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Abstract

This paper analyzes the effects of the lower bound for interest rates on the distributions of inflation and

interest rates. We study a stylized New Keynesian model where the policy instrument is subject to a lower

bound to motivate the empirical analysis. Two equilibria emerge: In the “target equilibrium,” policy is

unconstrained most or all of the time, whereas in the “liquidity trap equilibrium,” policy is mostly or always

constrained. We use options data on future interest rates and inflation to study whether the decrease in the

natural real rate of interest leads to forecast densities consistent with the theoretical model. Qualitatively,

we find that the evidence is consistent with the theoretical predictions in the target equilibrium and find

no evidence in favor of the liquidity trap equilibrium. Quantitatively, while the lower bound has a sizable

effect on the distribution of future interest rates, its impact on forecast densities for inflation is relatively

modest. We develop a lower bound indicator that captures the effects of the lower bound on the distribution

of interest rates.

JEL Classification System: E52

∗The authors thank Adrien Auclert, Michael Bauer, Ben Bernanke, Mick Devereux, Stefano Eusepi, Stefan Gerlach, Simon Gilchrist,
Yuriy Gorodnichenko, Kevin Lansing, Glenn Rudebusch, Stephanie Schmitt-Grohé, Elmar Mertens, Marek Raczko, Eric Swanson,
Andrea Tambalotti, John Taylor, Pablo Winant, Cynthia Wu, and Jonathan Wright as well as the audiences at UBC, Stanford GSB,
the Swiss National Bank’s Research Conference, German Economists Abroad, the AEA meetings, the Fed System Meeting on
Macroeconomics, FRB Board-NY conference on Empirical Macroeconomics, NASMES, NBER Summer Institute, the Hoover MMCN
conference, the CEBRA conference, and EFA for helpful discussions and suggestions. We also thank Emily Martell and Patrick Shultz
for outstanding research assistance and Jens Christensen and Glenn Rudebusch for sharing their estimates. The views expressed here
are solely those of the authors and do not necessarily represent those of the Federal Reserve Banks of New York and San Francisco
or the Federal Reserve System.

†Federal Reserve Bank of San Francisco, 101 Market Street, Mailstop 1130, San Francisco, CA 94105; Thomas.Mertens@sf.frb.org.
‡Federal Reserve Bank of New York, 33 Liberty Street, New York, NY 10045; John.C.Williams@ny.frb.org.

1



I Introduction

The lower bound on nominal interest rates has been the subject of extensive study in the academic literature

and a key factor in central bank practice over the past two decades. Standard macroeconomic models predict

that the lower bound can have profound effects on the behavior of the economy and supply a set of testable

empirical predictions. Yet, introducing a lower bound into the New Keynesian model leads to multiple

equilibria that differ dramatically in the effectiveness of monetary policy. Therefore, empirical tests of the

prevailing equilibrium are critically important for assessing the effects and implications of the lower bound.

However, the relatively short period of time during which the lower bound has been relevant limits the ability

to quantitatively assess this issue using macroeconomic data alone.

This paper makes two key contributions to the literature. First, it links the higher-moment predictions

of macroeconomic theory to prices of financial market derivatives related to options on interest rates and

inflation. Second, it derives and tests hypotheses that distinguish between multiple equilibria in an economy

where interest rates are constrained by a lower bound. It uses options data from U.S. financial markets to

measure the effects of the lower bound on expectations and thereby the macroeconomy. We compare the

forecast densities of future nominal interest rates and inflation rates derived from a theoretical model to those

observed in financial markets based on derivatives data. The advantage of this approach is that far-ahead

expectations give a clearer view into the overall effects of the lower bound on the behavior of the economy

that is not dependent on a particular realization of shocks or assumptions about short-run dynamics of the

economy.

We use a standard New Keynesian model where inflation and output are jointly determined and are

affected by expectations of future output and inflation. Although our model is very simple, the main mech-

anisms and implications related to the lower bound are common to many more complicated macroeconomic

models used in the literature.1 The central bank optimally sets the interest rate to stabilize the inflation rate

and output under discretion. The lower bound on interest rates limits the ability to optimally respond to

adverse shocks. Expectations of future output and inflation also depend on the likelihood with which the

lower bound will bind in the future. As a result, a nonlinear feedback between future occurrences of policy

being constrained by the lower bound and current inflation and output emerges.

In the deterministic version of the model, two steady-state rates arise, consistent with the findings of

1See, for example, Fuhrer and Madigan (1997), Reifschneider and Williams (2000), Eggertsson and Woodford (2003), Evans et al.
(2015), Reifschneider (2016), Hamilton et al. (2016), and Cuba-Borda and Singh (2020).
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Benhabib, Schmitt-Grohé and Uribe (2001). In one equilibrium, which we refer to as the “target equilibrium,”

the nominal interest rate is strictly above the lower bound and the inflation rate equals the target rate set by

the central bank. In the second, which we refer to as the “liquidity trap equilibrium,” the nominal interest

rate is constrained by the lower bound and the inflation rate equals the lower bound less the steady-state real

interest rate. The equilibria differ in expectations about future inflation and output and further assumptions

are necessary for the selection between these two equilibria.

We extend this analysis to a stochastic environment and analyze how the distributions of inflation associ-

ated with each of these two steady states change with the introduction of aggregate uncertainty (see Mendes

(2011), Hills, Nakata and Schmidt (2016), and Lansing (2018) for related analysis). Associated with each

steady state in the deterministic model, unconditional distributions of interest rates and inflation emerge in

the presence of shocks. In the vicinity of the target equilibrium, the interest rate is unconstrained most or all

of the time. In contrast, in the distribution near the liquidity trap equilibrium, the interest rate is mostly or

always constrained. In contrast to the deterministic case, where the predictions are very stark and clearly at

odds with the data in important aspects, the equilibria are harder to distinguish empirically.

The existence of the lower bound affects the shapes of the unconditional distribution for interest rates and

inflation. In the case of interest rates, the lower bound truncates the distribution from below. For inflation, the

presence of the lower bound prevents stabilization in response to sufficiently negative shock realizations and

makes the distribution asymmetric. In the distribution associated with the target equilibrium, the presence of

the lower bound skews the distribution of inflation to the left and lowers the unconditional median and mean

of inflation. In the distribution associated with the liquidity trap equilibrium, the distribution of inflation

centers around a lower mean and is truncated at the inflation target such that negative skewness emerges.

We show that, as aggregate uncertainty rises, the two unconditional means of inflation move closer

together and eventually are equal. This finding reflects that, with greater variance of shocks, the lower bound

binds less frequently in the distribution associated with the liquidity trap equilibrium but more often in

the distribution associated with the target equilibrium. For large enough shock variances, no unconditional

mean consistent with the model exists.

In our empirical investigation, we exploit the decrease in the natural real rate of interest, 𝑟∗, since the

Great Recession (Williams (2017)). In the model, a lower natural rate of interest affects the distributions of

interest rates and inflation. In the vicinity of the target equilibrium, a lower natural rate of interest increases

the likelihood of being constrained by the lower bound and thus causes expected inflation to decline and
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otherwise exacerbates the effects of the lower bound on the distributions of inflation and interest rates. In

contrast, in the vicinity of the liquidity trap equilibrium, a lower natural rate of interest causes expected

inflation to increase, and the effects of the lower bound on the shape of the distributions of inflation and

interest rates diminish.

We take these testable implications of our theoretical model to the data to ascertain whether expectations

are empirically consistent with the target or liquidity trap equilibrium. We use options data to back out

far-ahead forecast densities on future U.S. nominal interest rates and inflation. To study the effects of an

occasionally binding lower bound on the unconditional distribution, we study the forecast densities of

inflation and interest rates over medium-term horizons (see Wright (2017) and Kitsul and Wright (2013)).

Looking at a range of options with different strike prices, we reconstruct risk-neutral forecast densities of

inflation and interest rates under the forward measure at each point in time and study their evolution with a

falling natural rate.

The theoretical model suggests an indicator for the severity of the impact that the lower bound has at a

given time. This lower bound indicator is defined as the expected interest rate wedge between the policy rate

and the unconstrained shadow interest rate. That is, it computes how much the lower bound constrains the

central bank on average. We show empirically that this indicator summarizes the effects of the lower bound

on the forecast densities for interest rates very well and has predictive power for the impact on inflation.

We find clear evidence that financial market participants incorporate the presence of a lower bound in

terms of future nominal interest rates, consistent with the predictions associated with the target equilibrium.

By contrast, we find no empirical support for the theoretical implications of the liquidity trap equilibrium:

First, the implied probability of a binding lower bound increased during the time when the natural rate of

interest fell. Second, the average interest rate fell over the sample period along with the rate of inflation.

Third, the forecast density of inflation has shifted to the left. All of these observations are consistent with

predictions of the model in the vicinity of the target equilibrium and contradict the predictions of the liquidity

trap equilibrium. This finding is striking in that short-term interest rates were near zero for seven straight

years following the Great Recession of 2007-09.

We further provide evidence on changes in physical expectations by studying survey evidence from the

Survey of Primary Dealers. We document that survey respondents’ expectations of nominal interest rates

declined during the period when the natural rate of interest fell. Consistent with the target equilibrium of

our theoretical model, forecasts of inflation declined as well. While changes in risk premia would affect our
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estimates from options prices, our survey evidence shows that changes in physical expectations are at least

in part driving our results.

While our findings are qualitatively consistent with the theoretical predictions, the magnitude of the

changes in the distribution of inflation expectations are quantitatively small, despite market participants

placing a relatively high probability of policy being at the lower bound. This contrasts with results from

some studies that suggest very large effects (see Kiley and Roberts (2017)), but is consistent with studies that

incorporate a richer set of monetary policy tools and/or fiscal policy that can be effective in putting upward

pressure on prices when short-term interest rates are at the lower bound (see Reifschneider and Williams

(2000), Williams (2010), and Reifschneider (2016)).

We point out three caveats in regard to our analysis and results. First, options data for far-ahead interest

rates are scarce before the financial crisis, which limits our ability to analyze the behavior of expectations at

times when the lower bound was viewed to be less salient. Our earliest estimates date back to 2002, and we

only have full data since 2011. In this regard, comparing data across countries may be useful. Second, we

study optimal policy under discretion. If the central bank can commit to future policy actions, its capacity

to stabilize expectations and the economy is likely to increase. We leave the full analysis for future research.

Third, we study how the two equilibria of our New Keynesian model change in response to an unanticipated

exogenous change in the natural rate of interest. Therefore, we neither generalize these findings to alternative

models of monetary policy nor address the potential endogeneity or stochastic nature of the decline in the

natural rate of interest.

Section II presents the key logic that is present in New Keynesian models with a lower bound on interest

rates. In this model, we perform comparative statics with respect to a fall in the natural rate of interest.

Section III discusses the construction of forecast densities and tests the predictions from our theoretical

model. Section IV discusses the robustness of the findings and section V concludes.

II Theoretical Model

We use a textbook New Keynesian model of an economy where the policy instrument is subject to a lower

bound to motivate the empirical analysis (Woodford (2003)). Given uncertainty about the modeling of short-

run macroeconomic dynamics in the presence of the lower bound, we primarily focus on the ergodic, or

unconditional, distribution of inflation and interest rates in the model economy. We are thus able to abstract

from complications associated with short-run dynamics and illustrate more clearly the most important
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theoretical implications of the lower bound for distributions of beliefs.

II.A Model Setup

The model consists of three equations describing the evolution of three endogenous variables: the inflation

rate, 𝜋𝑡 , the output gap, 𝑥𝑡 , and the short-term nominal interest rate, 𝑖𝑡 . Since the focus of the paper is on

qualitative changes in the model, we work with the log-linearized version of the standard New Keynesian

model and i.i.d. shocks for which we can derive analytical results. The equation describing the behavior of

inflation is given by:

𝜋𝑡 = 𝜇𝑡 + 𝜅𝑥𝑡 + 𝛽E𝑡𝜋𝑡+1 , 𝜇𝑡 ∼ iid(0, 𝜎2
𝜇), (1)

where E𝑡 denotes mathematical expectations based on information at time 𝑡, 𝜇𝑡 is a markup shock, 𝛽 ∈ (0, 1)
is the discount factor, and 𝜅 > 0. The equation describing the output gap is given by:

𝑥𝑡 = 𝜖𝑡 − 𝛼(𝑖𝑡 − E𝑡𝜋𝑡+1 − 𝑟∗) + E𝑡𝑥𝑡+1 , 𝜖𝑡 ∼ iid(0, 𝜎2
𝜖), (2)

where 𝛼 > 0, 𝑟∗ is the long-run natural real rate of interest, and 𝜖𝑡 is a demand shock. All agents, including

the central bank, are assumed to have full knowledge of the model, including the distribution of the shock

processes.

