexibility to match observed behavior and data.
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3 Robustness

There is much evidence suggesting that, when faced with situations that are ‘ambiguous’

or uncertain in the Knightian sense, agents do not behave in accordance with standard

axioms of choice (Knight (1921)). An important literature has emerged suggesting possible

formalizations for how agents make decisions in such contexts. One of the more prominent

and intuitively appealing formalizations is the Robust Control framework, which has been

adapted for economic applications by Hansen and Sargent (2008).

3.1 Environment

A robust agent entertains a benchmark model in which the state, control and innovation

sequences are related according to the (possibly nonlinear) vector valued equation

st+1 = g(st, ut, wt+1) (1)

where st is the state vector, ut is a vector of controls and wt ≡ (w1,t, w2,t, . . . , wN,t)
′ is a

vector-valued random innovation.

Given a control law, ut = u(st), and a density, pw (wt+1|st), for wt+1, equation (1) implies

a benchmark transition density p(st+1|st). It is convenient to partition the state, st into

elements unknown on entering the period, which we identify with wt, and those elements

that are predetermined, denoted ŝt. We capture the dependence of ŝt on the state prevailing

in the previous period by the function f , such that ŝt = f(st−1). With this decomposition

we have p(st+1|st) = pw(wt+1|st)1f(st)(ŝt+1).

3.2 Preferences

We endow the agent with multiplier preferences, which are discussed extensively in Hansen

and Sargent (2008) and axiomatized in Strzalecki (2011). Our agent is not a Bayesian - her

problem progresses from a situation of multiple models to making a decision not by integrating

over the models with respect to a unique prior (essentially resolving the multiple models to

a single hyper-model) but by a penalized max-min approach. Formally, the decision problem

of the agent takes the following form:

max
{ut}

min
{mt+1}

∞∑
t=0

E
[
βtMt {Υ(st, ut) + βθE (mt+1 logmt+1|=t)} |=0

]
(2)

where Υ(·, ·) is the period payoff function, β is the rate of pure time preference and the

problem is subject to equation (1), Mt+1 = mt+1Mt, E[mt+1|=t] = 1, mt+1 ≥ 0 and M0 = 1.
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We assume that the robust agent’s information set, =t, contains the entire history of states.

Thus, {mt+1, t ≥ 0} is a sequence of Martingale increments that recursively define a non-

negative Martingale, Mt = M0

∏t
j=1 mj.

Mt defines Radon-Nikodym derivatives that twist the measures implicit in the benchmark

model to yield absolutely continuous measures representing alternative distributions consid-

ered by the agent. The agent’s desire for robustness is reflected in the minimization over the

sequence of martingale increments, mt. The minimization implies that the agent considers

twists in the distributions towards realizations of the state sequence that are painful. Intu-

itively, the agent assesses her vulnerability to model misspecification by envisaging adverse

alternative models or distributions.

Clearly, without some discipline on this search for an adverse distribution, the minimiza-

tion would be ill-posed or lead to pathological results. This discipline is captured by the

second term in the sum, which represents the relative entropy associated with any alternative

distribution considered (identified with a particular Martingale), premultiplied by a param-

eter θ > 0. The degree of robustness is controlled by this term as it penalizes consideration

of models that diverge from the benchmark - the greater is θ, the greater the penalty.

The penalty captures the intuition that the agent considers models that, although differ-

ent, are somehow ‘near’ the benchmark, which is implicitly considered reasonable. A par-

ticular alternative distribution, associated with a particular Martingale, may be especially

painful in the sense of implying a very low expected payoff, but may not solve the minimiza-

tion problem due to the offsetting effect of the entropy penalty. Thus, the two components

in equation (2) capture the way in which the robust agent balances pain and plausibility.

We seek a recursive expression of the problem and, invoking results in Hansen and Sargent

(2008), obtain a value function of the following form

V (wt, ŝt) = max
ut

min
m(wt+1,ŝt+1)

Υ(st, ut) (3)

+ β

∫
m(wt+1, ŝt+1)V (wt+1, ŝt+1)pw(wt+1|st) (4)

+ θm(wt+1, ŝt+1) logm(wt+1, ŝt+1)pw(wt+1|st)dwt+1 (5)

subject to
∫
m(wt+1, ŝt+1)pw(wt+1|st)dwt+1 = 1 for all values of ŝt+1.

Solving the inner minimization problem we obtain the minimizing, or ‘worst case’, Mar-

tingale increment, which has the form

m(wt+1, ŝt+1) =
e−

V (wt+1,ŝt+1)

θ

Et

[
e−

V (wt+1,ŝt+1)

θ

] (6)
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Substituting this solution into the original problem we obtain the following expression

V (st) = max
Ct

logCt − βθ logEt

[
exp

(
−V (st+1)

θ

)]
(7)

where we have also asserted log period utility over consumption, Ct, that we will use in our

applications below.2 Note that this is algebraically equivalent to the utility recursion of an

Epstein-Zin agent with log utility and risk aversion of 1− α where α = −1
θ
.

We can construct worst case analogues of the various conditional distributions defined

above for the benchmark. Specifically, p̃(st+1|st) ≡ m(wt+1, ŝt+1)p(st+1|st) is the worst case

conditional distribution of the state and implicit in this is the conditional worst case distri-

bution over innovations, p̃w(wt+1|st) ≡ m(wt+1, ŝt+1)pw(wt+1|st).
As shown in Barillas, Hansen, and Sargent (2009), our agent’s stochastic discount factor

is of the following form

Λt,t+1 = Λr
t,t+1Λu

t,t+1 (8)

Λr
t,t+1 ≡ β

(
Ct+1

Ct

)−1

(9)

Λu
t,t+1 ≡

exp
(
−Vt+1

θ

)
Et

[
exp

(
−Vt+1

θ

)] (10)

Thus, our agent prices assets as if she has logarithmic period utility, but under a distorted

conditional expectations operator informed by the worst case, since the second component of

the discount factor is the minimizing Martingale increment.

3.3 Characterizing the worst case

The worst case distribution is an important object beyond simply being an artifact of a deci-

sion problem since it is suggestive of the nature of other plausible and damaging models that

might concern the agent. Much of the robustness literature in economics, following Hansen

and Sargent (2008), adopts the Linear-Quadratic Gaussian (LQG) approach, in which the

laws of motion characterizing the evolution and interaction of state and control are linear,

while the period payoff to the agent is quadratic and shocks are Gaussian. This brings sub-

stantial tractability and, in particular, results in a worst case distribution that can be directly

2We will be considering an endowment economy such that in equilibrium prices are such that desired
consumption and the realized endowment align. Although log period preferences are not strictly necessary
it preserves the homogeneity properties of the value function necessary for the scaling of the value function
(by consumption) that we will implement below to obtain a stationary problem. Relatedly, it also allows
aggregation of such preferences to that of a representative agent with preferences of the same form.
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calculated (rather than approximated). The worst case retains Gaussianity and can be rep-

resented then by a distorted mean vector and covariance matrix of the Gaussian innovations.

