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THE WEAK JOB RECOVERY IN A MACRO MODEL OF SEARCH AND
RECRUITING INTENSITY

SYLVAIN LEDUC AND ZHENG LIU

Abstract. We show that cyclical fluctuations in search intensity and recruiting intensity

are quantitatively important for explaining the weak job recovery from the Great Recession.

We demonstrate this result using an estimated labor search model that features endogenous

search and recruiting intensity. Since the textbook model with free entry implies constant

recruiting intensity, we introduce a cost of vacancy creation, so that firms respond to aggre-

gate shocks by adjusting both vacancies and recruiting intensity. Fluctuations in search and

recruiting intensity driven by shocks to productivity and the discount factor help bridge the

gap between the actual and model-predicted job filling rate.

I. Introduction

The U.S. labor market has improved substantially since the Great Recession. The unem-

ployment rate declined steadily from its peak of over 10 percent in 2009 to under 4 percent

in 2018, accompanied by a steady increase in the job openings rate. However, the pace of

recovery in hiring has been much more subdued.

These observations present a puzzle for the standard labor search model. In the stan-

dard model, hiring is related to unemployment and job vacancies through a matching

function. The matching function implies that the job filling rate—defined as new hires

per job vacancy—is inversely related to labor market tightness measured by the vacancy-

unemployment (v-u) ratio. It also implies that the job finding rate—defined as new job

matches per unemployed worker—is positively related to labor market tightness. Thus,
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THE WEAK JOB RECOVERY 2

when the labor market tightens (i.e., when the v-u ratio rises), jobs are easier to find while

openings are harder to fill, pushing the job finding rate up and the job filling rate down.

A model with the standard matching function fails to predict the deep labor market

downturn and the subsequent weak job recovery. For example, Figure 1 shows that the

implied path for the job filling rate from the standard matching function tracked the data

fairly well up to early 2009. After that, however, it diverged from the data. This divergence

reflects that the actual hiring rate fell more sharply during the Great Recession and rose

more gradually during the recovery than the standard matching function predicted.1

To understand the forces behind this weak job recovery, we develop and estimate a dynamic

stochastic general equilibrium (DSGE) framework that incorporates endogenous variations in

two additional margins of labor market adjustment: search intensity and recruiting intensity.

We examine the quantitative importance of cyclical fluctuations in these intensive margins

for driving the weak job recovery in our estimated model.

Our model builds on the textbook model of recruiting intensity of Pissarides (2000) and

extends it to incorporate costly vacancy creation. This simple extension allows our model to

generate procyclical recruiting intensity. In good times, firms would have an incentive to raise

recruiting intensity because the marginal cost of vacancy creation increases. In the textbook

model, vacancy creation is free (i.e., there is free entry). When macroeconomic conditions

change, firms vary the number of vacancies—which are costless to create or destroy—to meet

new hiring needs and choose the level of recruiting intensity to minimize the cost of posting

each vacancy. The free-entry assumption implies counterfactually that vacancies are a flow

variable that can be adjusted continuously. Furthermore, as shown by Pissarides (2000), free

entry also implies that recruiting intensity is independent of macroeconomic fluctuations.

However, in our model with costly vacancy creation, vacancies become a slow-moving state

variable, leading to persistent labor market dynamics. Importantly, firms adjust both the

number of new vacancies and recruiting intensity in response to aggregate shocks. Thus, our

model generates not only plausible vacancy dynamics but also business-cycle variations in

recruiting intensity.2

We estimate our model using Bayesian methods to fit three monthly time series for the

U.S. labor market: the unemployment rate, the job vacancy rate, and a measure of search

1Since the job finding rate and the job filling rate are both functions of the v-u ratio, if the standard

matching function correctly predicts one, it also correctly predicts the other. It is thus sufficient to show the

predictions for one of these series. We focus on the job filling rate.
2Incorporating vacancy creation costs is important for understanding the shifts in the Beveridge curve

(Elsby et al., 2015). It also helps explain sluggish responses of the v-u ratio to productivity shocks (Fujita

and Ramey, 2007). See Coles and Moghaddasi Kelishomi (2011) for related discussions about the role of

costly entry for understanding labor market dynamics.
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intensity. The estimated model suggests that recruiting intensity is procyclical and pos-

itively correlated with aggregate hiring, with the magnitude of correlation comparable to

the empirical estimates derived from micro data by Davis et al. (2013) despite the differ-

ent empirical approaches. Our measure of search intensity based on Davis (2011) is also

procyclical. Procyclical variations in search and recruiting intensities reinforce each other

to amplify labor market fluctuations. With sharp declines in both search intensity and re-

cruiting intensity during the Great Recession and with weak recoveries in these intensive

margins following the recession, our model predicts a gradual path of recovery in the job

filling rate. The predictions from our model are much more in line with the data than those

from the standard matching function during the Great Recession and through the early part

of the recovery. Importantly, this improvement does not come at the cost of a worsening

performance in periods prior to the Great Recession.

The labor market dynamics in our model are driven primarily by a discount factor shock

and a technology shock, which account for about 60 percent and 30 percent of the labor

market fluctuations, respectively. In contrast, a job separation shock plays a relatively

minor role. Our model shares the Shimer (2005) puzzle of the standard Diamond-Mortensen-

Pissarides (DMP) model. Unless real wages are rigid, it is difficult to generate the observed

large volatilities in unemployment and vacancies. With real wage rigidities assumed in our

model, technology shocks are an important source of labor market fluctuations. In line with

Hall (2017), we find that a discount factor shock is the most important driving force of labor

market fluctuations. The shock has direct impacts on the present values of a job match and

an open vacancy for firms and also on the employment surplus for job seekers. By driving

changes in these present values, the discount factor shock contributes to a significant fraction

of fluctuations in unemployment, vacancies, hiring, and search and recruiting intensity.3

In addition to the shocks, labor market dynamics are also driven by our model’s internal

propagation mechanism through search and recruiting intensity. To assess the importance of

the model’s internal mechanism relative to the shocks, we conduct alternative experiments

in which we calibrate the parameters in the shock processes following Shimer (2005), and we

re-estimate the model under this calibration. In these experiments, we find that our model

still outperforms the standard matching function in predicting the deep recession and the

weak job recovery, although the quantitative improvement is not as large as in our benchmark

estimation.

3Albuquerque et al. (2016) argue that discount factor shocks are important for asset pricing models

because they give rise to a valuation risk that allows the model to account for the volatile asset price

fluctuations and the weak correlations between stock returns and fundamentals.
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II. Related literature

Our paper contributes to the recent theoretical literature on cyclical variations in recruiting

intensity. For example, Kaas and Kircher (2015) study a competitive search environment

with heterogeneous firms facing a recruiting cost function that is convex in the number

of open vacancies. In their model, since the marginal cost of recruiting increases with the

number of vacancies, growing firms do not rely solely on vacancy postings to attract workers;

they also rely on varying their posted wage offers. Gavazza et al. (2014) assume a recruiting

cost function similar to that in Kaas and Kircher (2015) and study the importance of financial

shocks for shifting the Beveridge curve through their impact on firms’ recruiting intensity.

We add to this literature by introducing an alternative departure from the textbook search

model. In particular, we relax the free entry condition to allow for business cycle fluctuations

in recruiting intensity. The resulting tractability of our framework has the added advantage

of making it straightforward to estimate the model to fit time-series data using standard

techniques.

Motivated by the observed patterns in labor adjustments at the establishment level,

Cooper et al. (2007) estimate a labor search model with non-convexities in vacancy posting

costs and firing costs using simulated methods of moments to match aggregate unemploy-

ment, vacancies, and hours. Our work is also motivated by micro-level observations about

search intensity and recruiting intensity. We use some of these micro-level observations to

discipline an aggregate DSGE model, and we estimate the model to understand aggregate

fluctuations in the labor market.

Lubik (2009) estimates a macro model with the standard labor search friction, and he finds

that the model relies heavily on exogenous shocks to matching efficiency to fit time series

data of unemployment and vacancies. Our model enriches the standard model with search

and recruiting intensity and thus relies on endogenous responses of search and recruiting

intensity (instead of exogenous variations in matching efficiency) to explain the observed

labor market dynamics.

Our paper is also related to recent work on screening, an implicit form of recruiting

intensity. For instance, Ravenna and Walsh (2012) examine the effects of screening on the

magnitude and persistence of unemployment following adverse technology shocks in a search

model with heterogeneous workers and endogenous job destruction. Relatedly, Sedláček

(2014) empirically studies the fluctuations in matching efficiency and proposes countercyclical

changes in hiring standards as an underlying force.