The central bank’s goal is to keep the output gap near zero and to keep the inflation rate near its target

level, which is normalized to zero.2 Specifically, the central bank chooses its policy instrument, 𝑖𝑡 , to minimize

the expected quadratic loss:

ℒ = (1 − 𝛽)E0

[ ∞∑
𝑡=0

𝛽𝑡(𝜋2
𝑡 + 𝜆𝑥2

𝑡 )
]
, (3)

where 𝜆 ≥ 0 is the relative weight the central bank places on output gap stabilization. The central bank

decision for 𝑖𝑡 is assumed to occur after the realizations of the shocks in the current period.

The central bank is assumed to lack the ability to commit to future actions; that is, policy is conducted

under discretion as in Kydland and Prescott (1977). In addition, the policy action is subject to a lower bound,

𝑖𝐿𝐵 < 𝑟∗, that sets a lower limit on 𝑖𝑡 for all 𝑡.3 Under these assumptions, combining the equations for inflation

and the output gap yields the following expression for the inflation rate (detailed derivations of optimal

2It is straightforward to generalize to a nonzero inflation target by interpreting 𝜋𝑡 as the gap between inflation and its target.
3In the New Keynesian model, the condition of the lower bound on nominal interest rates being below the natural rate of interest

is a necessary condition for the existence of a steady state.

6



policy and equilibrium conditions appear in Appendix A.A):

𝜋𝑡 = (1 + 𝛼𝜅)E𝑡𝜋𝑡+1 + 𝜇𝑡 + 𝜅𝜖𝑡 − 𝛼𝜅(𝑖𝑡 − 𝑟∗). (4)

The current state of the economy is fully described by the realization of the two shocks. The expected value

of inflation in the following period arises as an equilibrium outcome and is independent of current shocks

due to to the i.i.d. assumption. As a result, conditional and unconditional forecasts coincide and remain

constant over time. We therefore drop time subscripts for expectations below. Maximizing the objective (3)

subject to the equilibrium conditions (1) and (2) leads to the unconstrained optimal policy under discretion

i𝑡 that depends only on the current state

i𝑡 = 𝑟∗ + 𝜓E𝜋 + 1
𝛼
𝜖𝑡 + 𝛾𝜇𝑡 , (5)

where 𝜓 ≡ 1 + 1
𝛼𝜅 − 𝜆𝛽

𝛼𝜅(𝜅2+𝜆) > 1 and 𝛾 ≡ 𝜅
𝛼(𝜅2+𝜆) . Solving the maximization problem while imposing the

lower bound constraint on the policy rule leads to the optimal policy rule under discretion:

𝑖𝑡 = max{i𝑡 , 𝑖𝐿𝐵}. (6)

Note that the lower bound binds when 𝛾𝜇𝑡 + 1
𝛼 𝜖𝑡 ≤ 𝑖𝐿𝐵 − 𝑟∗ − 𝜓E𝜋. To simplify notation, we combine the

demand and markup shocks into the linear combination on the left-hand side of the inequality 𝜃𝑡 = 𝛾𝜇𝑡 + 1
𝛼 𝜖𝑡

such that the lower bound binds if the combined shock 𝜃𝑡 falls below the cutoff 𝜃̄𝐿𝐵 ≡ 𝑖𝐿𝐵 − 𝑟∗ − 𝜓E𝜋, i.e.

𝜃𝑡 ≤ 𝜃̄𝐿𝐵.

Plugging in the optimal interest rate rule (6) into (4) leads to two different processes for inflation depending

on whether the lower bound binds or not:

𝜋𝑡 =


𝜇𝑡 + 𝜅𝜖𝑡 − 𝛼𝜅(𝑖𝐿𝐵 − 𝑟∗) + (1 + 𝛼𝜅)E𝜋, if 𝜃𝑡 ≤ 𝜃̄𝐿𝐵

𝜆
𝜅2+𝜆

{
𝜇𝑡 + 𝛽E𝜋

}
otherwise.

(7)

If the lower bound does not constrain policy in the current period, optimal policy yields an inflation rate given

by the second part of equation (7). Note that the unconstrained optimal policy fully offsets the demand shock

𝜖𝑡 . In the special case of 𝜆 = 0, this policy also offsets the markup shock, achieves full inflation stabilization,

𝜋𝑡 = 0 for all 𝑡, and attains the minimum feasible loss of zero. For the case of𝜆 > 0, the unconstrained optimal
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policy balances offsetting markup shocks and deviations of expected future inflation from target against the

cost of creating non-zero output gaps. As a result, this policy only partially offsets these two factors that

push inflation away from its target value.

We first analyze the deterministic version of the model where 𝜎2
𝜖 and 𝜎2

𝜇 are assumed to equal zero. In that

case, each of the two parts in equation (7) can be solved for a steady-state values of 𝜋. In the one associated

with the part where policy is unconstrained, which we refer to as the “target equilibrium,” the steady-state

value of the interest rate, denoted by 𝑖𝑢 , equals 𝑟∗, and the steady-state value of 𝜋, 𝜋̄𝑢 , equals zero. In the

second, which we label the “liquidity trap equilibrium,” the steady-state value of the interest rate, 𝑖𝑐 , equals

the lower bound, and the steady-state value of inflation is given by 𝜋̄𝑐 = 𝑖𝐿𝐵 − 𝑟∗ and inflation is thus below

target. The only distinguishing features between the two equilibria are expectations about future inflation

and output. We would need further assumptions to select between the two steady states.4

Monetary policy crucially depends on the equilibrium the economy is in. The optimal policy rule in

equation (6) depends on inflation expectations. And because the two equilibria differ in inflation expectations,

optimal policy will differ across the two equilibria. In a liquidity trap, the central bank would therefore

prescribe lower interest rates than in the target equilibrium.

We now analyze the two equilibria in a stochastic environment. Once we introduce shocks, the two

equilibria cannot be clearly linked to either part of equation (7) anymore. The lower bound is occasionally

binding in both equilibria. Hence, within each equilibrium, the realization of shocks determines which part

of the equation determines inflation. To study this situation, we define a key variable in our analysis, the

probability of a binding lower bound 𝑃𝐿𝐵, and link it to inflation expectations via

𝑃𝐿𝐵 = Prob(𝜃 ≤ 𝜃̄𝐿𝐵) =
∫ 𝜃̄𝐿𝐵

𝜃
𝜙(𝜃) 𝑑𝜃

= Φ(𝜃̄𝐿𝐵) = Φ(𝑖𝐿𝐵 − 𝑟∗ − 𝜓E𝜋),
(8)

where 𝜃 ∈ R− ∪ {−∞} is the lower bound of the support of the combined shock 𝜃 , 𝜙(𝜃) denotes its

probability density function, and Φ(𝜃) its corresponding cumulative density function. Since the cumulative

density function is monotone, the probability of a binding lower bound is inversely related to inflation

expectations.

4There are a number of approaches to analyze the stability properties of the two equilibria, which we do not pursue here. That
said, it is worth noting that the region of attraction for the target equilibrium is the open unbounded interval to the right of the
liquidity trap equilibrium. The region of attraction for the liquidity trap equilibrium is confined to a single point.
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If the lower bound always binds, i.e. 𝑃𝐿𝐵 = 1, the first part of equation (7) determines inflation and

inflation expectations follow E𝜋 = 𝑖𝐿𝐵 − 𝑟∗, just like in the deterministic model. If, on the other hand,

𝑃𝐿𝐵 = 0, the second part of the equation holds and inflation expectations are anchored at target. To compute

expectations for intermediate cases, we take unconditional expectations of both sides of equation (7) to get

E𝜋 = 𝑃𝐿𝐵E

[
𝜇 + 𝜅𝜖 − 𝛼𝜅(𝑖𝐿𝐵 − 𝑟∗) + (1 + 𝛼𝜅)E𝜋

����𝜃 ≤ 𝜃̄𝐿𝐵
]
+ (

1 − 𝑃𝐿𝐵) E [ 𝜆

𝜅2 + 𝜆

(
𝜇 + 𝛽E𝜋

) ����𝜃 > 𝜃̄𝐿𝐵
]
. (9)

When the support of the combined shock 𝜃 encompasses the cutoff value, the lower bound binds occasionally.

This situation arises both irrespective of whether the economy is near the target or liquidity trap equilibrium.

When the realization of the shocks is sufficiently high such that 𝜃𝑡 > 𝜃̄𝐿𝐵, the central bank is unconstrained

and can pursue its desired action. Following sufficiently adverse shocks, however, the central bank finds itself

constrained by the lower bound, and its inability to sufficiently cut interest rates puts downward pressure on

inflation.

The only distinguishing feature between the two equilibria are expectations about future inflation and,

implicitly, the output gap. If the lower bound is expected to bind infrequently, the economy is in the

target equilibrium and relatively unconstrained due to the forward-looking Phillips curve. Low inflation

expectations, on the other hand, imply a lower level of interest rates on average, and therefore the lower

bound is more likely to be a binding constraint. Since the cutoff value 𝜃𝑡 > 𝜃̄𝐿𝐵 depends on inflation

expectations, it also differs across the two equilibria.

To further investigate the relation between the probability of a binding lower bound and inflation expec-

tations, we define the interest rate wedge Δ𝑖𝑡 = 𝑖𝑡 −i𝑡 as the difference between the constrained (equation (6))

and the unconstrained (equation (5)) optimal policy rates. We define the unconstrained benchmark rate as

having the form in equation (5) with inflation expectations that prevail under the constrained optimal policy

rule. In this sense, it can be interpreted as a shadow interest rate. As a consequence the wedge between the

actual and shadow rates is zero when the central bank is unconstrained and positive when the lower bound

binds. With this definition, inflation expectations can be linked to the expected nominal and the natural

interest rates via an unconditional version of the Fisher equation.

Proposition 1 (Below-target inflation expectations)
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The unconditional mean of inflation equals the mean of nominal interest rates minus the natural rate of interest:

E𝜋 = E𝑖 − 𝑟∗

= − 𝛼𝜅(𝜅2 + 𝜆)
𝜅2 + (1 − 𝛽)𝜆EΔ𝑖.

(10)

Appendix A.A contains a derivation of equation (10).

The first part of the equations implies that the real interest rate, 𝑖𝑡 − E𝑡[𝜋𝑡+1], equals the natural real rate

of interest 𝑟∗ on average at each point in time.

The second part of the equation demonstrates a downward bias in average, and thus expected, inflation

due to the lower bound, both in the target and the liquidity trap equilibrium whenever the lower bound

might bind such that EΔ𝑖 > 0. In this case, average inflation will fall below its target rate.

When the lower bound binds occasionally, equation (1) tells us that expected inflation will be below target,

and thus its deterministic benchmark, in the target equilibrium due a positive interest rate wedge for some

shock realizations. In the liquidity trap equilibrium, occasionally binding constraints imply that the central

bank can stabilize inflation in some states of the world. Inflation expectations, while being below target, are

above their deterministic benchmark.

For a normal distribution of the markup shock, Figure 1 illustrates the two equilibria for different degrees

of aggregate uncertainty.5 In particular, it shows how aggregate uncertainty lowers inflation expectations

in the target equilibrium and raises them in the liquidity trap equilibrium. For a high level of aggregate

uncertainty, there is a knife-edge case of a unique equilibrium, and no equilibrium emerges for higher levels

of uncertainty. To produce Figure 1, we use the following parameter combination to illustrate the results:6

𝛼 = 𝜅 = 1, 𝛽 = 0.99, 𝑖𝐿𝐵 = −0.5%, 𝑟∗ = 1%, and 𝜎𝜖 = 0. The left panel shows the case of 𝜆 = 0, where the

central bank seeks only to stabilize inflation; the right panel shows the case of 𝜆 = 0.5, where the central bank

also seeks to stabilize the output gap. For values of 𝜎𝜇 > 1.9%, no equilibrium exists when 𝜆 = 0.

An important aspect of this analysis is that we assume that the lower bound always exists and that

5The equilibrium condition (9) for a steady state under the normal distribution is

E𝜋𝑡 =
1

2
(
𝜅2 + 𝜆

) ©­­«𝜈
(
E𝑡𝜋𝑡+1 , 𝑖

LB , 𝑟∗
) ©­­«1 + erf

©­­«−
𝜈
(
E𝑡𝜋𝑡+1 , 𝑖LB , 𝑟∗

)
𝜅𝜎𝜖𝜇

ª®®¬
ª®®¬ −

1√
𝜋
𝜅𝜎𝜖𝜇𝑒

− 𝜈(E𝑡𝜋𝑡+1 ,𝑖LB ,𝑟∗)2

𝜅2𝜎2
𝜖𝜇 + 2𝛽𝜆E𝑡𝜋𝑡+1

ª®®¬ ,
where 𝜈

(
E𝑡𝜋𝑡+1 , 𝑖LB , 𝑟∗

)
=
(
𝜅2 + 𝜆

) (
E𝑡𝜋𝑡+1(𝛼𝜅 + 1) − 𝛼𝜅(𝑖LB − 𝑟∗)

)
− 𝛽𝜆E𝑡𝜋𝑡+1 and 𝜎𝜖𝜇 =

√
2𝜎2

𝜖
(
𝜅2 + 𝜆

)2 + 2𝜅2𝜎2
𝜇.