While useful for expositional purposes - and based on an enormous control literature - many

problems do not have reasonable LQG representations, rendering this approach inadequate.

In fact, robustness can be applied to much broader class of models provided one can

solve for an approximation to the robust agent’s value function.3 Based on this, one can

construct an approximation to the minimizing Martingale increment and, thus, the worst

case distribution over innovations. Since the worst case distribution over sequences can be

constructed from the worst case conditional distributions of innovations, combined with the

law of motion, we will spend time deriving the properties of these innovation distributions. To

do this we will make use of cumulant generating functions (CGF) and Monte Carlo techniques,

showing how one can go well beyond the limitations of the LQG framework.

3.3.1 Cumulant generating functions

Innovation wi,t+1 has conditional CGF

ki,t (zi) = logEt [exp {ziwi,t+1}] (11)

The jth cumulant is obtained by evaluating the jth derivative of the CGF at 0 with the first

and second cumulants being the mean and variance respectively. Moments can be derived

given knowledge of the cumulants. It is convenient to set up a benchmark model such that

the elements of wt are conditionally independent. In that case, the conditional CGF for wt+1

is given by the sum of the CGFs of its elements.

To obtain the CGF for wt under the worst case we apply the worst case change in measure

captured in Λu
t+1

k̃t (z) = logEt
[
exp {z · wt+1}Λu

t,t+1

]
(12)

where z is vector valued. We cannot guarantee a priori that the elements of wt+1 are condi-

tionally independent under the worst case. Indeed, typically they will not be as this depends

upon the minimizing increment’s dependence on the innovations. However, if one has an ex-

pression for the (log of) Λu
t,t+1 that is conditionally linear in wt+1, then we retain conditional

3Indeed, if one can solve a model with an Epstein-Zin agent with log utility, one need only reinterpret
certain objects from the robustness perspective and use them to characterize the worst case.
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independence, even under the worst case. Specifically, we obtain

k̃t (z) = logEt [exp {(z + λt) · wt+1}] + t.i.z (13)

= kt (z + λt) + t.i.z (14)

Λu
t,t+1 = exp{λt · wt+1 + ξt} (15)

where ξt is known in t and λt is a vector, also known in t. We thus see that the worst case

CGF is equal to the benchmark CGF evaluated at a shifted origin, plus terms independent

of the point of evaluation such that the independence of innovations under the benchmark is

inherited by the worst case. Thus, one can consider each innovation’s ‘marginal’ worst case

CGF in isolation when deriving its moments:

k̃t (z) =
N∑
i=1

k̃i,t (zi) =
N∑
i=1

ki,t (zi + λi,t) t.i.zi (16)

As will be discussed below, under exponential affine approximations to the stochastic

discount factor, we will indeed be working with linear expressions for log Λu
t,t+1.

3.3.2 Importance sampling

Depending on the structure of the value function approximation and on the underlying bench-

mark innovation distributions one may or may not be able to fully characterize the worst case

innovation distributions. If one can show that the worst case distribution belongs to a rec-

ognized parametric family, then one may be able to calculate explicitly enough moments to

restrict all the parameters describing the distribution. For example, if one can show the worst

case distributions are Gaussian then one need only calculate the mean and variance for full

characterization. Then, if the distribution is of a known class, then one can draw from it

directly using well known random number generators. However, even if one can calculate a

large set of moments, one may not be able to fully characterize the distribution, in which

case one must find a way to draw from it using alternative methods.

Provided that one can evaluate an approximation to the worst case density p̃w (wt+1|st), we

can draw from it using a variety of Monte Carlo techniques. This requires simply that we can

obtain an approximation to the value function since we can then construct the minimizing

Martingale increment and use it to pre-multiply the benchmark density. For example, we

can employ Sampling Importance Resampling (SIR) algorithm of Rubin (1987) and Smith

and Gelfand (1992) for drawing from the worst case distribution. This entails obtaining

draws from pw (wt+1|st), computing associated importance weights (given by the minimizing

10



Martingale increment) and then resampling with replacement according to those weights.

This yields approximate draws from p̃w(wt+1|st). By iteratively drawing from p̃w(wt+1|st)
and evolving the state according to the law of motion (1) we obtain draws from the worst

case distribution of sequences of the state.4

Thus, by using these methods one can apply robust control analysis to a broad class of

discrete time non-linear models that admit non-standard worst case distributions, assuming

one is able to obtain a reasonable approximation to the value function.

4 Results

We begin with a simple example, augmenting a basic endowment economy model with the

presence of stochastic volatility, and show explicitly how fears of Long-Run Risk may emerge

endogenously in the mind of the agent even if there is none in the benchmark. We then address

models featuring disasters and show that the interaction of disaster risk with robustness is

particularly powerful.

4.1 An illustrative example: Endowment economy with stochastic volatility

Consider a simple endowment economy in which consumption growth features stochastic

volatility

log gt+1 = G0 + v0.5
t wg,t+1 (17)

vt+1 = (1− ϕv) v̄ + ϕvvt + σvwv,t+1 (18)

wi,t+1 v N (0, 1) for i ∈ {g, v} (19)

where gt ≡ Ct
Ct−1

is consumption growth, G0 controls the trend, vt is the conditional variance

of shocks to consumption growth in t+ 1 and wg,t+1 and wv,t+1 are independent innovations.