By examining the interaction between search and recruiting intensity, our work also com-

plements the analysis of Gomme and Lkhagvasuren (2015), who study how the addition of

search intensity and directed search can amplify the responses of the unemployment and
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vacancy rates following productivity shocks, although their model is not estimated to fit

time-series data.

III. A model with search and recruiting intensity

This section presents a DSGE model that generalizes the standard DMP model to incor-

porate search intensity and recruiting intensity. The economy is populated by a continuum

of infinitely lived and identical households and a continuum of firms. The representative

household consists of working members and job seekers. A job seeker chooses the level of

search effort (i.e., search intensity). Increasing search intensity raises search costs, but it

also increases the probability of finding a job.

Creating new vacancies is costly. Posting existing vacancies also incurs a per-period fixed

cost. Firms choose both the number of vacancies and the level of recruiting effort (i.e.,

recruiting intensity) for hiring. Increasing recruiting intensity raises the costs of advertising

but it also raises the probability of filling a vacancy.

In the labor market, a matching technology transforms efficiency units of searching workers

and vacancies into an employment relation. Real wages are determined by Nash bargaining

between a searching worker and a hiring firm. The government finances transfer payments

to unemployed workers by lump-sum taxes.

III.1. The Labor Market. In the beginning of period t, there are Nt−1 employed workers.

A fraction δt of job matches are separated in each period. We assume that the job separation

rate δt is stochastic and follows the stationary process

ln δt = (1− ρδ) ln δ̄ + ρδ ln δt−1 + εδt. (1)

In this shock process, ρδ is the persistence parameter and the term εδt is an i.i.d. normal

process with a mean of zero and a standard deviation of σδ. The term δ̄ denotes the steady-

state rate of job separation.

We follow Fujita and Ramey (2007) and assume that a job position—filled or vacant—

becomes obsolete at a constant rate of ρo. If a job match is separated or the position becomes

obsolete, the worker becomes an unemployed job seeker. Under the assumption of full labor

force participation, the number of job seekers at the beginning of period t is given by

ut = 1− (1− ρo)(1− δt)Nt−1, (2)

where we have normalized the size of the labor force to one.

After observing aggregate shocks, new vacancies are created at a cost. The stock of

vacancies vt evolves according to the law of motion

vt = (1− qvt−1)(1− ρo)vt−1 + δt(1− ρo)Nt−1 + nt, (3)
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where qvt denotes the probability of filling a vacancy and nt the number of newly created

vacancies. The job filling probability is given by

qvt =
mt

vt
, (4)

where mt denotes the number of job matches.

New job matches are formed based on the matching function

mt = µ(stut)
α(atvt)

1−α, (5)

where st denotes search intensity, at denotes recruiting intensity (or advertising), the pa-

rameter µ represents the scale of matching efficiency, and the parameter α ∈ (0, 1) is the

elasticity of job matches with respect to efficiency units of searching workers.

Newly formed matches add to the employment pool, whereas job separations and ob-

solescence subtract from it. Thus, aggregate employment evolves according to the law of

motion

Nt = (1− ρo)(1− δt)Nt−1 +mt. (6)

At the end of period t, the searching workers who failed to find a job remain unemployed.

Unemployment is given by

Ut = ut −mt = 1−Nt. (7)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (8)

III.2. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βtΘt (lnCt − χNt) , (9)

where E [·] is an expectation operator, Ct denotes consumption, and Nt denotes the fraction

of household members who are employed. The parameter β ∈ (0, 1) denotes the subjective

discount factor, and the term Θt denotes an exogenous shifter to the subjective discount

factor.

The discount factor shock θt ≡ Θt

Θt−1
follows the stationary stochastic process

ln θt = ρθ ln θt−1 + εθt. (10)

In this shock process, ρθ is the persistence parameter and the term εθt is an i.i.d. normal

process with a mean of zero and a standard deviation of σθ. Here, we have implicitly assumed

that the mean value of θ is one.
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The representative household chooses consumption Ct, savings Bt, and search intensity st

to maximize the utility function in (9) subject to the sequence of budget constraints

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt)− uth(st) + dt − Tt, ∀t ≥ 0, (11)

where Bt denotes the household’s holdings of a risk-free bond, rt denotes the gross real

interest rate, wt denotes the real wage rate, h(st) denotes the resource cost of search efforts, dt

denotes the household’s share of firm profits, and Tt denotes lump-sum taxes. The parameter

φ measures the flow benefits of unemployment.

The search cost function h(si) for an individual unemployed worker i is increasing and

convex. Raising search intensity, while costly, increases the job finding probability. For each

efficiency unit of searching workers supplied, there will be m/(su) new matches formed. For

a worker with search effort sit, the probability of finding a job is

qu(sit) =
sit
stut

mt, (12)

where s (without the subscript i) denotes the average search intensity. The household takes

the economy-wide variables s, u, and m as given when choosing the level of search intensity

si. A marginal effect of raising search intensity on the job finding probability is given by

∂qu(s)

∂si
=

mt

stut
=
qut
st
, (13)

which depends only on aggregate economic conditions.

As we show in the Appendix A, the household’s optimal search intensity decision (in a

symmetric equilibrium) is given by

h′(st) =
qut
st

[
wt − φ−

χ

Λt

+ Et
βθt+1Λt+1

Λt

(1− ρo)(1− δt+1)(1− qut+1)SHt+1

]
, (14)

where SHt is the employment surplus (i.e, the value of employment relative to unemploy-

ment). At the optimal level of search intensity, the marginal cost of searching equals the

marginal benefit, which is the increased odds of finding a job multiplied by the net benefit

of employment, including both the contemporaneous net flow benefits and the continuation

value of employment.

The employment surplus SHt itself, as we show in the appendix, satisfies the Bellman

equation

SHt = wt − φ−
χ

Λt

+
h(st)

1− qut
+ Et

βθt+1Λt+1

Λt

(1− ρo)(1− δt+1)(1− qut+1)SHt+1, (15)

where Λt = 1
Ct

denotes the marginal utility of consumption.

The employment surplus has a straightforward economic interpretation. If the household

adds a new worker in period t, then the current-period gain would be wage income net
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of the opportunity costs of working, including unemployment benefit and the disutility of

working. The contemporaneous benefit also includes saved search cost because it reduces

the pool of job seekers, the measure of which is 1 − qut at the end of period t. In addition,

the household also enjoys the continuation value of employment if the employment relation

continues. Having an extra worker today adds to the employment pool tomorrow (if the

employment relation survives job separation and obsolescence); however, adding a worker

today would also reduce the pool of searching workers tomorrow, a fraction qut+1 of whom

would be able to find jobs. Thus, the marginal effect of adding a new worker in period t on

employment in period t+ 1 is given by (1− ρo)(1− δt+1)(1− qut+1), resulting in the effective

continuation value of employment shown in the last term of equation (15).

We also show in the appendix that the household’s optimizing consumption/saving decision

implies the intertemporal Euler equation

1 = Etβθt+1
Λt+1

Λt

rt. (16)

III.3. The firms. A firm can produce the final consumption goods only if it successfully

matches with a worker. The production function for firm j with one worker is given by

yjt = Zt,

where yjt is output and Zt is an aggregate technology shock. The technology shock follows

the stochastic process

lnZt = (1− ρz) ln Z̄ + ρz lnZt−1 + εzt. (17)

The parameter ρz ∈ (−1, 1) measures the persistence of the technology shock. The term εzt

is an i.i.d. normal process with a zero mean and a finite variance of σ2
z . The term Z̄ is the

steady-state level of the technology shock.4

If a firm j finds a match, it obtains a flow profit in the current period after paying the

worker. In the next period, if the match survives (with probability (1 − ρo)(1 − δt+1)), the

firm continues; if the match breaks down, the firm posts a new job vacancy at a flow cost of

κjt, with the vacancy value of JVj,t+1, provided that the job position does not become obsolete.

The firm’s match value therefore satisfies the Bellman equation

JFjt = Zt − wt + Et
βθt+1Λt+1

Λt

(1− ρo)
{

(1− δt+1)JFj,t+1 + δt+1J
V
j,t+1

}
. (18)

Here, the value function is discounted by the representative household’s marginal utility

because all firms are owned by the household.

4The model can easily be extended to allow for trend growth. We do not present that version of the

model to simplify presentation.
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Following Coles and Moghaddasi Kelishomi (2011), we assume that vacancy creation incurs

a non-negative entry cost of x drawn from an i.i.d. distribution F (·). A new vacancy is

created if and only if x ≤ JVt ≡ x∗t , or equivalently, if and only if its net value is non-

negative. Thus, the number of new vacancies nt equal to F (JVt )—the cumulative density of

entry costs evaluated at the vacancy value. This feature implies that the marginal cost of

vacancy creation (i.e., the break-even entry cost x∗t ) increases with the number of vacancies

created and firms would have an incentive to raise recruiting intensity in good times.