6Throughout the paper, we use the model to derive qualitative changes of outcomes in response to a shift in parameters. A
different calibration might help in understanding the quantitative aspects of the data but that is not the focus of this paper. In
particular, a flatter Phillips curve might lead to smaller changes in moments of inflation.
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expectations of future inflation reflect this fact (see Mendes (2011) and Hills, Nakata and Schmidt (2016)).

This differs from much of the literature, where expectations are based on the lower bound constraining

policy for a finite period in the future (see Fuhrer and Madigan (1997), Reifschneider and Williams (2000),

Eggertsson and Woodford (2003), Williams (2010), Evans et al. (2015), and Kiley and Roberts (2017)). In the

context of our model, such an assumption would imply that E𝑡𝜋𝑡+𝑗+1 = 0 for some 𝑗 > 1. If we were to make

such an assumption, the ergodic mean of inflation would be unique and closer to the deterministic target

equilibrium.

II.B Empirical Implications from the Theoretical Model

This section discusses testable predictions from the theoretical model that allow us to distinguish whether

the economy is in the vicinity of a target or in a liquidity trap equilibrium. We then take these predictions

to the data. In the following, we focus on changes in the unconditional distribution of interest rates and

inflation resulting from changes in the natural rate of interest, 𝑟∗. As this section will make clear, the implied

distributions behave differently in the two equilibria when the level of 𝑟∗ varies. Note that the changes in the

implied distribution are derived from comparative statics with respect to 𝑟∗, i.e., changes in the parameter

that agents in the model treat as exogenous. For a more concise notation, we define 𝜉 = 1 + 𝛼𝜅 + 𝛼𝜅𝛽𝜆
𝜅2+(1−𝛽)𝜆 .

Note that the previously stated assumptions on the ranges for the underlying parameters imply that 𝜉 > 1.

As we saw in the previous section, the probability of a binding lower bound is a key variable of interest

that can be linked to the distribution of inflation and interest rates. The following proposition shows how it

evolves when the natural rate of interest, 𝑟∗, changes.

Proposition 2 (Comparative statics for the probability of a binding lower bound)

The probability of a binding lower bound evolves with the natural rate of interest according to

𝑑𝑃𝐿𝐵

𝑑𝑟∗

(
𝑃𝐿𝐵 − 1

𝜉

)
=

1
𝜉
𝜙
(
𝜃̄𝐿𝐵(𝑟∗)) .

The critical value for the probability of a binding lower bound is:

𝑃̄𝐿𝐵 =
1
𝜉
∈ (0, 1).

For a proof, see Appendix A.B.
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Proposition 2 presents a differential equation for the probability of a binding lower bound. There is a

bifurcation at the critical value 𝑃̄𝐿𝐵 = 1/𝜉. At the critical value, the derivative of the lower bound probability

with respect to the natural rate of interest is unbounded. If the probability of a binding lower bound is below

the critical value, it corresponds to the target equilibria for different 𝑟∗. A higher probability is associated

with the liquidity trap equilibria.

In the case where the natural rate of interest is far above the lower bound on interest rates, the probability

of a binding lower bound is close to zero in the target equilibrium since nominal rates are high and the central

bank has ample space to cut its policy rate. The probability of a sufficiently negative shock that requires a

cut in the nominal rate down to the lower bound is small. In the liquidity trap, on the other hand, the lower

bound almost always binds. Inflation expectations are far below the lower bound (close to 𝑖𝐿𝐵 − 𝑟∗) and the

chance of a sufficiently positive shock to lift the nominal interest rate above the lower bound is small.

According to Proposition 2, reductions in the natural rate of interest lead to a fall in the probability of

a binding lower bound in the liquidity trap equilibrium where 𝑃𝐿𝐵 is above the critical value 𝑃̄𝐿𝐵. In the

target equilibrium, the lower bound probability lies below the critical value and reductions in 𝑟∗ raise the

lower bound. These results can be seen from the fact that the right-hand side of the equation is nonnegative

and the term 𝑃𝐿𝐵 − 1
𝜉 determines the direction of the change. For a sufficiently small value of 𝑟∗, there is a

unique equilibrium and no equilibrium for lower values, just like with the comparative statics with respect

to uncertainty.

Figure 2 uses the example of a normal distribution to depict the resulting probabilities of being constrained

by the lower bound for various values of 𝑟∗. The blue line shows how the probability of being constrained

by the lower bound rises when the natural rate of interest falls in the target equilibrium. The red line shows

that this prediction is reversed in the liquidity trap equilibrium.

Next, consider the relationship between 𝑟∗ and expectations of the interest rate. The following proposition

shows that there is a direct link between 𝑟∗, the mean interest rate, and lower bound risk.

Proposition 3 (Change in level of nominal interest rates)

The probability of a binding lower bound determines how the level of nominal interest rates changes with the natural

rate of interest
𝑑E𝑖
𝑑𝑟∗ = − 1 − 𝑃𝐿𝐵

𝜉𝑃𝐿𝐵 − 1
. (11)

See Appendix A.C for a proof.
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According to Proposition 3, the expected interest rate changes in the same direction as the natural rate of

interest if the lower bound probability is below the critical value of 1/𝜉, i.e. in the target equilibrium. In the

liquidity trap, the sign is reversed as can be seen from the denominator.

Changes in the natural rate of interest not only affect the probability of a binding lower bound but also

alter inflation expectations.

Proposition 4 (Change in inflation expectations)

The comparative statics for the lower bound translate into comparative statics for inflation expectations:

𝑑E𝜋
𝑑𝑟∗ = − 1

𝜓
𝑃𝐿𝐵

𝑃𝐿𝐵 − 1
𝜉

.

See Appendix A.D for a proof.

Proposition 4 shows that the change of inflation expectations is positive in response to a fall in 𝑟∗ in

the liquidity trap equilibrium (where 𝑃𝐿𝐵 is above the critical value) and negative in the target equilibrium.

In the deterministic liquidity trap equilibrium, a lower value of 𝑟∗ raises the steady-state value of inflation.

The intuition comes from the Fisher equation that relates nominal interest rates to real rates and expected

inflation. If real rates fall with 𝑟∗ and nominal interest rates are constrained by the lower bound, inflation

must rise to satisfy the Fisher equation (10). In the stochastic economy associated with the liquidity trap

equilibrium, a lower 𝑟∗ raises inflation through the channel just discussed but then also lowers the cutoff

value for the shock, thus limiting the range of shock realizations for which policy is unconstrained. As a

result, expected inflation increases more than one-for-one. The unconditional mean of the interest rate also

increases in this case.

In contrast, in the deterministic target equilibrium, a decrease in 𝑟∗ has no effect on the inflation rate

since policy is free to offset it. Interest rates therefore decline one-for-one with the decline in 𝑟∗. In the

stochastic economy, a lower value of 𝑟∗ lowers expected inflation, resulting in a higher cutoff value 𝜃̄𝐿𝐵, and

thus increases the set of shocks for which policy is constrained. In this case, the unconditional mean of the

interest rate declines by more than one-for-one with the decline in 𝑟∗.

Figure 3 illustrates these effects. This graph, along with the other figures discussed in this section, uses

the model with a normal distribution of markup shocks parameterized as above and assuming 𝜆 = 0.5 and

𝜎𝜇 = 1%. The curve for the unconditional mean of inflation is the mirror image from the graph for the mean

of interest rates. This relationship arises from equation (10). The graphs show different steady-state outcomes
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for a range of 𝑟∗ values, where the blue line represents the target and the red line represents the liquidity trap

equilibrium. In the target equilibrium, the means of 𝜋 and 𝑖 move in the same direction as the natural rate of

interest. For the liquidity trap equilibrium, depicted in red lines, the unconditional means of inflation and

interest rates move in the opposite direction as 𝑟∗.

The lower bound on nominal interest rates not only affects average inflation and interest rates but, most

profoundly, affects the asymmetry of the distributions. This asymmetry stems from the truncation of the

distribution of interest rates that translates into an asymmetry of the distribution for inflation. This latter

effect is due to the central bank’s inability to stabilize inflation when constrained by the lower bound.

To investigate this channel further, we establish the link between changes in the cutoff value for the

realization of shocks, at which point the lower bound starts to bind, and changes in the natural rate.

Lemma 1 (Changes in the cutoff 𝜃̄𝐿𝐵)

𝑑(𝑖𝐿𝐵 − 𝑟∗ − 𝜓E𝜋)
𝑑𝑟∗ =

1
𝜙(𝑥̄𝐿𝐵(𝑟∗))

𝑑𝑃𝐿𝐵

𝑑𝑟∗ (12)

See Appendix A.E for a proof.

Lemma 1 characterizes changes in the range of underlying shocks for which the lower bound will be

binding. Specifically, the cutoff inherits its properties from the lower bound probabilities that we analyzed

in Proposition 2. Therefore, when the natural rate of interest falls, Proposition 1 implies that the mean moves

away (towards) the median in the target (liquidity trap) equilibrium. Furthermore, the distance between

the median and a percentile lower than the probability of a binding lower bound moves away (towards) the

equivalent measure on the right side of the distribution in the target (liquidity trap) equilibrium.

The intuition for these changes in the asymmetries is that, in the target equilibrium, a lower value

of 𝑟∗ shifts the distribution of interest rates to the left, and the increased probability of hitting the lower

bound implies a more asymmetric distribution. When the interest rate is constrained more frequently, the

distribution of inflation shifts to the left (if 𝜆 > 0), and the left skewness of the distribution of inflation

increases. When 𝑟∗ is very low, a further reduction leads to less negative skewness such that the overall

relationship is U-shaped. In the vicinity of the liquidity trap equilibrium, skewness is negative and further

decreases with lower natural rates of interest. Figure 4 illustrates these effects for a range of values of 𝑟∗.

Taken together, our simple model yields several testable predictions regarding the responses of the

unconditional distributions of inflation and interest rates to a decline in the natural rate of interest. In all but
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one set of predictions, the responses of the distributions to a change in the natural rate are exactly opposite

in the target versus the liquidity trap equilibrium of our theoretical model. To test the predictions, we would

ideally like to obtain moments of the unconditional forecast densities of interest rates and inflation. The

approach taken in this paper to proxy the true forecast densities with measures we construct from options

prices on long-dated options. Long maturities help in mitigating the risk that short-term transition dynamics

do not materially affect the estimates.

III Empirical Analysis and Results

In the empirical analysis of this section, we compare forecast densities of interest rates and inflation derived

from financial data to the unconditional distributions from our model.7 We exploit the evidence of a sizable

decline in the natural rate of interest over the period that we study. We then examine whether the predictions

from the model that arise from a decline in 𝑟∗ match the experience of the U.S. economy. Therefore, we

assume that time variation in 𝑟∗ is the primary driver of changes in the data. As shown before, the model

delivers a rich set of predictions for the implied distributions for inflation and interest rates in response to a

permanent decline in 𝑟∗.

Note that we compute risk-neutral forecast densities that might contain risk premia. We think the analysis

is nevertheless revealing for two reasons. First, since the price of risk in the New Keynesian model is constant,

the derived moments for interest rates and inflation can be thought of as being under the forward measure

as well. Second, we treat the resulting variation in measured forecasts as primarily stemming from changes

in actual forecasts rather than from the variation in risk premia. In a robustness exercise, we provide direct

evidence from survey data that our results hold up for a more direct measures of physical expectations.

III.A Data and Construction of Forecasts for Interest Rates and Inflation

This section describes the options data and methodology we use to construct forecast densities for interest

rates and inflation. The methodology used in this paper for extracting forecast densities is borrowed from the

literature. We therefore keep the discussion brief and refer the interested reader to Appendix B for details.

For interest rates, we use a parametric approach (see, for example, Wright (2017)). We parameterize the

7A related strand of the literature uses options to study investors’ expectations about interest rates and inflation. Wright (2017)
surveys the literature on extracting probability distributions for interest rates. Fleckenstein, Longstaff and Lustig (2017) extract the
physical probability distribution from options data. Kitsul and Wright (2013) compute forecast densities of inflation options, and
Reis (2016) uses them to investigate unconventional monetary policy.
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underlying interest rate distribution by a mixture of two lognormal distributions. For inflation, we use the

approach in Kitsul and Wright (2013) that uses a nonparametric approach.

Under either approach, the goal is to estimate an underlying distribution 𝑔̂(𝑣𝜏) where, in our case, the

underlying variable is either the interest rate or rate of inflation at time 𝜏, i.e. 𝑣𝜏 = 𝑖𝜏 , 1+𝜋𝜏. The distribution

is estimated to best fit a series of option prices 𝑝𝑡(𝜏, 𝐾𝑛) (𝑛 = 1 . . . 𝑁) on day 𝑡 associated with different strike

prices 𝐾𝑛 and the date of maturity 𝜏. Since the payoff to a call option is given by 𝑋𝑛(𝑣𝜏) = max{𝑣𝜏 − 𝐾𝑛 , 0}
and that of a put option by 𝑋𝑛(𝑣𝜏) = max{𝐾𝑛−𝑣𝜏 , 0}, the value of the option by taking the expectations under

the risk-neutral distribution 𝑔(𝑣𝜏), i.e.,

𝑝𝑡(𝜏, 𝐾𝑛) = 𝑒−𝑦𝑡 ,𝜏(𝜏−𝑡)E𝑔[𝑋𝑛(𝑣𝜏)] = 𝑒−𝑦𝑡 ,𝜏(𝜏−𝑡)
∫

𝑋𝑛(𝑣𝜏)𝑔(𝑣𝜏)𝑑𝑣𝜏. (13)

𝑦𝑡(𝜏) thereby denotes the discount rate between times 𝑡 and 𝜏.