We guess and verify an exponential affine approximation to the agent’s utility function,

ut ≡ Ut
Ct

, where we scale by current consumption to obtain a stationary problem.

ut = exp {F0 + Fvvt} (20)

F0 ≡
β

1− β

(
G0 + Fv (1− ϕv)−

1

2

1

θ
F 2
v σ

2
v

)
(21)

Fv ≡ −1

2

1

θ

β

1− βϕv
(22)

4In Bidder, Giacomini, and McKenna (2016) it is emphasized that one need not even know the proposal
distribution to apply similar methods, one need simply resample from draws from the proposal using a
constructed change in measure.
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The implied solutions for the components of the stochastic discount factor clearly make

the distinction between the influence of the standard, expected utility elements of the agent’s

preferences, and those reflecting her preference for robustness

log Λr
t+1 = kt + λrg,twg,t+1 (23)

log Λu
t+1 = ξt + λug,twg,t+1 + λuv,twv,t+1 (24)

λrg,t ≡ −v0.5
t (25)

λug,t ≡ −1

θ
v0.5
t (26)

λuv ≡ −1

θ
Fvσv (27)

We will refer to λug,t and λuv,t as ‘uncertainty’ prices and λrg,t as a ‘risk’ price. As the

concern for robustness vanishes (θ → ∞) the uncertainty prices tend to zero, while λrg,t is

independent of the robustness parameter and represents the standard risk price of an expected

utility agent with log utility.5

4.1.1 Worst case innovation distribution: Fluctuating pessimism

Under our benchmark the growth and volatility innovations are both standard Normal, such

that kgt = kvt = k where k (z) = z2

2
. The derivatives of the worst case CGF are, for i ∈ {g, v},

k̃1
i,t (z) = k1

(
z + λui,t

)
= u+ λui,t (28)

k̃2
i,t (z) = k2

(
z + λui,t

)
= 1 (29)

k̃ji,t (z) = kj
(
z + λui,t

)
= 0 for j > 2 (30)

The first two cumulants are the mean and variance, respectively. Thus, evaluating the

derivatives at the origin, we see that the only effects on the innovation distributions under

the worst case are mean shifts. The properties of unit standard deviation and Normality (as

indicated by higher order cumulants being zero) are preserved under the worst case. The

means are pessimistically shifted by an amount equal to the uncertainty prices and, in the

5kt and ξt are functions of deep parameters and states, as shown in the appendix. Remaining endogenous
variables can typically be calculated in a similar way, utilizing exponential affine approximations to the true
equilibrium objects. In the case of equity returns we utilize the approximation discussed in Campbell and
Shiller (1989) and, where necessary, an approximation based on the zero-coupon term structure of equity,
advocated by Lettau and Wachter (2011).
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case of wg,t+1, the shift is state dependent, through the dependence of λug,t on vt:

Ẽt [wg,t+1] = λug,t = −1

θ
v0.5
t (31)

Ẽ [wv,t+1] = λuv = −1

θ
Fvσv (32)

The mean of the endowment innovation is distorted downwards, while the mean of the

volatility innovation is distorted upwards. These patterns are to be expected given the unde-

sirability of low consumption growth and high volatility. The pessimistic shift to the mean

of wg,t+1 is more intense, the higher is volatility. Intuitively, as the agent is more exposed

to misspecifications in her model for growth (because wg,t+1 is pre-multiplied by a larger

volatility term) she envisages greater distortions to the benchmark model as a by-product of

her robust decision problem.

Although the agent doubts her model at all times, the manifestation of these doubts

varies. Equation (31) shows that when volatility is high the pessimistic (negative) mean

distortion to wg,t+1 is more intense. In some sense, as volatility fluctuates, the (conditional)

worst case in her mind does also. This is perhaps a partial response to concerns that models

of ambiguity are counterfactual in their prediction of pessimistic behavior. The argument

often is that in the real world people do not typically appear pessimistic. However, we see

here that robustness is quite capable of generating variations in apparent pessimism. As

in the real world, pessimism can be more extreme in occasional periods of unusually high

volatility.

4.1.2 Worst case sequence distribution: Fears of long-run risk and ‘disasters’

The properties of the worst case innovation distributions discussed above are interesting but

also, at least qualitatively, to be expected. Less obvious, however, are the implications of our

model for the worst case distribution over sequences, induced by iterating on the distorted

conditional distributions and the law of motion for the economy.

A consequence of the retention of Gaussianity under the worst case is that the implied

distribution over sequences can be represented by a system of the same form as the benchmark

model (17) − (19) but with different innovation distributions. One can re-express wi,t+1 =

εi,t+1 +λui,t with εi,t+1 v N(0, 1) and then incorporate the λui,t term into the conditional mean

dynamics of the system. Thus we can obtain the following convenient representation of the
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worst case6

log gt+1 = G0 + ζg,vvt + v0.5
t εg,t+1 (33)

vt+1 = (1− ϕv) ṽ + ϕvvt + σvεv,t+1 (34)

εi,t+1 v N (0, 1) for i ∈ {g, v} (35)

Since ṽ > v̄, the average level of volatility will be higher than under the benchmark.

However, most notable is the additional term, linear in vt, in equation (33). Consumption

growth acquires a contribution to its conditional mean that depends on the level of volatility.

The volatility component vt is persistent. Thus, the conditional mean of consumption

growth inherits this persistence under the worst case. This is transparent in the worst case

system, which makes clear that a scaled version of vt is acting as a Long-Run Risk component.7

In this important sense the agent prices assets as if there is Long-Run Risk, even though there

is none in the true model. The manner in which the persistent component enters the model

(via the concerns of the agent) is highly restricted however, since the persistence of the

component is pinned down by the volatility process and its size by the degree of ambiguity

aversion.

This provides a cautionary econometric tale in that it emphasizes it is important to allow

for the presence of ambiguity if estimating such models using financial data. If one matches

a limited set of moments and/or imposes restrictions on a subset of parameters (via priors

and/or direct imposition) then the encoding of the worst case beliefs in asset prices could

lead estimates to exaggerate the true degree of persistence under the benchmark.8

The worst case system also makes clear that consumption growth will feature uncon-

ditional skewness. vt+1 drives the conditional mean and conditional volatility so that, on

average, periods of low growth will be associated with higher volatility. This raises the

probability of consumption growth being thrown even further into the left tail, even while

conditional skewness in t + 1, given information in t, remains zero. We recognize, however,

that it is arguably in a conditional sense that people typically think of disasters, and we will

address this in section 4.2 below, by enriching the endowment process.

6Similar derivations are used in Drechsler and Yaron (2011) where they interpret dynamics under a risk
neutral (not worst case) measure and Backus, Chernov, and Martin (2011) also derive risk neutral object
using the formalism of CGFs. Also, in continuous time, Drechsler (2013) (online appendix) distinguishes
physical, risk neutral and worst case processes, expressed explicitly.

7For an approach to generating subjective long-run consumption risks outside the ambiguity framework,
see Collin-Dufresne, Johannes, and Lochstoer (2013).

