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AUTOMATION, BARGAINING POWER, AND LABOR MARKET
FLUCTUATIONS

SYLVAIN LEDUC AND ZHENG LIU

Abstract. We argue that the threat of automation weakens workers’ bargaining power

in wage negotiations, dampening wage adjustments and amplifying unemployment fluctua-

tions. We make this argument based on a business cycle model with labor market search

frictions, generalized to incorporate automation decisions. In the model, procyclical automa-

tion threats create endogenous real wage rigidity that amplifies labor market fluctuations.

The automation mechanism is consistent with empirical evidence. It is also quantitatively

important for explaining the large volatilities of unemployment and vacancies relative to that

of real wages, a puzzling observation through the lens of standard business cycle models.

I. Introduction

Advances in robotics and artificial intelligence have raised concerns that automation might

replace jobs and reduce wages. Yet, recent empirical studies suggest that the relation be-

tween automation and aggregate employment can be ambiguous (Autor, 2015; Acemoglu

and Restrepo, 2018, 2020; Acemoglu et al., 2022). Still, to the extent that automation is a

labor-saving technology, the threat of automation might nonetheless restrain wage growth,

even if the technology is not actually adopted. The option to automate may become partic-

ularly attractive in a tight labor market, in which competition for hiring adds pressure for

firms to raise wages.
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In this paper, we argue that the increased threat of automation in business cycle expansions

weakens workers’ bargaining power in wage negotiations. It creates an endogenous real wage

rigidity that helps explain the observed large fluctuations in unemployment and vacancies

relative to real wages, a puzzling observation through the lens of the standard business cycle

models.

We formalize this argument based on a general equilibrium framework with labor market

search frictions generalized to incorporate automation decisions, which allows us to examine

the role of bargaining power for the joint dynamics of unemployment, vacancies, and real

wages. In line with Acemoglu and Restrepo (2018) and Zeira (1998), firms in our model

first make a choice of technologies (adopting an automated production process or not) and

then post non-automated job positions (i.e., vacancies) for hiring workers. The decision to

automate depends on the net benefits of automation, which varies along the business cycle

and leads to endogenous fluctuations in the probability of automation (i.e., the automation

threat).1 In a business cycle expansion, increased automation tends to boost labor produc-

tivity and raise real wages. However, the increased automation probability also dampens

wage increases because it weakens workers’ bargaining power. By lowering the correlation

between real wages and labor productivity, the automation channel creates endogenous real

wage rigidity that helps amplify labor market fluctuations.

In our model, the effects of an increase in automation on employment can be ambiguous.

Automation equipment can substitute for workers in production, thus displacing jobs. On

the other hand, the option to automate an unfilled job position raises the expected value of

a job vacancy, boosting firms’ incentive to create new vacancies and thereby raising the job

finding rate and employment.2

To quantify the net macroeconomic effects of the automation channel, we estimate the

model to fit U.S. time series of unemployment, vacancies, real wage growth, and labor pro-

ductivity growth using the Bayesian methods. Our estimation suggests that the automation

channel is quantitatively important. Absent the automation threat, the volatility of the

labor market tightness (measured by the ratio of vacancies to unemployment, i.e,, the v/u

ratio) relative to that of the real wage would be 36 percent smaller than the benchmark

model would predict. Furthermore, the automation probability in our estimated model is

procyclical. Thus, the threat of automation rises in an expansion, increasing real wage

1In general, automation can also take the form of technological advancements that enable firms to

automate some tasks previously performed by human workers. We view automation through this channel as

occurring relatively infrequently, and we abstract from it to focus on the role of automation at the business

cycle frequency.
2The a priori ambiguous employment effects of automation in our model are consistent with the firm-level

evidence (Acemoglu et al., 2022).
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rigidity.3 Since automation raises labor productivity while depressing real wages, it leads to

countercyclical fluctuations in the labor share of income, as observed in the data (Ŕıos-Rull

and Santaeulàlia-Llopis, 2010).4

The automation mechanism is robust to introducing heterogeneous worker skills. In a