The risk-neutral distribution 𝑔(𝑣𝑡) is taken under the forward measure and can thus contain risk premia.

It differs from the risk-neutral measure in that payoffs are discounted with a (𝜏 − 𝑡)-period bond instead of

the future short-term interest rate (see Kitsul and Wright (2013)).

With a set of prices 𝑝𝑡(𝜏, 𝐾𝑛) for each day 𝑡, we extract a forecast density for each day that matches the

prices and thus obtain a time series of forecast densities on a daily frequency. That is, on each day we extract

the market-implied forecast densities for interest rates and inflation at various horizons. Since we compare

these forecast densities to the unconditional distributions in our theoretical model, we primarily focus on

long-term forecasts.

III.A.1 Forecast densities for interest rates

We obtain a daily data series of caps on the London Interbank Offered Rate (LIBOR) from Bloomberg that is

consistently available between January 1, 2007, up to February 28, 2020. All empirical tests with our estimated

forecast densities are carried out over this sample period. The main advantage of using these options is the

long horizon of forecasts. An interest rate cap is a series of consecutive European call options, or “caplets,” on

interest rates that provide the holder with protection against rising interest rates over the life of the contract.

For example, the holder of a 10-year interest rate cap on three-month LIBOR will receive a payment at the

end of every three-month period over the following 10 years that LIBOR exceeds the strike at the beginning

of the same three-month period. If the cap is written for a period of 10 years, and 𝜏 is quarterly, there are 39

potential payoffs made at quarterly horizons starting in month six up to 40 quarters out. The value of the cap
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is the sum of all its caplets.

Interest rate caps are reasonably liquid with liquidity declining at longer horizons. The contracts are

traded over-the-counter but are among the most commonly traded OTC interest rate derivatives. We use caps

of strikes 1 through 14 percent, in terms of LIBOR, and horizons of up to 10 years. We compute the prices of

caplets by subtracting a shorter maturity cap from the price of a cap with longer maturity.

We extract forecast densities for the three-month interest rate seven years out. Therefore, we parameterize

the underlying risk-neutral distribution by a mixture of two lognormal distributions

𝑔̂ (𝑖𝑡 ; 𝜛) = 𝜔𝜌
(
𝑖𝑡 ;𝜇1 , 𝜎1

) + (1 − 𝜔) 𝜌 (
𝑖𝑡 ;𝜇2 , 𝜎2

)
(14)

where𝜌
(
𝑖𝑡 ;𝜇𝑖 , 𝜎𝑖

)
= 1√

2𝜋𝜎𝑖𝑡
exp

(
− 1

2
(log 𝑖𝑡−𝜇𝑖)2

𝜎2
𝑖

)
and𝜛 = {𝜙, 𝜇1 , 𝜎1 , 𝜇2 , 𝜎2}. 𝑖𝑡 refers to the three-month (LIBOR)

interest rate in the future. With the two means and standard deviations, as well as the mixing weight 𝜔, there

are five parameters we can use to fit the distribution. From this distribution, we compute implied prices via

equation (13).

For a given day, we extract caplet prices from underlying caps for different strike prices. We then find

parameter combinations for the distribution to minimize the fitting errors between observed prices and

implied prices. As a result, we obtain long-term forecast densities on a given date. We repeat the procedure

for each day in our sample and thus extract a time series of forecast densities. Appendix B.A contains details.

III.A.2 Inflation forecasts

We collect daily data on inflation caps and floors from Bloomberg. An inflation cap pays if the average

(annually compounded) consumer price index (CPI) inflation exceeds the strike rate. Trading in inflation

caps started in late 2009 in over-the-counter markets and started to become reasonably liquid by 2011. Because

liquidity sharply dropped and the market trading essentially ceased by the end of 2016, our sample period

ranges from April 1, 2011, to December 31, 2016. We focus on contracts of maturities five and 10 years to

extract the five-year forward rate five years out. We complement our analysis of forecast densities for inflation

with estimates of forward rates from inflation swaps. Appendix B.B contains details about the data and the

construction of forward rates and forecast densities.

The seller of a zero-coupon inflation cap promises to pay a fraction max{(1 + 𝜋𝑡 ,𝜏)𝜏−𝑡 −(1 + 𝐾𝑛)𝜏−𝑡 , 0} of a

notional underlying principal as a single payment in 𝜏 − 𝑡 years time, where 𝜋𝑡 ,𝜏 denotes the average annual

total CPI inflation from 𝑡 to 𝜏 and 𝐾𝑛 denotes the strike rate of the cap. Kitsul and Wright (2013) show that
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inflation forecasts based on these contracts deliver economically reasonable results.

To extract forecast densities for inflation, we follow the methodology in Kitsul and Wright (2013) and do

not specify a functional form for the underlying distribution. We apply this method to both five-year and

ten-year inflation options. Specifically, we use quotes on inflation caps at different strike prices to find the

probability density function for five-year and 10-year inflation consistent with observed prices, as given in

equation (13). We therefore approximate implied volatilities from both caps and floors across strike prices

at a given maturity by local regressions. In a last step, we derive the implied forecast density based on the

result that the second derivative of the price of a call option with respect to the strike price represents the

risk-neutral probability density function under the forward measure.

We convert our estimates of the distributions for five-year and 10-year inflation rates to five-year forward

rates five years out. We therefore use a methodology that converts percentiles of the five-year and 10-year

forecast densities into percentiles of the forward rate distribution. This methodology delivers exact results if

inflation rates follow an AR(1) process, including special cases of i.i.d. shocks and random walks. A random

walk for year-over-year inflation rates has been found to be a reasonable description of the time series for

inflation (see Atkeson and Ohanian (2001) and Faust and Wright (2013)). Appendix B.B shows details about

the exact calculations for forward rates and proves that the methodology is exact for AR(1) processes. Note

that this methodology does not need to be implemented for interest rates, since the payouts for the underlying

options contracts are already constructed as forward rates.

III.B The Decline in the Natural Rate of Interest

Considerable empirical evidence suggests that the longer-run natural rate of interest in the United States has

declined notably over the past several decades (Williams (2017)). Figure 5 shows monthly estimates of the

natural interest rate for 1998 to 2020, an updated time series from the model in Christensen and Rudebusch

(2019). Consistent with other estimates in the literature, measured 𝑟∗ reached historically low levels in recent

years and does not show signs of moving back to previously normal levels. There appears to be a break

in the series of estimates around the end of 2011, with the mean estimate dropping from 1.21 percent over

2007-2011 to 0.56 percent over 2012-2020.

To assess statistical significance of the decline in the natural rate of interest, we test the following null

hypothesis.

Null hypothesis: The natural rate of interest 𝑟∗ did not change across the two subsamples of 2007-2011 and 2012-2020.

18



To test this null hypothesis, we compute the t-statistic

𝑡 =
𝑟∗ 𝑙 − 𝑟∗𝑒√

Var [𝑟∗ 𝑙 − 𝑟∗𝑒]
,

where 𝑟∗𝑒 and 𝑟∗𝑙 refer to the average of daily estimates of 𝑟∗ over the early and late subsamples, respectively.

The standard deviation in the denominator corrects for serial correlation in the sample (see Wilks (1997) and

Appendix C.A). The null hypothesis that 𝑟∗ has the same means across the two subsamples is clearly rejected

at the 1% level with a t-statistic of -11.41.

We assume that a change in the natural rate of interest is permanent. Standard estimates of the nat-

ural rate in the literature correspond to the low-frequency component of interest rates that reflects highly

persistent influences that are exogenous to the standard New Keynesian model, such as trend productivity

growth, demographics, and global demand for safe assets.8 In particular, the estimates reported here, from

Christensen and Rudebusch (2019), correspond to real interest rates expected to prevail five to 10 years in

the future. Similarly, Holston, Laubach, and Williams (2017) show that their estimates of the natural rate of

interest are nonstationary. For a more detailed discussion see Williams (2017).

Our theoretical model of Section II suggests that a decline in the natural rate of interest affects the

distributions of inflation and nominal interest rates. Rational forecasts should reflect these changes to the

distributions. Therefore, we use the decline in the natural rate of interest as a source of variation to study the

behavior of forecast densities.

III.C Implied Distribution for Interest Rates

The upper panel in Figure 6 shows a 20-day moving average of daily estimates of long-term forecast densities

represented by percentiles. The figure confirms that there is considerable uncertainty, with the 97.5th

percentile ranging up to interest rates above 10 percent while confirming the presence and importance of

a lower bound at the lowest percentiles. The green line in the upper panel of Figure 6, representing the

bound on the 15th percentile, inches towards the lower bound during the sample period. The 2.5th percentile

consistently lies at the lower bound and the mass at the lower bound is increasing over time as the natural

rate falls. Both the upper panel and the lower left panel in Figure 6 demonstrate that the average long-

term forecast of interest rates has decreased over time. The lower right-hand panel shows the difference of

8See, for example, Laubach and Williams (2003), Kiley (2015), Lubik and Matthes (2015), Johannsen and Mertens (2016), Holston,
Laubach and Williams (2017), Crump, Eusepi and Moench (2017), and Del Negro et al. (2017). Estimates from these models for 𝑟∗
show a decline consistent with that from the measure used in this paper.
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percentiles on the upper end of the distribution (blue line), measured as the difference between the 97.5th

and 50th percentiles, as well as on the lower end (red line) measured as the difference between the 50th and

2.5th percentiles. The difference in percentiles on the upper end stays consistently above the one on the lower

end with the gap widening towards the end of the sample indicating an increasing asymmetry.

Table 1 summarizes our findings with regards to forecast densities for interest rates. It displays various

features consistent with the predictions of the target equilibrium in our theoretical model. First, average

interest rate forecasts fall over the later subsample during which the natural rate of interest was lower.

Second, the median fell by slightly more than the mean such that the distribution became more asymmetric.

Third, with a higher mass at the lower bound, the variance fell over the latter part of the sample. And fourth,

the skewness of interest rates increased over that subsample.

Table 1: Summary of long-term interest rate moments

2007-2011 2012-2020
Mean 4.80% 2.88%***
Median 4.54% 2.37%***
Std. deviation 5.54% 3.96%***
Skewness 0.16% 0.45%***

Difference in moments statistically significant at * 10%, ** 5%, *** 1% level (adjusted for serial correlation).

The patterns in Table 1 are consistent with the target equilibrium of our theoretical model and at odds

with the liquidity trap equilibrium. A fall in the natural rate of interest makes a given stance of policy less

effective at boosting the economy. Therefore, the central bank would find it optimal to lower the policy rate in

the target equilibrium. As a result, the average interest rate falls and the probability of a binding lower bound

increases. This experiment allows us to distinguish between the two different equilibria. In the liquidity trap

equilibrium where interest rates are mostly constrained by the lower bound, a fall in the natural rate would

increase average interest rates.

Consistent with the target equilibrium, the skewness of interest rates is positive. In our model, the two

equilibria differ in the direction in which the skewness of interest rates changes when the natural rate of

interest declines. In line with the target equilibrium, Table 1 shows an increase in the skewness during the

second part of the sample. This view is consistent with the lower bound truncating the range of possible

policy rates. Furthermore, this trend suggests that the emerging asymmetry of the distribution is an important

factor in the decrease of the variance of forecast densities.
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All of these changes in the moments of the forecast densities for interest rates are highly statistically

significant. This statistical significance is derived from a test that investigates the null hypothesis that a

given moment has not changed across the two subsamples. We perform a one-tailed t-test, adjusted for serial

correlation as detailed in Appendix C.A, for each moment. The null hypothesis can be rejected at the 1%

level, as highlighted in Table 1.

To summarize, the empirical evidence suggests that the lower bound on interest rates has a sizable effect

on expectations of market participants. All the pieces of empirical evidence overwhelmingly suggest that the

economy is in the target equilibrium region. All measured changes due to the decrease in the natural rate of

interest are at odds with the behavior of interest rates in the liquidity trap equilibrium.

