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1 Trend estimates

1.1 Overview of trend estimates

Table 1 provides an overview of all of the trend estimates used in our analysis. The first
five estimates of r∗t are obtained from models in published studies, and these are described
below in Section 1.2 and shown in Figure 1. Our own four estimates of r∗t are described in
Section 1.3 and shown in Figure 2. In Section 3 of the paper, we use a “filtered” estimate
and a “real-time” estimate of r∗t , which are averages of the three filtered and six real-time
estimates, respectively. The real-time estimate of i∗t is the sum of the PTR estimate of π∗t
and the real-time estimate of r∗t . The ESE model estimate of i∗t is described at a high level in
Section 4.2 of the paper, with details in Section 3.8 of this Online Appendix.

Our proxy estimate of the inflation trend π∗t is the Fed’s PTR measure, the perceived
target rate (PTR) of inflation. PTR measures expectations for inflation in the price index of
personal consumption expenditures (PCE). Consistent with this definition, our estimates of
r∗t are based on real interest rates relative to PCE inflation. Since 1979, PTR corresponds to
long-run inflation expectations from the Survey of Professional Forecasters (SPF). Before 1979,
it is based on estimates from a learning model for expected inflation. For details see Brayton
and Tinsley (1996). Data are available at https://www.federalreserve.gov/econresdata/
frbus/us-models-package.htm.

The estimates of r∗t are described in the following. All of these estimates are based on the
assumption that the real rate contains a stochastic trend, i.e., a stochastic endpoint.

1.2 External estimates of r∗t

Del Negro et al. (2017) (DGGT) propose a number of Bayesian common-trend VARs to esti-
mate r∗t and its possible drivers. We focus on their baseline model in which three stochastic
trends, including r∗t and π∗t , are estimated from five data series: (1) observed PCE inflation,
(2) long-run inflation expectations from the PTR series, (3) the 3-month T-bill rate, (4) the
20-year Treasury yield and (5) long-run expectations of the 3-month yield. For details about
the data and model specification see their section II.A. We estimate their model using data
up to 2018:Q1 and replicate their published results. The trends are smoothed (two-sided)
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Table 1: Overview of trend estimates

Trend Source Real-time Filtered Smoothed

r∗ Del Negro et al. (2017) (DGGT) X X
Johannsen and Mertens (2016) (JM) X X
Laubach and Williams (2016) (LW) X X
Holston et al. (2017) (HLW) X
Kiley (2015) X X

r∗ UC X X
Proxies X X
SSM X X
MA X

π∗t PTR X

i∗ Real-time X
ESE X

Overview of trend estimates used in the paper: five external sources of r∗, our own four estimates of r∗, the
PTR estimate of π∗, and two i∗ estimates. “Real-time” indicates (pseudo) real-time estimation of the trend
proxy, “filtered” indicates estimates from a (one-sided) Kalman filter using full-sample parameter estimates,
and “smoothed” indicates (two-sided) Kalman smoother or full-sample Bayesian estimate of the trend. All
trend estimates are quarterly from 1971:Q4 to 2018:Q1.

estimates, as they are the posterior medians of the (MCMC) sampled trend series conditional
on the full data set. In addition, we recursively estimate their model starting in 1971:Q4,
expanding the data by adding one quarter at a time. The smoothed estimate of r∗t is shown
in the left panel of Figure 1, and the recursive, real-time estimate is shown in the right panel.

Johannsen and Mertens (2016, 2018) (JM) propose a time series model for interest rates
with explicit treatment of the zero lower bound and stochastic volatility. For the version of
their model reported in Johannsen and Mertens (2016), they generously provided us with
updated estimates including both full-sample (smoothed/two-sided) and real-time estimated
series of r∗t . These are shown in Figure 1.

While the two estimation approaches above use the long-run definition of r∗t that is the
relevant one for the trend in nominal interest rates (see Section 2), the following three ex-
ternal estimates use a different definition and estimation approach. The prominent model
of Laubach and Williams (2003, 2016)(LM), the slightly modified version of this model by
Holston, Laubach, and Williams (2017)(HLW), and the version by Kiley (2015) all use a sim-
ple linearized New Keynesian macro model—essentially the Rudebusch and Svensson (1999)
model—in which r∗t is estimated as the neutral real interest rate at which monetary policy is
neither expansionary nor contractionary.1 But despite this difference with long-run r∗t , these
estimates are still worth considering in our context for several reasons. First, in practice, their

1Compared to the LW model, the HLW model excludes relative price shocks from the Phillips curve, uses
a simpler proxy for inflation expectations, and assumes a one-for-one effect of trend output growth on r∗t . In
Kiley’s model, the IS curve is augmented with credit spreads.
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“definition takes a ‘longer-run’ perspective, in that it refers to the level of real interest rates
expected to prevail, say, five to ten years in the future, after the economy has emerged from
any cyclical fluctuations and is expanding at its trend rate” (Laubach and Williams, 2016,
p. 57), so the definitions are effectively quite close. Second, in all three of these models the
neutral rate is a martingale, so at least as implemented within the models, the neutral real
rate is also the long-run trend in the real rate. Third, these are among the most widely used
estimates of r∗t both in the academic literature and in practice. Accordingly, these estimates
are useful additions to our analysis. A shortcoming of these estimates is that they are not
available in real time. Of course, it would in principle be possible to recursively estimate these
models—and for a limited time period towards the end of our sample Laubach and Williams
(2016) have done this. But these macro-based estimates are by their nature very sensitive
to the macroeconomic data, in particular real GDP, so that real-time data issues become a
serious concern. We therefore only have filtered/one-sided estimates based on the full-sample
parameter estimates, and smoothed/two-sided estimates, which are shown in the middle and
right panels of Figure 1.

We exclude two other prominent estimates of r∗t . Lubik and Matthes (2015) estimate r∗t as
the five-year forecast of the real rate from a time-varying parameter VAR model. This horizon
is too short to be comparable with our long-run trend, and their implementation leads to a
highly volatile estimate of r∗t . Christensen and Rudebusch (2017) estimate r∗t from yields on
Treasury inflation-protected Securities (TIPS) using a dynamic term structure model that
accounts for liquidity premia, but their sample only starts in 1998 with the introduction of
TIPS.

1.3 Details on our estimates of r∗t

Our first estimate is based on a univariate unobserved components (UC) model for the real
short-term interest rate, similar to Watson (1986). Recently, Fiorentini et al. (2018) have
argued that such univariate models can infer r∗t with greater precision than the LW model. We
use an ex-ante real interest rate calculated as the difference between the three-month Treasury
bill rate and core PCE inflation, that is, the four-quarter percent change in the price index
for personal consumption expenditures excluding food and energy items. (Inflation over the
past year serves as a proxy estimate for expectations of inflation over the next quarter.) The
real rate is decomposed into a random walk trend (r∗t ) and a stationary component (the real
rate gap, specified as an AR(1) process with zero mean), which are the two state variables of
the state-space model. The prior distributions for the parameters are uninformative, with the
exception of the variance for the innovations to the random walk component, i.e., for changes
in r∗t . We use a tight prior around a low value for this variance, similar to DGGT. Specifically,
the prior distribution for this variance is inverse-gamma, IG(α/2, δ/2), with α = 100 and
δ = 0.01(α+ 2). This implies that the mode is 0.01, and the variance of the change in r∗t over
100 years is 4, i.e., the standard deviation is 2 (percent). This is a slightly higher mode than
used by DGGT (their mode implies a standard deviation over 100 years of one percent). In
our MCMC sampler, we draw the unobserved state variables using the simulation smoother
of Durbin and Koopman (2002) and the parameters using standard Gibbs steps. For this
model and for the following two models below, we use random starting values to initialize

3



Figure 1: External estimates of r∗t
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Estimates of r∗t from existing models. Left panel: smoothed/two-sided estimates. Middle panel: filtered/one-
sided estimates. Right panel: (pseudo) real-time estimates. The sample period is from 1971:Q4 to 2018:Q1.

our MCMC chain, and we carefully monitor convergence of the MCMC sampler. For the
full-sample estimation we use 100,000 MCMC draws. For our recursive estimation, we start
in 1971:Q4 with 100,000 draws, and every time we add another observation, we obtain 20,000
more draws.