With appropriate assumptions about the functional form of the distribution function F (·),
the number of new vacancies created is related to the vacancy value through the equation

nt = η(JVt )ξ, (19)

where η is a scale parameter and ξ measures the elasticity of new vacancies with respect to

the value of the vacancy. The special case with ξ = ∞ corresponds to the standard DMP

model with free entry (i.e., JVt = 0). In general, a smaller value of ξ would imply a less

elastic response of new vacancies to changes in aggregate conditions (through changes in the

value of vacancies).

The flow cost of posting a vacancy is an increasing and convex function of the level of

advertising. In particular, we follow Pissarides (2000) and assume that

κjt = κ(ajt), κ′(·) > 0, κ′′(·) ≥ 0, (20)

where ajt is firm j’s level of advertising.

Increasing advertising efforts raises the probability of filling a vacancy. For each efficiency

unit of vacancy supplied, there will be m/(av) new matches formed. Thus, for a firm that

supplies ajt units of advertising efforts, the probability of filling a vacancy is

qv(ajt) =
ajt
atvt

mt, (21)

where at is the average advertising effort by firms.

If the vacancy is filled (with probability qvjt), the firm obtains the value of a match JFjt .

If the vacancy remains unfilled, then the firm goes into the next period and obtains the

continuation value of the vacancy, provided that the vacancy will not be obsolete. Thus, the

value of an open vacancy is given by

JVjt = −κ(ajt) + qv(ajt)J
F
jt + (1− ρo)(1− qv(ajt))Et

βθt+1Λt+1

Λt

JVj,t+1. (22)

The firm chooses advertising efforts ajt to maximize the value of vacancy JVjt . The optimal

level of advertising is given by the first-order condition

κ′(ajt) =
∂qv(ajt)

∂ajt

[
JFjt − (1− ρo)Et

βθt+1Λt+1

Λt

JVj,t+1

]
, (23)
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where, from (21), we have
∂qv(ajt)

∂ajt
=

mt

atvt
=
qvt
at
. (24)

We concentrate on a symmetric equilibrium in which all firms make identical choices of the

level of advertising. Thus, in equilibrium, we have ajt = at. In such a symmetric equilibrium,

the optimizing advertising decision (23) can be written as

κ′(at) =
qvt
at

[
JFt − (1− ρo)Et

βθt+1Λt+1

Λt

JVt+1

]
. (25)

If the firm raises its advertising effort, it incurs the marginal cost of κ′(at). The marginal

benefit is that, by increasing the probability of forming a job match, the firm obtains the

match value JFt , although it loses the continuation value of the vacancy, which represents

the opportunity cost of filling the vacancy.5

In the special case with free entry, the value of vacancy would be zero. Thus, equation

(22) reduces to

κ(at) = qvt J
F
t . (26)

Furthermore, the optimal advertising choice (25) reduces to

κ′(at) =
qvt
at
JFt . (27)

These two equations together imply that

κ′(at)at
κ(at)

= 1. (28)

In this case, the level of advertising is chosen such that the elasticity of the cost of advertising

equals 1 and it is thus invariant to macroeconomic conditions, as in the textbook model of

Pissarides (2000).

This special case highlights the importance of incorporating costs of vacancy creation.

Absent any vacancy creation cost, as in the textbook models, firms can freely adjust vacancies

to respond to changes in macroeconomic conditions and choose the level of advertising to

minimize the cost of each vacancy. In this case, the optimal level of advertising is independent

of market variables. In contrast, if vacancy creation is costly, as we assume in our model,

firms would rely on adjusting both the level of advertising and the number of vacancies to

respond to changes in macroeconomic conditions.

5The optimizing recruiting intensity (advertising) decision in Eq. (25) reveals that the cyclical properties

of recruiting intensity are a priori ambiguous. In a recession, the job filling rate rises, and firms respond

by exerting more recruiting efforts. However, in a recession, the match value JF and the vacancy value JV

both decline, so that changes in the net value of filling a vacancy—the difference between JF and JV —are in

general ambiguous. With empirically plausible parameters, recruiting intensity in our model is procyclical,

as we show below.
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III.4. The Nash bargaining wage. Firms and workers bargain over wages. The Nash

bargaining problem is given by

max
wt

(
SHt
)b (

JFt − JVt
)1−b

, (29)

where b ∈ (0, 1) represents the bargaining weight for workers. The first-order condition

implies that

b
(
JFt − JVt

) ∂SHt
∂wt

+ (1− b)SHt
∂
(
JFt − JVt

)
∂wt

= 0, (30)

where, from the household surplus equation (15), we have
∂SH

t

∂wt
= 1; and from the firm’s value

function (18), we have
∂(JF

t −JV
t )

∂wt
= −1.

Define the total surplus as

St = JFt − JVt + SHt . (31)

Then the bargaining solution is given by

JFt − JVt = (1− b)St, SHt = bSt. (32)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.

The bargaining solution (32) and the expression for household surplus in equation (15)

together imply that the Nash bargaining wage wNt satisfies the Bellman equation

b

1− b
(JFt − JVt ) = wNt − φ−

χt
Λt

+
h(st)

1− qut

+ Et
βθt+1Λt+1

Λt

[
(1− ρo)(1− δt+1)

(
1− qut+1

) b

1− b
(JFt+1 − JVt+1)

]
.(33)

III.5. Wage rigidity. Similar to the standard DMP models, real wage rigidities are impor-

tant for our model to generate empirically plausible volatilities of vacancies and unemploy-

ment relative to the volatility of labor productivity.6 We follow the literature and consider

real wage rigidity (Hall, 2005a; Shimer, 2005). We assume that the real wage is a geometri-

cally weighted average of the Nash bargaining wage and the realized wage rate in the previous

period. That is,

wt = wγt−1(wNt )1−γ, (34)

6The recent literature identifies several sources of real wage rigidities. For example, Christiano et al.

(2015) report that an estimated DSGE model with wages determined by an alternating offer bargaining

game in the spirit of Hall and Milgrom (2008) fits the data better than the standard model with Nash

bargaining. Liu et al. (2016) show that, in an estimated DSGE model with labor search frictions and

collateral constraints, endogenous real wage inertia can be obtained conditional on a housing demand shock

even if wages are determined from the standard Nash bargaining game.
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where γ ∈ (0, 1) represents the degree of real wage rigidity.7

III.6. Government policy. The government finances unemployment benefit payments φ

for unemployed workers through lump-sum taxes. We assume that the government balances

the budget in each period so that

φ(1−Nt) = Tt. (35)

III.7. Search equilibrium. In a search equilibrium, the markets for bonds and goods all

clear. Since the aggregate bond supply is zero, the bond market-clearing condition implies

that

Bt = 0. (36)

Goods market clearing requires that consumption spending, search and recruiting costs,

and vacancy creation costs add up to aggregate production. This requirement yields the

aggregate resource constraint

Ct + h(st)ut + κ(at)vt +

∫ JV
t

0

xdF (x) = Yt, (37)

where the last term on the left-hand side of the equation corresponds to the aggregate cost of

creating job vacancies. Under our distribution assumption of the vacancy creation cost, the

cumulative density function of x is given by F (x) = ηxξ. Thus, the aggregate cost of vacancy

creation is given by
∫ JV

t

0
xdF (x) = ηξ

1+ξ
(JV )1+ξ. Using the relation between the number of

job vacancies and the value of an open vacancy in equation (19), the aggregate resource cost

for vacancy creation can be written as ξ
1+ξ

ntJ
V
t .

Aggregate output Yt is related to employment through the aggregate production function

Yt = ZtNt. (38)

IV. Empirical strategies

We solve the DSGE model by log-linearizing the equilibrium conditions around the de-

terministic steady state.8 We calibrate a subset of the parameters to match steady-state

observations and estimate the remaining structural parameters and shock processes to fit

the U.S. time-series data.

7We have examined other wage rules as those in Blanchard and Gaĺı (2010), and we find that our results

do not depend on the particular form of the wage rule.
8Details of the equilibrium conditions, the steady state, and the log-linearized system are available in the

online appendix at http://www.frbsf.org/economic-research/files/wp2016-09_appendix.

pdf.
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Consistent with the empirical evidence by Yashiv (2000) and Christensen et al. (2005),

we assume that the vacancy cost function κ(a) and the search cost function h(s) take the

quadratic forms

κ(at) = κ0 + κ1(at − ā) +
κ2

2
(at − ā)2, (39)

h(st) = h1(st − s̄) +
h2

2
(st − s̄)2, (40)

where we normalize the steady-state levels of recruiting intensity and search intensity so that

ā = 1 and s̄ = 1. We also assume that the search cost is zero in the steady state.