III.D A Lower Bound Indicator

In our theoretical model, the expected interest rate wedge is the driving force behind average interest rates

and inflation as well as asymmetries of their distributions. Equation (10) makes this link precise for average

inflation. In the following, we refer to this statistic as the lower bound indicator. The lower bound indicator is

defined as how much more the central bank would have liked to cut interest rates on average,

ℐ𝑡 = E[Δ𝑖𝑡]. (15)

Guided by the theoretical insights, we obtain a measure of the lower bound indicator ℐ̂𝑡 for each month from

the data. Consistent with our theoretical model when we use normal distributions for shocks, we assume

a generalized rectified Gaussian distribution for interest rates (see Palmer, Hill and Scheding (2017)). This

distribution truncates the left tail of the normal distribution and lumps the truncated mass at the lower

bound. We estimate the mean, standard deviation, and lower bound on a monthly frequency.9 Using these

three estimates for the forecast density observed within each month, we generate a time series of the lower

bound indicator ℐ̂. Details about the construction of the lower bound indicator are listed in Appendix C.B.

Figure 7 shows that the lower bound indicator captures two measures of asymmetry, the difference

between mean and median, standardized by the standard deviation, as well as the skewness in interest rate

forecast densities. The regression coefficients of the lower bound indicator on the natural rate of interest

and the asymmetry of forecast densities are significant at the 1% level, using Newey-West adjusted standard

9An alternative specification where we impose a constant lower bound and only fit the mean and variance leads to very similar
results.
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errors. This is not a test of the theory but rather shows the information contained in the lower bound indicator.

Figure 8 demonstrates that lower estimates of the natural rate of interest are associated with elevated

levels of the lower bound indicator. Since asymmetries in interest rates increase with lower levels of 𝑟∗ in the

target equilibrium, they should also increase with the lower bound indicator. This hypothesis is borne out

by the data with a statistical significance at the 1% level. Since the sign of the relationship would be reversed

in the liquidity trap equilibrium, these findings provide further evidence in favor of the target equilibrium.

Taken together, we conclude that the theoretically motivated lower bound indicator captures the asym-

metries of interest rate distributions due to the lower bound. We can therefore use it to test the theoretical

predictions of our model and assess statistical significance of the results. Performing the test for the natural

rate of interest shows that there is a significant link between declines in 𝑟∗ and the lower bound indicator.

III.E Implied Distribution for Inflation

The previous two sections demonstrate that the evolution of the distribution of interest rates are consistent

with the model of Section II. Here, we extend the empirical analysis to the theoretical predictions for inflation.

As for interest rates, the time series of percentiles for forecast densities of inflation provide a first look at

whether the predictions of the model are consistent with the data. The upper panel in Figure 9 shows the

time series of long-term inflation forecast densities, again plotted as a 20-day moving average of a five-year

forward rate starting in five years. Compared to interest rate forecasts, the distribution looks strikingly

symmetric. As shown in the lower left-hand panel in Figure 9, average inflation forecasts decreased during

the sample period. The right-hand side shows the difference between the 97.5th and 50th percentiles versus

the difference between the 50th and 2.5th percentiles. The distribution became slightly more asymmetric

during the sample period. This can be seen from the graph where the red line lies above the blue line in the

later part of the sample. Overall however, both lines slope downwards, which is at odds with the theory but

attributable to a decrease in the variance.

Table 2 summarizes the moments for subsamples. Consistent with the model predictions for the target

equilibrium, the mean of inflation declines, falling from 2.60 percent in the 2011 sample to 2.42 percent for

2012-2016. The density of inflation is slightly skewed to the left in both subsamples. The broader message

of a decline in average inflation forecasts is consistent with the target equilibrium of our theoretical model.

We also test this prediction from our model using five-year forward rates on inflation five years out that we

obtain from inflation swaps. Consistent with estimates from caps and floors, the forward rate for inflation
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fell during the later subsample.

Table 2: Summary of inflation moments

Forecast Inflation
densities swaps

2011 2012-2016 2007-2011 2012-2020
Mean 2.60% 2.42% 2.96% 2.45%***
Median 2.62% 2.43%
Std. deviation 2.28% 1.44%***
Skewness -0.04% -0.05%

Difference in moments statistically significant at * 10%, ** 5%, *** 1% level (adjusted for serial correlation).

Table 2 also shows that the variance of expected inflation fell in the later part of the sample. This does

not appear to be related to the decline in the natural rate of interest, but instead appears to be a reversal of

unusually high uncertainty about inflation during and directly following the Great Recession. The skewness

of inflation is negative in both subsamples, consistent with the theory. Its decline during the later subsample

is consistent with the prediction of both equilibria. The same t-test as for interest rates indicates statistically

significant results for inflation swaps. There, the drop in forward rates for inflation from 2.96 percent to 2.45

percent is significant at the 1% level. The time series for forecast densities for inflation is too short to have a

sufficient amount of power to test the difference in moments across the two subsamples.

Figure 10 shows the link between the lower bound indicator and inflation. The left panel shows that higher

levels of the lower bound indicator are, on average, associated with lower levels of inflation, as predicted by

the target equilibrium of our theoretical model. The regression coefficient is significant at the 5% level, using

Newey-West adjusted standard errors. The right panel shows again that the changes in the asymmetry of the

inflation distribution are less pronounced than for the interest rate distribution. The skewness of inflation

is negative and decreases with higher levels of the lower bound indicator, consistent with the more negative

skewness in the later subsample in Table 2. All of these facts can be reconciled with the theory where the

skewness is negative and U-shaped, and thus ambiguous on the direction, in the target equilibrium.

Consistent with this evidence from forecast densities, Figure 11 shows a decrease in the swaps-implied

five-year forward rate five years ahead for higher values of the lower bound indicator. The regression is in

line with the left panel in Figure 10 and statistically significant at the 5% level.

To check whether risk or liquidity premia are the primary drivers of the results, we perform two robustness

checks. Section IV.A shows that the same results emerge for more liquid, shorter-term options for interest
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rates. In section IV.B, we obtain survey evidence and show that the observed patterns in the changes of

forecast densities for inflation and interest rates are unlikely to stem from changes in risk premia alone. The

evidence presented there suggests that physical expectations seem to have played a substantial role in the

pricing of interest rate and inflation derivatives.

III.F Further Evidence on the Link between Forecast Densities and 𝑟∗

The mechanism highlighted in this paper links changes in the natural rate of interest to changes in the

distribution, and thus forecast densities, of interest rates and inflation. Thus, the most natural test that

also allows us to assess statistical significance of these relationships is to run regressions of moments of the

forecast densities on 𝑟∗. To this end, we use daily observations of 𝑟∗ and forecast densities for the entire time

series over which we obtain forecast densities. We run regressions of the form

𝑚𝑡 = 𝛽0 + 𝛽1𝑟∗𝑡 + 𝜀𝑡 , (16)

where 𝑚𝑡 refers to a moment of the interest rate or inflation forecast densities.

Table 3: Regressions of long-term interest rate and inflation moments on 𝑟∗

Dependent variable:
mean skew mean skew mean

interest interest inflation inflation inflation
rate rate (densities) (densities) (swaps)

𝑟∗ 2.882∗∗∗ −0.434∗∗∗ 0.404 -0.068∗∗ 0.700∗∗∗
(0.683) (0.071) (0.348) (0.028) (0.230)

cons. 1.285∗∗∗ 0.690∗∗∗ 2.184∗∗∗ -0.006 2.077∗∗∗
(0.478) (0.058) (0.316) (0.022) (0.277)

R2 0.789 0.450 0.076 0.040 0.422

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Using Newey-West standard errors.

Table 3 shows the results of these regressions for long-term interest rates. Regression coefficients for

interest rate moments are statistically significant at the 1% level, using Newey-West adjusted standard errors.

The fact that the regression coefficient for average forecast densities is above one is consistent with the target

equilibrium as well. As we established earlier, average forecasts for interest rates fall more than one-for-one

with the natural rate, as indicated by the coefficient of 2.88 on 𝑟∗. Also consistent with the target equilibrium,
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the skewness of interest rates rises when 𝑟∗ falls, although this finding is statistically not significant.

The regression coefficients for inflation forecast densities are also in line with the target equilibrium.

Average inflation falls less than one-for-one with the natural rate, whether measures were derived from

forecast densities or swaps. While there is limited power due to the relatively short sample for forecast

densities for inflation, the regression coefficient for inflation swaps is significant at the 1% level. The skewness

of inflation displays a negative regression coefficient on 𝑟∗, meaning that the skewness tends to become less

negative when the natural rate of interest falls. While this estimate points to a different comovement on a

daily frequency than the evidence from the two subsamples and the lower bound indicator, it is consistent

with the target equilibrium of our theoretical model where the relationship between the skewness of inflation

and 𝑟∗ is U-shaped.

III.G Discussion

The results speak very clearly: Qualitatively, the target equilibrium of the New Keynesian model is consistent

with the changes in forecast densities considered here. We do not find any evidence to support the view that

the U.S. economy was in a liquidity trap in the aftermath of the Great Recession.

Two questions arise from our analysis of inflation expectations. First, why are the quantitative effects on

inflation expectations so small, despite market participants appearing to place over 30 percent probability of

policy being at the lower bound in the future? Second, why is there no convincing evidence of significant

asymmetry in the distribution of inflation beliefs, even with very low expectations of future interest rates?

For comparison, Kiley and Roberts (2017) find that, with a 1 percent natural rate of interest, the lower bound

constrains policy 38 percent of the time, and the distribution of inflation is highly skewed to the left with a

mean that is 0.8 percentage point below target.

There are a number of potential explanations for this disconnect between the theoretical predictions and

the evidence. One possibility, of course, is that the theoretical model does not capture the link between

interest rates and inflation well during times when the lower bound is a constraint. A second possibility is

that market participants expect the Federal Reserve or other parts of the government to stimulate the economy

when the lower bound binds. A number of tools can be used to combat low inflation even when interest

rates are constrained by the lower bound. First, the central bank can try to commit to future actions, for

example, using forward guidance. In theory, this can be a powerful tool that mitigates the effects of the lower

bound (for example, see Reifschneider and Williams (2000), Eggertsson and Woodford (2003), Adam and Billi
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(2006), and Kiley and Roberts (2017)). Second, the central bank can engage in forms of quantitative easing by

purchasing longer-term government securities or other assets (see Chung et al. (2012), Reifschneider (2016),

and Wu and Zhang (2019)). Third, the fiscal authority can provide stimulus to the economy (Williams (2010)).

In model-based analyses that incorporate these additional policy tools, the effects of the lower bound on the

distribution of inflation tend to be relatively modest.

Our results are related to the findings of Swanson and Williams (2014a) and Swanson and Williams (2014b),

who also find clear evidence that the lower bound on interest rates affects the behavior of expectations for

future short-term interest rates but not for longer-term interest rates or the exchange rate. One interpretation

of those findings is that market participants expect the central bank to use quantitative easing to push down

long rates when short rates are constrained by the lower bound.

IV Robustness

IV.A Liquidity in Options Data

For robustness, we look at short-term forecast densities for interest rates based on Eurodollar options. These

data have the advantage that the time series is available over a longer time period and liquidity for these

contracts tends to be high. With the forecast horizon of 24 months we use here, the data have the disadvantage

that the information set of investors includes a nontrivial amount of information about the short-run dynamics

of interest rates. Therefore, these short-term forecast densities do not measure the unconditional distribution

of interest rates as cleanly as our long-term forecasts.

Nevertheless, these forecasts serve well as a robustness check. With a sample period from April 4, 2002,

until February 28, 2020, we extend our analysis to other time periods. Of particular interest is the time

period between 2002-2004 when nominal interest rates neared the lower bound. Analogously to long-term

forecast densities, we parameterize the distribution by a mixture of two lognormal distributions. A detailed

discussion of the construction of forecast densities can be found in Appendix B.C.

We start with an analysis of subsamples analogous to those in Section III.C. Consistent with the evidence

presented before, forecast densities for short-term interest rates shifted down when the natural rate of interest

fell. This result can be seen by comparing the first two columns in Table 4. The fall in the median and mean

are again statistically significant at the 1% level. The skewness is again positive and rose when the natural

rate of interest fell.
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Table 4: Summary of moments from short-term interest rate forecast densities

2002-2011 2012-2020 2002-2004 2005-2007 2009-2016 2017-2020
Mean 3.41% 1.57%*** 3.73 4.75 1.35 2.25
Median 3.05% 1.36%*** 3.47 4.78 1.07 2.28
Std. deviation 3.04% 1.36%*** 3.33 3.73 1.52 1.41
Skewness 0.27% 0.32%* 0.29 -0.04 0.53 -0.04

Difference in moments statistically significant at * 10%, ** 5%, *** 1% level (adjusted for serial correlation).
Significance tests only computed between first two columns.

Prior to the Great Recession the probability of hitting the lower bound on interest rates was considered

to be small. These forecasts have changed substantially as average interest rates declined. As a result, the

forecast densities have become asymmetric. These predictions are in line with the target equilibrium of our

theory and at odds with the liquidity trap equilibrium.

Table 4 also shows moments of short-term forecast densities for interest rates for various subsamples. In

particular, early in the 2000s, average forecasts were around 3.73 percent when the federal funds rate was

close to the lower bound. In the mid-2000s, before the Great Recession, average forecasts had risen relative

to previous levels.