generalized version of the model, we assume that automation equipment is a substitute for

low-skill workers but a complement to high-skill workers. In this model, an increase in

high-skill wages in a business cycle expansion would raise the cost of operating automation

equipment, mitigating the incentive for firms to automate and resulting in greater fluctu-

ations in low-skill wages. Thus, the amplification effects through the automation channel

are somewhat attenuated by the cyclical fluctuations in skilled wages. However, the model

continues to predict that the threat of automation depresses low-skill wages and boosts labor

productivity, leading to countercyclical labor share fluctuations. Importantly, introducing

skill heterogeneity allows us to study the effects of automation on the relative demand for

skills and the skill wage premium. In line with the skill-upgrading effects of automation re-

ported in the firm-level study by Acemoglu et al. (2022), our model predicts that an increase

in automation is associated with an increase in demand for high-skill workers, raising the

skill wage premium.

The automation mechanism and the main predictions of the model are broadly in line

with empirical evidence. Using an unbalanced panel of industries at the two-digit level

based on the North American Industry Classification System (NAICS) during the past two

decades, we present evidence that a decline in the relative price of computing equipment—a

proxy for automation costs—is associated with significantly larger increases in vacancies and

the v/u ratio and greater declines in unemployment and real wages in industries that are

more exposed to automation risks. These results are robust to controlling for industry-level

unionization rates or ability to offshore—factors that could confound the effects from the

threat of automation.

Given the rising importance of automation since the early 2000s, our model implies that

the volatility of the v/u ratio should rise and the correlation between real wages and labor

productivity should fall. These implications are consistent with aggregate U.S. time series

data. Empirically, the standard deviation of the v/u ratio initially declined from the 1980s

to the 1990s, and then increased steadily in the 2000s and 2010s. The correlation between

3The procyclicality of automation investment implied by the model is consistent with macroeconomic

evidence. For example, from 1985:Q1 to 2019:Q4, real investment in information processing equipment—a

broad proxy for automation—has a positive correlation with real GDP of 0.58.
4Karabarbounis and Neiman (2013) focus on the trend declines in the labor share since the mid-1970s

for 59 countries. Their analysis attributes about half of the declines in the labor share to declines in the

relative price of investment goods. We focus on the cyclical dynamics of the labor share.
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real wages and labor productivity initially increased from the 1980s to the 1990s and then

declined substantially since the early 2000s. These time-series patterns in the data provide

additional support for the model’s mechanism.

Our business-cycle study complements the empirical literature that typically focuses on

longer-run implications of automation (Acemoglu and Restrepo, 2020, 2021; Graetz and

Michaels, 2018; Arnoud, 2018; Dinlersoz and Wolf, 2018). Automation in our model repre-

sents a labor-substituting technology, in line with Acemoglu and Restrepo (2018). Empirical

evidence suggests that steady progress in labor substituting technologies (such as computer-

ization) during the recent few decades has reduced demand for workers with routine skills,

contributing to increases in job polarization in the U.S. labor market (Autor et al., 2003;

Autor, 2015).

The automation threat in our paper is also related to the literature on changes in worker

bargaining power. For instance, skill-biased technological change may have contributed to

the decline in unionization rates since the late 1950s, thus weakening workers’ bargaining

power (Acemoglu et al., 2001; Açıkgöz and Kaymak, 2014; Dinlersoz and Greenwood, 2016).

In a recent study, Taschereau-Dumouchel (2020) argues that unionization threats distort

hiring decisions. Firms facing greater threats of unionization hire fewer workers, produce

less, and pay a more concentrated distribution of wages. Krueger (2018) argues that declines

in worker bargaining power can help explain why wage growth remained weak during periods

when unemployment reached historically low levels in the United States. Stansbury and

Summers (2020) also emphasize that forces that reduced worker power have contributed to

sluggish wage growth and a declining labor share. They further show that, while globalization

and technological changes have played some part in reducing worker power, they are less

important factors than declines in unionization and increases in shareholder power within

firms. Our model highlights the importance of automation threats for wage bargaining and

employment fluctuations over business cycles.