8See Schorfheide, Song, and Yaron (2014) for a full information approach to estimating models allowing
for long run risk and a flexible specification of Epstein-Zin preferences.
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4.1.3 Discussion: Pricing of risk and uncertainty

We note from expressions (20)− (22) that the agent exhibits no concern for time variation in

vt per se in the absence of robustness (θ →∞). With robust preferences, the influence of the

stochastic nature of vt is manifested in F0 and Fv. Even if vt featured no persistence (ϕv = 0)

the value function would still load on vt. This is because the recursive representation of the

worst case entails a conditional mean shift in wg,t+1. Therefore, vt is a relevant state because

it pre-multiplies wg,t+1 and thus transmits the pessimistic mean distortion to (worst case)

expected consumption growth. The relevance of vt is clearly greater if it features persistence

(ϕv > 0).9

Intuitively, the presence of vt as a welfare-relevant state reflects how, from the perspective

of the time-0 sequence problem, certain path realizations expose the agent to more painful

misspecifications and, therefore, feature more twisting by the minimizing Martingale. Thus,

vt enables a recursive representation: once the agent has reached a ‘node’ (or history) fea-

turing high volatility it signifies that the worst case joint distribution over sequences requires

substantial distortions to the conditional distributions stemming from that node.

Now, considering the stochastic discount factor, we see that, even within a fully trusted

model, vt controls compensation for exposure to wg,t+1 as reflected in λrg,t. However, there are

additional effects in our case because vt enhances exposure to misspecifications represented

by mean shifts to wg,t+1 (λug,t ≡ −1
θ
v0.5
t ). Furthermore, recalling the presence of vt in the value

function discussed above, wv,t+1 has the appearance of a ‘risk’ being priced (λuv ≡ −1
θ
Fvσv)

because the innovation to vt+1 will determine how pessimistic a change in measure the agent

will be operating under from the next period forwards.

Thus, the algebraic equivalence between an Epstein-Zin agent and the robust agent is

natural. The Epstein-Zin agent wants to hedge against shocks to future lifetime utility. The

robust agent is concerned with exposure to realizations that make her particularly vulnerable

to misspecifications that are damaging for future lifetime utility. Assuming that the data

generating process is the benchmark model, a ‘wedge’ is introduced that lowers the prices of

assets whose payoffs depend on wg,t and vt (positively and negatively, respectively), relative

to the prices that would prevail in the absence of model uncertainty. ‘Risks’ that are not

priced by an expected log utility agent will appear to be priced by the robust agent, as in the

case of wv,t+1, not because they are risks in the Epstein-Zin sense, but because they encode

a fear of misspecification and capture histories under which those misspecifications would be

most concerning.

Finally, it is worth contrasting the worst case process with the risk neutral process under

9In addition to the time varying influence of vt on the agent’s welfare we also observe an influence on the
steady state via the third term in the parentheses in the definition of F0.

15



Epstein-Zin.10 The deviation of the worst case dynamics from the benchmark is somewhat

different from that of the Epstein-Zin risk neutral measure, since the worst case omits the part

of the twist in measure arising from the log utility component of the stochastic discount factor,

Λr
t+1. However, in the absence of additional phenomena such as habits, this contribution is

small. Setting this aside, we are again faced with an issue of re-interpretation, as under

Epstein-Zin the agent applies time varying discount rates driven by volatility, over and above

any changes in the risk free rate. Under the risk neutral measure, this will manifest as a

volatility component in expected consumption growth. Alternatively, from the robustness

perspective, this component has a natural interpretation as LRR in the mind of the agent,

detached from any attitudes towards risk.

4.1.4 Discussion: Time varying volatility and uncertainty

It is worth contrasting the nature of the time variation in our agent’s ‘pessimism’ with that

discussed in Drechsler (2013).11 In our framework it is not the case that as volatility (vt)

varies over time our agent’s uncertainty varies. Although we are working with a recursive

formulation of the robust problem, the sequence problem (2) makes clear that the agent is

uncertain about the worst case distribution over sequences implied by her benchmark and

that this degree of uncertainty is fixed. Since in our recursive setup we are representing

the worst case distribution over sequences in terms of worst case conditional distributions

(combined with the law of motion (1)), the manifestation of this uncertainty in terms of

distorted conditional means varies over time with vt. Nevertheless, uncertainty is fixed.

In Drechsler (2013), ‘uncertainty’ is allowed to vary over time with volatility in the sense

that the penalty for distortions to benchmark conditional distributions is linked to the level of

volatility - when volatility is high, the marginal penalization for entropic deviation is reduced

in addition to the agent’s exposure to misspecification being greater. Although it seems very

plausible that times of high volatility are somehow associated with higher uncertainty, this

connection must be modeled carefully if one is to claim a fully structural interpretation of

the separate influence of these two factors. Indeed, the ambiguity literature is in some sense

defined by the explicitly separate treatment of ‘risk’ and ‘uncertainty’ and we pursue that

approach here.

Drechsler adds further structure to the worst case distribution in partitioning components

of the state into elements whose dynamics are uncertain and those whose dynamics are

10We thank an anonymous referee for encouraging us to elaborate on this point.
11See also Kleshchelski and Vincent (2008) and Xu, Wu, and Li (2010) who analyze the effects of stochastic

volatility in consumption on asset prices in a continuous time setting with a robust agent. Our model is
entirely in discrete time. The tools we present can be used in many discrete time representative agent
frameworks, a standard workhorse of modern macroeconomics.
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fully trusted. A similar approach is also found in Liu, Pan, and Wang (2004) where model

uncertainty is focused only on the jump - and not diffusion - components of their payoff

process in a model aimed primarily at explaining stylized option-pricing facts. In contrast,

we only have one parameter, θ that controls the nature of the worst case in relation to the

benchmark. Once one allows the agent to envisage (absolutely continuous) distributions that

deviate from the benchmark, penalizing the entropic distance according to θ, our control over

the the worst case is gone - θ has been ‘used up’.12

4.1.5 Tentative quantification

We undertake a stylized quantitative analysis of this simple model, which is naturally com-

parable to that of Barillas, Hansen, and Sargent (2009) as we augment their model with

stochastic volatility. Using nondurable plus services consumption data for the U.S. from

1948:Q2 to 2013:Q4 we estimate the endowment process parameters by Bayesian methods.

We use the posterior means from the estimation for our parameterization, listed in the upper

panel of table 1, which indicate substantial and persistent variation in the volatility of shocks

over time. We calibrate β and the degree of ambiguity aversion to attain an annual risk free

rate of 2.59% and two values of the unconditional quarterly market price of risk (0.25 and

0.375) to span a plausible range.13

To interpret how the agent trades off her concerns for misspecifications against their plau-

sibility, we will follow the standard approach of the literature in connecting θ to detection

error probabilities (Hansen and Sargent (2008)). Detection error probabilities (DEPs) indi-

cate whether, with a limited amount of data, an agent could accurately distinguish between

the worst case and benchmark models using likelihood ratio tests. That is, we ask what

the probability of mis-identifying the data generating process would be if one were running

likelihood ratio tests on data generated under the benchmark and the worst case. The larger

is θ, the closer the benchmark will be to the worst case, due to the more rapid offsetting

effect of the entropy penalty in the minimization problem described in section 3.2. Thus,

the higher will be the detection error probabilities. It is this connection between θ and the

12There are other important differences between these papers’ approaches and ours. In particular, under a
given model/belief, the agent in Drechsler (2013) has Epstein-Zin preferences, whereas in our case our agent
would have expected log utility conditional on a model. Additionally, Liu, Pan, and Wang (2004) Liu, Pan,
and Wang (2004) also adopt a different (more general) regularization penalty than relative entropy.