We first calibrate a subset of model parameters using steady-state restrictions. These

parameters include β, the subjective discount factor; χ, the disutility of working; α, the

elasticity of matching with respect to searching workers; µ, the matching efficiency; δ̄, the

average job separation rate; ρo, the vacancy obsolescence rate; φ, the unemployment benefits;

b, the Nash bargaining weight; κ0 and κ1, the intercept and the slope of the vacancy cost

function; h1, the slope parameter of the search cost function; γ, the parameter that measures

real wage rigidities; and ξ, the elasticity parameter of vacancy creation.

We estimate the remaining structural and shock parameters using Bayesian methods to

fit the time-series data of unemployment, vacancies, and search intensity. The structural

parameters to be estimated include K ≡ 1
η
, the scale of the vacancy creation cost function;

κ2, the curvature of the vacancy posting cost function; and h2, the curvature of the search

cost function. The shock parameters include ρj and σj, the persistence and the standard

deviation of the shock j ∈ {z, θ, δ}.

IV.1. Calibration. Table 1 shows the calibrated values of the model parameters.

We consider a monthly model. Thus, we set β = 0.9967, so that the model implies a

steady-state annualized real interest rate of about 4 percent. We set α = 0.5 following

the literature (Blanchard and Gaĺı, 2010; Gertler and Trigari, 2009). In line with Hall and

Milgrom (2008), we set b = 0.5. We also set φ = 0.25 so that the unemployment benefit is

about 25 percent of normal earnings. In our baseline experiment, we set ξ = 1, as in Fujita

and Ramey (2007) and Coles and Moghaddasi Kelishomi (2011).

In our calibration, we target a steady-state unemployment rate of U = 0.055 and a steady-

state job filling rate of qv = 0.6415. This targeted job filling rate matches the empirical

estimation in Davis et al. (2013) using establishment-level JOLTS data. In particular, Davis

et al. (2013) estimate that the daily job filling rate averages about 0.05, which implies a
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monthly job filling rate of qv = 0.6415.9 We set the average monthly job destruction rate to

0.034, as in the JOLTS data. Given the steady-state unemployment rate of U = 0.055 and

the job destruction rate of 0.034, we obtain the steady-state employment rate of N = 0.945

and the hiring rate of m = 0.034. It follows that the steady-state number of job seekers is

u = 0.0871 and that the job vacancy rate is v = 0.0501. We calibrate the job obsolescence

rate to ρo = 0.0196, implying an average ratio of newly created vacancies to employment of

about 0.02, which is slightly lower than that estimated by Davis et al. (2013). The normal

average job separation rate δ̄ can then be inferred from the overall job destruction rate

(0.034) and the job obsolescence rate. This leads to δ̄ = 0.0147.

We calibrate the steady-state level of vacancy cost κ0 so that the total cost of posting

vacancies is about 1 percent of gross output. We normalize the average level of total factor

productivity (TFP) to Z = 1, so that the steady-state gross output is Y = 0.945. Given

Y and v, we obtain κ0 = 0.1887. We set κ1 = 0.1902 so that the steady-state recruiting

intensity is ā = 1. We set h1 = 0.1088 so that the steady-state search intensity is s̄ = 1.

Given the steady-state values of m, u, v, s, and a, we use the matching function to obtain

an average matching efficiency of µ = 0.4864.

To obtain a value for χ, we solve the steady-state system so that χ is consistent with

an unemployment rate of U = 0.055. The process results in χ = 0.665. Finally, as in the

standard DMP model, our model relies on real wage rigidities to generate the observed large

fluctuations in labor market variables (Shimer, 2005). We set the wage rigidity parameter

to γ = 0.95, which lies at the high end of the literature (Hall, 2005b).

IV.2. Estimation. We now describe our data and estimation approach.

IV.2.1. Data and measurement. We fit the DSGE model to three monthly time series for the

U.S. labor market: the unemployment rate, the job vacancy rate, and a measure of search

intensity. The sample covers the period from July 1967 to July 2017. Appendix B provides

a detailed description of the data sources and measurements.

The unemployment rate in the data (denoted by Udata
t ) corresponds to the end-of-period

unemployment rate in the model Ut. We demean the unemployment rate data (in log units)

and relate it to our model variable according to

ln(Udata
t )− ln(Udata) = Ût, (41)

where Udata denotes the sample average of the unemployment rate in the data and Ût denotes

the log-deviations of the unemployment rate from its steady-state value in the model.

9Assuming that one month consists of 20 business days, we can infer the monthly job filling rate qv from

the daily rate f = 0.05 by using the relation qv = f +f(1−f)+f(1−f)2 + · · ·+f(1−f)19 = 1− (1−f)20 =

0.6415.
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Similarly, we use demeaned vacancy rate data (also in log units) and relate it to the model

variable according to

ln(vdatat )− ln(vdata) = v̂t, (42)

where vdata denotes the sample average of the vacancy rate data and v̂t denotes the log-

deviations of the vacancy rate from its steady-state value in the model.

We follow the approach of Davis (2011) to construct a measure of search intensity. He

combines mean unemployment spells from the Current Population Survey (CPS) and re-

gression results from Krueger and Mueller (2011), who find that search intensity declines as

the duration of unemployment increases in high-frequency longitudinal data. In particular,

Davis (2011) postulates that

st = A−Bdt, (43)

where st is search intensity and dt is the mean unemployment duration (in weeks). He then

constructs the search intensity index by setting A = 122.30 and B = 0.90 after adjusting

for some potential biases in the regression results obtained by Krueger and Mueller (2011).10

We follow the same methodology as Davis (2011) in constructing a search intensity series,

with the exception that we use the median unemployment duration in weeks instead of the

mean.11

Figure 2 displays this measure of aggregate search intensity. Clearly, search intensity is

procyclical, rising in booms and falling in recessions. In the Great Recession and its after-

math, search intensity declined substantially, as the duration of unemployment lengthened.

IV.2.2. Prior distributions and posterior estimates. The prior and posterior distributions of

the estimated parameters from our benchmark model are displayed in Table 2.

The priors for the structural parameters K, κ2, and h2 are drawn from the gamma dis-

tribution. We assume that the prior mean of each of these three parameters is 5, with a

standard deviation of 1. The priors of the persistence parameter of each shock follow the

beta distribution with a mean of 0.8 and a standard deviation of 0.1. The priors of the

volatility parameter of each shock follow an inverse gamma distribution with a prior mean

of 0.01 and a standard deviation of 0.1.

The posterior estimates and the 90 percent probability intervals for the posterior distri-

butions are displayed in the last three columns of Table 2. The posterior mean estimate of

10See the discussions of this methodology in Davis (2011), p. 66.
11The Great Recession caused many workers to experience extremely long spells of unemployment, con-

tributing to the sharp increase in the mean duration of unemployment for this period. We use the median

unemployment duration to construct our search intensity series, since we believe this median measure better

reflects the underlying factors that influence an individual job seeker’s search efforts than does the mean.

The time series of median unemployment durations from the BLS is available from July 1967 and on.
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the vacancy creation cost parameter is K = 3.89, which implies a modest size of vacancy

creation costs, at about 0.1 percent of aggregate output in the steady state. The posterior

mean estimates of the curvature parameters for the vacancy cost function and the search

cost function are κ2 = 5.88 and h2 = 0.99, respectively. The 90 percent probability intervals

suggest that the posterior estimates of these structural parameters are significantly different

from their priors. Thus, the data are informative on these parameters.

The posterior estimation suggests that the technology shock and the discount factor shock

are both highly persistent, with the posterior means of the AR(1) parameters at ρz = 0.995

and ρθ = 0.993, respectively. The job separation shock is less persistent, with the AR(1)

parameter of ρδ = 0.843. The standard deviations of the technology shock (σz = 0.019) and

the discount factor shock (σθ = 0.030) are both much smaller than that of the separation

shock (σδ = 0.187).

V. Economic implications

We now examine the model’s transmission mechanism and its quantitative performance for

explaining the sharp labor market downturns during the Great Recession and the subsequent

weak job recovery.

V.1. The model’s transmission mechanism. The equilibrium dynamics in our model

are driven by both the exogenous shocks and the model’s internal propagation mechanism.

