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Abstract

What determines the frequency domain properties of a stochastic process? How much risk comes
from high frequencies, business cycle frequencies or low frequency swings? If these properties are
under the influence of an agent, who is compensated by a principal according to the distribution of
risk across frequencies, then the nature of this contracting problem will affect the spectral properties
of the endogenous outcome. We imagine two thought experiments: in the first, the principal is
myopic with regard to certain frequencies - his understanding of the true process is intermediated
through a filter - and the agent chooses to hide risk by shifting power from frequencies to which the
regulator is attuned to those to which he is not. Thus, the regulator is fooled into thinking there has
been an overall reduction in risk when, in fact, there has simply been a frequency shift. In the second
thought experiment, the regulator is not myopic, but simply cares more about risk from certain
frequencies, perhaps due to the preferences of the constituents he represents or because certain
types of market incompleteness make certain frequencies of risk more damaging. We model this
intuition by positing a filter design problem for the agent and also by a particular type of portfolio
selection problem, in which the agent chooses among investment projects with different spectral
properties. While abstract, these models suggest important implications for macroprudential policy
and regulatory arbitrage.
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1. Introduction

This paper develops an abstract framework for mechanism design in the frequency do-

main. There are two main strands of motivation. The first motivation is the idea that a

principal might be more attuned to certain frequencies of risk than others, perhaps through

myopia, mandate or unwitting choice/treatment of data. The principal might wish uncon-

ditional variance to be reduced (and compensates the agent accordingly) but the principal’s

perception of the properties of the stochastic process controlled by the agent is inaccurate.

Assuming that the agent finds it ‘difficult’ to reduce overall variance but ‘easy’ to shift power

between frequencies, we show that the agent chooses to manipulate the spectral properties

of the process so as to reduce (increase) power in the ranges of frequencies to which the regu-

lator is (is not) attuned. The regulator might then fail to distinguish an overall reduction in

variance from simply a shift in power across frequencies, which leaves variance unchanged.1

Given these findings, we argue that the margin for manipulation or ‘moral hazard’ available

to the agent should raise concerns over model misspecification by macroprudential regulators

at particular frequencies, naive applications of filters and excessive attention paid to certain

frequencies. In particular, recent proposals to require banks to hold buffers dependent on

an estimate of cyclical credit ratios, seem to require the application of statistical filters that

may induce the type of frequency shifting illustrated in the model.

We characterize the regulator’s sensitivity to different frequencies with the use of partic-

ular linear filters. For example, if one wishes to model the idea that there is a certain band

of frequencies to which the regulator is attuned, then one would use a bandpass filter. We

then derive the agent’s best response, in terms of a filter to be applied to an uncontrolled

process, subject to the restrictions that the filter is causal, of finite span and leaves the vari-

ance of the uncontrolled (before application of the agent’s filter) and the controlled (after

application of the agent’s filter) equal. The final restriction is to concentrate the model on

issues of ‘frequency shifting’ rather than changes in overall unconditional variance. In order

to capture the idea that the agent faces a ‘technology’ for frequency shifting we set up the

agent’s filter design problem such that he is penalized for selecting a filter that deviates from

a ‘do-nothing’ filter. This reflects that idea that it is perhaps it is more difficult to am-

1See Crowley and Hughes Hallett (2011) for evidence of the Great Moderation being a type of frequency
shift, from high to low frequencies, perhaps leading to misguided beliefs in an enduring reduction of risk.
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plify or attenuate certain frequencies than others, due to market structure or other business

practices.2

The second strand of motivation does not depend on a story of frequency-dependent my-

opia. Instead, rather than asserting that regulators are more attuned to certain frequencies,

we argue that they may wish to overweight certain frequencies of risk due to their being

differentially important for the welfare of the constituents that the regulator represents.

These ‘frequency-sensitive’ preferences may reflect ‘direct utility’ of the constituents if they

have preferences that embed aversion to particular frequencies of risk in their consumption

streams, such as an aversion to higher frequencies of risk because of the presence of habits

in preferences. Alternatively, they may reflect ‘indirect utility’ in the sense that constituents

may implicitly have preferences over income processes with different spectral properties, even

if their preferences over consumption streams exhibit indifference. The reason being, that

certain frequencies of risk in income may be particularly damaging or difficult to share in an

incomplete markets setting. In this case, the filter design problem described above can be

thought of as a way of designing a mechanism to induce the agent (say, a bank in a financial

system) to shift power to frequencies that are less damaging for constituents.

Recognizing that agents do not, in practice, choose filters, we propose an alternative

frequency shifting problem to complement the filter design problem discussed above. Specif-

ically, we propose a setup in which an agent can invest in different risky assets (or ‘projects’)

which have the same unconditional variance but have power concentrated at different fre-

quencies. In this environment, we also see the tendency of the agent to invest in assets in

such a way to tune the frequency domain properties of the overall portfolio in such a way as

to reduce power through the range of frequencies that the regulator is more attuned to or

cares more about.

2. Literature

Frequency domain methods are (largely) known to macroeconomists through the applica-

tion of statistical filters to prepare data for analysis. One of the most common applications

is to apply a band pass (Baxter and King (1999) and Christiano and Fitzgerald (2003)) or

2Or some deeper design limits that are implied by some underlying structural model (left unmodeled in
the current version of this paper) - see Brock, Durlauf, and Rondina (2008).
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Hodrick-Prescott (Hodrick and Prescott (1997)) filter to obtain a data series that can be

more easily interpreted as a theoretical model object, either because of the supposed pres-

ence of noise (seasonal or measurement error) or because the theoretical model in hand is

not specified to make predictions about the properties of data at certain frequencies, such as

the nature of the trend.3 Powerful and useful though these methods are, the inappropriate

application of filters or failure to account for the underlying motivation for their specification

can lead to various problems (see Harvey and Jaeger (1993), Harvey and Trimbur (2008),

Harvey (1993), Cogley and Nason (1995), Canova (1998) and Canova (2010) for discussions).