To our knowledge, our study provides the first quantitative general equilibrium evaluation

of the interactions between automation and labor market fluctuations over the business cycle.

II. The model with labor market frictions and automation

This section presents a dynamic stochastic general equilibrium (DSGE) model that gener-

alizes the standard Diamond-Mortensen-Pissarides (DMP) model to incorporate endogenous

decisions of automation. Compared to the standard DMP model, our model introduces two

new features. First, we replace the free-entry assumption in the DMP model with costly

vacancy creation, as in Fujita and Ramey (2007) and Leduc and Liu (2020). Since creating

a new vacancy incurs a fixed cost, a vacancy has a positive value even if it is not filled by a
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worker. The number of vacancies becomes a slow-moving state variable (instead of a jump

variable as in the standard DMP framework), enabling our model to match the persistent

vacancy dynamics in the data. Second, we introduce endogenous automation decisions. In

the beginning of period t, each firm draws a fixed cost of automation. If the automation cost

lies below a threshold value, then the firm adopts automation equipment and obtains the

automation value, and the vacancy would be taken offline. If the automation cost exceeds

the threshold, then the firm posts the vacancy for hiring a worker. Unlike the standard

DMP model with free entry where an unfilled vacancy has no value, our model with vacancy

creation costs implies that an unfilled vacancy has a positive value that varies endogenously

and, in particular, increases with automation.

To keep automation decisions tractable, we impose some assumptions on the timing of

events. In the beginning of period t, a job separation shock δt is realized. Workers who lose

their jobs add to the stock of unemployment from the previous period, forming the pool of

job seekers ut. Firms carry over the stock of unfilled vacancies from the previous period,

a fraction of which is automated. The stock of vacancies vt available for hiring workers

consists of the remaining vacancies after automation, the jobs separated in the beginning of

the period, and newly created vacancies. Job seekers (ut) randomly match with vacancies

(vt) in the labor market, with the number of new matches (mt) determined by a matching

technology. Final consumption goods are a composite of two types of intermediate goods—

one produced with workers and the other with automation equipment—with a constant

elasticity of substitution (CES) between the two types. The unfilled vacancies and the pool

of employed workers at the end of the period are carried over to the next period, and the

same sequence of economic activities repeats in period t+ 1.

II.1. Final goods producers. Production of final consumption goods requires two types of

intermediate inputs, one produced by workers (Ynt) and the other by automation equipment

(Yat). The production function is given by

Yt =
[
αnY

σ−1
σ

nt + (1− αn)Y
σ−1
σ

at

] σ
σ−1

, (1)

where Yt denotes aggregate output of the final goods. The parameter σ measures the elas-

ticity of substitution between the two types of intermediate inputs, and the parameter αn is

a weight on worker-produced intermediate inputs in the final goods production.

Final goods are traded in a perfectly competitive market. We use the final good as a

numeraire, the price of which is normalized to one. Final goods producers take the relative

prices of the intermediate goods as given and optimally choose Ynt and Yat to maximize

profits. With constant returns and free entry, equilibrium profits are zero. The optimal
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choices of intermediate inputs imply that

pnt = αn

(
Yt

Ynt

) 1
σ

, pat = (1− αn)

(
Yt

Yat

) 1
σ

, (2)

where pnt and pat denote the relative price of intermediate goods produced by workers and

by automation, respectively.

II.2. The Labor Market. In the beginning of period t, there are Nt−1 existing job matches.

A job separation shock displaces a fraction δt of those matches, such that the measure of

unemployed job seekers is given by

ut = 1− (1− δt)Nt−1, (3)

where we have assumed full labor force participation and normalized the size of the labor

force to one.

The job separation shock δt follows the stationary stochastic process

ln δt = (1− ρδ) ln δ̄ + ρδ ln δt−1 + εδt, (4)

where ρδ is the persistence parameter and the term εδt is an i.i.d. normal process with a

mean of zero and a standard deviation of σδ. The term δ̄ denotes the steady-state rate of

job separation.