To help understand the contributions of the shocks and the model’s mechanism, we examine

forecast error variance decompositions and impulse response functions.

V.1.1. Forecast error variance decompositions. Table 3 displays the mean (or unconditional)

forecast error variance decompositions for several key labor market variables and aggregate

output.12

The variance decompositions suggest that our model’s labor market dynamics are primarily

driven by the discount factor shock and the technology shock, while the job separation shock

is less important.13

Consistent with the intuition provided by Shimer (2005), real wage rigidities in our model

allow technology shocks to play an important role in driving labor market fluctuations. The

12We have also computed the conditional forecast error variance decompositions with forecasting horizons

between 12 months and 48 months and found that they deliver the same message as the unconditional

variance decomposition.
13Historical decompositions show that discount factor shocks were the primary driving force of fluctuations

in unemployment, vacancies, and search intensity in the Great Recession, and technology shocks played a

more important role during the recover. To conserve space, we report the historical decomposition results

in the online appendix.
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variance decomposition results suggest that technology shocks account for 30-50 percent of

the cyclical fluctuations in unemployment, vacancies, search intensity, recruiting intensity,

hiring, and the job filling rate. Technology shocks are also the primary driving force of

aggregate output, accounting for about 94 percent of its fluctuations.

Discount factor shocks can directly affect the present values of a job match and an open

vacancy, and also the employment surplus for a job seeker. Thus, it is important for ex-

plaining the observed labor market fluctuations (Hall, 2017). Quantitatively, our variance

decomposition shows that a discount factor shock contributes to a large fraction— about

40-70 percent—of fluctuations in labor market variables.

Job separation shocks do not play a big role in labor market fluctuations, except for hiring,

for which they account for about 18 percent of the variance. As noted by Shimer (2005), job

separation shocks generate a counterfactually positive correlation between unemployment

and vacancies. Accordingly, in our estimated model, this shock plays a relatively minor role.

V.1.2. Impulse responses. Figure 3 shows the impulse responses of several key labor market

variables to a one-standard-deviation negative technology shock, in two different models: our

benchmark model (the black solid lines) and a standard model (the blue dashed line). The

standard model here corresponds to a version our benchmark, where we impose free entry

and constant search and recruiting intensity.

In the benchmark model, a decline in aggregate productivity reduces the value of new job

matches. Firms respond by reducing hiring and vacancy postings. These responses lead to

a drop in the job finding rate and an increase in the unemployment rate.

Unlike the standard model with free entry, our model with costly vacancy creation im-

plies that the value of an unfilled vacancy is nonzero. Thus, as we have alluded to in the

introduction, vacancies become a state variable that evolves slowly over time according to

the law of motion in Equation (3). This gives rise to persistent dynamics in vacancies shown

in the figure. The initial drop in the stock of vacancies is attributable to declines in newly

created vacancies: since the shock reduces the value of an open vacancy (JVt ), firms have

less incentive to create new vacancies.

In the benchmark model, the technology shock reduces both search intensity and recruiting

intensity. The household’s optimizing decisions for search intensity (Eq. (14)) show that

search intensity increases with the job finding probability and the employment value, which

is proportional to the match surplus from Nash bargaining. Since the technology shock

lowers both the job finding rate and the match surplus, it reduces search intensity as well.

Recruiting intensity falls following the negative technology shock partly because the ex-

pected value of a job match declines. This can be seen from the optimizing decision for

recruiting intensity in Eq. (25), which shows that recruiting intensity increases with both
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the job filling probability and the value of a new job match (JF ) relative to the value of an

unfilled vacancy (JV ). However, because the technology shock reduces both JF and JV , the

net effect on recruiting intensity can be ambiguous. Under our estimated parameters, the

net surplus falls following a contractionary technology shock. Thus, recruiting intensity falls

as well.

Declines in search and recruiting intensity counteract the effects of the rise in unemploy-

ment on hiring and reinforce the effects of the drop in vacancies. The net effect leads to a fall

in hiring. With both hiring and vacancies declining following the negative technology shock,

the response of the job filling rate—which is the ratio of hires to vacancies— is a priori am-

biguous. Under our estimation, the job filling rate rises following a decline in productivity,

and this countercyclical behavior is in line with the data.

Since search and recruiting intensity both decline in the benchmark model, the technology

shock leads to a decline in the measured matching efficiency and thus to an outward shift of

the Beveridge curve. The measured matching efficiency here is defined as

Ωt = µsαt a
1−α
t . (44)

Although there are no exogenous shifts in true matching efficiency (i.e., µ is constant),

measured matching efficiency (Ω) in our model still fluctuates with endogenous variations in

search and recruiting intensity.

Figure 3 also shows that the standard model implies less persistent responses of unem-

ployment, vacancies, and hiring to a technology shock (the blue dashed lines) than those

in the benchmark model. Free entry in the standard model implies that unfilled vacancies

can be discarded and new vacancies can be created without costs in each period. Thus, the

number of vacancies becomes a jump variable rather than a slow-moving state variable as

in our benchmark model. Accordingly, the peak effect of the technology shock on vacancies

occurs in the impact period, and the dynamic responses of the labor market variables are in

general less persistent than in our benchmark model. Furthermore, the standard model does

not allow for amplification through cyclical fluctuations in search and recruiting intensity.

Figure 4 shows the impulse responses of the labor market variables in the two models

following a one-standard-deviation negative discount factor shock. In the benchmark model

(the black solid lines), the shock lowers the continuation value of a job match, leading to

declines in hiring. Since the shock reduces the employment surplus, search intensity falls.

Recruiting intensity also falls because the decline in the present value of a new job match

outweighs the decline in the value of an open vacancy. Firms respond to the drop in vacancy

value by reducing vacancy creation and postings. The decline in vacancies more than offsets

that in hiring, leading to a rise in the job filling rate. This countercyclical response of
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the job filling rate is in line with the data. Similar to the case with a technology shock,

the responses of unemployment, vacancies, and hiring to the discount factor shock in the

standard model (the blue dashed lines) are less persistent than in the benchmark model,

and the intensive margins of adjustments are muted (by construction, given free entry).

These results again highlight the importance of incorporating vacancy creation costs and

endogenenous adjustments in search and recruiting intensity, as we do in our benchmark

model, for generating more persistent labor market dynamics.

Figure 5 shows the impulse responses following a positive shock to the job separation

rate in the two models. In the benchmark model (the black solid lines), an increase in

the rate of job separation leads to a rise in the unemployment rate. Since separated jobs

add to the stock of vacancies, the number of vacancies rises along with unemployment. The

equilibrium adjustments of hiring also depend on the responses of the intensive margins. The

job separation shock reduces both the match value JF and the vacancy value JV , rendering

the net effect on recruiting intensity ambiguous. Under our estimation, recruiting intensity

edges down following the separation shock. On net, however, the increases in both u and v

more than offset the decline in recruiting intensity, leading to an increase in hiring. Thus,

the job finding rate increases. Although the match surplus declines, the increase in the job

finding rate induces more search effort by the job seekers, so that search intensity rises. In the

standard model (the blue dashed lines), an increase in the separation rate also raises u and

v, as in the benchmark model. But the shock also raises the job filling rate on impact, unlike

in the benchmark model. Free entry implies that JV = 0 and the job creation condition is

given by κ = qvJF . An increase in job separation lowers the match value JF . Thus, given

the constant vacancy posting cost κ, the job filling rate rises. The increases in both u and

v lead to an increase in hiring. The job finding rate declines on impact because the shock

raises unemployment more than hiring. Overall, in both models, the job separation shock

has relatively small effects on the labor market variables.

V.2. The Great Recession and the weak job recovery. We now examine the quanti-

tative performance of our estimated model for explaining the sharp contraction in the labor

market during the Great Recession and its subsequent weak recovery. We focus on the job

filling rate. As Figure 1 shows, the job filling rate in the data (the blue solid line) surged in

the recession and then recovered gradually to its pre-recession level.

The standard model without search and recruiting intensity has difficulties in replicating

these observations. As Figure 1 shows (the red dashed lines), the predicted job filling rate

from the standard matching function diverged from the data in early 2009, and it has stayed

persistently above the data thereafter. These patterns reflect that the standard matching
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function fails to replicate the sharp downturn in hiring in the recession and the subdued

recovery.

Our model outperforms the standard matching function in predicting the job filling rate.

As Figure 6 shows, our model’s predicted job filling rate (the black dashed and dotted line)

tracks the actual data much more closely than does the standard matching function in the

recession and throughout the early part of the recovery up to 2015.