Important pitfalls can arise if filters are applied in such a way as to introduce spurious cycli-

cality in data and if concentration on a particular band of frequencies hides (or perhaps

even induces - see below) misspecification at other frequencies (see Christiano and Vigfusson

(2003)). Unthinking applications of filters often also presume a general applicability of stan-

dard filter calibrations across countries, variables and time periods, that may not actually

be justified by the data generating process (‘λ’ in the Hodrick-Prescott filter, for example).

Beyond these longstanding concerns about the effects of filtering on time series and

inference, there are recent examples of regulatory reform and research on macro-prudential

policy that place significant emphasis on extracting measures of cyclicality in financial data

as a way of identifying whether fluctuations represent unsustainable booms in asset prices

or credit. For example, the work of Mendoza and Terrones (2008), Mendoza and Terrones

(2012), Borio and Drehmann (2009) and Chen and Christensen (2010) examines the nature of

credit booms and their implications for the macroeconomy, using filtered data to characterize

what constitutes deviations from trend growth in credit availability and other measures of

financial conditions. This literature has particular relevance due to the proposed counter-

cyclical capital buffers discussed in Basel III documentation (Supervision (2010)). Thus,

a parameter of the regulatory environment that financial institutions may face would be a

particular filter or set of filters. Although the framework below will be very abstract, it

is intended to draw attention to the possibility that, like many other aspects of regulation,

there may be unintended consequences from applying regulations dependent on naive filtering

when the regulated are aware of this behavior and have an incentive to game it.4

3For a clear and accessible discussion of some of these matters, see Cogley (2008).
4This leaves aside other important statistical concerns that one might have with applying filters in this

context, such as those discussed in Edge and Meisenzahl (2011).
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One interesting and related debate concerns the treatment of seasonality and whether or

not models should be estimated using seasonally adjusted data discussed in Sims (1976) and

Hansen and Sargent (1993). One (tentative) conclusion from this debate is captured in the

following quote

. . . some of our examples illustrate that in situations where the model is correctly

specified, using seasonally adjusted data induces no asymptotic biases even when

some of the key parameters are those governing behavior primarily at the sea-

sonal frequencies. Strong cross-equation, cross-frequency overidentifying restric-

tions permit identification of all parameters, even when seasonal frequencies are

deemphasized (or even deleted) via seasonal adjustment. - Hansen and Sargent

(1993)

In what follows, we will not be within the realm of rational expectations equilibrium modeling

and estimation of deep structural parameters under seasonal adjustment. However, the

‘frequency dependent myopia’ story we tell for a principal (regulator) and the ‘frequency

shifting’ it induces by the agent (‘bank’) are partly attempts to imagine what might happen

if ‘seasonality’ (here interpreted more generally as the spectral structure of a controlled

process under the influence of an agent) were to ‘fight back’ in response to the principal

filtering out certain frequencies. Thus, the frequency shifting induces a particular type of

misspecification that the principal (‘regulator’) labors under.

Setting aside these stories of frequency sensitive myopia, one of the more fruitful liter-

atures to apply frequency domain techniques is that of modeling frequency sensitive pref-

erences, arising from time-non-separable utility. Early work by Bowden (1977), Whiteman

(1985) and Taub (1989) using spectral utility functions and more recent work by Otrok

(2001a) and Otrok (2001b) have emphasized that the utility assigned to a particular stochas-

tic consumption stream may be dramatically different depending on the frequencies at which

power is concentrated, if preferences, say, exhibit habits or durability in the felicity derived

from consumption. Consequently, calculations of the welfare costs of business cycles, à la

Lucas Jr. (1987), that depend only on unconditional variance, may mis-characterize the gains

from eliminating variation and, in particular, obscure gains that may be possible from re-

distributing power from one set of frequencies to others. Indeed, as noted in Otrok (2001b),

an agent with frequency sensitive preferences may be prepared to accept a higher overall
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variance if that increase is accompanied by a shift in power away from frequencies that are

particularly painful to him. Similar attempts to allow for differential costs of fluctuations,

according to frequency, are found in Alvarez and Jermann (2004), Otrok, Ravikumar, and

Whiteman (2007) and Dew-Becker and Giglio (2013), with particular emphasis on asset

pricing implications.

One may also ask whether or not, even under ‘standard’ preferences, income processes

with different spectral properties may be more or less desirable. If one imagines a world in

which there is no aggregate risk and, in the presence of complete markets, all idiosyncratic

income risk is shared away, then the persistence of shocks to individuals’ incomes, like all

other properties of the risky income stream of any given individual, are irrelevant (post

contract). However, suppose that due to a particular form of market incompleteness, it

is more difficult to insure oneself against shocks with persistent (low frequency) impacts,

than those with transient (high frequency) impacts, then one could imagine an induced

preference ordering that would imply a preference for an income process that more heavily

weights a component operating at high frequency, than one operating at low frequency,

holding overall unconditional variance fixed. Indeed, Deaton (1991) and, more recently,

Kaplan and Violante (2010) are suggestive in this respect in that, in the first case, varying

the degree of autocorrelation in income affects the ability of a buffer stock consumer to

smooth consumption and, in the second, the ability of agents to insulate their consumption

from transitory idiosyncratic income shocks is estimated to be far larger than in the case

of innovations to permanent shocks. Thus, if one were to imagine a policymaker who (by

some means) can influence the relative weight of different frequencies in the ‘income’ process,

we might think that structuring a regulatory environment that incentivizes agents to shift

risk between frequencies might be desirable - perhaps even at the cost of increasing overall

variance.

3. The Frequency Domain

In this section we outline some of the methods of frequency domain analysis, since much

of what follows will be expressed in these terms. Most papers using frequency domain

techniques, use them as just that: ‘techniques’. In our case, however, it is not just the

methodology that exists in this space, but also the economic intuition. Readers comfortable

in the frequency domain may only wish to glance at this section to fix notation.
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3.1. Cycles and Frequencies

Let us first consider a process xt, which we refer to as a deterministic cycle

xt = ρ cos (ωt− θ)

where ω is measured in radians and is referred to as the (angular) frequency. xt is a cyclical

function of time that repeats with period, 2π
ω

. We refer to ρ as the amplitude and θ as the

phase shift of the associated cycle.5

In figure 1 we illustrate xt as a function of time, for different parameterizations. In the

first case we posit the base cycle with unity amplitude and frequency, so that it repeats every

2π units of time. In the second panel, we illustrate a related cycle repeating operating at

twice the base frequency, with the same amplitude and, in the third, we illustrate a cycle

with unchanged frequency but increased amplitude. In the fourth panel we plot a cycle that

is the same as the base cycle in terms of frequency and amplitude but is ‘phase shifted’ and

lags the base cycle by 1 radian or, alternatively expressed, is shifted back by θ
ω

= 1 units of

time.