The second estimate (labeled “proxies”) is from a multivariate model, which augments the
UC model by two additional measurement equations relating r∗t to two proxies that recent
work has shown to be important correlates of the real rate trend. The first proxy is a ten-year
moving average of quarterly real GDP growth, and the second proxy is a ten-year moving
average of the quarterly growth rate in the total number of hours worked in the business
sector, i.e., labor force hours. The choice of these proxies is motivated by the results in
Lunsford and West (2019), who document strong low-frequency correlations between these
series and the real rate over a post-war sample. While these macroeconomic data are subject
to data revisions, in particular real GDP, the long moving averages and the use of these series
in extracting the long-run trend in the real rate lessens concerns that data revisions would
materially affect our real-time trend estimate. In the additional measurement equations, the
proxies are scaled by a parameter to be estimated and the measurement error is allowed to
be serially correlated. The model has four state variables: r∗t , the real-rate gap, and the
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two measurement errors (AR(1) processes with non-zero means). The prior distributions are
uninformative, except again for the trend innovation variance, where the prior is the same as in
the UC model. We design a hybrid MCMC sampler: The scaling parameters are drawn using
random-walk Metropolis-Hastings steps with the state variables integrated out (i.e., using the
Kalman filter to obtain the likelihood for calculation of the acceptance probability). Then,
the state variables are sampled with the simulation smoother and the remaining parameters
are drawn using Gibbs steps.

Our third estimate is from a state-space model (SSM) that is similar to the specification
by DGGT in that it includes both inflation and the nominal short rate, and it estimates
both r∗t and π∗t . The main differences are that we include neither survey expectations nor
long-run yields, and that our measurement equations are somewhat more standard. Our three
observation series are quarterly PCE inflation, the 3-month T-bill rate, and the PTR series
for long-run inflation expectations. In addition to the trends, the two other state variables are
the real-rate gap, rgt and the inflation gap, πgt , which follow a bivariate VAR with four lags.
The measurement equations are

πt = π∗t + πgt + eπt ,

PTRt = π∗t + ePTRt ,

y
(3m)
t = π∗t + Etπ

g
t+1 + r∗t + rgt + eyt ,

where eπt , ePTRt , and eyt are iid measurement errors, and Etπ
g
t+1 is implied by the VAR. The

priors are generally uninformative, and for the VAR we use the same Minnessota prior as
DGGT. For the variance of the innovations to both r∗t and π∗t we use smoothness prior similar
to the previous two models and the same prior modes for the variances as in DGGT (equivalent
to one percent and two percent standard deviation, respectively, for changes in trends over 100
years). The MCMC sampler simply combines the simulation smoother for the state variables
and Gibbs steps for the other parameters.

Finally, we also calculate a simple moving-average (MA) estimate of r∗t . The observed
real-rate series is the same as in the first two models above. Denoting this series by rt, we
calculate an exponentially-weighted moving average using the recursion r∗t = αr∗t−1+(1−α)rt,
which we start ten years before the beginning of our sample, in 1961:Q4, with r∗t = rt. We
use α = 0.98, a value in line with earlier work estimating macro trends.

1.4 Measurement error in macro trends

In establishing some stylized facts about a low-frequency macro-finance connection in Section
3, we treat the estimated macro trends as data. However, there is substantial model and
estimation uncertainty attached to the various point estimates of r∗t . Similarly, our survey-
based measure of the long-run inflation trend, π∗t , is also imprecise. How concerned should we
be about measurement error?

Our results show that measures of macro trends are closely connected to the yield curve and
that they contain important information for predicting future yields and returns. The effect
of measurement error in the trend estimates on our results depends on the structure of that
error. One possibility is that the trends are subject to classical measurement error, an error
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Figure 2: Our estimates of r∗t

1980 1990 2000 2010

−
1

0
1

2

P
er

ce
nt

Smoothed estimates

1980 1990 2000 2010

−
1

0
1

2

P
er

ce
nt

Real−time estimates

UC model
Proxies model
SSM
Moving average

Our own four estimates of r∗t . Left panel: smoothed/two-sided estimates. Right panel: (pseudo) real-time
estimates. The sample period is from 1971:Q4 to 2018:Q1.

that is orthogonal to the unobserved trend. In this case, it is well known that the coefficients
in our regressions would be both less precise and biased toward zero. An alternative possibility
is that the measurement error is orthogonal to the estimate of the trend, which may be more
plausible since our trend proxies are estimates of the underlying trend based on the available
information set (Mankiw and Shapiro, 1986). This type of measurement error would make our
estimates noisy though not necessarily biased (Hyslop and Imbens, 2001). For either type of
measurement error, the use of a noisy trend would likely lead to weaker estimated relationships
than the use of the true underlying trend. Hence, accounting for measurement error suggests
that our results should be viewed as a lower bound for the tightness of the connection between
the yield curve and the true macro trends.

Finally, we note that our trend measures were not created on purpose to match the evolu-
tion of Treasury yields. Therefore, the connections we find could well be stronger if the trend
estimates were optimized to exhibit a tight connection with or predictive power for long-term
yields.
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2 Additional results

2.1 Persistence and common trends

Here we report additional results for the presence of a common trend in nominal yields (Section
3.1 of the paper).

Table 2 documents the extremely high persistence of various measures of nominal Treasury
yields. It reports summary statistics for the two-year yield, y

(8)
t , the ten-year yield, y

(40)
t , and

the level of the yield curve, Lt, measured as the first principal component of yields (scaled
so that the loadings add up to one). Summary statistics are also reported for our macro
trends, including the inflation trend, our three estimates of the real rate trend—the filtered
estimate, r∗,Ft , the real-time estimate, r∗,RTt , and the moving-average estimate, r∗,MA

t —and
our real-time proxy for the equilibrium nominal short rate, i∗t = π∗t + r∗,RTt . To assess whether
a simple difference between yields and trends can remove the extreme persistence and make
yields stationary we also report summary statistics for yields detrended in this way. Along
with standard deviations, the table reports two measures of persistence: the estimated first-
order autocorrelation coefficient, ρ̂, and the half-life, which indicates the number of quarters
until half of a given shock has died out and is calculated as ln(0.5)/ ln(ρ̂). It also includes two
tests for a unit root, the Augmented Dickey-Fuller (ADF) t-statistic and the non-parametric
Phillips-Perron (PP) Zα statistic. For the ADF test, we include a constant and k lagged
difference in the test regression, where k is determined using the general-to-specific procedure
suggested by Ng and Perron (1995), starting from four lags. For the PP test, we use a
Newey-West estimator of the long-run variance with four lags. In the last column, we report
the p-value for the null hypothesis of stationarity using the low-frequency stationarity test
(LFST) of Müller and Watson (2013).