To get a quantitative sense of the goodness of fit of our model relative to the standard

matching function, we compare the root mean squared errors (RMSE) of our benchmark

model’s predicted job filling rate with that implied by the standard matching function. We

calculate the RMSEs for the sample period from December 2000 to July 2017, correspond-

ing to the JOLTS sample period. Table 4 (Column (2)) shows that the RMSE from our

benchmark model is about 42 percent of that implied by the standard matching function,

representing a significant improvement in predicting the job filling rate.

One concern might be that the improvements in fit during the Great Recession and the

subsequent recovery come at the cost of a worsening performance in the periods prior to the

Great Recession. Figure 7 shows that this is not the case. While we focus on the post-2001

period in Figure 6 because of the availability of JOLTS data, we still estimate our model

over a longer period (starting from July 1967) that captures several business cycles. This

allows for a comparison of the job filling rate series from our benchmark model with that

implied by the standard matching function for the periods prior to 2001. In contrast to the

Great Recession and the subsequent recovery periods, Figure 7 shows that the two models’

predicted job filling rates track each other more closely before the Great Recession. This

result partly reflects the fact that the Great Recession led to a much more pronounced decline

in our measure of search intensity than during previous downturns.14

However, it is important to note that the improved model performance is not mechanically

attributable to the introduction of search intensity in the matching function. For instance,

Table 4 (Column (3)) reports the RMSE of the standard matching function modified to

include our measure of search intensity.15 Augmenting the standard matching function with

search intensity does improve the prediction for the job filling rate. The RMSE under the

augmented matching function is about 85 percent of that under the standard matching

function. However, this magnitude of improvement is much smaller than that obtained

14Historical decompositions suggest that the sharp decline in search intensity during the Great Recession

was mostly driven by discount factor shocks in our model, which capture financial factors that are not

explicitly modeled here. See the online appendix for detailed discussions about the historical decompositions.

15Under the matching function augmented with search intensity, the job filling rate is given by µ
(
utst
vt

)α
,

where the variables and the parameters are defined earlier.
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from our general equilibrium model with cyclical fluctuations in both search and recruiting

intensity. These findings suggest that incorporating both search intensity and recruiting

intensity is important in accounting for the fluctuations in the job filling rate, especially for

the post-2008 period.

Our model also implies that recruiting intensity is positively correlated with the hiring

rate, as found by Davis et al. (2013), despite clear differences in empirical approaches. Davis

et al. (2013) construct a measure of recruiting intensity based on establishment-level data.

They show that recruiting intensity delivers a better-fitting Beveridge curve and accounts for

a large share of fluctuations in aggregate hires. They further impute an aggregate relation

between recruiting intensity and the hiring rate based on their estimated microeconomic

relations. They show that this aggregate measure of recruiting intensity is highly correlated

with the aggregate hiring rate, with a sample correlation of about 0.82.

The empirical measure of recruiting intensity obtained from our estimated macro model

is also procyclical and highly correlated with the hiring rate in the model. In particular, the

sample correlation between our model-based time series of recruiting intensity and the hiring

rate is 0.83, which is remarkably similar to that reported by Davis et al. (2013). The cyclical

behavior of recruiting intensity relies on the model’s internal propagation mechanism, and

the model is successful in generating procyclical recruiting intensity conditional on matching

the time series of unemployment, vacancies, and search intensity. Our result lends support to

the argument of Davis et al. (2013) that procyclical recruiting intensity plays an important

role in explaining fluctuations in the labor market.

V.3. Diagnosing the shocks. We have used a Bayesian approach for estimating the sto-

chastic processes of the shocks to technology, the discount factor, and the separation rate.

The literature has typically followed a different approach, with the shock parameters cali-

brated instead of estimated. For instance, Shimer (2005) first estimates the stochastic pro-

cesses for average labor productivity and the job separation rate using independent sources

of information in the data, and then evaluates the business-cycle performance of a search and

matching model simulated using these calibrated driving forces. Our estimated shock param-

eters turn out to differ somewhat from the calibrated values in the literature. In particular,

the estimated standard deviation of the job separation shock is substantially larger than the

typical calibrated value. To what extent, then, does our model’s performance depend on the

estimated value of the shock processes?

To address this question, we consider an alternative empirical strategy. First, we fix

the parameters governing the stochastic processes for the technology shock and the job

separation shock based on the approach in Shimer (2005). We then estimate the model to

fit the time-series data of unemployment, vacancies, and search intensity.
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As in Shimer (2005), we use average labor productivity to calibrate the technology shock

parameters.16 This calibration yields a monthly first-order autocorrelation of 0.9908 and a

standard deviation of 0.005 for the technology shock. Similarly, we use the job separation

rate as constructed by Shimer (2005) and monthly data from July 1967 to July 2017 to

calibrate the stochastic process of the separation shock; we obtain an autocorrelation of

0.9806 and a standard deviation of 0.002.

The literature provides no direct evidence on the stochastic processes for the discount

factor shock. Hall (2017) notes that calibrating the discount factor shock parameters is

model dependent. In particular, it depends on the model’s Euler equations, which are

functions of expectations of future macroeconomic variables and the entire structure of the

model. For this reason, we estimate the discount factor shock parameters along with other

structural parameters.

Table 5 shows the estimation results under this alternative empirical approach, as well as

the calibrated shock parameters. The posterior estimates of the structure parameters (K,

κ2, h2) are clearly different from those obtained in the benchmark estimation. The estimated

discount factor shock is also different: it is highly persistent (with ρθ = 0.9998) and very

volatile (σθ = 0.21).17

The model estimated with this alternative approach does not perform as well as the

benchmark estimation in fitting the observed job filling rate. As shown in Table 4 (Column

(4)), the RMSE under this alternative estimation is about 58 percent of that implied by the

standard matching function.

To further examine the role of the shock processes in driving our model’s dynamics, we

estimated the model with all three shocks calibrated. In particular, we calibrate the tech-

nology and separation shocks following Shimer (2005), and we also calibrate the discount

factor shock parameters to the values obtained under our benchmark estimation. As a result,

the discount factor shock is not as volatile as in the previous exercise. In this version of the

16The sample period covers 1967:Q3-2017:Q3. To stay consistent with the measurement in our model, we

remove a linear trend from the average productivity series (instead of applying the HP filter). We convert

the calibrated autocorrelation and standard deviation from quarterly values to monthly values.
17The data prefer the benchmark estimation to the alternative estimation, since the posterior data density

for the benchmark estimation is much higher. To check whether the actual data lie in the tail of the model’s

posterior distribution when the technology shock and separation shock parameters are restricted to their

calibrated values, we have performed a posterior predictive check following the approach described by An

and Schorfheide (2007) and Faust and Gupta (2012). The posterior predictive analysis indicates that the

calibrated parameters for the technology and separation shocks lie within the 90 percent probability intervals

of the posterior distributions. See the online appendix for more details. We thank an anonymous referee for

suggesting this approach.
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model, we obtain an RMSE of 71 percent of that implied by the standard matching function,

as shown in Table 4 (Column (5)).

Overall, the model’s prediction errors (measured by the RMSE) with calibrated shocks

are clearly greater than those under the benchmark estimation. Nonetheless, the improve-

ment relative to the standard matching function is still economically important. Thus, our

model’s performance in predicting the actual job filling rate is not entirely driven by the

estimated shocks, and endogenous cyclical fluctuations in search and recruiting intensity are

quantitatively important for explaining the weak job recovery.

V.4. The importance of using information from search intensity data. In estimating

our benchmark model, we have used three time series: the unemployment rate, the job

vacancy rate, and a measure of search intensity. We followed Davis (2011) and constructed

a time series of search intensity based on the median unemployment duration. The resulting

search intensity series is procyclical, as shown in Figure 2. The procyclical behavior of search

intensity is consistent with the textbook model (Pissarides, 2000).18

Yet, the empirical literature is not conclusive about whether search intensity is procyclical.

For example, Shimer (2004) argues that search intensity is countercyclical based on evidence

from cross-sectional data of the average number of search methods used by job seekers

observed in the CPS. Mukoyama et al. (2014) combine information from the CPS data and

the American Time Use Survey (ATUS) and obtain similar results.