3.2. Time and Frequency Domain Representations of a Stochastic Process

Allowing a purely indeterministic, covariance stationary process, x (t) to be complex

valued we obtain the corresponding spectral density function, fx, as the Fourier transform

of the autocovariances, γ (τ),

fx (ω) =
1

2π

∞∑
τ=−∞

γ (τ) e−iωτ (1)

where i2 = −1 and γ (τ) = E [xtxt−τ ].

3.2.1. The Spectral Representation

In our applications, we employ only real processes, so that fx will be symmetric around

0. Nevertheless, it is notationally convenient to work with the more general framework that

5Much of this section and the manner in which I approach frequency domain modeling draws heavily on
the treatment in Harvey (1993) chapter 6, which is an excellent and compact introduction to these methods.
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accommodates complex valued processes. The spectral representation of the process is given

by

x (t) =

π∫
−π

eiωtz (ω) dω

where for any small interval, dω, in the range −π ≤ ω ≤ π

E [z (ω) dω] = 0

E
[
z (ω) dω · z (ω) dω

]
= fx (ω)

and for any two non-overlapping intervals, dω1 and dω2, centered on ω1 and ω2 respectively,

E
[
z (ω1) dω1 · z (ω2) dω2

]
= 0

Thus, recalling the previous section, we can envisage xt as being a sum of cycles of different

frequencies with stochastic amplitudes and phases. We have, E [x (t)] = 0 and

γ (τ) =

π∫
−π

eiωτfx (ω) dω

In particular, the variance of xt can be decomposed into the variation or ‘power’ derived

from different frequencies.

γ (0) =

π∫
−π

fx (ω) dω

3.2.2. Examples of Spectral Densities

In this paper we will make much use of Gaussian ARMA processes as primitives in our

analysis. An ARMA (p, q) process xt is characterized by

Φ (L)xt = Θ (L) εt

where Φ (L) and Θ (L) are polynomials in the lag operator of order p and q respectively, and

εt is a homoscedastic and mean zero Gaussian White Noise process with standard deviation
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σ. We can express the spectral density of such a process as

fx (ω) =
σ2

2π

|Θ (e−iω) |2

|Φ (e−iω) |2

As particular cases, then, for an AR (1) where xt = φ1xt−1 + εt we would have

fx (ω) =
σ2

2π

1

1 + φ2
1 − 2φ1 cosω

or in the case of an MA (1) where xt = εt + θ1εt−1 we would have

fx (ω) =
σ2

2π

(
1 + θ21 + 2θ1 cosω

)
In figure 2 we plot spectral densities corresponding to several ARMA processes. In the

top left quadrant we have the spectral density of a White Noise process, a special case of

the ARMA where only the current innovation features. The term ‘White Noise’ can be

seen to correspond to the idea that power is equal at all frequencies, much as white light

comprises all colors. In the top right quadrant we observe the case of an MA (1) process

with θ1 = 0.5 . We see that the power at low frequencies is greater than at high, capturing

the feature that the process exhibits an ‘averaging’ property that smoothes the underlying

sequence of innovations. In contrast, the bottom left quadrant features the opposite pattern,

with the higher frequencies relatively accentuated. This is due to the fact that the assumed

process is an AR (1) with φ1 = −0.5. Thus, the negative autoregressive parameter induces

greater churning in the process that, in the frequency domain, manifests itself as power at

high frequencies. Finally, in the bottom right quadrant we show an example of a spectral

density of an AR (2) process that has a ‘peak’ at an interior point in [0, π].6 This process

has φ1 = 0.7 and φ2 = −0.5 which leads to pseudo-cyclical behavior in the process, which

type of phenomenon is often observed in economic time series.

6Here we exploit the symmetry of the spectral densities in only plotting for ω ∈ [0, π].
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4. Linear Filters

We will make heavy use of the concept of linear filters in understanding the framework in

which the agent and principal operates and in terms of modeling the agent’s control and the

principal’s information or preferences. In this section we outline the basic theory of linear

filtering and some examples of particular filters.

4.1. Some Preliminaries

We say that zt is the linearly filtered version of xt where

zt =
s∑

u=r

guxt−u

Thus a linear filter is (under one representation) characterized by the weights {gr, gr+1, ...gs},
which are also referred to as the ‘Impulse Response Function’ (IRF). The effect of the filter

at frequency ω is given by the transfer function, G (ω) where

G (ω) =
s∑

u=r

gue
−iωu

= |G (ω) |eiθ(ω)

which implicitly defines ‘Gain’ and ‘Power Transfer’ functions of the filter to be |G (ω) | and

|G (ω) |2 respectively. The implicitly defined function θ (ω) is referred to as the ‘Phase’.

It is instructive to consider the application of a linear filter to a process, xt, that can be

represented as a linear combination of complex exponentials, xt =
∑
ω

αωe
iωt. The effect of a

linear filter on a complex exponential at a given frequency ω is

L
(
e−iωt

)
= G (ω) eiωt

Thus by the linearity of the filter, we obtain

L (xt) =
∑
ω

αω|G (ω) |ei(ωt+θ(ω))

so that the components of xt corresponding to different frequencies have their amplitudes
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and phases amended by the filter and the resulting series is the linear combination of these

filtered components. Consequently, the spectral density of a (linearly) filtered process at a

particular frequency, ω, is given by the product of the power transfer function (PTF) of the

filter and the spectral density of the unfiltered process, both evaluated at ω. That is

fz (ω) = |G (ω) |2fx (ω)

It can be shown that the IRF of a filter obtained by sequentially applying two filters is

equal to the convolution of the weights of the two composite filters. Thus if z1t is obtained

by applying the first filter to xt and z2t is obtained by applying the second filter to z1t then

we have

z1t =
s1∑

u=r1

g1uxt−u

z2t =
s2∑

u=r2

g2uz
1
t−u =

s1+s2∑
u=r1+r2

g̃uxt−u

g̃k =
s2∑

u=r2

g2ug
1
k−u

We note that, the spectral density of z1t is given by fz1 (ω) = |G1 (ω) |2fx (ω) and that of z2t

is given by fz2 (ω) = |G2 (ω) |2fz1 (ω) = |G2 (ω) |2|G1 (ω) |2fx (ω). Thus the power transfer

function of the composite filter implied by sequential application of two filters is equal to

the product of the power transfer functions.