The yields are highly persistent, with a first-order autocorrelation coefficient of 0.97 and a
half-life of around 22-27 quarters. Neither the ADF or PP tests reject a unit root, while the
LFST p-values reject stationarity for each series. This evidence suggests that nominal yields
can be effectively modeled as I(1) processes.

The macro trends are even more persistent. For example, our real-time estimate of r∗t
has an autocorrelation coefficient of 0.98 and a half-life of about 36 quarters. The inflation
trend and i∗t have autocorrelation coefficients of 0.99 and half-lives of 85 and 60 quarters,
respectively. Unsurprisingly, these macro trend proxies exhibit pronounced trend behavior,
that is, they also behave like I(1) processes.

The naive detrending method of subtracting trend proxies from yields leads to time series
with much lower persistence. If only the inflation trend is subtracted, the resulting series is
less persistent but still sufficiently trending that the evidence from all three tests favors a unit
root. When a real rate trend—r∗,Ft , r∗,RTt , or r∗,MA

t —is also subtracted off together with π∗t ,
the persistence drops further, and the evidence sometimes favors stationarity, depending on
the specific interest rate, real rate trend proxy, and unit root test. This extremely simple
detrending method, which makes the strong assumption that coefficients in the cointegration
vector of yields and macro trends are all one (in absolute value), has some success, but only if
both macro trends are accounted for. The evidence in Section 3.1 of the paper finds an even
stronger macro-finance link when the cointegration coefficients are slightly larger than one.
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Table 2: Persistence of interest rates, macroeconomic trends, and differences

Series SD ρ̂ Half-life ADF PP LFST

y
(8)
t 3.54 0.97 21.9 -1.25 -4.59 0.00

y
(8)
t − π∗t 2.26 0.93 9.1 -2.07 -11.09 0.00

y
(8)
t − π∗t − r

∗,F
t 1.61 0.87 4.9 -3.21** -22.58*** 0.10

y
(8)
t − π∗t − r

∗,RT
t 2.00 0.92 7.8 -2.24 -13.23* 0.00

y
(8)
t − π∗t − r

∗,MA
t 2.05 0.91 7.8 -2.35 -13.83* 0.01

y
(40)
t 2.94 0.97 26.4 -1.13 -3.11 0.00

y
(40)
t − π∗t 1.67 0.93 9.4 -2.32 -9.72 0.01

y
(40)
t − π∗t − r

∗,F
t 1.17 0.87 5.0 -3.61*** -22.87*** 0.23

y
(40)
t − π∗t − r

∗,RT
t 1.33 0.90 6.7 -2.51 -15.16** 0.00

y
(40)
t − π∗t − r

∗,MA
t 1.36 0.90 6.8 -3.04** -16.01** 0.01

Lt 3.13 0.97 26.6 -1.20 -3.42 0.00
Lt − π∗t 1.84 0.93 9.8 -1.91 -9.69 0.00

Lt − π∗t − r
∗,F
t 1.24 0.87 4.8 -2.99** -23.03*** 0.20

Lt − π∗t − r
∗,RT
t 1.54 0.91 7.7 -2.19 -13.05* 0.00

Lt − π∗t − r
∗,MA
t 1.58 0.91 7.6 -2.36 -13.90* 0.01

π∗t 1.60 0.99 85.4 -0.62 -1.16 0.00

r∗,Ft 1.03 0.97 27.2 -0.67 -1.16 0.00

r∗,RTt 0.59 0.98 36.2 -0.77 -1.04 0.03

r∗,MA
t 0.70 0.98 43.4 -0.75 1.31 0.03

i∗t = π∗t + r∗,RTt 1.72 0.99 59.7 -0.30 -0.28 0.00

Standard deviation (SD); first-order autocorrelation coefficient (ρ̂); half-life (ln(0.5)/ ln(ρ̂)); Augmented
Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root test statistics (with ∗,∗∗ and ∗∗∗ indicating signif-
icance at 10%, 5%, and 1% level) and p-values for Mueller-Watson low-frequency stationary test (LFST), for

the two-year yield, y
(8)
t , the ten-year yield, y

(40)
t , the level of the yield curve (the first principal component

of yields), Lt, the detrended yields, and macro trends. The r∗-estimates are the filtered (“F”), real-time
(“RT”) and moving-average (“MA”) estimates described in Section 2 of the paper. The data are quarterly
from 1971:Q4 to 2018:Q1.
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Table 3: Cointegration regressions and tests for the level of the yield curve

Level (1) (2) (3) (4) (5)

constant 6.48 -0.23 -1.17 -2.59 -0.84 -3.06
(0.55) (0.62) (0.35) (0.44) (0.42) (0.37)

π∗t 1.76 1.31 1.56 1.45
(0.13) (0.11) (0.08) (0.09)

r∗t 1.13 1.90 1.11
(0.15) (0.16) (0.12)

i∗t 1.75
(0.07)

R2 0.83 0.93 0.96 0.97 0.94
Memo: r∗ filtered real-time mov. avg. real-time
SD 2.94 1.39 1.10 0.85 1.10 0.81
ρ̂ 0.97 0.87 0.82 0.72 0.81 0.67
Half-life 26.4 5.1 3.5 2.1 3.3 1.8
ADF -1.13 -2.68 -3.44 -3.92** -3.44 -4.26**
PP -3.11 -20.07* -31.16** -51.73*** -32.57** -61.30***
LFST 0.00 0.04 0.27 0.37 0.09 0.84
Johansen r = 0 10.10 29.31 43.26*** 38.11** 21.19**
Johansen r = 1 0.90 5.96 11.13 10.22 0.71
ECM α̂ -0.10 -0.16 -0.29 -0.33 -0.32

(0.03) (0.05) (0.07) (0.09) (0.07)

Dynamic OLS regressions for the level of the yield curve, Lt, (the first principal component of yields) on
macroeconomic trends, including four leads and lags of ∆Lt and differenced trend variables. Newey-West
standard errors using six lags are in parentheses. The r∗ estimates are described in Section 2 of the paper,
and the long-run nominal short rate i∗t is the sum of π∗t and the real-time estimate of r∗t . For the cointegration
residuals (and, in the first column, for the yield level itself), the second panel reports standard deviations
(SD), first-order autocorrelation coefficients (ρ̂), half-lives (ln(0.5)/ ln(ρ̂)), Augmented Dickey-Fuller (ADF)
and Phillips-Perron (PP) unit root test statistics, and p-values for Mueller-Watson low-frequency stationary
test (LFST). The table also reports the Johansen trace statistic which tests whether the cointegration rank
(r) among the Lt and the macro trends is zero/one against the alternative that it exceeds zero/one, using four
lags in the VAR. For ADF, PP and Johansen tests ∗,∗∗ and ∗∗∗ indicate significance at 10%, 5%, and 1% level.
Estimates of the coefficient α (with White standard errors) on the cointegration residual in the error-correction
model (ECM) for ∆Lt that also includes an intercept, four lags of ∆Lt, and four lags of differenced macro
trends. The data are quarterly from 1971:Q4 to 2018:Q1.
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Table 4: Excess return regressions for individual maturities