The stock of vacancies vt consists of unfilled vacancies carried over from period t− 1 that

are not automated, plus the separated employment matches and newly created vacancies.

The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat )vt−1 + δtNt−1 + ηt, (5)

where qvt−1 denotes the job filling rate in period t− 1, qat denotes the automation probability

in period t, and ηt denotes newly created vacancies (i.e., entry).

In the labor market, new job matches (denoted by mt) are formed between job seekers

and open vacancies based on the Cobb-Douglas matching function

mt = µuα
t v

1−α
t , (6)

where µ is a scale parameter that measures matching efficiency and α ∈ (0, 1) is the elasticity

of job matches with respect to the number of job seekers.

The flow of new job matches adds to the stock of employment, whereas job separations

subtract from it. Aggregate employment evolves according to the law of motion

Nt = (1− δt)Nt−1 +mt. (7)
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At the end of period t, the searching workers who fail to find a match remain unemployed.

Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (8)

For convenience, we define the job finding probability qut and the job filling probability qvt ,

respectively, as

qut =
mt

ut

, qvt =
mt

vt
.

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βtΘt (lnCt − χNt) , (9)

where E [·] is an expectation operator and Ct denotes consumption. The parameter β ∈ (0, 1)

denotes the subjective discount factor, the parameter χ > 0 denotes a weight on the disutility

of working, and the term Θt denotes an exogenous shock to the subjective discount factor.

The discount factor shock θt ≡ Θt

Θt−1
follows the stationary stochastic process

ln θt = ρθ ln θt−1 + εθt. (10)

In this shock process, ρθ is the persistence parameter and the term εθt is an i.i.d. normal

process with a mean of zero and a standard deviation of σθ. Here, we have implicitly assumed

that the mean value of θ is one.

The representative household chooses consumption Ct and savings Bt to maximize the

utility function (9) subject to the sequence of budget constraints

Ct +
Bt

rt
= Bt−1 + wtNt + ϕ(1−Nt) + dt − Tt, ∀t ≥ 0, (11)

where rt denotes the gross real interest rate, wt denotes the real wage rate, dt denotes the

household’s share of firm profits, and Tt denotes lump-sum taxes. The parameter ϕ measures

the flow benefits of unemployment.

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max
Ct,Nt,Bt

lnCt − χNt + βEtθt+1Vt+1(Bt, Nt), (12)

subject to the budget constraint (11) and the employment law of motion (7).

Define the employment surplus (i.e., the value of employment relative to unemployment)

as SH
t ≡ 1

Λt

∂Vt(Bt−1,Nt−1)
∂Nt

, where Λt denotes the Lagrangian multiplier for the budget con-

straint (11). The optimizing decision for employment implies that the employment surplus
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satisfies the Bellman equation

SH
t = wt − ϕ− χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)S
H
t+1, (13)

where Dt,t+1 ≡ βθt+1Λt+1

Λt
is the stochastic discount factor, which applies to both the house-

hold’s intertemporal optimization and firms’ decisions.5

The employment surplus has a straightforward economic interpretation. If the household

adds a new worker in period t, then the current-period gains would be wage income net

of the opportunity costs of working, including unemployment benefits and the disutility of

working. The household also enjoys the continuation value of employment if the employment

relation continues. Having an extra worker today adds to the employment pool tomorrow

(provided that the employment relation survives job separation); however, adding a worker

today would also reduce the pool of searching workers tomorrow, a fraction qut+1 of whom

would be able to find jobs. Thus, the marginal effect of adding a new worker in period t

on employment in period t + 1 is given by (1 − qut+1)(1 − δt+1), resulting in the effective

continuation value of employment shown in the last term of Eq. (13).

The household’s optimizing consumption-savings decision leads to the intertemporal Euler

equation

1 = EtDt,t+1rt. (14)

II.4. The firms. A firm makes automation decisions in the beginning of the period t. Adopt-

ing automation equipment requires a fixed cost x in units of consumption goods. The fixed

cost is drawn from the i.i.d. distribution G(x). A firm chooses to automate if and only if the

cost of automation is less than the benefit. For any given benefit of automation, there exists

a threshold value x∗
t in the support of the distribution G(x), such that automation occurs if

and only if x ≤ x∗
t .