4.2. Types of Filters

We now provide some examples of particular types of filter and demonstrate their effects.

Again, a reader familiar with these methods may only wish to scan this section to fix notation.

4.2.1. Moving Average and Difference Filters

A (centered) moving average filter is obtained when s = −r in the definition of a linear

filter above. We will typically be working with the case in which the moving average weights

are equal, so gu = 1
2s+1

for all u. A τ -difference filter yields zt = yt− yt−τ , that is, gu is unity

lag 0 and negative unity at lag τ . The first row of figure3 shows the power transfer functions
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for a 5-period moving average and a 5-difference filter. One notes that both filters eliminate

power at frequencies corresponding to periods of 5 time units (and an additional harmonic

at higher frequency). An important contrast between the two types of filter, however, is that

the moving average filter passes the low frequency component (and returns the frequency

zero component unchanged) while the difference filter, intuitively, reduces power at low

frequencies (and eliminates the frequency zero component).

4.2.2. High, Low and Band Pass Filters

An important class of filters are intended to pass a range of frequencies without effect,

while eliminating power at all remaining frequencies. These ideal filters are referred to as

‘high’, ‘low’ or ‘band’ pass filters according to whether the filter passes all frequencies above,

below or between certain cutoffs. Of course, one can also envisage filters that pass power

in a set of frequency bands. Now, these filters are not implementable since they require

a doubly infinite set of observations. However, they can be approximated with finite span

filters which have the same filter coefficients as the ideal versions, up to the points at which

they are truncated to have finite span.7 In the bottom left quadrant of figure 3 we plot

an ideal and approximated (using a span of 20 periods) band pass filter, with passed band

ω ∈ [0.20, 1.05]. We observe that the approximations are imperfect, with the fluctuating

form of the errors typically referred to as the ‘Gibbs effect’. Nevertheless, for our purposes

it will be convenient to work with approximations to the ideal filters.

4.2.3. Hodrick-Prescott Filter

A now commonly used filter was proposed by Hodrick and Prescott (1997) as a way of

extracting a cyclical component from a series, xt, identified by solving a particular optimiza-

tion problem that seeks to identify a ‘smooth’ trend around which the series fluctuates.8 The

concept of trend, τt, proposed is that which solves

min
{τt}

∞∑
t=−∞

[
(xt − τt)2 + λ (τt+1 − 2τt + τt−1)

2]
7This is subject to the caveat that there may be necessary adjustments if, say, one want to ensure zero

pass at frequency zero - see Baxter and King (1999).
8This section draws on Cogley (2008).
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which yields a filter defined by a particular infinite span, two sided moving average

zt =
λ (1− L)2 (1− L−1)2

1 + λ (1− L)2 (1− L−1)2
xt

where L is the back-shift operator. The filter can be interpreted as a type of ‘high pass’

filter where the parameter λ controls the approximate cutoff of the passed frequency range.

In applications, the filter can only be approximated using finite span filters that truncate

the implicit filter weights beyond some finite lag. In the bottom right quadrant of figure 3

we plot the PTF where we have used λ = 1600 and a finite span of 30 lags.

5. Frequency Shifting

In this section we will construct a particular filter design problem. As aforementioned,

one interpretation of the problem will be that a principal is myopic with regard to risks

coming from certain frequencies and this, via a moral hazard type of argument, induces the

agent shift power to frequencies unobserved by the principal, thereby ‘hiding’ risk. In this

context we will often adopt the language of ‘bank’ and ‘regulator’ in place of ‘agent’ and

‘principal’. A second interpretation, not based on any form of myopia, is that the problem

captures the design of incentives to induce an agent to shift power from frequencies that are

particularly undesirable for the regulator or the constituents the regulator represents.

5.1. Statement of Problem

The regulator is characterized by a (possibly two sided) linear filter, denoted ΦR.9 The

bank is assumed to face a situation in which, if it adopts a ‘do-nothing’ policy, the spectral

density of the ‘uncontrolled’ process (which we loosely interpret as asset value or some other

measure of bank or an economy’s performance, such as leverage) is given by, fU . However,

the bank is assumed to be able to take actions to affect the properties of the process and this

is captured by allowing the bank to choose a filter, ΦB. This implies a ‘controlled’ process

with spectral density fC , where fC (ω) = |ΦB (ω) |2fU (ω).

9We could make the filter one sided without changing much of the analysis that follows. Whether or not
we make the filter one sided (or ‘causal’) will depend on whether we regard this problem as one of a regulator
anticipating the application of real time filtering to data or whether we simply regarded it mechanically as
a way of capturing certain preferences or approaches to assessing processes or models.
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The bank is assumed to seek to minimize the variance of the process obtained by applying

the regulator’s filter to the controlled process, perhaps because it is required by the regulator

to hold capital or undertake some other privately costly activity that is increasing in the

regulator’s perception of variance. Intuitively, the filter the bank chooses in response to the

regulator will reduce power at the frequencies where the regulator’s filter passes the most

power.

One might imagine that if, say, the regulator’s filter is a business cycle band pass, the bank

would ideally wish to cut power to zero in the passed region, which seems pathological. We

wish to avoid such ‘bang bang’ cases as in the real world, there are operational/technological

constraints or costs facing a bank that might mitigate its manipulation of the underlying

process. Thus we will model the bank as facing a penalty based on weighted deviations

of ΦB from a ‘do nothing’ filter, using a weighting function ϕ (ω). We also impose the

constraint that ΦB leaves unconditional variance unchanged under application of ΦB. The

last requirement is to focus the model on issues of ‘frequency shifting’ rather than changes

in variance.