Yields only Yields and i∗

PC1 PC2 PC3 R2 PC1 PC2 PC3 i∗ R2

2y 0.06 0.05 -0.65 0.05 0.70 0.12 -0.26 -1.19 0.15
(0.06) (0.06) (0.50) (0.22) (0.05) (0.52) (0.37) [0.02]

5y 0.08 0.22 -1.72 0.08 1.53 0.38 -0.80 -2.74 0.18
(0.11) (0.12) (0.87) (0.41) (0.10) (0.89) (0.70) [0.00]

7y 0.08 0.34 -2.19 0.08 2.06 0.56 -0.94 -3.74 0.19
(0.14) (0.15) (1.11) (0.53) (0.13) (1.14) (0.90) [0.00]

10y 0.09 0.51 -2.74 0.09 2.90 0.83 -0.96 -5.31 0.20
(0.20) (0.20) (1.56) (0.71) (0.18) (1.57) (1.23) [0.00]

15y 0.08 0.83 -3.70 0.09 4.13 1.28 -1.15 -7.64 0.21
(0.28) (0.29) (2.20) (0.99) (0.26) (2.17) (1.72) [0.00]

Predictive regressions for quarterly excess returns on bonds with maturities 2, 5, 7, 10 and 15 years. The
predictors are the first three principal components of yields (PC1, PC2, PC3) and, in the second specification,
the long-run nominal short rate i∗t , the sum of π∗t and the real-time estimate of r∗t (see Section 2 of the paper).
Numbers in parentheses are White standard errors and in squared brackets are small-sample p-values for the
spanning hypothesis (that the coefficient on i∗t is zero) obtained with the bootstrap method of Bauer and
Hamilton (2018). The data are quarterly from 1971:Q4 to 2018:Q1.

Table 3 shows the results for a cointegration analysis similar to the one carried out in Sec-
tion 3.1 of the paper, here applied to the level of the yield curve. The results are qualitatively
similar to those we reported in the paper (Table 1) for the ten-year yield.

2.2 Predicting excess returns

Here we report additional results for excess return predictions using macro trends (Section 3.2
of the paper).

For assessing the predictive power of macro trends for excess bond returns, the paper
focuses on returns that are averaged across bond maturities from two to 15 years. Table
4 shows (full-sample) estimates for individual maturites. It compares the usual yields-only
specification to the specification that also includes our estimate of the long-run nominal short
rate i∗t . For all maturities, the addition of i∗t (i) substantially raises R2, (ii) makes both the level
(PC1) and slope (PC2) strongly significant predictors, and (iii) leads to a large and strongly
significant coefficient on i∗t itself. This trend coefficient has the opposite sign and a somewhat
larger magnitude than the coefficient on the level. These findings all closely parallel those in
reported in the paper (Table 2). In addition, the results here show that the coefficients on
both yield predictors and i∗t rise with maturity, due to the fact that return volatility scales
with bond maturity. Finally, it is noteworthy that for the two-year maturity, excess returns
appear unpredictable with yield information alone, but become strongly predictable once our
trend proxy is added.

In the presence of persistent predictors, it is generally difficult to interpret the magnitude of
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R2 as a measure of predictive accuracy, because persistent predictors that are truly irrelevant
in population can substantially increase R2 in small samples (Bauer and Hamilton, 2018). To
be able to better interpret the R2 we use our bootstrap to generate small-sample distributions
of R2 under the spanning hypothesis (that is, under the null that the three PCs of yields
contain all the relevant information for predicting returns). We then compare the statistics
obtained in the actual data to the quantiles of these bootstrap distributions. If the level or
change of a regression R2 is outside of the 95%-bootstrap interval then the regression results
are inconsistent with the spanning hypothesis and suggest that additional predictors beyond
yields alone are statistically significant.

The top panel of Table 5 reports this comparison for the specifications with (i) only yields,
(ii) yields and π∗t , (iii) yields, π∗t and the real-time estimate of r∗t , and (iv) yields and i∗t .
Adding π∗t to the regression increases R2 by 7 percentage points, while the 95%-bootstrap
interval indicates that under the null hypothesis it would be uncommon to observe an increase
in R2 of more than 5 percentage points. Adding the real-time r∗t estimate increases R2 to
21%, and the increase relative to the yields-only specification is 12 percentage points, while
the bootstrap suggests an increase of at most 7 percentage points would be plausible under the
null. Adding just i∗t also increases R2 by 12 percentage points—much more than is plausible
under the null. In the post-1985 subsample, the increase in R2 from only adding π∗t is not
statistically significant, whereas the increases from adding either both macro trends or only
i∗t are significant.

3 Details on dynamic term structure model

3.1 Dynamic system

The evolution of the state variables under the real-world (or physical) probability measure,
denoted as the P-measure, is

Pt = P̄ + γτt + P̃t, τt = τt−1 + ηt, P̃t = ΦP̃t−1 + ũt, (1)

and this is the common trends representation of the dynamic system (Stock and Watson,
1988). The state variables Zt = (τ, P ′t)

′ are cointegrated: β′Zt ∼ I(0), with β = (−γ, IN)′ an
obvious choice for the N cointegration vectors. Because yields are just linear combinations of
the risk factors, they are also cointegrated with a single common trend.

To derive the VAR representation of the dynamic system, substitute for P̃t and P̃t−1 in the
VAR equation, using P̃t = Pt − P̄ − γτt. This yields

Pt = (IN − Φ)P̄ + ΦPt−1 + γτt − Φγτt−1 + ũt

= (IN − Φ)P̄ + (IN − Φ)γτt−1 + ΦPt−1 + ut,

where the last equation defines the innovations to Pt, ut = γηt + ũt, which have covariance
matrix Ω = E(utu

′
t) = γγ′σ2

η + Ω̃. Thus, the VAR representation for Zt is

Zt = µZ + ΦZZt−1 + vt, vt = (ηt, u
′
t)
′, (2)
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Table 5: Predictive power: R2 with small-sample bootstrap intervals

Full sample: 1971:Q4–2018:Q1 Subsample: 1985:Q1–2018:Q1

Predictors R2 ∆R2 R2 ∆R2

Yields only 0.09 0.08
[0.03, 0.19] [0.03, 0.18]

Yields and π∗t 0.16 0.07 0.10 0.02
[0.04, 0.20] [0.00, 0.05] [0.04, 0.19] [0.00, 0.05]

Yields, π∗t and r∗t 0.21 0.12 0.19 0.10
[0.05, 0.21] [0.00, 0.07] [0.05, 0.20] [0.00, 0.07]

Yields and i∗t 0.21 0.12 0.16 0.07
[0.04, 0.20] [0.00, 0.04] [0.04, 0.19] [0.00, 0.04]

Yields detrended by π∗t 0.15 0.07 0.08 -0.00
[0.03, 0.19] [-0.03, 0.04] [0.03, 0.18] [-0.03, 0.04]

Yields detrended by π∗t and r∗t 0.18 0.09 0.17 0.09
[0.04, 0.19] [-0.04, 0.05] [0.03, 0.18] [-0.04, 0.05]