6 If the firm automates production, then the vacancy will be taken offline

(i.e., it will not be available for hiring a worker). Thus, the automation threshold x∗
t depends

on the value of automation (denoted by Ja
t ) relative to the value of a vacancy (denoted by

Jv
t ). In particular, the threshold for the automation decision is given by

x∗
t = Ja

t − Jv
t . (15)

The probability of automation is then given by the cumulative density of the automation

costs evaluated at x∗
t . That is,

qat = G(x∗
t ). (16)

5For details, see the online appendix.
6Our approach to modeling automation decisions here is similar in spirit to a McCall (1970) style search

friction applied to automation equipment.

https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf
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The flow of automated job positions adds to the stock of automated positions (denoted

by At), which becomes obsolete at the rate ρo ∈ [0, 1] in each period.7 Thus, At evolves

according to the law of motion

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (17)

where qat (1 − qvt−1)vt−1 is the number of newly automated job positions or equivalently, the

flow of automation investment.

A firm operating the automation technology produces Ztζt units of output, where Zt

denotes a neutral technology shock and ζt denotes an automation-specific shock. The neutral

technology shock Zt follows the stochastic process

lnZt = (1− ρz) ln Z̄ + ρz lnZt−1 + εzt. (18)

The parameter ρz ∈ (−1, 1) measures the persistence of the technology shock. The term

εzt is an i.i.d. normal process with a zero mean and a finite variance of σ2
z . The term Z̄ is

the steady-state level of the technology shock.8 The automation-specific technology shock

ζt follows a stochastic process that is independent of the neutral technology shock Zt. In

particular, ζt follows the stationary process

ln ζt = (1− ρζ) ln ζ̄ + ρζ ln ζt−1 + εζt. (19)

The parameter ρζ ∈ (−1, 1) measures the persistence of the automation-specific technology

shock. The term εζt is an i.i.d. normal process with a zero mean and a finite variance of σ2
ζ .

The term ζ̄ is the steady-state level of the automation-specific technology shock.

To simplify the analysis and concentrate on the main mechanism, we assume that operating

the automation technology incurs a flow fixed cost κa that captures the costs of facilities

and the space for automated production.9 The value of automation satisfies the Bellman

7If a vacancy for a job is automated, it will be taken offline once and for all. Even if the automation

equipment becomes obsolete later, the vacated position does not return to the stock of vacancies. In the

steady state, the number of obsolete automation equipment equals the number of newly created vacancies

(i.e., ρoA = η).
8The model can easily be extended to allow for trend growth.
9The flow cost of operating the automation technology is not directly observable. A proxy for the

operating costs can be the wages of skilled labor hired to maintain the automation equipment, as we illustrate

in a generalized version of our benchmark model with heterogeneous worker skills in Section VI.3. In the U.S.

data, real wages for skilled workers (measured by the wages of new hires with a bachelor’s degree, deflated

by the chained personal consumption expenditures price index) are roughly acyclical. For example, for the

period from 2001 to 2019, the real skilled wage growth has a small positive correlation with the v/u ratio of

about 0.16. An alternative proxy for the operation costs of automation is the quantity of energy usage. In

the U.S. manufacturing sector for which we have data on energy usage, the growth rate of energy input has
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equation

Ja
t = patZtζt − κa + (1− ρo)EtDt,t+1J

a
t+1. (20)

If the automation cost exceeds the threshold x∗
t , then the firm would not automate. In-

stead, the firm would post the vacancy in the labor market for hiring a worker. In addition,

newly separated jobs and newly created vacancies add to the stock of vacancies for hiring

workers. Following Leduc and Liu (2020), we assume that creating a new vacancy incurs

an entry cost e (in units of final consumption goods). The entry cost is drawn from an

i.i.d. distribution F (e). A new vacancy is created if and only if the net value of entry is

non-negative. The benefit of creating a new vacancy is the vacancy value Jv
t . Thus, the

number of new vacancies (denoted by ηt) is given by the cumulative density of the entry

costs evaluated at Jv
t . That is,

ηt = F (Jv
t ). (21)