The time series for short-term forecast densities in Figure 12 confirms the finding that investors put a

significant weight on the influence of the lower bound binding after the Great Recession, particularly for the

time between 2012 and 2014. After the liftoff of the federal funds rate, the one-year-ahead forecast contains

the information that interest rates are unlikely to be cut over this time horizon. As can be seen in the later

part of the sample, the probability of a binding lower bound declines significantly.

The moments in the raw data for short-term forecast densities are also consistent with the evidence in

Section III.C. The lower left panel of Figure 12 shows a decline in the mean during the time the natural rate of

interest decreased, consistent with the picture in long-term forecasts. The graph in the lower right-hand panel

shows the increase in asymmetry with the onset of the Great Recession, which trended up until the peak in

early 2012. The skewness then plateaued between 2012 and 2014 when the probability of a binding lower

bound was high. With the economic recovery and an upwards shift in the forecast density, the skewness

came down sharply.

Table 5 reports regressions of the form in equation (16) as in Section III.F. They show that, consistent

with evidence for the longer term, average forecasts for interest rates in the near term on average fell with

the natural rate of interest while the distribution became more symmetric. The table also shows that the
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distribution shifted down at every percentile. The coefficients and 𝑅2 are thereby larger for higher percentiles.

The lower percentiles were constrained by the lower bound for some time during the sample, thus limiting

the explanatory power for those percentiles.

Table 5: Regressions of short-term interest rate moments on 𝑟∗

Dependent variable:
mean skew 2.5 5 15 50 85 95 97.5

𝑟∗ 2.269∗∗∗ −0.024 0.856∗∗∗ 0.991∗∗∗ 1.369∗∗∗ 2.121∗∗∗ 3.174∗∗∗ 3.995∗∗∗ 4.497∗∗∗
(0.713) (0.101) (0.144) (0.207) (0.444) (0.724) (0.426) (0.366) (0.264)

cons. 0.398 0.321∗∗ −0.246∗∗∗ −0.208 −0.045 0.360 0.774 1.151∗∗ 1.418∗∗∗
(0.715) (0.130) (0.082) (0.135) (0.373) (0.723) (0.626) (0.470) (0.301)

R2 0.422 0.001 0.211 0.208 0.206 0.324 0.553 0.732 0.801

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Using Newey-West standard errors.

Taken together, the empirical evidence based on Eurodollar options confirms the previously discussed

empirical evidence. In addition, it shows that the broad message from the theoretical model applies to the

period prior to the Great Recession as well. However, this latter point is subject to the caveat that short-term

densities vary more with the current state of the economy than long-term forecasts.

IV.B Robustness to Physical versus Forward Measure: Survey Data

A common concern with using financial market data is that estimates might be driven by changes in risk

premia rather than changes in expectations. They can, instead, reflect movements in risk premia. To address

this concern, we obtain data from the Survey of Primary Dealers. This survey collects information eight times

per year from primary dealers. Among other questions, the survey asks about expectations for the average

federal funds rate over the next 10 years and the long-run federal funds rate. It also collects information

about the distribution of inflation. Appendix C.C contains details about the data used in this section.

We first investigate the link between average expected federal funds rates under the physical measure

and our estimates of the natural rate of interest. We therefore use survey responses on the average federal

funds rate over the following 10 years. Our sample period ranges from June 2012 until March 2020. We run

a regression with the mean of the responses as the dependent variable and the estimate of the natural rate of

interest on the survey date as the independent variable, analogous to regressions in Section III.F.

Column 1 of Table 6 shows the estimates from the regression. The regression coefficient shows that
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average federal funds rates fell statistically significantly (at the 5% level) with 𝑟∗. It suggests that decreases

in the natural rate of interest comove close to one-for-one with estimates of the federal funds rate over the

following 10 years. Column 2 studies the analogous link between the long-run federal funds rate and 𝑟∗. The

results for the analysis are consistent with those for the 10-year average of the federal funds rate. Both results

are only consistent with the target equilibrium and at odds with the liquidity trap equilibrium.

Table 6: Regressions of Survey Responses from the Survey of Primary Dealers on 𝑟∗

Dependent variable:
10-year FFR Long-run FFR inflation expect.

𝑟∗ 0.887∗∗ 0.914∗ 0.051∗∗
(0.390) (0.535) (0.023)

cons. 2.012∗∗∗ 2.705∗∗∗ 2.088∗∗∗
(0.286) (0.450) (0.025)

R2 0.365 0.019 0.114

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Using Newey-West standard errors.

For inflation, we collect answers about the forecast densities of the five-year five-year forward rate of CPI

inflation from the Survey of Primary Dealers. The sample period ranges from January 2011 until March 2020.

We compute the average expected forward rate and run the regression analogous to those for interest rates.10

Column 3 shows the regression results for inflation. Average forecasts for inflation fall under the physical

measure just as they did under the forward measure, consistent with the target equilibrium in our theoretical

framework. The regression coefficient, thereby, is statistically significant at the 5% level.

In sum, survey evidence is consistent with the findings from derivatives prices suggesting that a significant

portion of options prices are driven by changes in physical expectations when the natural rate of interest

declines.

V Conclusion

This paper assesses the impact of a lower bound on the unconditional distribution of interest rates and

inflation. We study forecast densities for interest and inflation rates implied by options from U.S. financial

markets during a time when the natural rate of interest fell. We compare the changes in these forecast

10Further details on the construction of the dependent variables are listed in Appendix C.C.
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densities to those predicted by a theoretical model. We find clear evidence that financial market participants

incorporate the presence of a lower bound on interest rates into their forecasts.

In our model, two equilibria can arise: In a target equilibrium, the central bank largely succeeds in

stabilizing the economy, while inflation in a liquidity trap equilibrium fluctuates in response to shocks. We

analytically derive the relationships between the natural rate of interest and the unconditional distributions

of interest rates and inflation.

Our empirical evidence strongly supports the hypothesis that the experience of the U.S. economy after

the Great Recession is well in line with the target equilibrium of the New Keynesian model. That said, we

find quantitatively modest effects on beliefs about the behavior of inflation as measured by options-implied

distributions of future inflation.
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A The New Keynesian Model with a Lower Bound

A.A Model Setup

The standard New Keynesian model is given by equations (1) and (2). Solving these equations yields the

equation for inflation

𝜋𝑡 − 𝐸𝑡𝜋𝑡+1 = 𝜇𝑡 + 𝜅(𝜖𝑡 − 𝛼(𝑖𝑡 − 𝐸𝑡𝜋𝑡+1 − 𝑟∗)) + 𝛽𝐸𝑡(𝜋𝑡+1 − 𝜋𝑡+2). (17)

Under optimal monetary policy with discretion and i.i.d. shocks, the final term is zero, so we are left with

the equation:

𝜋𝑡 = (1 + 𝛼𝜅)E𝑡𝜋𝑡+1 + 𝜇𝑡 + 𝜅𝜖𝑡 − 𝛼𝜅(𝑖𝑡 − 𝑟∗), (18)

which is equation (4) in the main body of the paper.

To derive the Fisher equation, take the unconditional expectation of equation (18) and observe that

E𝜋𝑡+1 = E𝜋𝑡 = E𝜋 due to the temporary nature of shocks that does not require state variables for the model.

Solving for inflation expectations results in the Fisher equation

E𝜋𝑡 = E𝑖𝑡 − 𝑟∗.

Plugging in that 𝑖𝑡 = i𝑡 + Δ𝑖 and using the fact that Ei𝑡 = 𝑟∗ +
(
1 + 1

𝛼𝜅 − 𝜆𝛽
𝛼𝜅(𝜅2+𝜆)

)
E𝜋𝑡 , we get

E𝜋 = − 𝛼𝜅(𝜅2 + 𝜆)
𝜅2 + (1 − 𝛽)𝜆EΔ𝑖.

A.B Proof of Proposition 2

Proof: As defined in the main text, the cutoff for the shocks at which the lower bound starts to bind, 𝜃̄𝐿𝐵(𝑟∗),
is the realization of the combined shock such that the unconstrained policy coincides with the lower bound

i𝑡 = 𝑖𝐿𝐵, i.e. 𝜃̄𝐿𝐵(𝑟∗) = 𝑖𝐿𝐵 − 𝑟∗ −𝜓E𝜋. Furthermore, recall the lower bound for the shock 𝜃𝑡 is 𝜃 ∈ R−∪ {−∞}.
Since there are no endogenous state variables, we drop the time subscripts for a more concise notation.

We start from the definition of the probability of a binding lower bound

𝑃𝐿𝐵 =
∫ 𝑖𝐿𝐵−𝑟∗−𝜓E𝜋

𝜃
𝜙(𝜃)𝑑𝜃.
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Using this definition, we compute its derivative via Leibniz’s rule

𝑑𝑃𝐿𝐵

𝑑𝑟∗ = −
(
1 + 𝜓

𝑑E𝜋
𝑑𝑟∗

)
𝜙(𝜃̄𝐿𝐵(𝑟∗)).

Now combine the previous expression with equation (20)

𝑑𝑃𝐿𝐵

𝑑𝑟∗ = −
(
1 − 𝜉

𝑑EΔ𝑖
𝑑𝑟∗

)
𝜙(𝜃̄𝐿𝐵(𝑟∗)). (19)

Having linked the change in the probability to changes in the expected interest rate wedge, we show that it

can be linked instead to the probability of a binding lower bound directly.

The following lemma links changes in the expected interest rate wedge to the probability of a binding

lower bound.

Lemma 2 (Expected wedge for nominal interest rates)

𝑑E[Δ𝑖]
𝑑𝑟∗ =

𝑃𝐿𝐵

𝜉𝑃𝐿𝐵 − 1

whenever 𝑃𝐿𝐵 ≠ 1
𝜉 .

Proof: Applying Leibniz’s rule to the average wedge in interest rates, we get

𝑑E[Δ𝑖]
𝑑𝑟∗ =

(
−1 − 𝜓

𝑑E𝜋
𝑑𝑟∗

) ∫ 𝜃̄𝐿𝐵(𝑟∗)

𝜃
𝜙(𝜃)𝑑𝜃 = −𝑃𝐿𝐵

(
1 + 𝜓

𝑑E𝜋
𝑑𝑟∗

)
.

Using (20), write the previous condition as

(
1 − 𝜉𝑃𝐿𝐵

) 𝑑E[Δ𝑖]
𝑑𝑟∗ = −𝑃𝐿𝐵

and the lemma follows. □

Plugging the equation from Lemma 2 into equation (19) proves the first part of the proposition. The

critical value is obtained by setting the second factor on the left-hand side to zero. □

As a direct consequence of Proposition 1, we show that inflation expectations and expected wedges in

nominal interest rates have to change in opposite directions in response to a change in 𝑟∗.

Corollary 1 (Change in inflation expectations)
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𝜓
𝑑E𝜋
𝑑𝑟∗ = −𝜉 𝑑EΔ𝑖

𝑑𝑟∗ . (20)

Proof: Differentiating equation (10) from Proposition 1 with respect to the natural real rate of interest, we

obtain Corollary 1. □

A.C Proof of Proposition 3

Proof: To prove Proposition 3, we start from the decomposition of nominal interest rates into the shadow

rate and the interest rate wedge
𝑑E𝑖
𝑑𝑟∗ =

𝑑E(Δ𝑖 + i)
𝑑𝑟∗ =

𝑑EΔ𝑖
𝑑𝑟∗ + 𝑑Ei

𝑑𝑟∗ .

Now we use the definition of the shadow rate i and take unconditional expectations on both sides to get

𝑑Ei
𝑑𝑟∗ = 1 + 𝜓

𝑑E𝜋
𝑑𝑟∗ = 1 − 𝜉

𝑑EΔ𝑖
𝑑𝑟∗ ,

where the second equation follows from Corollary 1. Plugging this expression into the decomposition for

the nominal rate results in
𝑑E𝑖
𝑑𝑟∗ = 1 + (1 − 𝜉)𝑑EΔ𝑖

𝑑𝑟∗ .

Replace the change in the expected interest rate wedge from Lemma 2 and the proposition emerges. □

A.D Proof of Proposition 4

Proof: Use Corollary 1 and replace the expected interest rate wedge by the expression from Lemma 2.

Proposition 4 emerges. □

A.E Proof of Lemma 1

Proof: Start from the definition of the probability of a binding lower bound

𝑃𝐿𝐵 =
∫ 𝜃̄𝐿𝐵(𝑟∗)

𝜃
𝜙(𝜃)𝑑𝜃
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and differentiate the expressions on both sides with respect to 𝑟∗ using Leibniz’s rule

𝑑𝑃𝐿𝐵

𝑑𝑟∗ =
𝑑𝜃̄𝐿𝐵(𝑟∗)
𝑑𝑟∗ 𝜙(𝜃̄𝐿𝐵(𝑟∗)).

As a result, the lower bound probability and the cutoff change in the same direction. □

B Appendices on Construction of Forecast Densities

B.A Extraction of Long-Term Forecast Densities for Interest Rates

This section describes the details of the algorithm for the extraction of long-term forecast densities for interest

rates used in this paper. It is analogous to other approaches used in the literature (see, e.g. Wright (2017)). To

be able to use equation (13) for option prices, we need to obtain a discount rate 𝑦𝑡 ,𝜏 as well as data on option,

or caplet, prices.