Yields detrended by i∗t 0.20 0.12 0.14 0.06
[0.03, 0.19] [-0.03, 0.03] [0.03, 0.18] [-0.03, 0.03]

Predictive power of regressions for quarterly excess bond returns, averaged across two- to 15-year maturities.
The predictors are three principal components (PCs) of yields, the PTR estimate of the inflation trend π∗t ,
our real-time estimate of the equilibrium real rate r∗t , and the equilibrium nominal short rate i∗t taken as
the sum of these inflation and real-rate trend estimates. The last three specifications use detrended yields,
that is, three PCs of the yield residuals in regressions on (i) π∗t , (ii) π∗t and r∗t , or (iii) i∗t . Increase in R2

(∆R2) is reported relative to the first specification with only PCs of yields. Numbers in square brackets are
95%-bootstrap intervals obtained by calculating the same regressions statistics in 5,000 bootstrap data sets
generated under the (spanning) null hypothesis that only yields have predictive power for bond returns, using
the bootstrap method of Bauer and Hamilton (2018).
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with

µZ =

(
0

(In − Φ)P̄

)
,

ΦZ =

(
1 01×N

(IN − Φ)γ Φ

)
,

and innovation covariance matrix

Ωv = E(vtv
′
t) =

(
σ2
η γ′σ2

η

γσ2
η Ω

)
.

This is obviously a cointegrated VAR with one common trend and N cointegration vectors
since ΦZ has exactly one eigenvalue equal to unity.

The vector-error-correction (VEC) representation is

∆Zt = µZ + αβ′Zt−1 + vt, α =

(
0

Φ− IN

)
, β =

(
−γ′
IN

)
,

where ΦZ − IN+1 = αβ′. Since the intercept can be written as µZ = −αβ′(0, P̄ ′)′, the coin-
tegration residual is β′

(
Zt−1 − (0, P̄ ′)′

)
= P̃t−1. It Granger-causes the yield factors according

to the last N equations of the VEC representation, which can be written as

∆Pt = (Φ− IN)P̃t−1 + ut.

That is, deviations of the time-t yield factors from their equilibrium, Pt = P̄ +γτt, are reduced
over time by future changes in yields.

3.2 Risk-neutral dynamics and stochastic discount factor

The dynamic system under the risk-neutral measure Q is

Pt = µQ + ΦQPt−1 + uQt , (3)

where the innovations uQt are iid normal with covariance matrix Ω. We assume that under
Q the yield factors follow a stationary VAR. This specification avoids the counterfactual
implication of a unit root under Q that yields and forward rates diverge to minus infinity with
maturity—in that case the conditional variance of future short rates, and hence the convexity
in yields, would be unbounded, as discussed below in 3.3.

From the short rate equation
it = δ0 + δ′1Pt. (4)

and the Q-dynamics in (3) it follows that the long-run mean of the short rate under Q is
constant and given by

EQ(it) = δ0 + δ′1E
Q(Pt) = δ0 + δ′1(IN − ΦQ)−1µQ.

It further follows from our specification that the trend τt is unspanned by yields, meaning
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that there is no deterministic mapping from Pt (or model-implied yields) to τt. Formally, the
requirement for τt to be an unspanned risk factor is

EQ(it+h|Pt, τt) = EQ(it+h|Pt), for all h,

see Joslin et al. (2014). Since neither the short rate it (see equation 4) nor expectations of
future yield factors Pt+h (see equation 3) depend on τt once we condition on Pt, this requirement
is trivially satisfied. Note that the Q-dynamics of τt are not identified because yields and bond
prices are not sensitive to movements in τt. If we had allowed for a unit eigenvalue of ΦQ, so
that the long-run risk-neutral mean of the short rate would be time-varying, this Q-endpoint
would be spanned by Pt and not deterministically related to τt.

Two key features of our risk-neutral distribution for Pt are its stationarity and its in-
dependence of τt. We now explain how these risk-neutral dynamics are reconciled with the
non-stationary unit root dynamics under the real-world probability measure that are central
to our paper. As in Joslin et al. (2014), the stochastic discount factor (SDF) for the bond
market is the projection of the economy-wide SDF on the risk factors driving bond prices, Pt.
Our specification implies that the SDF is exponentially affine:

Mt+1 = exp(−it −
1

2
λ′tλt − λ′tεt+1) (5)

with εt = Ω−1/2ut, where Ω1/2 is the Cholesky decomposition of Ω.2 Shocks to τt do not
affect the SDF because these risks are unspanned. The risk prices λt depend on all risk
factors—including τt—according to the affine function

λt = Ω−1/2(λ0 + λ1Zt), (6)

where λ0 is a N -vector and λ1 is a N × (N + 1) matrix of risk sensitivities. To see how this
SDF reconciles our real-world and risk-neutral dynamic specifications, and to find λ0 and λ1,
we derive the risk-neutral distribution of Pt+1 conditional on Pt and τt from the real-world
distribution and the SDF, using standard tools (Ang and Piazzesi, 2003; Le et al., 2010;
Bauer, 2018). The conditional Laplace-transform (that is, the conditional moment-generating
function) under Q is

EQ(exp(u′Pt+1)|Zt) = E(exp(u′Pt+1 −
1

2
λ′tλt − λ′tεt+1)|Zt)

= E(exp(u′(µP + ΦPZZt + Ω1/2εt+1)−
1

2
λ′tλt − λ′tεt+1)|Zt)

= exp(u′(µP + ΦPZZt) +
1

2
u′Ωu− u′Ω1/2λt)

= exp(u′(µP − λ0 + (ΦPZ − λ1)Zt) +
1

2
u′Ωu).

The first equality changes the probability measure using our SDF and the fact that for any t+1-

2That is, Ω1/2 is lower triangular and satisfies Ω = Ω1/2(Ω1/2)′.
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measurable random variable Xt+1 we have EQt (Xt+1) = Et(Mt+1Xt+1)/Et(Mt+1).
3 The second

equality plugs in the dynamic process for Pt+1 from equation (2), with µP denoting the last N
elements of µZ and ΦPZ denoting the last N rows of ΦZ . The third equality uses the mean of a
log-normal distribution. The fourth and last equality substitutes for Ω1/2λt from equation (6).
Since the moment-generating function for a multivariate normal distribution with mean µ and
covariance matrix Σ is exp(u′µ + 0.5u′Σ′u) we see that under Q the conditional distribution
of Pt+1 is Gaussian with mean µp − λ0 + (ΦPZ − λ1)Zt and covariance matrix Ω. That is,

EQt Pt+1 = EtPt+1−λ0−λ1Zt = EtPt+1−Ω1/2λt. In light of equations (3) and (2) we conclude
that

λ0 = µP − µQ = (In − Φ)P̄ − µQ (7)

and
λ1 = ΦPZ −

[
0N×1,Φ

Q
]

=
[
(IN − Φ)γ,Φ− ΦQ

]
. (8)

By construction, the trend τt does not affect the risk-neutral conditional expectations of future
Pt+1. Thus, the risk sensitivities for τt (in the first column of λ1) have to exactly equal
the sensitivities of real-world conditional expectations of Pt+1 to τt (in the first column of
ΦPZ). Some authors (e.g. Duffee, 2011; Bauer and Rudebusch, 2017) speak of “knife-edge”
restrictions when constraints lead to such cancellations and render certain factors unspanned.
These restrictions imply that movements in a factor that is unspanned (τt in our case) lead
to changes in term premia that exactly offset the changes in expectations, leaving yields
unchanged. The risk sensitivities for Pt (in the last three columns of λ1) are unconstrained,
except that the implied ΦQ must have eigenvalues less than unity in absolute value.