Posting a vacancy incurs a per-period fixed cost κ (also in units of final consumption

goods). If the vacancy is filled (with the probability qvt ), then the firm obtains the em-

ployment value Je
t . Otherwise, the firm carries over the unfilled vacancy to the next period,

which will be automated with the probability qat+1. If the vacancy is automated, then the firm

obtains the automation value Ja
t+1 net of the expected robot adoption costs; otherwise, the

vacancy will remain open, and the firm receives the vacancy value Jv
t+1. Thus, the vacancy

value satisfies the Bellman equation

Jv
t = −κ+ qvt J

e
t + (1− qvt )EtDt,t+1

{
qat+1J

a
t+1 −

∫ x∗
t

0

xdG(x) + (1− qat+1)J
v
t+1

}
. (22)

This Bellman equation reveals that the vacancy value varies endogenously (unlike the stan-

dard DMP model with free entry, where an unfilled vacancy has no value). In particular,

automation can affect the vacancy value through both the automation probability qa and

the automation value Ja.

If a firm successfully hires a worker, then it can produce Zt units of intermediate goods.

The value of employment satisfies the Bellman equation

Je
t = pntZt − wt + EtDt,t+1

{
(1− δt+1)J

e
t+1 + δt+1J

v
t+1

}
. (23)

Hiring a worker generates a flow profit pntZt−wt in the current period. If the job is separated

in the next period (with the probability δt+1), then the firm receives the vacancy value Jv
t+1.

Otherwise, the firm receives the continuation value of employment.

a correlation with the growth rate of manufacturing output of about 0.3 for the years from 1987 to 2019.

Thus, our assumption of an acyclical automation operating cost is not at odds with the data.
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II.5. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage optimally splits the joint surplus of

a job match between the worker and the firm. The worker’s employment surplus is given

by SH
t in Eq. (13). The firm’s surplus is given by Je

t − Jv
t . The possibility of automation

affects the value of a vacancy and thus indirectly affects the firm’s reservation value and its

effective bargaining power.

Specifically, the Nash bargaining wage solves the problem

max
wt

(
SH
t

)b
(Je

t − Jv
t )

1−b , (24)

where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Je
t − Jv

t + SH
t . (25)

Then the bargaining solution implies that

Je
t − Jv

t = (1− b)St, SH
t = bSt, (26)

such that the firm’s surplus is a constant fraction 1 − b of the total surplus St and the

household’s surplus is a fraction b of the total surplus.

The bargaining solution (26) and the expression for household surplus in equation (13)

together imply that the Nash bargaining wage wN
t satisfies the Bellman equation

b

1− b
(Je

t − Jv
t ) = wN

t − ϕ− χ

Λt

+EtDt,t+1(1− qut+1)(1− δt+1)
b

1− b
(Je

t+1 − Jv
t+1). (27)

We do not impose any real wage rigidity. Thus, the equilibrium real wage rate is just the

Nash bargaining wage rate. That is, wt = wN
t .

II.6. Government policy. The government finances unemployment benefit payments ϕ for

unemployed workers through lump-sum taxes on the representative household. We assume

that the government balances the budget in each period such that

ϕ(1−Nt) = Tt. (28)

II.7. Search equilibrium. In a search equilibrium, the markets for bonds, final goods, and

intermediate goods all clear. Since the aggregate bond supply is zero, the bond market-

clearing condition implies that

Bt = 0. (29)

Market clearing for intermediate goods implies that

Ynt = ZtNt, Yat = ZtζtAt. (30)
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Final goods market clearing requires that consumption spending, vacancy posting costs,

robot operation costs, robot adoption costs, and vacancy creation costs add up to aggregate

production. This requirement yields the aggregate resource constraint

Ct + κvt + κaAt + (1− qvt−1)vt−1

∫ x∗
t

0

xdG(x) +

∫ Jv
t

0

edF (e) = Yt. (31)

III. Empirical Strategies

We solve the model by log-linearizing the equilibrium conditions around the deterministic

steady state.10 We calibrate a subset of the parameters to match steady-state observations

and the empirical literature. We estimate the remaining structural parameters and the shock

processes to fit U.S. time-series data.