We start with the discount rate. Since we obtain forecast densities seven years out, we need to construct

a discount curve for at least that time period. We use two different sets of data for the short end and one for

the long end. For the short end, we collect daily data on the three-month LIBOR rate from the St. Louis Fed

via FRED and Eurodollar futures with quarterly maturities from one to eight quarters out via Bloomberg to

take advantage of the high liquidity in these contracts.11 For the longer end, we use interest rate swaps with

maturities 1 to 10 years, again obtained from Bloomberg.12

To get a discount rate, we start by constructing zero coupon bond yields on the short end. Therefore, we

fit a Svensson yield curve through the Eurodollar futures and extract the zero coupon bond yields. Next, we

fit a Svensson yield curve through the swap rates on the longer end and extract the zero coupon yields from

it. Therefore, notice that the discounted cashflows on the fixed (with rate 𝑖fixed
𝑡 ,𝜏 ) and floating legs of a swap

with 𝑇 payments are equated such that

𝑖fixed
𝑡 ,𝜏 (𝑍𝑡 ,𝑡+1 + 𝑍𝑡 ,𝑡+2 + . . . + 𝑍𝑡 ,𝜏) = 𝑖𝑡𝑍𝑡 ,𝑡+1 + E𝑔[𝑖𝑡+1]𝑍𝑡 ,𝑡+2 + . . . + E𝑔[𝑖𝜏−1]𝑍𝑡 ,𝜏 ,

where the price for a zero-coupon bond between time 𝑡 and 𝜏 is denoted by 𝑍𝑡 ,𝜏 and the expectation of 𝑖𝑠

under the distribution 𝑔 is E𝑔[𝑖𝑠] is the risk-neutral expectation of the interest rate in period 𝑠, i.e. the forward

rate. Now observe that the forward rate can be expressed by zero-coupon bond prices viaE𝑔[𝑖𝑠] = 𝑍𝑠/𝑍𝑠+1−1.

11Ticker symbols are EDx Comdty where x needs to be replaced by the number of quarters out.
12We use the following ticker symbols USSWx Curncy where x should be replaced by the number of years out.

37



As a result, we obtain the zero-coupon bond prices from swaps via

𝑍𝑡 ,𝜏 =
1 − 𝑖fixed

𝑡 ,𝜏
∑𝜏−1
𝑠=𝑡+1 𝑍𝑡 ,𝑠

1 + 𝑖fixed
𝑡 ,𝜏

,

starting from the short end of the curve where the zero-coupon price is known. Lastly, fitting a Svensson

curve through the zero coupon yields delivers the discount rate for the seven-year time horizon. Furthermore,

we can compute forward rates from this curve.

Having obtained the discount rate, we turn to extracting the forecast density. Therefore, we use interest

rate caps data from Bloomberg where we obtain the full matrix of caps with maturities of 1 to 10 years and

strikes from 1% to 10%.13 We choose a start date of January 1, 2007, due to missing data before this date.

We first compute the prices for caplets that are used on the left-hand side of equation (13). Therefore, we

compute a Nelson-Siegel curve through the flat volatilities for each strike price on each date.

Next, we convert the caps value (quoted in terms of a flat volatility) into a spot volatility. The flat volatility

𝜎
𝑐𝑎𝑝
𝑡,𝜏 is the volatility that equates the value of the sum of all caplets evaluated under the flat volatility with

the sum of all caplets evaluated under the spot volatility 𝜎
𝑐𝑎𝑝
𝑡

𝜏∑
𝑠=𝑡+1

Caplet𝑠(𝐾𝑛 , 𝜎𝑐𝑎𝑝𝑡,𝜏 ) =
𝜏∑

𝑠=𝑡+1
Caplet𝑠(𝐾𝑛 , 𝜎𝑐𝑎𝑝𝑠−1). (21)

We start with the very short end of the curve where the flat and spot volatilities are equal, i.e. 𝜎𝑡 ,𝑡+2 = 𝜎𝑡+1.

The reason for this equality stems from the fact that between period 𝑡 and payoffs in 𝑡 + 2, only the interest

rate in 𝑡 + 1 is unknown. With the short end fixed, we can now solve for spot volatilities forward by solving

equation (21) for the next time horizon. Using the Black pricing formula, we obtain the corresponding value

of the caplet 𝑝̂𝑡(𝜏, 𝐾𝑛). Equipped with these caplet prices for different strikes, we now aim to extract a forecast

density that best matches the implied prices.

We parameterize the underlying distribution by a mixture of two lognormal distributions 𝑔̂ of equation

(14). In a robustness test, we change the functional form of the distribution to a rectified Gaussian distribution.

This functional form truncates the normal distribution and concentrates the truncated mass of the distribution

at the truncation point. In that case, we fix the lower bound at zero and estimate the mean and the standard

deviation.
13Ticker symbols on Bloomberg are USCFx0y where x corresponds to the strike and y to the number of years out. y should be

replaced by X for the 10 year cap with a strike of 10%. We use the Bloomberg default as the pricing source and supplement it with
CMPN data where data is missing.
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To find the parameters of the distribution for a given day, and thus the forecast density, we minimize the

sum of squared pricing errors over the parameters of the distribution

𝜛∗ = arg min
𝜛

𝑁∑
𝑛=1

(
𝑝𝑡(𝜏, 𝐾𝑛) − 𝑝̂𝑡(𝜏, 𝐾𝑛))2 + 𝑤

(
E𝑔[𝑖𝜏] − E𝑔̂[𝑖𝜏]

)2
, (22)

where we obtain E𝑔[𝑖𝜏] from forward rates, E𝑔̂[𝑖𝜏] =
∫
𝑖𝜏 𝑔̂(𝑖𝜏; 𝜛)𝑑𝑖𝜏 is computed from the estimated distri-

bution, and 𝑤 is chosen to take a value of ten such that the mean of the distribution is aligned with forward

rates. We solve this minimization using a global optimization routine. Specifically, we loop over all dates

and employ for each daily observation a generalized simulated annealing algorithm that does not require

any initial guesses. For the rectified Gaussian distribution, the set of parameters we are extracting is limited

to the mean and the standard deviation of the underlying normal distribution.

Lastly, we compute the time series of forecast densities from the parameters for the mixture of lognormal

distributions or rectified Gaussian distributions, respectively.

B.B Construction of Inflation Forecast Densities

This section lays out the method we use to extract inflation forecast densities and the data we use for our

analysis. We complement our analysis of forecast densities for inflation by studying forward rates from

inflation swaps. Therefore, we obtain daily data for the five-year forward rate five years out by taking twice

the 10-year swap rate and subtracting the five-year swap rate.14 The sample period from January 1, 2007, up

to February 28, 2020, for this data matches that of long-term forecast densities for interest rates.

As for long-term forecast densities for interest rates, we obtain daily data. To extract forecast densities for

inflation, we follow the methodology in Kitsul and Wright (2013) and twice differentiate the pricing formula

for inflation derivatives.

To discount expected payoffs in equation (13), we use GSW yields (see Gürkaynak, Sack and Wright

(2007)) available on the website of the Board of Governors of the Federal Reserve System. We compute the

forward rate from inflation swaps available on Bloomberg.15

We furthermore collect data on inflation caps and floors at maturities of five and 10 years from Bloomberg.

The strike rates for caps are between -1% and 6% (with 0.5% increments) and between -3% and 4.5% for floors.16

14We obtain the data from Bloomberg with ticker symbols USSWIT5 Curncy and USSWIT10 Curncy. The construction of the
forward rate follows the calculation in Bloomberg for the five-year-five-year forward rate available via FWISUS55.

15The ticker symbols are USSWIT5 Curncy and USSWIT10 Curncy.
16The ticker symbols for these contracts are USIZCxm and USIZFxm where x specifies the strike and m the maturity.

39



We obtain a daily time series over the time period from January 1, 2007, up to December 31, 2016. Due to a

sharp decline in liquidity in the inflation caps and floors markets, we end the sample period at the end of

2016 despite Bloomberg providing quotes beyond this date.

Using the Black formula with the respective strike rates, the forward rate from the inflation swap, and

the interest rate from the GSW yield, we compute implied volatilities for caps and floors on a given day.

To obtain an estimate of the implied volatility around a given strike, we run a local linear regression

between implied volatilities and strike prices. Using the local linear regression line, we take the second

derivative of Black’s formula for the option price to get an estimate of the forecast density at a given strike.

We repeat this procedure for different strikes to back out the forecast density for a particular day. We repeat

these calculations for all days in our sample to end up with the time series of forecast densities for five-year

and 10-year inflation.

Lastly, we turn these estimates into annualized five-year five-year-forward rates. We define the forward

rate of inflation between ℎ1 and ℎ2 periods out as

𝑓𝑡+ℎ1 ,𝑡+ℎ2 =
1

ℎ2 − ℎ1

ℎ2∑
𝑠=ℎ1+1

𝜋𝑡+𝑠 , (23)

where 𝜋𝑡 denotes the rate of inflation as measured by the change in log prices. We denote the standard

deviation of the forward rate at time 𝑡 by 𝜎 𝑓 ,𝑡 ,ℎ1 ,ℎ2 .

The method to extract the percentiles of the distribution for forward rates works as follows: With the

estimates of the percentiles of the five-year and 10-year inflation rates from the data, we compute the mean,

standard deviation, and the daily time series of Z-scores corresponding to each percentile. The Z-score, here

written for forward rates, is defined as the number of standard deviations a percentile is distanced from the

mean

𝑍𝑝𝑓 =
𝑓 𝑝𝑡+ℎ1 ,𝑡+ℎ2

− E𝑡[ 𝑓𝑡+ℎ1 ,𝑡+ℎ2]
𝜎 𝑓 ,𝑡 ,ℎ1 ,ℎ2

. (24)

We then match the Z-scores of the forward rate distribution with those from the five-year and 10-year

distributions that we calculate for the various percentiles from the analogous definitions to equation (24).

With estimates of the mean and standard deviations for forward rates, we recover the percentiles from the

Z-scores. Note that this procedure allows for asymmetric distributions where the Z-scores for percentiles on

either side of the mean can differ in magnitude.
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More specifically, we first estimate the mean of the forward-rate distribution via

E𝑡[ 𝑓𝑡+5,𝑡+10] = 2E𝑡[𝜋̄𝑡 ,10] − E𝑡[𝜋̄𝑡 ,5],

where 𝜋̄𝑡 ,ℎ refers to the annualized inflation rate over the next ℎ years. This relation holds since the 5-year

inflation rate and the forward rate average out to the 10-year inflation rate. We further compute the standard

deviation via

𝜎 𝑓 ,𝑡 ,5,10 = (4Var𝑡[𝜋̄𝑡 ,10] + Var𝑡[𝜋̄𝑡 ,5] − 4Cov𝑡[𝜋̄𝑡 ,5 , 𝜋̄𝑡 ,10]) 1
2 .

To compute the standard deviation, we choose a random walk for inflation such that the covariance term in

the previous equation equals the variance of the five-year inflation rate. Note that only the calculation of

the standard deviation of the forward rate is affected by this choice. We apply estimates of Z-scores from

the five-year and 10-year distributions to back out percentiles of the forward rate. Therefore, we match

the Z-score of the forward rate with an average of the estimated Z-scores, i.e. 𝑍̂𝑝𝑓 = (𝑍𝑝𝜋̄,5 + 𝑍𝑝𝜋̄,10)/2 ≡ 𝑍̄𝑝𝜋̄.

Plugging this expression into (24), we obtain the 𝑝-th percentile

𝑓 𝑝𝑡+5,𝑡+10 = E𝑡[ 𝑓𝑡+5,𝑡+10] + 𝑍̄𝑝𝜋̄𝜎 𝑓 ,5,10.

In the following, we show that this procedure precisely recovers the distribution of the forward rate when

inflation follows an AR(1) process with mean reversion 𝜌

𝜋𝑡+1 = 𝜋∞ + 𝜌(𝜋𝑡−1 − 𝜋∞) + 𝜈𝑡+1 , (25)

where 𝜋∞ denotes the unconditional mean of inflation and 𝜈𝑡 is normally distributed with mean zero and

variance 𝜎2
𝜈. In particular, a random walk (𝜌 = 1) is a common choice for the year-over-year inflation rate.

Inflation at time 𝑡 + ℎ is given by

𝜋𝑡+ℎ = 𝜋∞ + 𝜌ℎ(𝜋𝑡 − 𝜋∞) +
ℎ∑
𝑠=1

𝜌ℎ−𝑠𝜈𝑡+𝑠 ,

and thus, based on time-𝑡 information, conditionally normally distributed with mean 𝜋∞ + 𝜌ℎ(𝜋𝑡 − 𝜋∞) and

variance

Var𝑡 [𝜋𝑡+ℎ] =
ℎ∑
𝑠=1

𝜌2(ℎ−𝑠)𝜎2
𝜈 .
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Lemma 3 (Z-scores of forward rates)

Let inflation follow an AR(1) process with mean reversion 𝜌 ∈ [0, 1]. The Z-scores 𝑍𝑝𝑓 for all percentiles of the forward

rate between ℎ1 and ℎ2 periods out, 𝑓 𝑝𝑡+ℎ1 ,𝑡+ℎ2
, coincide with the Z-scores of the average inflation rates for horizons ℎ1

and ℎ2 for all percentiles 𝑝, independent of 𝜌.