13The targeted value of the risk free rate is equal to the median of the short sample simulations carried out
by Beeler and Campbell (2012) under the Bansal and Yaron (2004) calibration of a LRR model. As in that
work, we calculate the annual risk free rate by rolling over the one-period risk free rate, in this case from a
quarterly frequency. In Barillas, Hansen, and Sargent (2009) 0.25 is approximately the value required to attain
the Hansen-Jaganathan bounds though Sharpe ratios are commonly reported in the literature substantially
higher than this, based on broadening the assets considered beyond simply holding the stock market.
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detection error probabilities that allows calibration of the agent’s robustness. Further details

of our DEP calculations are included in the appendix.

In the lower panel of table 1 we report DEPs associated with sample sizes of 100 and

250 quarters, meant to be illustrative of the sort of sample lengths commonly employed in

macro-finance applications. We also report the implied risk aversion coefficient admitted by

taking the alternative interpretation of the agent’s preferences as being Epstein-Zin with unit

EIS. As one can see from the table one would require an extremely implausible degree of risk

aversion to attain the desired prices of risk. In comparison, the detection error probabilities

seem perhaps more reasonable, especially for a market price of risk (MPR) of 0.25. This

is the essence of the story told in Barillas, Hansen, and Sargent (2009) who argue that a

little robustness can substitute for a lot of risk aversion. Nevertheless, the detection error

probabilities in this simple example are rather low (though in line with those of Barillas,

Hansen, and Sargent (2009)) and suggestive of an extreme degree of robustness, even if it is

less extreme than the implied risk aversion. Despite this we will analyze the properties of the

worst case under these calibrations as the model is meant to be illustrative.14

In table 2 we show moments of the endowment process under the benchmark and worst

case. In panel A we observe the dependence of the worst case distribution over wg,t+1 on vt,

as captured in the greater mean distortions at higher values of current volatility. In panels

B and C we also show unconditional moments of consumption growth at yearly aggregation

and observation. As expected, the worst case features lower growth and elevated volatility

on average. Skewness in consumption growth is enhanced and the autocorrelations illustrate

additional persistence under the worst case, reflecting the agent’s aversion to models with

a small but persistent long run component in consumption growth - the hallmark of the

canonical Long-Run Risk framework. The autocorrelations under the worst case are small

but due to their presence at long lags, they result in substantially increased power at low

frequencies. Pursuing this further, Dew-Becker (2013) has argued that an important measure

of risk in the long run is what is typically termed the long run standard deviation (LRSD)

of consumption growth:

σ

(
∆Et+1

∞∑
j=0

log gt+1+j

)
=

√√√√ ∞∑
j=−∞

γj (36)

where σ (·) is to be understood as yielding the standard deviation, ∆Et+1 represents the

change in expectations from t to t + 1 and γj is the jth autocovariance of consumption

14Barillas, Hansen, and Sargent (2009) obtain a MPR of approximately 0.22 with a 5% detection error
probability under a sample length of 235 quarters. Anderson, Hansen, and Sargent (2003) suggest that DEPs
of approximately 10% might be thought plausible with a sample length of 200 quarters.
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growth. Thus, the LRSD is the square root of the spectral density of consumption growth

at frequency 0 and encodes all auto-covariances, rather than an arbitrarily selected subset.15

We take the LRSD as an index of Long-Run Risk. In panel B of table 2 we scale the LRSD

by the unconditional standard deviation (USD) of consumption, so as to focus on dynamics

and retain comparability as the USD varies, as it does when comparing benchmark and worst

case. We see clearly the concentration of power at low frequencies under the worst case.

4.2 A benchmark with explicit disasters

In the previous section we showed that our agent was informed by a worst case model featuring

unconditional skewness in consumption growth. We interpreted this as a fear of disasters. In

this section we pursue a more natural interpretation of disasters, in the sense of conditional

skewness due to a ‘jump’.

4.2.1 Benchmark model

Much as we developed our robust perspective of Long-Run Risk around a benchmark that

borrowed from Barillas, Hansen, and Sargent (2009), we here draw upon the framework laid

out in Wachter (2013).16 We will abstract from the presence of stochastic volatility in the

‘non-jump’ innovation and allow for both constant and time varying intensity, ht, of a ‘jump’

component. Thus, our benchmark model is

log gt+1 = G0 + wz,t+1 + v̄0.5wg,t+1 (37)

wg,t+1 v N (0, 1) (38)

wz,t+1|jt+1 v N
(
jt+1χ, jt+1δ

2
)

(39)

jt+1|ht v
e−hth

jt+1

t

jt+1!
(40)

ht+1|zt+1 v Γ (δh + zt+1, ch) (41)

zt+1|ht v
e−ζtζ

zt+1

t

zt+1!
(42)

(43)

Following Backus, Chernov, and Zin (2014) we model disasters by using a Poisson-mixture

15The spectral density at angular frequency ω is defined as f (ω) ≡
∞∑

j=−∞
γj cos (ωj).

16Wachter’s model is in fact deeply connected to ours in that she asserts an EIS of unity within an Epstein-
Zin framework - the special case with an algebraic equivalence with the preferences of a robust agent. Thus,
we provide an interesting robustness reinterpretation of a closely related setup, somewhat reminiscent of
Barillas, Hansen, and Sargent (2009)’s reinterpretation of Tallarini (2000).
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of Normal distributions for the ‘jump’ component, wz,t+1. The intensity process for wz,t+1,

denoted ht, is an Autoregressive Gamma (ARG) process (though we will also consider a

constant intensity case). Conditional on its own lagged value it follows a Poisson-mixture of

Gamma distributions. If we set ch =
σ2
h

2
and δh = (1− ϕh) h̄

ch
(thereby defining h̄ and σh)

then we have ht = (1− ϕh) h̄ + ϕhht−1 + wh,t where wh,t is a Martingale difference sequence

and ζt ≡ ϕhht−1

ch
.