The idea (under the first motivation) is to show that a regulator can be ‘tricked’ into

thinking that variance has declined, when in fact all it observes is a reduction in power at

the frequencies the bank knows it is attuned to, with power at other frequencies actually

rising to offset those gains. The formal expression of the intuition above is to have the bank

choose ΦB to minimize

π∫
−π

|ΦR (ω) |2
fC(ω)︷ ︸︸ ︷

|ΦB (ω) |2fU (ω) +
ϕ (ω)

2
|ΦB (ω)− 1|2dω

subject to ∫ π

−π
|ΦB (ω) |2fU (ω) dω︸ ︷︷ ︸

γC(0)

=

∫ π

−π
fU (ω) dω︸ ︷︷ ︸
γU (0)

5.2. Reformulation of Problem

Let us impose that ΦR and ΦB are finite span linear filters. In the case of ΦB, the filter is

assumed to be one sided (or ‘causal’), capturing the idea that it is a control and thus relies

only on current and past data. In the case of the regulator’s filter, we allow for two sided
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filtering. Thus we have

ΦB (ω) =
MB−1∑
u=0

gBu e
−iωu

ΦR (ω) =
MR∑

u=−MR

gRu e
−iωu

Therefore, we can model the bank’s choice of filter in terms of choosing gB ≡
{
gBu
}

. Similarly,

we can take the Fourier transforms of the weighting function, ϕ (ω) and the spectral density

of the uncontrolled process:

ϕ (ω) =
1

2π

∞∑
s=−∞

kse
isω

fU (ω) =
1

2π

∞∑
τ=−∞

γτe
iτω

Consequently, we can re-express the problem above as

min
{gBu }

1

2π



π∫
−π

( ∑
uB ,vB

gBuBg
B
vBe
−iω(uB−vB)

)( ∑
uR,vR

gRuRg
R
vRe
−iω(uR−vR)

)(
∞∑

τ=−∞
γτe

iτω

)
+

1
2

(
∞∑

s=−∞
kse

isω

)( ∑
uB ,vB

gBuBg
B
vBe
−iω(uB−vB) −

∑
uB
gBuB

(
e−iωu

B
+ eiωu

B
)

+ 1

)


subject to ∑
uB ,vB

gBuBg
B
vBe
−iω(uB−vB) − 1

( ∞∑
τ=−∞

γre
irω

)
= 0
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Exploiting the orthogonality properties of complex exponentials under integration over ω ∈
[−π, π], we can obtain an alternative expression, more amenable to numerical analysis

min
gB

f
(
gB; gR, γ, k

)
= t1

(
gB; γ, gR

)
+ t2

(
gB; k

)
s.t.

h
(
gB; γ

)
= 0

where

t1
(
gB; γ, gR

)
=

∑
uB−vB+uR−vR−r=0

γrg
B
uBg

B
vBg

R
uRg

R
vR

t2
(
gB; k

)
=

1

2

 ∑
uB−vB−s=0

ksg
B
uBg

B
vB −

∑
uB−s=0

ksg
B
uB −

∑
uB+s=0

ksg
B
uB + k0


h
(
gB; γ

)
=

∑
uB−vB−r=0

γrg
B
uBg

B
vB − γ0

Thus, taking the regulator’s filter, the properties of the uncontrolled process and the penalty

weighting function (captured by gR, γ and k respectively), the bank chooses a vector of

weights, gB, to minimize f
(
gB; gR, γ, k

)
, subject to equating the variance of the controlled

and uncontrolled processes. The function f
(
gB; gR, γ, k

)
is given by the sum of two com-

ponents: t1
(
gB; γ, gR

)
and t2

(
gB; k

)
. The first component captures the variance of the

controlled process under the regulator’s filter and the second captures the assumed penal-

ization deriving from the deviation of the bank’s filter from a ‘do-nothing’ filter. The latter

penalty is intended, through judicious choice of weighting function, ϕ (ω), to capture tech-

nological constraints or other incentives the bank faces when deciding how to influence the

spectral density of the controlled process.

The penalty term weights squared absolute deviations of the filter’s transfer function from

that of a ‘do-nothing’ filter. If the penalty function is constant then the penalty is simply

the L2 distance. While it may be useful to consider non-constant weighting functions as a

way of imagining how it might be more difficult or costly to reallocate power from certain

frequencies to others (due to some aspect of ‘frequency shifting technological constraints),
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we will retain the constant weight in our example below.10

5.3. Solution

We first treat the case where, as discussed above, the bank’s filter choice reduces to

choosing the coefficients of a one sided, finite span filter. We will examine a particular case

of this problem in which ϕ (ω) is constant at unity, so deviations from a do nothing filter are

weighted equally by frequency. We consider two ΦR: both are band pass filters pass with

pass bands [0.20, 1.05] and [1.57, 2.34], respectively.

All else equal, the bank will wish to reduce power within the passed band, and, to

maintain overall variance, raise it at others. However, it will not choose to reduce power

within the passed band to a pathological degree due to the presence of the penalization. This

is reflected in the PTFs implied by the bank’s filter weights (obtained through numerical

optimization), displayed in figure 4. We observe that the bank chooses to reduce power

through the passed range but that the deviation from the uncontrolled spectral density is

fairly modest, reflecting the restriction of using a finite span filter but also, importantly, the

incentives implied by the penalty function. Due to the iso-variance constraint, attenuation

though the passed frequencies must be offset by amplification at others. Due to the penalty

for manipulation, the deviations from the ‘do-nothing’ filter are smoothed.

To clarify the role of the penalty component, we illustrate the PTFs obtained under

different (constant) penalty weights. Figure 5 shows that the attenuation of power through

the regulator’s passed frequency range is much more extreme as we reduce the penalty weight.