We focus on the parameterized distribution functions

F (e) =
(e
ē

)ηv
, G(x) =

(x
x̄

)ηa
, (32)

where ē > 0 and x̄ > 0 are the scale parameters and ηv > 0 and ηa > 0 are the shape

parameters of the distribution functions. We set ηv = 1 and ηa = 1, so that both the

vacancy creation cost and the automation cost follow a uniform distribution.11 We estimate

the scale parameters ē and x̄, along with the flow cost of automation κa and the shock

processes by fitting the model to U.S. time series data.

III.1. Steady-state equilibrium and parameter calibration. Table 1 shows the cali-

brated parameter values. We consider a quarterly model. We set β = 0.99, so that the model

implies an annualized real interest rate of about 4 percent in the steady state. We set α = 0.5

following the literature (Blanchard and Gaĺı, 2010; Gertler and Trigari, 2009). In line with

Hall and Milgrom (2008), we set b = 0.5 and ϕ = 0.25. Based on the data from the Job

Openings and Labor Turnover Survey (JOLTS), we calibrate the steady-state job separation

rate to δ̄ = 0.10 at the quarterly frequency. We set ρo = 0.03, so that automation equipment

depreciates at an average annual rate of 12 percent, in line with the average depreciation

rate of private information equipment during the period from 1990 to 2019.12 We normalize

10Details of the equilibrium conditions, the steady state, and the log-linearized system are presented in

the online appendix.
11Our assumption of the uniform distribution for the vacancy creation cost is in line with Fujita and

Ramey (2007). We have estimated a version of the model in which we include the parameter ηa in the set of

parameters to be estimated. We obtain a posterior estimate of ηa close to one and very similar estimates for

the other parameters. For simplicity and for obtaining a closed-form solution for the steady-state equilibrium,

we assume that ηa = 1 in our benchmark model.
12To calibrate the depreciation rate of automation equipment, we use the ratio of the depreciation of

private information equipment (KPPM0ET@CAPSTOCK in Haver) to the net stock of private information

equipment (EPPM0ET@CAPSTOCK in Haver), both evaluated at historical cost. The sample average of

https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf
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the level of labor productivity to Z̄ = 1 and the average automation-specific productivity to

ζ̄ = 1.5, reflecting the relative average efficiency of the automation technology.

Based on the empirical estimates of Eden and Gaggl (2018), we calibrate the weight of

worker-produced intermediate goods in final goods production to αn = 0.535. We calibrate

the elasticity of substitution between intermediate goods produced by automation capital

and by workers to σ = 3 based on the studies of Eden and Gaggl (2018) and Berg et al.

(2018).13

We target a steady-state unemployment rate of U = 0.0595, corresponding to the average

unemployment rate in our sample from 1985 to 2018. The steady-state employment rate is

given by N = 1−U , hiring rate by m = δ̄N , the number of job seekers by u = 1− (1− δ̄)N ,

and the job finding rate by qu = m
u
. We target a steady-state job filling rate qv of 0.71 per

quarter, in line with the calibration of den Haan et al. (2000). The implied stock of vacancies

is v = m
qv
. The scale of the matching efficiency is then given by µ = m

uαv1−α .

Conditional on the estimated value of κa and the normalization of the average productiv-

ity levels (Z̄ and ζ̄), we solve for the steady-state automation value Ja from the Bellman

equation (20). Then, given the estimated values of ē and x̄ (see below for estimation details),

we use the vacancy creation condition (21), the automation adoption condition (15), and the

law of motion for vacancies (5) to obtain the steady-state probability of automation, which

is given by

qa =
Ja

x̄+ ē(1− qv)v
.