The conditional cumulant generating functions associated with wz,t+1 and wh,t+1 are

kt,wz (s) = ht

(
esχ+

(sδ)2

2 − 1

)
(44)

kt,wh (s) = sϕh

(
1

1− sch
− 1

)
ht − δh (sch + log (1− sch)) (45)

Again we obtain an exponential affine approximation to ut in terms of the state

ut = exp {F0 + Fhht} (46)

F0 = β

(
G0 + F0 −

1

θ

v̄

2
− δh
α

log

(
1 +

1

θ
Fhch

))
(47)

Fh = −βθ

(
e−

χ
θ

+
( δθ )

2

2 − 1 +
−ϕh

θ
Fh

1 + Fhch
θ

)
(48)

This implies a stochastic discount factor comprising ‘risk’ and ‘uncertainty’ components

as before

log Λr
t+1 = k + λrgwg,t+1 + λrzwz,t+1 (49)

log Λu
t+1 = Ξt + λugwg,t+1 + λuzwz,t+1 + λuhwh,t+1 (50)

where k and Ξt are both known as of time t and the risk/uncertainty prices are given by

λrg = −v̄0.5 (51)

λrz = −1 (52)

λug = −1

θ
v̄0.5 (53)

λuz = −1

θ
(54)

λuh = −1

θ
Fh (55)

Parameters of the consumption growth process are listed in table 3. We set h̄ to imply

a steady state expected number of jumps in 100 years to be 2.5, informed by the calibration
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used by Wachter (2013). The persistence parameter, ϕh is also based on Wachter’s param-

eterization.17 The mean of wz,t+1 given a single jump, χ, is set to −0.3 and δ is set to 0.1.

This parameterization was used in Backus, Chernov, and Zin (2014) as an approximation

to the multinomial distribution for consumption declines in the case of disasters, used by

Wachter (2013) and Barro and Ursua (2008). In the absence of disasters, the trend growth

and volatility of the Gaussian innovation are calibrated to yield mean and standard deviation

of annual consumption growth of 1.80% and 1.99% respectively.

We choose δh and ch to ensure the aforementioned steady state jump intensity while also

allowing substantial volatility in equity returns.18 Following Wachter, we take dividends to be

levered consumption (Dt = Cφ
t ) and allow for a 40% probability of default on government debt

in the case of a disaster, in which case the proportional reduction in the promised face payoff

is equal to the realized disaster size, wz,t. We consider more elaborate asset pricing moments

in this section in contrast to our simple heteroscedastic baseline as the earlier framework was

simply too restrictive to attempt to hit a broad set of calibration targets.

4.2.2 Constant disaster intensity

In the constant intensity case, where we choose θ and β again to hit unconditional MPR

targets as well as a desired expected return on government debt. We ensure an average return

of 1.36% conditional on no disasters occurring and approximately 1.05% unconditionally, sim-

ilarly to Wachter (2013). Note that the detection error probabilities are dramatically higher,

and thus more plausible, than in our Long-Run Risk frameworks - a MPR of 0.375 (0.25) is

associated with a DEP of 12% (19%) given a sample period of 250 quarters. Intuitively, this

captures the fact that rare disasters are a powerful phenomenon to interact with ambiguity.

Under the benchmark the expected number of jumps in a century is 2.5 while for an MPR

of 0.375 (0.25) the number is approximately 9 (7). In addition, for both parameterizations

there is a small distortion to χ (the parameter controlling the mean of the disaster shock

conditional on the number of jumps, jt+1) such that χ̃ is increased in magnitude by about

10% to approximately −0.33 and −0.34 respectively. This would be highly undesirable for

the agent given the likely drop in consumption in the case of a disaster, but the frequency is

not so much higher that she can distinguish confidently between the benchmark and worst

case if, say, she observes two jumps in 25 years (corresponding to our shorter DEP sample

period).

17ϕh = 1− κ/12 where κ is the persistence parameters in Wachter’s continuous time intensity process.
18Backus, Chernov, and Zin (2014) map Wachter’s calibration into an approximate discrete time version

using an AR process for intensity but dramatically reduce the volatility and persistence of the intensity
process to avoid unacceptably high probability of the process going negative. Given our ARG specification
of ht, which is necessarily positive, we can handle a more volatile intensity process featuring right skew.
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The worst case distribution concentrates the damage of a misspecification in a way that is

efficient, in the sense of trading the pain of the distortion relative to the benchmark against the

offsetting entropy penalty. Rare events are ideal for this since they are sufficiently infrequent

to be difficult to characterize, as well as being very painful. Since the presence of jumps allows

us to generate a high MPR with far higher θ than in the purely Gaussian cases considered

above, there is a concomitant reduction in the distortion to the Gaussian shock (the mean

shift to wg,t+1 is −θ−1v̄0.5). In our LRR setups above the DEPs were rather low because

the worst case represented the agent’s fear of misspecification by large mean shifts to shocks

observed period after period, thereby substantially reducing average growth over any short

span of time. This rendered the benchmark and worst case easily distinguishable even in small

samples. In the case of jumps, there is a much smaller reduction in typical period-to-period

growth - the worst case instead emphasizes dramatic but occasional declines.

Since part of the point of this paper is to acknowledge the natural uncertainty around

phenomena such as disasters, it is worth exploring how some of our results might change as

we vary our parameterization. We choose to do this in a particular way: we fix our MPR and

return on government debt targets and then vary h̄ to imply a range of expected jumps in a

century, allowing our preference parameters, θ and β to adjust as necessary. In figure 1 we

show the implied CRRA under the aforementioned Epstein-Zin reinterpretation, the implied

DEP and the associated distorted value of χ (recalling that he benchmark value is −0.30).

We also show the worst case jump frequency. Though there is some sampling variability

some interesting patterns emerge.19 While the required ‘risk aversion’ naturally increases

as the benchmark probability of disaster increases - especially at the lower range before

flattening out somewhat - the implied DEP decreases. That is, the plausibility of the risk

aversion required to hit desired asset-pricing targets deteriorates as h̄ declines (and begins to

approach levels that are typically though implausible - see Mehra (2003)) but the plausibility

of the ambiguity aversion parameterization increases.20 A simple implication of this is that

the ‘advantage’ of robustness over risk aversion is greater at lower h̄ so that reducing the

probability of a jump from our primary calibration to lower levels than in Wachter (2013)

that some (such as Backus, Chernov, and Zin (2014)) prefer, would actually be in our favor.

It is important to note that θ does decrease as h̄ declines (recall CRRA is 1 − α and

θ = − 1
α

is the mapping between the Epstein-Zin and robustness interpretations). However,

unlike α, θ is not naturally though of as a ‘deep parameter’ whose interpretation is invariant

the rest of the model. It is context specific: one robustness model with a given value for θ

19There is some randomness due to the simulation methods used to calibrate θ and β - even with 2 million
periods - and DEP calculations also are stochastic.