On the other side of the debate, Tumen (2014) emphasizes that the cross-sectional mea-

sures based on CPS data are likely to suffer from a composition bias if a job seeker with

stronger labor market attachment also uses more search methods. Since the share of job seek-

ers with stronger labor-market attachment increases during a recession, the measured search

intensity appears to be countercyclical. When the composition bias is corrected, Tumen

(2014) finds that search intensity is procyclical. Gomme and Lkhagvasuren (2015) make a

similar argument about the composition bias. They use merged data from the ATUS and the

CPS to study cyclical variations in search intensity. They find that, when the composition

bias is corrected, the evidence suggests procyclical search intensity.19

18Our measure of search intensity is constructed based on estimated parameters using longitudinal data

that track unemployed workers’ amount of time spent for job searching as well as the number of weeks they

have been unemployed (see Davis (2011)). A drawback of this method is that it is based on answers from

interviews conducted over a 24-week period during the fall of 2009 and winter of 2010, so the estimation uses

a relatively short time-series dimension.
19Mueller (2017) shows that the pool of unemployed shifts to high-wage workers in recessions. If high-

wage workers search more intensely, this can lead to a substantial composition bias. Faberman and Kudlyak

(2016) also discuss the implications of composition bias in measuring search intensity. They report that



THE WEAK JOB RECOVERY 24

Given this debate, we assess the robustness of our findings by fitting our model to the

observed unemployment rate and the vacancy rate only. Under this alternative estimation,

we do not use information of search intensity in the data.20

When we estimate the model to fit unemployment and vacancies data without using in-

formation from search intensity data, we obtain an RMSE for the job filling rate of about 58

percent relative to that implied by the standard matching function. This prediction error is

clearly larger than that under our benchmark estimation. But the improvement relative to

the standard matching function is substantial.

In addition, information from search intensity in the data also has implications for the

estimated cyclical behaviors of recruiting intensity. When we do not use information from

search intensity to estimate the model, the correlation between recruiting intensity and hiring

becomes smaller than that in the benchmark estimation (0.46 vs. 0.83).

Overall, these exercises suggest that there are important general equilibrium interactions

between search and recruiting intensity that amplify the impact of the shocks on labor market

variables. Procyclical fluctuations in search intensity and recruiting intensity help bridge the

gap between the model’s predicted job filling rate and that in the data.

VI. Conclusion

The sharp contraction in the labor market during the Great Recession and the subsequent

weak recovery present a challenge for the standard model of labor search and matching.

We have developed and estimated a DSGE model that generalizes the standard model to

incorporate cyclical fluctuations of search and recruiting intensity. We find that these in-

tensive margins of labor market adjustments are quantitatively important. In the depth of

the recession and during the early part of the recovery, the job filling rate predicted from

our estimated model is much closer to the actual time-series data than those implied by the

standard matching function. Our model suggests that procyclical fluctuations in search and

recruiting intensity played an important role in explaining the deep recession and the weak

recovery.

To allow for aggregate fluctuations in recruiting intensity, we modified the standard model

by assuming that creating a new job vacancy is costly. This simple modification facilitates

tractability and makes it straightforward to estimate the model to fit time-series data using

standard techniques. Our macro emphasis nonetheless yields predictions of the cyclical

movements in recruiting intensity that are very much in line with those obtained by Davis

long-term unemployed job seekers tend to exert more efforts throughout their search process, reflecting that

long-term unemployed individuals have stronger labor market attachment.
20To conserve space, we report the priors and posterior estimation results in the online appendix.
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et al. (2013) based on establishment-level data. In particular, both approaches highlight

that recruiting intensity is procyclical. In addition, our empirical findings also point to an

important interaction between search and recruiting intensity that helps account for the

observed behavior of the job filling rate since the onset of the Great Recession.

To better highlight our model’s mechanism, we focus on three particular sources of busi-

ness cycle fluctuations: technology shocks, discount factor shocks, and job separation shocks.

All of these shocks are arguably reduced-form representations of some microeconomic fric-

tions or policy distortions that are not considered in our model. For example, the discount

factor shock in our model that represents stochastic changes in households’ intertemporal

preferences may reflect factors outside of the model that drive asset market fluctuations

(Hall, 2017). Our model also assumes that job separations vary exogenously, while in reality,

job separations occur endogenously in response to the state of the economy.

Our model also restricts the labor force participation rate to be constant. Relaxing this

assumption can have important implications for labor market dynamics. For example, Di-

amond (2013) argues that incorporating flows into and out of the labor force helps bet-

ter understand the shifts of the Beveridge curve after the Great Recession. Kudlyak and

Schwartzman (2012) show that persistent declines in labor force participation contributed

to the large increases in unemployment during the Great Recession and to the subsequent

slow decline in unemployment. Future research should extend the framework in this paper to

incorporate endogenous job separations and labor force participation to study their potential

interactions with search and recruiting intensity. This more general framework would help

further improve our understanding of labor market fluctuations and policy design.
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.9967

φ Unemployment benefit 0.25

α Elasticity of matching function 0.50

µ Matching efficiency 0.4864

δ̄ Job separation rate 0.0147

ρo Vacancy obsolescence rate 0.0196

κ0 Steady-state advertising cost 0.1887

κ1 Slope of vacancy posting cost 0.1902

h1 Slope of search cost 0.1088

b Nash bargaining weight 0.50

γ Real wage rigidity 0.95

ξ Elasticity of vacancy creation 1

χ Mean value of preference shock 0.6650

Z̄ Mean value of technology shock 1
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Table 2. Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

K vacancy creation cost G [5, 1] 3.8888 3.5572 4.2272

κ2 vacancy posting cost G [5, 1] 5.8751 5.6821 6.0537

h2 search cost function G [5, 1] 0.9928 0.9778 1.0116

ρz AR(1) of tech shock B [0.8, 0.1] 0.9953 0.9952 0.9953

σz std of tech shock IG [0.01, 0.1] 0.0194 0.0171 0.0217

ρθ AR(1) of dis. factor shock B [0.8, 0.1] 0.9932 0.9928 0.9937

σθ std of dis. factor shock IG [0.01, 0.1] 0.0302 0.0290 0.0313

ρδ AR(1) of sep shock B [0.8, 0.1] 0.8429 0.8370 0.8492

σδ std of sep shock IG [0.01, 0.1] 0.1868 0.1829 0.1909

Note: This table shows our benchmark estimation results. For the prior distribution types,

we use G to denote the gamma distribution, B the beta distribution, and IG the inverse

gamma distribution.
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Table 3. Forecasting Error Variance Decomposition

Variables Technology shock Discount factor shock Job separation shock

Unemployment 32.10 67.27 0.63

Vacancy 38.93 58.85 2.21

Search intensity 26.83 73.13 0.04

Recruiting intensity 51.95 47.93 0.12

Hiring 48.11 33.29 18.60

Job filling 35.17 64.81 0.03

Aggregate output 94.36 5.59 0.05

Note: The numbers reported are the posterior mean contributions (in percentage terms) of

each of the three shocks in the benchmark estimation to the forecast error variances of the

variables listed in the rows.
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Table 4. Prediction errors (RMSE) relative to the standard matching func-

tion for the job filling rate

(1) (2) (3) (4) (5) (6)

Standard Benchmark Standard match Estimation with Estimation with Estimation

match estimation function with calibrated all shocks without search

function search intensity z and δ shocks calibrated intensity data

1 0.419 0.856 0.581 0.707 0.579

Note: This table shows the prediction errors of alternative models (or estimation methods)

for the job filling rate, which is defined as the ratio of hires to the end-of-period job

vacancies. We measure the prediction errors by the root mean squared error (RMSE), and

we normalize the RMSE implied by the standard matching function to one (Column (1)).

The rest of the columns show the ratios of the RMSE in each case to that implied by the

standard matching function. Column (2) shows the relative RMSE of the benchmark

estimation of our DSGE model, Column (3) shows the standard matching function

augmented with search intensity, Column (4) shows the estimation of the DSGE model with

calibrated parameters for the technology shock and the job separation shock, Column (5)

shows the estimation of the DSGE model with calibrated parameters for all three shocks,

and Column (6) shows the estimation without using search intensity data. The sample

period for computing the RMSEs ranges from December 2000 to July 2017, corresponding

to the JOLTS sample.
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Table 5. Alternative estimation

Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

K vacancy creation cost G [5, 1] 0.9779 0.9771 0.9780

κ2 vacancy posting cost G [5, 1] 0.9775 0.9772 0.9776

h2 search cost function G [5, 1] 1.6037 1.6017 1.6090

ρθ AR(1) of dis. factor shock B [0.8, 0.1] 0.9998 0.9997 0.9999

σθ std of dis. factor shock IG [0.01, 0.1] 0.2149 0.2142 0.2159

Calibrated shock parameters

Parameter description Calibrated value

ρz AR(1) of tech shock 0.9908

σz std of tech shock 0.0050

ρδ AR(1) of sep shock 0.9806

σδ std of sep shock 0.0020

Note: This table shows the estimation results when we fix the parameters in the

technology and separation shocks to their calibrated values following the approach in