3.3 Affine loadings

Prices of zero-coupon bonds are exponentially affine. Specifically, if p
(n)
t denotes the log-price

of an n-period bond, p
(n)
t = An + B′nPt, and the coefficients can be found using the pricing

equation exp
(
p
(n+1)
t

)
= EQt exp

(
−itp(n)t+1

)
. They follow the usual recursions (e.g., Ang and

Piazzesi, 2003):

An+1 = An + B′nµQ +
1

2
B′nΩBn − δ0 (9)

Bn+1 = (ΦQ)′Bn − δ1 (10)

3The density of the risk-neutral measure with respect to the real-world measure, also known as the Radon-
Nikodym derivative, is

dQ

dP
=

Mt+1

Et(Mt+1)
= exp

(
−1

2
λ′tλt − λ′tεt+1

)
.
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with initial conditions A0 = 0 and B0 = 0.4 Yields are affine functions of the factors:

y
(n)
t = An +B′nPt An = − 1

n
An, Bn = − 1

n
Bn.

If we denote the vector of J yields that are included in our model as Yt, we can write Yt =
A+BPt for J-vector A = (An1 , . . . , AnJ

)′, and J ×N matrix B = (Bn1 , . . . , BnJ
)′.

It is often useful to work with forward rates instead of yields, and we use them here
to develop intuition about the role of the trend τt. We consider one-period forward rates
f
(n)
t = p

(n)
t − p

(n+1)
t . Yields are averages of forward rates, y

(n)
t = n−1

∑n−1
j=0 f

(n)
t . Forward rates

depend on the risk factors as follows:

f
(n)
t = An −An+1 + (Bn − Bn+1)

′Pt

= −1

2
B′nΩBn︸ ︷︷ ︸

convexity

+ δ0 − B′nµQ + δ′1(Φ
Q)nPt︸ ︷︷ ︸

expected short rate under Q

= constant + δ′1(Φ
Q)nγτt + δ′1(Φ

Q)nP̃t (11)

The first equality simply uses the definition of the forward rate and the affine form for log
bond price. The second equality follows from the recursions (9)-(10). It shows that forward
rates are equal to a (negative) convexity term plus risk-neutral expected future short rates,
EQt it+n = δ0 + δ′1E

Q
t Pt+n. The last equality substitutes for Pt from (1) to show the loadings

of forward rates on the trend and cycle factors.
The convexity term in the expression for forward rates is −1

2
B′nΩBn. Yield convexity is

the average of forward rate convexity. Since the Q-dynamics are stationary, Bn converges to
a finite limit as n tends to infinity, and so does the convexity in yields and forward rates.
If, by contrast, ΦQ had an eigenvalue on the unit circle, convexity and therefore yields and
forward rates would diverge to minus infinity. This fact, discussed in Campbell et al. (1997,
p. 433), is an important reason why term structure models are usually specified with stationary
risk-neutral dynamics, and we follow this tradition here.

Of particular interest are the loadings of forward rates on the trend, which are δ′1(Φ
Q)nγ.

Figure 3 plots these loadings for a range of maturities from zero to 400 using the estimates
of the OSE model. For the short rate, it = f

(0)
t , the loading is one, since we have normalized

δ′1γ = 1 in order to identify τt as the equilibrium short rate i∗t . The loadings increase quickly
to a peak near 1.8 around the five-year horizon, and then slowly decline. Because the Q-
dynamics are stationary, the loadings converge to zero with increasing maturity, as do all
yield and forward rate loadings—the limiting-maturity forward rate/bond yield is a constant.
Since the largest eigenvalue of ΦQ is below but very close to one, the forward rate loadings

4The closed-form solution for Bn is

Bn = −

n−1∑
j=0

(
ΦQ
)j′ δ1 = −

[(
IN − ΦQ

)−1 (
IN − (ΦQ)n

)]′
δ1, lim

j→∞
Bn = −

[(
IN − ΦQ

)−1]′
δ1,

where the second equality and the existence of the limit rely on our assumption that ΦQ has no eigenvalues
on the unit circle.
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decline only very gradually, and don’t fall below one until n = 255.

Figure 3: Loadings of forward rates and yields on i∗t
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Loadings of forward rates and yields on the long-run trend τt = i∗t , based on OSE model estimates. Dashed
vertical line indicates the longest observed maturity in our sample (15 years).

Loadings of yields on the trend are also shown in Figure 3. Since these are averages of
forward rate loadings, they naturally peak later, around the ten-year maturity, and decline
even more slowly thereafter. For the yields included in our data, the loadings on τt are
substantially above one, consistent with a positive effect of the trend on the term premium
to be discussed below. Only for extremely long maturities do the loadings approach one and
ultimately decline towards zero, the infinite-maturity limit. In other words, stationary risk-
neutral dynamics imply that infinite-maturity yields are constant, but our estimates imply
that at the maturities of practical interest yields are sufficiently volatile and vary more than
one-for-one in response to movements in the long-run trend.

If instead the model had a unit root under Q, it would be possible to have yield loadings
on i∗t that have a positive limit, so that loadings of the term premium could have a limit other
than minus one. However, such a specification would have other undesirable features, namely
divergent convexity. In the end, either specification can be consistent with observed bond
yields, though neither seems wholly satisfactory in the infinite-maturity limit.
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3.4 JSZ normalization

We follow Joslin et al. (2014), who also estimate a model with unspanned risk factors, in
imposing the normalization of Joslin et al. (2011)(JSZ) on the yield factors Pt. This normal-
ization is convenient because it imposes all identifying restrictions on the Q-dynamics, so that
the real-world dynamics can be estimated without restrictions.

The JSZ normalization works as follows: First, start with N latent factors Xt and impose
normalizing restrictions on their Q-dynamics. Second, use the affine mapping

Pt = WYt = WAX +WBXXt, (12)

where AX and BX are the affine yield loadings on Xt, to obtain the Q-parameters and yield
loadings for Pt in terms of the parameters/loadings of Xt.

The normalizations are (i) it = ι′Xt, (ii) µQX = (kQ, 0, 0)′ and (iii) ΦQX = diag(λQ), with
real, distinct, descending-ordered diagonal elements λQ that are assumed to be less than one
in absolute value.5 The loadings of yields on Pt, A and B, are easily calculated from AX and
BX using the mapping in equation (12). Alternatively, one can first calculate the “rotated”
parameters µQ, ΦQ, δ0 and δ1, and then use the recursions (9)-(10) to calculate the loadings
A and B. Importantly, the yield loadings only depend on the parameters kQ, λQ and Ω. The
normalization ensures the consistency conditions WA = 0 and WB = IN so that we indeed
have WYt = Pt.