Motivated by the prevalence of Hodrick-Prescott (H-P) filtering (and the various con-

troversies over its inappropriate application) we also consider a bank’s response to different

types of H-P filter, for different values of λ. In figure 6 we see the PTFs of three filters

in the first three quadrants and, in the bottom right quadrant, the PTFs implied by the

bank’s respective best responses. As one might expect, the bank shifts power to the low fre-

quencies that are attenuated under the H-P filters. Given the proposed use of H-P filters in

distinguishing cyclical and unsustainable fluctuations in credit and other financial measures,

there may be the concern that this sort of frequency shifting may be undertaken as a form

10In the appendix we illustrate some alternative weighting functions. Note that deviations in the phase
dimension will also be penalized although, as yet, I have not examined the phase shifts implicit in the bank’s
chosen filter. The analysis undertaken so far is largely in terms of the effects on amplitudes.
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of regulatory arbitrage.

Now, as discussed above, even if one does not find arguments for frequency-sensitive

myopia as a justification for characterizing a regulator by a filter, one can also motivate this

framework by envisaging a regulator who cares about risk at certain frequencies, more than

at others. The spectral welfare cost functions of Otrok (2001b) for agents with habits, for

example, are shown to imply monotonically increasing costs of power as frequency increases.

This could be taken as a justification for a regulatory filter that weights higher frequencies

more heavily, and thus has a PTF qualitatively like that in the first panel of figure 7. The

second panel indicates the PTFs of the agent’s filter for different weights on the penalty

term.11 This shows that the agent has been induced to reallocate power to the less costly

frequencies, which might be thought desirable.

Going beyond appealing to deep preferences over the spectral properties of consumption,

one might also think that particular forms of market incompleteness may induce a preference

ordering over the spectral properties of income. Inspired partly by Deaton (1991) I propose

a very simple income fluctuation problem in which there is a no-borrowing constraint, an

agent only has access to a riskless bond and faces a stochastic income stream given by an

AR(1) process. The period payoff function is assumed to be u (c) = c1−ϕ−1
1−ϕ , assets evolve

as at
1+r

+ ct = w exp {zt} + at−1 and zt = ρzt−1 + σεt. We will vary ρ and adjust σ to

maintain the same unconditional variance of zt and examine the effect on the variability of

consumption.12 The results of this experiment are displayed in table 1 where we observe that

buffer stock saving is less successful at smoothing consumption when for (approximately) the

same variance, the income process becomes more persistent. This suggests a regulator might

wish to apply a filter that emphasizes lower frequencies.

5.4. Operationalizing a frequency shift

In this section we describe a framework for characterizing investment projects, or assets,

by their spectral properties. We show how one can imagine a bank inducing a portfolio with

particular spectral properties by assembling a weighted collection of assets with power at

different frequencies. This is an attempt to take the intuition from the previous filter design

problem and transfer it to a slightly more realistic setting. Clearly banks are not in the

11Given our change in interpretation it is perhaps more suitable to use ‘agent’ rather than ‘bank’ here
12The process for zt will actually be approximated using the method proposed by Tauchen (1986)
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ρ SD (w exp {zt}) SD (c)

0 0.26 0.07
0.3 0.26 0.09
0.6 0.26 0.12
0.9 0.27 0.24

Table 1: The effects of changing the persistence of income fluctuations on consumption.

business of explicitly choosing filters but one can imagine a portfolio selection problem that

leads to the tuning of spectral properties of the overall portfolio.

5.4.1. Stochastic cycles

Primitives within our analysis will be ‘stochastic cycles’, as discussed in Harvey (1993).

To construct such processes, we first envisage a cyclical component, ϕt, given by

ϕt = α cosλt+ β sinλt

We can render this deterministic cycle stochastic by allowing α and β to evolve over time.

To allow for this we posit a recursion for ϕt as follows(
ϕt

ϕ∗t

)
=

(
cosλ sinλ

− sinλ cosλ

)(
ϕt

ϕ∗t

)

where ϕ0 = α and ϕ∗0 = β. The auxiliary variable ϕ∗t is of no intrinsic importance. To

introduce randomness, we add two white noise disturbances to the model, κt and κ∗t , which

we assume to be uncorrelated and of equal variance. Finally, we also introduce a damping

parameter, ρ, to allow for additional flexibility in the ϕt process. Thus we have an augmented

process given by (
ϕt

ϕ∗t

)
= ρ

(
cosλ sinλ

− sinλ cosλ

)(
ϕt

ϕ∗t

)
+

(
κt

κ∗t

)
Consequently, we have that(

ϕt

ϕ∗t

)
=

(
1− ρ cosλL −ρ sinλL

ρ sinλL 1− ρ cosλL

)−1(
κt

κ∗t

)
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Thus, we can express ϕt as

ϕt =
1− ρ cosλL

1− 2ρ cosλL+ ρ2L2
κt +

ρ sinλL

1− 2ρ cosλL+ ρ2L2
κ∗t

which is the sum of two uncorrelated ARMA(2,1) processes, where the AR and MA coeffi-

cients are particular functions of the primitive parameters, ρ and λ. This allows us very easily

to calculate the spectral density of ϕt and, in fact, any linear combination of uncorrelated

stochastic cycles.

By varying ρ and λ one can tune the properties of the stochastic cycle in question. The

parameter, λ, controls the location of a ‘peak’ in the associated spectral density, whereas ρ

controls how sharply concentrated is the power around the peak. As ρ→ 1 the peak becomes

sharper and, at ρ = 1, assuming non-degenerate innovations, the cyclical process becomes

non-stationary and the spectral density is no longer well defined. In figure 8 we depict the

spectral densities of two stochastic cycles as well as those of two linear combinations of the

cycles. In the top row we see the spectral densities of stochastic cycles with {ρ, λ} =
{

0.9, π
2

}
and

{
0.8, π

10

}
respectively. On the second row we observe the spectral densities obtained by

linear combinations of the two stochastic cycles, with weights of 0.6 (0.4) and 0.4 (0.6) on

the first (second) cycle.