Shimer (2005). The technology shock parameters are calibrated based on the quarterly

time series of average labor productivity from 1967Q3 to 2017Q3, with a linear trend

removed. We convert the autocorrelation and standard deviation parameters in the

technology shock from quarterly frequency to monthly frequency. The job separation shock

parameters are calibrated using monthly data from July 1967 to July 2017, following

Shimer’s (2005) approach.
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Figure 1. Job filling rate: Data vs. standard matching function. The shaded

areas indicate the NBER recession dates. The job filling rate in the data is

defined as the ratio of hiring to the end-of-period job vacancies. The job

filling rate implied by the standard matching function is calculated based on

the matching function mt = µuαt v
1−α
t , where mt denotes new job matches,

ut and vt denote unemployment and job vacancies, respectively, α measures

the elasticity of matching with respect to unemployment, and µ is a scale

parameter. The job filling rate is given by qvt ≡ mt

vt
= µ

(
vt
ut

)−α
and the

job finding rate is given by qut ≡ mt

ut
= µ

(
vt
ut

)1−α
. Since these two implied

series are perfectly (and negatively) correlated, we choose to display only the

job filling rate in the figure. In calculating the job filling rate implied by

the standard matching function, we follow Davis et al. (2013) and use the

calibrated parameter α = 0.5, the observed job openings from the JOLTS,

and the unemployment rate from the BLS. (The qualitative results are similar

for α = 0.4 or α = 0.6.) All series are in log terms and normalized relative

to the February 2001 observation, corresponding to the starting point of the

3-month moving averages of the JOLTS data. With this normalization, the

scale parameter µ in the matching function becomes irrelevant.
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Figure 2. Time series of search intensity. The shaded areas indicate recession

dates. The search intensity series is imputed from the median duration of

unemployment (weeks) based on the regression analysis of Davis (2011).
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Figure 3. Impulse responses to a negative technology shock. The solid lines

are impulse responses from the benchmark model. The dashed lines are from

the standard model, which assumes free entry and constant search and recruit-

ing intensity.
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Figure 4. Impulse responses to a negative discount factor shock. The solid

lines are impulse responses from the benchmark model. The dashed lines are

from the standard model, which assumes free entry and constant search and

recruiting intensity.
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Figure 5. Impulse responses to a positive job separation shock. The dashed

lines are from the standard model, which assumes free entry and constant

search and recruiting intensity.



THE WEAK JOB RECOVERY 36

-0.2

0

0.2

0.4

0.6

0.8

2001 2003 2005 2007 2009 2011 2013 2015 2017

Data
Standard model
Benchmark model

Source: JOLTS, BLS, Haver Analytics, and authors' contributions

3-month moving average, logged

Job Filling Rate

Figure 6. Job filling rate: Data, standard matching function, and bench-

mark DSGE model. The shaded areas indicate the NBER recession dates.

For explanations of the variable constructions in the data and the standard

model, see Figure 1. The job filling rate in the benchmark DSGE model is the

smoothed series from the estimated DSGE model.
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Figure 7. Job filling rate: Data, standard matching function, and benchmark

DSGE model in the full sample. The shaded areas indicate the NBER recession

dates. For explanations of the variable constructions, see Figure 6.
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Appendix A. Derivations of household’s optimizing conditions

Our approach to incorporating search intensity in the DSGE model builds on the text-

book treatment by Pissarides (2000). The basic idea is that the representative household

can choose the effort level that is devoted to searching for those members who are unem-

ployed. Increasing search effort incurs some resource costs, but it also creates the benefits

of increasing the individual searching worker’s job finding rate.

We now derive the optimal search intensity decision from the first principle. To econo-

mize notations, we do not carry around the individual index i in describing the household’s

optimizing problem. Keep in mind that, in choosing the individual search intensity and

employment, the household takes the economy-wide variables as given. In a symmetric

equilibrium, the individual optimal choices coincide with the aggregate optimal choices.

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max lnCt − χNt + βEtθt+1Vt+1(Bt, Nt). (A1)

The household’s utility-maximizing decision is subject to the budget constraint

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt)− uth(st) + dt − Tt, (A2)

and the law of motion for employment

Nt = (1− ρo)(1− δt)Nt−1 + qu(st)ut, (A3)

where the measure of job seekers is given by

ut = 1− (1− ρo)(1− δt)Nt−1. (A4)

The household chooses Ct, Bt, Nt, and st, taking prices and the average job finding rate

as given.

Denote by Λt the Lagrangian multiplier for the budget constraint (A2). The first-order

condition with respect to consumption implies that

Λt =
1

Ct
. (A5)

The optimizing decision for Bt implies that

Λt

rt
= βEtθt+1

∂Vt+1(Bt, Nt)

∂Bt

, (A6)

where θt ≡ Θt

Θt−1
denotes the discount factor shock. Combining equation (A6) with the

envelope condition with respect to Bt−1, we obtain the intertemporal Euler equation

1 = Et
βθt+1Λt+1

Λt

rt, (A7)
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which is equation (16) in the text.

Optimal choice of search intensity st implies that

h′(st) =
qut
st

[
wt − φ−

χt
Λt

+ βEtθt+1
∂Vt+1(Bt, Nt)

∂Nt

1

Λt

]
, (A8)

where we have used equation (13) to replace the term ∂qu(st)
∂st

by
qut
st

. The envelope condition

implies that

∂Vt(Bt−1, Nt−1)

∂Nt−1

=

[
Λt(wt − φ)− χt + βEtθt+1

∂Vt+1(Bt, Nt)

∂Nt

]
∂Nt

∂Nt−1

− Λtht
∂ut
∂Nt−1

.(A9)

Equations (A3) and (A4) imply that

∂Nt

∂Nt−1

= (1− ρo)(1− δt)(1− qu(st)) (A10)

and that

∂ut
∂Nt−1

= −(1− ρo)(1− δt). (A11)

Define the employment surplus (i.e., the value of employment relative to unemployment)

as

SHt =
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt

=
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt−1

∂Nt−1

∂Nt

=
1

Λt

∂Vt(Bt−1, Nt−1)

∂Nt−1

1

(1− ρo)(1− δt)(1− qu(st))
. (A12)

Thus, SHt is the value for the household to send an additional worker to work in period t.

Then the envelope condition (A9) implies that

SHt = wt − φ−
χ

Λt

+
ht

1− qut
+ Et

βθt+1Λt+1

Λt

(1− ρo)(1− δt+1)(1− qut+1)SHt+1. (A13)

The employment surplus SHt derived here corresponds to equation (15) in the text and it is

the relevant surplus for the household in the Nash bargaining problem.

Given the definition of employment surplus in equation (A12), the optimal search intensity

decision (A8) can be rewritten as

h′(st) =
qut
st

[
wt − φ−

χ

Λt

+ Et
βθt+1Λt+1

Λt

(1− ρo)(1− δt+1)(1− qut+1)SHt+1

]
. (A14)

Thus, at the optimum, the marginal cost of search intensity equals the marginal benefit,

where the benefit derives from the increased job finding rate and the net value of employment.

This last equation corresponds to equation (14) in the text.
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Appendix B. Data

We fit the DSGE model to three monthly time series for the U.S. labor market: the

unemployment rate, job vacancies, and a measure of search intensity. We also use monthly

time-series data of hires to construct our measure of the job filling rate.

(1) Unemployment: Civilian unemployment rate (16 years and over) from the Bureau of

Labor Statistics (LR@USECON in Haver), seasonally adjusted monthly series.

(2) Job vacancies: For the period from December 2000 and on, we use the seasonally

adjusted job opening rate series from JOLTS (LJJTPA@USECON in Haver). For

the period prior to December 2000, we use the measure of the job vacancy rate

constructed by Barnichon (2010) based on the Help Wanted Index.

(3) Search intensity: constructed based on the approach in Davis (2011), using the follow-

ing empirical relation between search intensity (st) and the duration of unemployment

(dt)

st = 122.30− 0.90dt, (A15)

where dt is measured by the seasonally adjusted monthly series of the median duration

of unemployment (in weeks) reported in the Current Population Survey (WAMED@EMPL

in Haver).

(4) Hires: Total hires rate from JOLTS (LJHTPA@USECON in Haver), seasonally ad-

justed monthly series.

(5) The job filling rate: the ratio of hires to job vacancies.

The sample range for the unemployment rate, the job vacancy rate, and the measure of

search intensity covers the period from July 1967 to July 2017. The sample for the hiring

rate from the JOLTS ranges from December 2000 to July 2017.
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