3.5 Excess bond returns

Model-implied excess bond returns are

rx
(n)
t+1 = p

(n−1)
t+1 − p(n)t − it = An−1 + B′n−1Pt+1 −An − B′nPt − δ0 − δ′1Pt

= −1

2
B′n−1ΩBn−1 + B′n−1

(
Pt+1 − µQ − ΦQPt

)
= −1

2
B′n−1ΩBn−1 + B′n−1

(
EtPt+1 − EQt Pt+1

)
+ B′n−1ut+1.

where the second line uses the coefficient recursions (9)-(10) and the third line uses conditional
expecations of Pt+1 under the real-world and risk-neutral mesures (from equations 2 and 3).
Expected excess returns, adjusted for the convexity term, are thus

Etrx
(n)
t+1 +

1

2
V artrx

(n)
t+1 = B′n−1Ω1/2λt = B′n−1(λ0 + λ1Zt)

= B′n−1
[
λ0 + (IN − Φ)γτt + (Φ− ΦQ)Pt

]
(13)

= B′n−1
[
λ0 + (Φ− ΦQ)P̄ + (IN − ΦQ)γτt + (Φ− ΦQ)P̃t

]
, (14)

where the first equality uses the fact that the prices of risk capture the difference between
real-world and risk-neutral conditional expectations, the second line uses the risk sensitivities

5JSZ show that it is possible to allow for repeated and complex eigenvalues.
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given in (8), and the third line substitutes for Pt to show the loadings of expected excess
returns on the ternd and cycle factors.

Again, the loadings on the trend τt are most interesting. Equation (13) shows that when
holding the yield factors Pt constant, the loadings on τt are B′n−1(IN − Φ)γ. Our model
estimates imply substantially negative values for these loadings, across all n, in line with the
regression estimates in Section 3.2 of the paper. An increase in the trend ceteris paribus means
that yields will adjust upward causing negative excess returns for bond holders. This shows
the crucial role of the unspanned trend for bond risk premia.

Equation (14) shows the separate roles of trends and cycles for bond risk premia. If we
hold the yield cycles P̃t constant, the loadings on τt are B′n−1(IN − ΦQ)γ. These loadings
tend to be an order of magnitude smaller (in absolute value) than the loadings obtained with
yields—consistent with the findings in Section 3.2 of the paper that predictive regressions in-
cluding only detrended yields capture most of the predictability of excess bond returns. These
loadings are positive because risk premia are positively related to movements in the trend,
based on our estimates.6 Additional unreported results show that predictive regressions with
both detrended yields and trend proxies lead to coefficients on the trend that are insignifi-
cantly different from both zero and the model-based loadings, and thus consistent with the
implications of the model.

3.6 Term premium

The term premium is the difference of a long-term interest rate and that rate’s expectations
component. Section 2 of the paper showed for simplicity the most common definition of the
term premium and the expectations component:

y
(n)
t =

1

n

n−1∑
j=0

Etit+j + TP
(n)
t , (15)

so that the term premium is the excess log-return of holding an n-period bond to maturity
instead of rolling over short-term bonds. But in the context of no-arbitrage term structure
models, it is advantageous to instead use “risk-neutral rates” which, like yields, account for
the convexity of bond prices. Specifically, the risk-neutral yield on an n-period bond is

ỹ
(n)
t = − logEt exp

(
−

n−1∑
j=0

it+j

)
/n,

which differs from the average expected future short rate
∑n−1

j=0 Etit+j/n by a Jensen’s in-
equality term. The risk-neutral yields are affine in Zt, and the loadings are calculated using
recursions similar to those in equations (9)- (10), with µZ and ΦZ replacing µQ and ΦQ, Ωv

replacing Ω, and an N + 1 vector (0, δ′1)
′ replacing δ1. Crucially, risk-neutral yields depend on

6It is only possible for the trend to drop out completely from expected excess returns and term premia if
the model also contained a unit root under Q. In that case, certain parameter restrictions imply zero loadings
for all risk premia on the trend, and equivalently unit loadings of all yields and forward rates on the trend.
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both τt and Pt, since τt affects real-world expectations of future short rates. Using risk-neutral
yields, the term premium on an n-period bond is then defined as

T̃P
(n)

t = y
(n)
t − ỹ

(n)
t .

Because the real-world dynamics feature a unit root, risk-neutral rates diverge to minus
infinity (and the term premium to infinity) as maturity increases. This issue is neither of
theoretical nor practical concern: First, no tradeable securities have payoffs tied to these
quantities. Second, at the maturities we focus on, due to the high persistence of the risk-
neutral dynamics, the convexity in actual and risk-neutral yields is quite similar, and estimates
of the term premium are not noticeably affected by convexity.

We again turn to forward rates for intuition. Using the notation p̃
(n)
t = Ãn + B̃nZt for log

risk-neutral bond prices and their loadings, the risk-neutral forward rate is

f̃
(n)
t = p̃

(n)
t − p̃

(n+1)
t = Ãn − Ãn+1 + (B̃n − B̃n+1)

′Zt

= −1

2
B̃′nΩvB̃n + δ0 − B̃′nµZ + (0, δ′1)Φ

n
ZZt

= −1

2
B̃′nΩvB̃n + δ0 + (0, δ′1)EtZt+n

= −1

2
B̃′nΩvB̃n + δ0 + δ′1(P̄ + γτt + EtP̃t+n)

= −1

2
B̃′nΩvB̃n + τt + δ′1Φ

nP̃t, (16)

where the second line follows from the recursions for the risk-neutral loadings, the third line
recognizes and replaces the conditional expectations for Zt+n, the fourth line uses the fact
that (0, δ′1)EtZt+n = δ′1EtPt+n and substitutes for EtPt+n, and the last line uses δ0 + δ′1P̄ = 0,

δ′1γ = 1 and EtP̃t+n = ΦnP̃t. These derivations clearly show that f̃
(n)
t = Etit+n + convexity,

and that these expectations are of course affected one-for-one by the trend τt = i∗t . Equations
(11) and (16) imply that the forward term premium is

ftp
(n)
t = f

(n)
t − f̃

(n)
t = constant + δ′1

[
(ΦQ)n − IN

]
γτt + δ′1

[
(ΦQ)n − Φn

]
P̃t. (17)

The loadings on τt have a limit of -1 as n tends to infinity: the limiting-maturity forward rate
is constant, as the limiting-maturity forward term premium exactly offsets movements in the
limiting-maturity risk-neutral rate. However, for the maturities relevant in practice our model
estimates imply that the loadings of ftp

(n)
t on τt are positive. That is, for the interest rate

maturities we focus on (up to 15 years), forward rates have loadings on τt that are above one,
as discussed above in 3.3, because forward term premia have loadings on τt that are above zero.
Since yields are just averages of forward rates, the same holds for yields and the yield term
premium: yield loadings on the trend are larger than one, consistent with the cointegration
regressions reported in Section 3.1 of the paper, and term premia have loadings on the trend
that are positive.
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3.7 Estimation with observed shifting endpoint