5.4.2. Assets

We will think of ‘projects’ or ‘assets’ that banks can invest in, in terms of stochastic

cycles. Clearly this is an abstraction but it is intended to capture the idea that different

risky ventures may exhibit different spectral properties and, by combining them, the bank

can tune the spectral properties of an overall portfolio. Thus, in the same way that models of

shareholder myopia and executive short-termism often posit stylized projects with different

time profiles of returns, here we propose a different set of projects, characterized instead by

the frequencies at which they have power.

We model the banks as having access to a set of investment projects, each of which

is a stochastic cycle. All of the projects are normalized such that they share the same

unconditional variance and the projects are independent of each other. Let this set be

denoted (with some abuse of notation)

Ξ =
{
ϕi,jt : ρi ∈ %, λj ∈ Λ

}
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where I posit sets, % and Λ of possible values of the damping and spectral peak parameters,

respectively, and adjust the (common) standard deviation of κt and κ∗t , to maintain a par-

ticular unconditional variance of the cycle, given (ρi, λj). I refer to Ξ as a ‘generating set’

for the bank’s portfolio problem.

As discussed above, we wish to model the response of a bank to regulatory incentives,

given technological constraints, in terms of the choice of a filter. Applying the resulting filter

to the uncontrolled process yields a filtered or controlled process with a particular spectral

density. Banks do not explicitly choose filters but one may envisage an approximation of

the filtered spectral density through appropriate combination of cycles drawn from a given

generating set, Ξ. We give a parsimonious example of such an approximation problem below.

Let us define the distance between two spectral densities in an L2 sense

‖f1, f2‖ ≡
π∫

−π

|f1 (ω)− f2 (ω) |2dω

then, if we have a ‘target’ spectral density, fT , and a generating set Ξ, then we seek a vector

of weights, w ≥ 0 that minimizes ‖fT , fP (w)‖ where fP (ω) =
∑
i,j

w2
i,jfi,j (ω) and fi,j is the

spectral density associated with stochastic cycle ϕi,jt ∈ Ξ.

Consider first the case where Ξ comprises stochastic cycles with {ρ, λ} =
{

0.9, π
2

}
and{

0.8, π
10

}
and where the target spectral density is that given by combining these two cycles

with w = (0.2, 0.8). In this pathological case, we can replicate the target spectral density

perfectly by searching for the weights that minimize ‖fT , fP (w)‖, since we recover w =

(0.2, 0.8). Now, however, suppose that Ξ is unchanged but we now generate the target

spectral density by combing cycles given by {ρ, λ} =
{

0.9, π
2

}
,
{

0.8, π
10

}
and {0.3, 0.3}, using

weights w = (0.31, 0.31, 0.38). We can no longer perfectly replicate the spectral density by

combining cycles from Ξ (since we have created the target spectral by weighting ‘independent’

cycles from Ξ ∪ {{0.3, 0.3}}). Thus we will face approximation error at the minimizing w.

In this case, solving the minimization problem yields a minimizing portfolio weights vector

of w = (0.3798, 0.3114). Figure 9 shows the approximation to the target spectral density

obtained by applying these weights. With a rich enough set of generating cycles one can
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approximate a target spectral density extremely closely.13

We envisage the bank as forming a portfolio from Ξ = (0.5, 0.9) × (0.5, 2.5), so from a

set of four stochastic cycles. The regulator’s filter, again, is a band pass, but with passed

frequency range of (0.20, 1.05), which are frequencies corresponding to periodicities of 32

and 6 time units. In quarterly units, this is the range typically denoted ‘business cycle’

frequencies. We again use the constant unity penalty function. In the first panel of figure 10

we display the controlled spectral density were the bank not penalized for deviating from a

do-nothing filter (though still subject to maintaining the same variance as the uncontrolled

process), as well as the uncontrolled (white noise) spectral density. We observe that, in this

case, the bank would load on a stochastic cycle that leaves almost no power in the passed

frequency range, while having substantial power at high frequencies. Under the penalized

case, however, in the second panel of the figure, the bank still is seen to reduce power through

the passed region substantially, but does so by combining stochastic cycles in a way that

leaves power allocated more evenly between low and high frequencies.

While we will focus on stochastic cycles as a useful example, a possible alternative finan-

cial product that one might envisage would be a twist on a standard variance swap, which

we would denote a ‘frequency swap’. A variance swap pays off

Nv

(
σ2
r − σ2

s

)
where Nv is the notional variance, σ2

r is realized variance over the duration of the swap and

σ2
s is the variance strike, conventionally set so that money does not trade hands at execution.

It seems fairly simple to conceive of adding an additional dimension to this product, which is

a band of frequencies over which the realize variance applies. Thus, if we imagine contracting

based on a particular band, ω ∈ [ω, ω], we could define a frequency swap’s payoff as

Nv,ω,ω

(
σ2
r,ω,ω − σ2

s,ω,ω

)
with obvious notation for the notional and strike and where σ2

r,ω,ω is the realized variance of

a band pass filtered version of the underlying process over the duration of the swap. One

13This is loose - there is probably a way to formalize this in the context of vector spaces and using
projections.
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might imagine that certain market participants might naturally be more exposed to certain

frequencies of risk and, thus, would write this sort of asset as a hedge. Alternatively, if a

speculator happens not to have a view on overall variance but does have a view on what

frequencies the variance will come from, then this product could conceivably allow a position

to be taken based on this view. It is possible that such products already exist or can be

synthesized.

6. Conclusions

In this paper we propose frameworks for endogenizing the spectral properties of stochastic

processes that are under the influence of some agent. We motivate this in two ways. Firstly,

we imagine that the agent is seeking to hide risk from a principal who wishes variance to be

reduced but is myopic with regard to particular frequency ranges. Under this interpretation

we think of the agent as being a ‘bank’ and the principal being a macroprudential ‘regulator’.

Secondly, we imagine that the principal may be equally well aware of all frequencies but is

more concerned about risk at certain frequencies, perhaps because of the deep preferences

of its constituents or because of differential ability of the constituents to insure themselves

against different frequencies of risk.