20We do not claim this is a general result - or even that it might apply at much higher - but less relevant -
levels of h̄ than we have explored.
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may imply very different DEP from another model with the same value of θ. In contrast,

under the risk aversion interpretation one can appeal to Arrow-Pratt experiments and the

like so that the same value between models has the same interpretation. What is typically

used to judge the plausibility of preferences of the agent from an ambiguity perspective is

the DEP, as advocated in Hansen and Sargent (2008), and this index of plausibility is used

to compare across models. In a sense, the DEP is the deep parameter and θ is determined

by it and the model.

In our case it appears that there is an especially powerful interaction between ambiguity

and disasters. It is not simply the case that the DEPs for many of the values considered in the

figure are more reasonable than the risk aversion values (though most of the latter are also

defensible) and much more reasonable than the DEPs in our simple heteroscedastic baseline,

but they also move inversely with h̄. On reflection, however, it is not necessarily the case that

‘ambiguity’ (as opposed to risk) should decrease as h̄ declines, due to the intuitive connection

of uncertainty with rarity. In addition, due to the lesser frequency of the jumps the agent

can plausibly worry about more extreme distributions, conditional on a jump. Indeed, in the

panel showing the more extreme distortions to χ as the jump becomes less frequent, we see

evidence of this effect.

4.2.3 Time varying disaster intensity

Finally, we consider the case of time varying intensity of disasters. We have chosen θ and β

to hit an unconditional (allowing for disaster realizations) MPR target of 0.25 and the same

targeted value of the mean return on government debt (conditional on no disasters) of 1.36%

as in the constant intensity case. Detection error probabilities for 100 and 250 quarters are

14.7% and 7.3%, respectively. When evaluated at the worst case unconditional mean of ht

the ‘steady state’ expected number of jumps in 100 years is 14.7 (again in comparison with

2.5 under the benchmark).

We report asset pricing moments, unconditionally and conditioning on the non-occurrence

of disasters, which Wachter (2013) emphasizes for comparability with the post-war experience

in which there have been no episodes of the sort of disaster described by Barro (2006). As in

Wachter (2013), our equity returns are volatile. We can provide insight into the reasons for

the volatility of returns by appealing to the worst case in the mind of the agent.

Under the worst case, wh,t+1 does not appear to belong to a known distribution, despite

the tractability we obtain with our exponential affine approximations. Nevertheless, as shown
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in the appendix, we can express the conditional mean and variance of wh,t+1 as

Ẽt [wh,t+1] = k̃
(1)
t,wh

(0) (56)

= a0 + ahht (57)

σ̃2
t (wh,t+1) = k̃

(2)
t,wh

(0) (58)

= f0 + fhht (59)

which implies that we can think of ht+1 as following an adjusted process

ht+1 = (1− ϕ̃h) h̃+ ϕ̃hht + w̃h,t+1 (60)

ϕ̃h ≡ ϕh + ah (61)

=
ϕh

(1− λuhch)
2 (62)

h̃ ≡ δhch + a0

1− ϕ̃h
(63)

We have that h̃ > h̄ and 1 > ϕ̃h > ϕh so that, as before, the jump arrival rate is

pessimistically distorted upwards but also, now that it is allowed to vary, is more persistent

than under the benchmark. Indeed, under our calibration, the half life of a shock to ht

is approximately 21 years under the worst case, in comparison with 8.5 years under the

benchmark.21

Again, we show in the appendix that wz,t+1 is distributed under the worst case as a

Poisson-mixture of normals with inflated arrival rate ĥt ≡ hte
λuzχ+

(λuz δ)
2

2 and inflated mean

on arrival, χ̃ > χ. Consequently, when innovations to the intensity process strike, they

are exaggerated and over-extrapolated (relative to the true model) when projected into the

future under the worst case. Therefore, the agent acts as if facing a more volatile news-flow

for future consumption and, thus, dividend growth.

This extrapolative behavior leads to excess sensitivity and underpins volatility in returns

and, apparently, much of the predictability evidence as well, shown in table 4. In the mind

of the agent, shocks to expected cashflows are exaggerated at long horizons. Thus, following

a negative (positive) shock to ht she will be prepared to pay more (less) for the claim and,

in equilibrium, the price dividend ratio should rise (fall). Nevertheless, since we assert the

true model is the benchmark, an econometrician would attribute a measure of the variation in

worst case cashflow expectations to variation in expected returns as the source of the volatility

and predictability of returns as there is not as much predictability in cashflows as implied

21By half life we mean the j required for the effect on the expectation in t + j to be half of the effect on
the expectation at the first horizon: log 0.5

logϕh
.
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under the worst case. Thus, in both our stochastic volatility baseline and under time varying

disaster probabilities, we can to some extent speak to the literature on over-extrapolation by

agents (see Cecchetti, Lam, and Mark (1997) and Fuster, Hebert, and Laibson (2011), for

example). In our LRR case the extra persistence in consumption growth under the worst

case comes from the connection of mean growth to its volatility, which in turn is persistent.

So, agents overextrapolate from a higher-moment shock rather than a cashflow shock, as

it were. In the time varying disaster risk case it is shocks to the risk of disaster that are

over-extrapolated.

5 Conclusion

Attributing a desire for robustness to Knightian uncertainty leads a robust agent to act as if

guided by a worst case distribution. We suggest novel methods of characterizing and drawing

from this distribution and show that it will feature a small persistent component when the

agent faces persistent heteroscedasticity and exaggerated jumps (in terms of frequency and

size) if the agent perceives the true data generating process to exhibit some degree of jump

risk. This allows the model to match important asset pricing facts without taking a firm

stance on whether LRR exists or whether extant disaster calibrations are correct.
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Table 1: Simple heteroscedastic baseline - parameterization

Panel A: Endowment

Parameter Description Value Parameter Description Value
G0 Trend growth 4.66× 10−3 ϕν Persistence of volatility 0.91
ν̄ Steady state volatility 2.69× 10−5 σν Variability of volatility 5.45× 10−6

Panel B: Preferences

Description Low MPR High MPR
MPR Unconditional market price of risk 0.250 0.375
β Time preference 0.9970 0.9965

DEP (T = 100) Detection error probability (shorter sample) 11.0 3.1
DEP (T = 250) Detection error probability (longer sample) 2.7 0.2
CRRA