Proof: Given its definition in equation (23), the forward rate 𝑓𝑡+ℎ1 ,𝑡+ℎ2 is normally distributed provided that

inflation follows an AR(1) process, as in (25).

The 𝑝-th percentile of the forward rate is 𝑓 𝑝𝑡+ℎ1 ,𝑡+ℎ2
= E𝑡[ 𝑓𝑡+ℎ1 ,𝑡+ℎ2]−

√
2𝜎 𝑓 ,𝑡 ,ℎ1 ,ℎ2erfc−1[2𝑝] due to its normal

distribution. erfc thereby refers to the complementary error function and erfc−1 to its inverse. Plugging the

expression for the 𝑝-th percentile into the definition of the Z-score in (24), we obtain

𝑍𝑝𝑓 = −√2erfc−1[2𝑝]. (26)

Note that the Z-score only depends on the percentile 𝑝 and is independent of the mean of the forward

rate, its standard deviation, and mean reversion 𝜌. The average inflation rate over the next ℎ periods,

𝜋̄𝑡 ,ℎ = 1
ℎ

∑ℎ
𝑠=1 𝜋𝑡+𝑠 , is normally distributed. Following the same logic as for the forward rate, the Z-scores of

the average inflation rates corresponding to the 𝑝-th percentile of the distribution, 𝑍𝑝𝜋̄,ℎ , is thus also described

by −√2erfc−1[2𝑝], as in equation (26). As a result, we get 𝑍𝑝𝑓 = 𝑍𝑝𝜋̄,5 = 𝑍𝑝𝜋̄,10. □

Lemma 3 shows that the Z-scores for the forward rate coincide with those for the five-year and 10-year

rates. As a result, we can recover the percentiles of the forward rate from either the Z-score or a linear

combination thereof. The method used to extract forward rates thus delivers exact results for any AR(1)

process when the standard deviation of the forward rate is computed as

𝜎 𝑓 ,5,10 =
(
4Var𝑡[𝜋̄𝑡 ,10] + (1 − 4𝜌5)Var𝑡[𝜋̄𝑡 ,5]) 1

2 .

B.C Short-term Forecast Densities for Interest Rates

To ensure that liquidity is not a driver of our findings, we obtain data on options based on Eurodollar futures

from Bloomberg for comparison with our longer-term forecasts. Eurodollar futures prices reflect market

expectations of interest rates on three-month Eurodollar deposits for specific dates in the future. Thus, the

options we use are contracts capturing market expectations of a three-month forward rate two years out. We

focus on the 24-month horizon. Due to the lack of data availability, our sample period is limited to the sample
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period starting on April 4, 2002, and ending on February, 28, 2020.

Options on Eurodollar futures are among the most actively traded exchange-listed interest rate options in

the world, with an average of over $1.2 trillion trading in notional value per day in 2016. Quarterly contracts

are available for the nearest 16 quarterly months.

The forecast densities of the three-month LIBOR from Eurodollar futures options are extracted, analogous

to long-term forecast densities, by specifying a mixture of two lognormal distributions for the three-month

interest rates and performing nonlinear optimization to obtain the parameters. In our description of the

algorithm, we follow the outline of Appendix B.A.

We start by collecting data on the discount rate as well as the forward rate. For the former, we again

use GSW yields as in the extraction of inflation forecast densities. For forward rates, we use the data on

Eurodollar futures described in Appendix B.A.

We obtain a set of Eurodollar futures options from the Chicago Mercantile Exchange (CME). We collect

call and put prices with strikes from $91 and above in 1/8 increments to just below $100 for maturities

between 21 and 27 months. To update the data set and fill in for missing data, we supplement this data with

prices obtained from Bloomberg.17 We only use out-of-the-money call and put prices that mature at a horizon

closest to 24 months out in our estimation. We end up with a time series of option prices that is consistent

from April 4, 2002, on.

To set up the implied prices from our underlying distribution, we again use equation (13) for calls and

puts. Under the parameterized distribution, we obtain implied prices 𝑝̂𝑡(𝜏, 𝐾𝑛) with which we are trying to

match the set of observed market prices. Therefore, we again perform the global minimization of equation

(22) for prices observed on each day, using a weight of one.18

C Appendices on Empirical Tests

C.A Adjusting for Serial Correlation

Wilks (1997) adjusts the standard error for serial correlation of various lags 𝜌𝑘 . Therefore, we first compute

17Ticker symbols for the data follows the convention ED(month)(year)(call/put) (strike) Comdty. Months are labeled as H (March),
M (June), U (September), and Z (December). Thus, a Eurodollar futures call expiring in March 2022 with a strike of 99.875 would
have the ticker EDH2C 99.875 Comdty.

18Using the same value for the weight as for long-term densities leads to consistent results.
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the scaling factor

𝜗 = 1 + 2
𝑁−1∑
𝑘=1

(
1 − 𝑘

𝑁

)
𝜌𝑘 ,

with 𝑁 being the sample size. Second, the approach adjusts for a potential bias in estimating the scaling

factor by specifying the modified scaling factor

𝜗̂ = 𝜗𝑒2 𝜗
𝑁 .

Applying this method to data for an early, 𝑋 𝑒 , and late, 𝑋 𝑙 , subsample, we compute the variance of the

difference of means via

Var
[
𝑋̄ 𝑙 − 𝑋̄ 𝑒

]
= 𝜗̂𝑙

𝑠2
𝑙

𝑁𝑙
+ 𝜗̂𝑒

𝑠2
𝑒

𝑁𝑒
,

where 𝑠2 refers to the sample variance of the subsample.

C.B Construction of Lower Bound Indicator

We assume a generalized rectified normal distribution for interest rates that concentrates the truncated

mass at the lower bound (see Palmer, Hill and Scheding (2017)). The most natural parameterization of our

theoretical model of Section II with a normal distribution of shocks would result in such a distribution for

interest rates. Therefore, we need three inputs: Mean and variance of the underlying normal distribution

and the lower bound. We first aggregate the daily time series for the percentiles into a monthly time series by

averaging each percentile within the month. We take the time series of the median as a measure for the mode

of the underlying normal distribution since mean, mode, and median coincide for the normal distribution.

To estimate the variance, we convert the difference between the median and the 85th percentile into an

estimate of the standard deviation. Therefore, we note that for a normal distribution, the standard deviation

is proportional to the difference in the two quantiles, with a proportionality factor of 1/(√2erfc−1 ( 3
10
)). The

2.5th percentile serves as the lower bound. With these inputs we compute the lower bound indicator as the

expected interest rate wedge where the underlying shadow interest rate follows a distribution with these

parameters.
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C.C Survey Evidence

We use data on expectations of average 10-year federal funds rates, long-run federal funds rate, and forecast

densities. The data are accessible from the Federal Reserve Bank of New York’s website. We use answers to

the following question: “In addition, provide your estimate of the longer run target federal funds rate and

your expectation for the average federal funds rate over the next 10 years.” Respondents can then input a

number under “Longer run” and one under “Expectation for average federal funds rate over next 10 years”.

For inflation data, we use responses to the question “For the outcomes below, provide the percent chance*

you attach to the annual average CPI inflation rate from April 1, 2025 - March 31, 2030 falling in each of the

following ranges. Please also provide your point estimate for the most likely outcome.” (here from the March

2020 survey) where respondents give a distribution according to pre-specified bins.
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Figures

Steady States for Normal Distribution

Figure 1: Expected inflation in the current period as a function of expected inflation in the following period assuming
a normal distribution. Parameter values are set to 𝛼 = 1, 𝜅 = 1, 𝛽 = 0.99, 𝑟∗ = 1%, and 𝑖𝐿𝐵 = −0.5%. There are no
𝜖-shocks, i.e., 𝜎𝜖 = 0. Intersections with the dashed line, the 45-degree line, represent steady states. Graphs show
values for normally distributed shocks for which uncertainty is parameterized by the standard deviation 𝜎. Low 𝜎
refers to a value of 𝜎𝜇 = 1.35% for 𝜆 = 0 and 𝜎𝜇 = 1.8% for 𝜆 = 0.5. High 𝜎 refers to a value of 𝜎𝜇 = 1.9% for 𝜆 = 0 and
𝜎𝜇 = 2.35% for 𝜆 = 0.5.
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Effect of 𝑟∗ on probability of a binding lower bound

Figure 2: As 𝑟∗ decreases, the probability of hitting the lower bound rises in the target equilibrium (blue line). In
the liquidity trap (red line), the probability of being constrained falls. Parameterization is as in Figure 1, again with
𝜎𝜇 = 1% and 𝜆 = 0.5.
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Effect of 𝑟∗ on mean interest rates and inflation

Figure 3: The blue lines show average interest rates (left panel) and average inflation (right panel) for various levels of
𝑟∗ in the target equilibrium; the red lines display the analogues for the liquidity trap equilibrium. Parameterization is
as in Figure 1 with 𝜎𝜇 = 1% and 𝜆 = 0.5. Average interest rates rise when 𝑟∗ falls in the liquidity trap equilibrium, but
they fall under these conditions in the target equilibrium. Likewise, average inflation rises with 𝑟∗ in the liquidity trap
equilibrium, but falls with these conditions in the target equilibrium.

Effect of 𝑟∗ on skewness of interest rates and inflation

Figure 4: As 𝑟∗ decreases, the distribution for interest rates becomes more asymmetric in the target equilibrium (blue
line, left panel) while the skewness of inflation is U-shaped (blue line, right panel). In the liquidity trap equilibrium
(red lines), the skewness of interest rates and inflation falls with 𝑟∗. Parameterization is as in Figure 1.
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Estimates of the Natural Rate of Interest

Figure 5: Monthly estimates of the natural rate of interest from Christensen and Rudebusch (2019).
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Long-term Forecast Densities for Interest Rates

Figure 6: Long-term forecast densities for interest rates measured by the three-month forward rate seven years out.
The upper panel shows a 20-day moving average of the daily time series for various percentiles. The lower panels plot
20-day moving averages for the mean and median of forecast densities and the asymmetry of the distribution via the
differences in the 97.5th and 50th percentile versus the 50th and 2.5th percentile (right-hand side).
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Lower Bound Indicator and Interest Rate Asymmetry

Figure 7: Relationship between the lower bound indicator and the asymmetry of interest rates. This figure shows
two measures of asymmetry in interest rate forecast densities, the difference between mean and median as well as the
skewness and how they relate to the lower bound indicator at a monthly frequency. The regression line in the left panel
has an intercept of −0.03 (0.04) and a slope of 1.41 (0.25) where standard errors are Newey-West adjusted. The slope
is significant at the 1% level. In the right panel, the intercept is 0.04 (0.05) and the slope 0.35 (0.07). The slope is again
significant at the 1% level.

51



Lower Bound Indicator and 𝑟∗

Figure 8: Relationship between the lower bound indicator and 𝑟∗. Lower levels of the natural rate of interest are
associated with higher measures of our lower bound indicator. The graph displays monthly data. The regression line
has an intercept of 0.49 (0.13) and a slope of −0.36 (0.10) where standard errors are Newey-West adjusted. Both are
significant at the 1% level.
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Long-term Forecast Densities for Inflation

Figure 9: Long-term forecast densities for inflation. This figure reports measures of forecast densities analogous to
Figure 6 for inflation rates measured by the five-year forward rate five years out. All pictures show 20-day moving
averages of the underlying daily time series.

53



Lower Bound Indicator and Inflation Forecast Densities

Figure 10: Relationship between lower bound indicator and inflation moments at a monthly frequency. The scatter
plots show monthly data of mean inflation versus the lower bound indicator (left panel) and the skewness in inflation
forecast densities (right panel). The regression line in the left panel has an intercept of 1.72 (0.58) and a slope of −0.57
(0.23) where standard errors are Newey-West adjusted. The intercept is significant at the 1% level and the slope at the
5% level. In the right panel, the intercept is 0.31 (0.06) and the slope −0.53 (1.16). The intercept is statistically significant
at the 1% level while the slope is statistically insignificant.
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Lower Bound Indicator and Inflation Rates from Swaps

Figure 11: Relationship between lower bound indicator and the swaps-implied five-year forward rate of inflation five
years ahead. The regression line has an intercept of 1.09 (0.47) and a slope of −0.33 (0.16) where standard errors are
Newey-West adjusted. The intercept and slope are significant at the 5% level.
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Short-term Forecast Densities for Interest Rates

Figure 12: This figure reports the same measures of forecast densities as in Figure 6 for short-term densities. The
figures represent 20-day moving averages of percentiles and moments of the distribution of the three-month forward
rate 24 months out.
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