The first framework entails characterizing the regulator’s perception (or tastes) as a ‘filter’

and then deriving a best response of the agent, also in terms of a filter that is regarded as the

agent’s control. In the second framework, we envisage the agent choosing to invest in projects

with different spectral properties, thereby tuning the characteristics of his portfolio. In both

cases we observe that the agent attempts to shift power from frequencies emphasized by the

regulator’s filter to those that are not. Depending on the ‘frequency shifting’ technology

the agent faces, the manipulation of the spectral properties appears to be smoothed across

frequencies.

We argue that this framework helps us evaluate possible problems, from a strategic

perspective, that might arise from unthinkingly basing regulation on filtered series or from a

particular concentration on certain frequencies, such as an emphasis on smoothing a business

cycle. In addition, the framework may eventually help provide a way of designing incentives

that, rather than inducing regulated agents to reduce risk at all frequencies, can induce more

targeted reduction in power at particularly salient frequencies.
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Figures

Figure 1: Cycles plotted for different (ω, ρ, θ): (a) (1, 1, 0), (b) (2, 1, 0), (c) (1, 1.5, 0), (d) (1, 1, 1)

(a) (b)

(c) (d)



Figure 2: Spectral densities for different processes:(a) White Noise, (b) MA(1) θ = 0.5, (c) AR(1) φ = −0.5,
(d) AR(2) φ1 = 0.7, φ2 = −0.5

(a) (b)

(c) (d)

Figure 3: Power Transfer Functions (PTF) for different filters: (a) 5-period moving average, (b) 5-period
difference, (c) Band pass (ideal and approx), (d) Hodrick-Prescott (approx)

(a) (b)

(c) (d)



Figure 4: Power transfer functions implied by the bank’s filter choice - Blue: Regulator band [0.20, 1.05],
Red: Regulator band

Figure 5: Power transfer functions implied by the bank’s filter choice - under different penalization weights:
(a) Regulator band [0.20, 1.05] (b) Regulator band [1.57, 2.34]

(a) (b)



Figure 6: Hodrick-Prescott (approx.) filters and the associated power transfer function responses of the
bank: (a) λ = 200, (b) λ = 1600, (c) λ = 4600 (d) PTF

(a) (b)

(c) (d)

Figure 7: Regulator using a filter increases in frequency - inspired by Otrok habits example: (a) PTF of
regulator, (b) Bank’s PTF by penalty weights

(a) (b)



Figure 8: Two stochastic cycles and their combination: (a) λ = π
2 , ρ = 0.9, (b) λ = π

10 , ρ = 0.8, (c) (0.5, 0.5)
weights

(a) (b) (c)

Figure 9: Approximation to a particular spectral density obtained by a combination of stochastic cycles -
red: target density, blue: approximation



Figure 10: Spectral densities of portfolios compared to uncontrolled spectral density - (a) No penalty, (b)
Constant penalty

(a) (b)



Appendix A. Appendix

Appendix A.1. A filtering example

To better understand the nature of linear filters and their effect on the processes to which

they are applied we now present a simple example. We simulate data for 1000 periods under

an AR(1) process xt = ρxt−1+σεt with ρ = 0.2 and σ = 1 and εt ∼ N (0, 1). At the end of the

1000 periods we engineer a structural break by setting ρ = 0.8 and adjusting σ to maintain

the same unconditional variance. We then simulate for a further 1000 periods. Thus the

data generating process undergoes a structural break half way through the simulation, from

a ‘noisy’ AR(1) to a (relatively) ‘smooth’ AR(1). In the first row of figure A.1 we show the

spectral density functions for the two AR(1) specifications.

Now we consider the effects of applying two different linear filters to the underlying

process: a first-difference filter and a centered moving average filter with a window of 21

periods. The difference filter tends to pass power at high frequencies, while the moving

average filter tends to pass power at low frequencies, which is reflected in the shape of their

PTFs in the second row of figure A.1. Recalling that the spectral density of a filtered process

is given by the product of the PTF with the spectral density of the unfiltered process, we

plot the filtered and unfiltered spectral densities in the 3rd and 4th rows of the figure.

In figure A.2 we plot the simulated data pre-filtering, and after applying the two filters.

The first sub-figure illustrates (up to some sampling variability) the nature of the structural

break since we observe that, unconditionally, the variance in the two regimes is rather sim-

ilar, but we see much more churning in the first 1000 periods (the ‘noisy’ regime), whereas

we see more persistent swings later in the simulation (the ‘smooth’ regime). Since the MA

filter passes only relatively low frequencies the reduction in variance it implies is greater in

the noisy AR(1) regime since there is much less power at those frequencies in the underlying

unfiltered process. In contrast, because the difference filter passes only relatively high fre-

quencies, we see a particularly dramatic reduction in variability in the smooth AR(1) regime

since there is relatively little power at high frequencies in the unfiltered process.

Appendix A.2. Penalty functions

In figure A.3 we plot several possible weighting functions and their (often indistinguish-

able) finite span approximations. All of the functions have been scaled to integrate to the

same value as the constant unity penalty function. The top left quadrant is obtained by



weighting deviations equally at all frequencies. The next two penalty functions are designed

to be fairly uniform across frequencies but to penalize deviations at lower (higher) frequen-

cies relatively heavily. Finally, in the lower right quadrant, we observe a penalty function

that is more discrete in its concentration on a certain band of frequencies where deviations

are to be particularly penalized. Ultimately one would hope to relate the form of penalty

function used to observed real world constraints facing banks, but at the moment, most of

the analysis that follows will assume an equal weight across frequencies.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1: Two processes, two filters - an example: (a) Spectrum of noisy AR(1), (b) Spectrum of smooth
AR1, (c) PTF of MA filter, (d) PTF of difference filter, (e) MA filtered and unfiltered noisy AR1, (f)
Difference filtered and unfiltered noisy AR1, (g) MA filtered and unfiltered smooth AR1, (h) Difference
filtered and unfiltered smooth AR1



(a)

(b)

(c)

Figure A.2: Base and filtered simulations with a structural break: (a) Base simulation, (b) MA filtered, (c)
Difference filtered



(a) (b)

(c) (d)

Figure A.3: A collection of illustrative penalty functions (and finite approximations): (a) Equal across ω,
(b) Greater at low ω, (c) Greater at high ω, (d) Heavy in a particular band
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