(
1 + 1

θ

)
Risk aversion re-interpretation of θ 45.5 65.0

Notes: In panel A the parameterization of the endowment process in equations (17) - (19) is taken to be

the posterior mean from a Bayesian estimation using nondurable plus services consumption data for the U.S.

from 1948:Q2 to 2013:Q4. In panel B the preference calibrations are set to attain a ‘Low MPR’ (0.25) and

a ‘High MPR’ (0.375) together with an annual risk free rate of 2.59% in both cases, where preferences are

characterized by recursion (7).
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Table 2: Simple heteroscedastic baseline - properties of worst case

Panel A: Worst case innovation means

E [wg,t+1|vt] E [wv,t+1|vt]
Calibration Low vt Median vt High vt ∀vt
Low MPR −0.18 −0.23 −0.27 0.06
High MPR −0.25 −0.33 −0.40 0.12

Panel B: Unconditional moments of (annualized) log (gt)

Model Mean SD Skew LRSD/SD
Benchmark 1.86 1.04 0.00 1.00

Worst Case (Low MPR) 1.32 1.13 −0.20 1.09
Worst Case (High MPR) 0.98 1.22 −0.24 1.16

Panel C: Autocorrelations of (annualized) log (gt)

Model (lag) 1 2 3 4 5
Benchmark 0.00 0.00 0.00 0.00 0.00

Worst Case (Low MPR) 0.03 0.02 0.01 0.01 0.01
Worst Case (High MPR) 0.05 0.04 0.03 0.02 0.01

Notes: The calibrations considered are to attain a ‘Low MPR’ (0.25) and a ‘High MPR’ (0.375) together with

an annual risk free rate of 2.59% in both cases. In panel A we consider three values for vt where low (high)

is the 20th (80th) percentile under the benchmark unconditional distribution. Note that this is only relevant

for wg,t+1. In panel B we show moments of consumption growth under the benchmark model (invariant to

preference parameterization) along with the analogous moments under the worst case distributions (dependent

on the preference parameterization). Skew is the standardized third moment. LRSD/SD is the ratio of the

long run and unconditional standard deviations, with the former as defined in the main text. In panel C

we display the annual frequency autocorrelations of consumption growth aggregated to annual frequency.

Again, the benchmark autocorrelations, but not the worst case correlations, are invariant to the preference

parameterization.
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Table 3: Rare disasters - parameterization

Panel A: Endowment and payoffs

Parameter Description Value Parameter Description Value
G0 Trend growth 1.50× 10−3 ϕh Jump intensity persistence (ARG only) 0.993
ν̄ Volatility (non-disaster shock) 3.30× 10−5 δh Auxiliary parameter (ARG only) 1.788
χ Scaling of disaster shock mean −0.3 ch Auxiliary parameter (ARG only) 7.766× 10−6

δ Scaling of disaster shock SD 0.1 q Government bond partial default 0.4
h̄ Steady state jump intensity 2.08× 10−3 φ Dividend leverage parameter 3.96

Panel B: Preferences

ht = h̄ ht = h̄ ARG ht
Description Low MPR High MPR Low MPR

MPR Unconditional market price of risk 0.250 0.375 0.250
β Time preference 0.9991 0.9987 0.9992

DEP (T = 100) Detection error probability (shorter sample) 29.3 22.7 14.71
DEP (T = 250) Detection error probability (longer sample) 19.3 11.6 7.28
CRRA

(
1 + 1

θ

)
Risk aversion re-interpretation of θ 4.10 4.94 3.78

Notes: Panel A: We show the parameterization of the process defined by equations (37) - (42). h̄ implies a

steady state expected number of jumps in 100 years to be 2.5. The persistence parameter, ϕh is based on

Wachter’s (2013) parameterization (ϕh = 1 − κ/12 where κ is the persistence parameter in her continuous

time intensity process). The parameterization of χ and δ was used in Backus, Chernov, and Zin (2014) as

an approximation to the multinomial distribution for consumption declines in the case of disasters, used by

Wachter (2013) and Barro and Ursua (2008). In the absence of disasters, the trend growth and volatility of

the Gaussian innovation are calibrated to yield mean and standard deviation of annual consumption growth

of 1.80% and 1.99% respectively. Panel B: Preference calibrations are set to attain a ‘Low MPR’ (0.25) and

a ‘High MPR’ (0.375) together with an annual risk free rate of 1.36% conditional on no disasters occurring.

In the ARG intensity specification we only consider the ‘low MPR’ case. Preferences are characterized by the

recursion (7).
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Table 4: Rare Disaster - ARG Intensity

Panel A: Calibration

Wachter (2013)
Description Unconditional No disasters No Disasters

E
[
rb
]

Average return on government debt 1.05 1.36 1.36
SD

(
rb
)

Standard deviation of return on government debt 3.38 0.92 2.00
E
[
rb − re

]
Average excess return 7.74 9.23 8.85

SD (re) Standard deviation of equity return 21.05 17.66 17.66
S.R. Sharpe ratio 0.38 0.52 0.49

SD (log gt) Volatility of consumption growth 5.44 1.99 1.99
SD (log gd,t) Volatility of dividend growth 21.56 7.87 5.16

Panel B: Predictability

Horizon (years)
1 2 4 6 8 10

Unconditional
β1 −0.07 −0.13 −0.25 −0.34 −0.44 −0.48
R2 0.01 0.02 0.04 0.05 0.06 0.06

No Disasters
β1 −0.12 −0.24 −0.44 −0.62 −0.76 −0.86
R2 0.07 0.14 0.24 0.32 0.37 0.40

Wachter (2013) - No Disasters
β1 −0.16 −0.30 −0.56 −0.77 −0.95 −1.10
R2 0.13 0.24 0.41 0.52 0.59 0.63

Notes: Return series are obtained from aggregating monthly returns to annual. Excess returns are obtained
by comparing the annualized gross returns on equity and government debt. We used 100, 000 periods of
simulations and dropped observations for jump periods when calculating the ‘conditional’ regressions. For
the predictability regressions we estimate

k∑
j=0

logRet+j − logRbt+j = β0 + β1(pt − dt) + εt

where pt− dt is the log price dividend ratio, where the dividend is levered consumption, Dt = Cφt (we do not

calculate it as a 12-month moving average).
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Figure 1: Varying h̄: We vary the steady state jump intensity, ~ (x-axes transform this into
expected number of jumps in a century under the benchmark model) while choosing θ and β
to ensure an unconditional MPR of 0.375 and an average return on government debt (in the
absence of disasters) of 1.36%. The remaining parameters are the same as in the constant
intensity case in the main text, shown in table 3. The DEPs were calculated using 25 years
of simulated data in the LR tests.
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