In this implementation of our shifting-endpoint DTSM, we use an empirical proxy for τt = i∗t
and treat this state variable as observable. Furthermore, Pt is assumed to be observable, in
which case, WY o

t = WYt or Wet = 0. Thus, there are effectively only J − N independent
measurement errors (see Joslin et al., 2011). We use the loadings for the first three principal
components of observed yields to construct the three factors Pt, as is commonly done (e.g.,
Joslin et al., 2011). That is, the rows of W contain the first three eigenvectors of the sample
covariance matrix of Y o

t .
Because all of the state variables in Zt are observable, estimation is quite simple: Not

only can the model’s likelihood function be evaluated without the Kalman filter, we can also
concentrate out the parameters Φ and σ2

e from the likelihood. That is, for given values of kQ,
λQ, γ, P̄ , Ω, and σ2

η, we can analytically obtain the values of Φ and σ2
e that maximize the

likelihood function. Computationally then, we maximize the log-likelihood over 15 parameters
(kQ, 3 in λQ, 2 in γ, 2 in P̄ , 6 in Ω, and σ2

η) instead of over 25 parameters.
Alternatively, it could be assumed that the state variables are unobservable, which would

require estimation of the state-space form of the model using the Kalman filter. We used
this alternative method to estimate our model and obtained results essentially identical to
those reported for the version with observable state variables. Still, in some applications
the Kalman filter may necessary. For example, it can accommodate missing observations or
include multiple measurement equations to pin down i∗t using several different proxies. Using
the Kalman filter is straightforward but computationally intensive (although excellent starting
values for the model parameters can be obtained from a first-step estimation with observable
state variables.)

3.8 Bayesian estimation with estimated shifting endpoint

For our ESE model we use a Bayesian framework with a block-wise MCMC algorithm for
estimation. We choose the first yield factor in Pt to be the short rate (i.e., the three-month
yield, as the model is estimated on quarterly data). In this case, our normalization of the
trend implies that γ1 = 1 and P̄1 = 0, similar to the standard identification in multivariate
unobserved components models (Harvey, 1990). This choice of normalization simplifies our
MCMC estimation as it implies less prior dependence across parameter blocks than would be
the case with principal components as yield factors. We choose the other two yield factors to
be the two- and ten-year yields.

The prior distributions are as follows:

• For the trend innovation variance, σ2
η, we assume an inverse-gamma distribution, specif-

ically, IG(αη/2, δη/2) with αη = 100 and δη = 0.062/400(αη + 2). This parametrization
implies a tight prior distribution around a mode of 0.062/400, which corresponds to a
standard deviation of six percent for changes in τt over 100 years. We view this prior as
a conservative choice that is justified in large part by consideration of the slow-moving
macroeconomic drivers underlying π∗t and r∗t and by the circumscribed evolution of the
various available estimates of those macro trends. Our prior for σ2

η is very similar to
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DGGT, who also use their model’s prior to limit “the amount of variation that it at-
tributes to the trends” (DGGT, p. 249).

• For Φ and Ω̃, we specify a Minnesota-type independent normal/inverse-Wishart. We
use a simple data-based procedure to scale our prior distributions: We regress Pt on the
observable i∗t proxy, and collect the standard deviations of the residuals in a vector s.

The prior for Ω̃ is inverse-Wishart, IW (κ,Ψ) with κ = N + 2 and Ψ = diag(s). The

prior mean for Ω̃ is Ψ/(κ − N − 1) = Ψ, and the prior mode is Ψ/(κ + N + 1). That
is, we use the lowest value of κ for the mean to exist, so that the distribution is very
disperse. The prior for Φ is a Minnessota prior, but centered around a zero matrix. The
prior standard deviation for the (i, j)-element of Φ is λsi/sj. For the hyperparameter
controlling the tightness we use λ = 0.2 like DGGT and others. We also restrict the
eigenvalues of Φ to be inside the unit circle.

• The priors for the unrestricted (second and third) elements of γ are independent Gaussian
distributions with means of one and variances of 0.2. The unrestricted elements of P̄
have independent Gaussian priors with means of zero and variances of 0.052. These
mildly informative priors help improve the efficiency of the MCMC sampler without
imposing too much prior information.

• For the measurement error variance σ2
e , we use an inverse-gamma distribution with

αe = 4 and δe = 0.0012(αe + 2), implying a prior mode for the variance of 0.0012 which
corresponds to a standard deviation of 10 basis points. This prior mode is motivated
by the fact that sufficiently flexible DTSMs can generally achieve a good fit to observed
yields with only about 5-10 basis points root-mean-squared error.

• The priors for the remaining parameters are completely uninformative.

We use a state-space formulation in terms of the state variables Z̃t = (τt, P̃
′
t)
′, which is of

course equivalent to using τt and Pt. The measurement equation is

Y o
t = A+BP̄ +Bγτt +BP̃t,

and the state equation is

Z̃t =

(
1 0
0 Φ

)
Z̃t−1 +

(
ηt
ũt

)
.

Our MCMC algorithm is a block-wise Metropolis-Hastings (M-H) sampler (Chib and
Greenberg, 1995). First, note that the log-likelihood is the sum of the cross-sectional log-
likelihood (from the measurement equation) and the “dynamic” log-likelihood (from the tran-
sition equation). The former, called the (log of the) Q-likelihood by Joslin et al. (2011), for
observation t is

log f(Y o
t |Pt, kQ, λQ,Ω, σ2

e) ∝ −
1

2
|Y o
t − A−BPt|/σ2

e ,

where A and B depend on (kQ, λQ,Ω) and | · | denotes the L2 (Euclidean) norm. The latter,
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the P-likelihood, for observation t is

log f(Zt|Zt−1, P̄ , γ,Φ,Ω, σ2
η) = −1

2

(
log |Ω̃|+ ũ′tΩ̃

−1ũt + log(σ2
η) + η2t /σ

2
η

)
,

where Ω̃ = Ω− γγ′σ2
η, ũt = P̃t − ΦP̃t−1, P̃t = Pt − γτt − P̄ , and ηt = ∆τt.

The first block is the sampling of the state variables using the simulation smoother of
Durbin and Koopman (2002), and we condition on Zt when drawing the other blocks. The
parameter blocks are (1) (kQ, λQ), (2) Ω, (3) g (which determines γ), (4) p (which determines
P̄ ), (5) σ2

η, (6) Φ, and (7) σ2
e . The sampling of Φ and σ2

e is straightforward: Gibbs steps can
be employed since the full conditional posterior is available. For Φ, the draw is only accepted
if the matrix has all eigenvalues inside the unit circle, to ensure stationarity of P̃t. For blocks
(1)-(5), the conditional posterior distributions cannot be sampled; therefore, we must use M-H
steps. Only the parameters in blocks (1) and (2) affect the loadings A and B and hence the
Q-likelihood. The parameters in blocks (3)-(5) only affect the P-likelihood, which saves on
computational costs. For our M-H steps, we use tailored independence proposal distributions
similar to Chib and Ergashev (2009). Specifically, conditional on all other parameters and the
state variables, we use numerical optimization to find the mode and Hessian of the conditional
posterior distribution for a given parameter block. Our proposal distribution is then a mul-
tivariate t-distribution (with five degrees of freedom) that is centered around this mode and
has a covariance matrix equal to the inverse of this Hessian. This way of constructing M-H
proposal distributions has the great benefit that no fine-tuning of the proposal distributions is
necessary, and the efficiency of the sampler is generally much better than using random walk
proposals (Chib and Ergashev, 2009).

We run our sampler to obtain five different chains from random starting values (around
the posterior mode that we find numerically), in each case obtaining 100,000 observations
and discarding the first half as burn-in samples. This gives us an MCMC sample of 250,000
iterations for our posterior analysis.
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