Given qa and v, the law of motion for vacancies implies that the flow of new vacancies

is given by η = qa(1 − qv)v. The vacancy value is then given by Jv = ēη. The stock

the depreciation rate is about 13 percent for the period from 1990 to 2019. The calibrated depreciation rate of

automation equipment is also in line with the depreciation rate of industrial robots used by the International

Federation of Robotics (IFR) for estimating the average life span of robots and for constructing their measure

of the operation stocks of robots.
13In the literature, there is substantial uncertainty about the value of the elasticity of substitution (EOS)

between automation capital and labor. Graetz and Michaels (2018) and Acemoglu et al. (2020) assume

that robots and labor are perfect substitutes in tasks that can be performed by robots, implying an infinite

elasticity. Using the relative factor income shares and relative input quantities in aggregate data, Eden and

Gaggl (2018) obtain an estimated EOS of about 8 between routine labor and a composite between nonroutine

labor and ICT capital, although they argue that an EOS between aggregate routine labor and ICT capital

in the range between 2.14 and 3.27 is also plausible. Cheng et al. (2021) estimate the EOS between labor

and automation capital among automating firms using Chinese data and exploiting geographic and industry

variations of government subsidies for automation under the “Made In China 2025” program. They obtain an

estimated elasticity of about 3.8. Based on this literature, we choose a relatively conservative EOS value of

3. In a version of the model with perfect substitution between automation capital and workers, we obtained

qualitatively similar results.
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

ϕ Unemployment benefit 0.25

α Elasticity of matching function 0.50

µ Matching efficiency 0.6594

δ̄ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κ Vacancy posting cost 0.0409

b Nash bargaining weight 0.50

ηv Elasticity of vacancy creation cost 1

ηa Elasticity of automation cost 1

χ Disutility of working 0.3812

Z̄ Mean value of neutral technology shock 1

ζ̄ Mean value of equipment-specific technology shock 1.5

σ Elasticity of substitution between intermediate goods 3

αn Share of worker-produced intermediate goods 0.535

of automation equipment A can be solved from the law of motion (17), which reduces to

ρoA = η in the steady state. Thus, in the steady state, the newly created vacancies equal

the flow of automated jobs that become obsolete. The law of motion for employment implies

that, in the steady state, the flow of hiring equals the flow of separated jobs.

With A and N solved, we have Yn = Z̄N and Ya = Z̄ζ̄A, and aggregate output is solved

from Eq. (1). We calibrate the vacancy posting cost to κ, such that the steady-state vacancy

posting cost is 1 percent of aggregate output (i.e., κv = 0.01Y ), in line with Blanchard and

Gaĺı (2010).

Given Jv and Ja, we obtain the cutoff point for robot adoption x∗ = Ja − Jv. The match

value Je can be solved from the Bellman equation for vacancies (22), and the equilibrium real

wage rate can be obtained from the Bellman equation for employment (23). Steady-state

consumption is solved from the resource constraint (31). We then infer the value of χ from

the expression for bargaining surplus in Eq. (27).

III.2. Estimation. We estimate the structural parameters ē, x̄, and κa and the shock pro-

cesses by fitting the DSGE model to quarterly U.S. time series.

III.2.1. Data and measurement. We fit the model to four quarterly time series: the unem-

ployment rate, the job vacancy rate, the growth rate of the real wage rate, and the growth
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rate of average labor productivity in the nonfarm business sector. The sample covers the

period from 1985:Q1 to 2018:Q4.14 We provide details of the macro time-series data in

Appendix A.

The unemployment rate in the data corresponds to the end-of-period unemployment rate

in the model Ut. The measurement equation for unemployment is given by

Udata
t − Ūdata = Ût, (33)

where Udata
t and Ūdata denote the logged unemployment rate in the data and its sample mean,

respectively, and Ût denotes the log deviations of the unemployment rate in the model from

its steady-state value.

Similarly, the measurement equation for vacancies is given by

vdatat − v̄data = v̂t, (34)

where vdatat and v̄data denote the logged vacancy rate and its sample mean in the data and v̂t

denotes the log deviations of the vacancy rate in the model from its steady-state value. Our

vacancy series for the periods prior to 2001 is the vacancy rate constructed by Barnichon

(2010) based on the Help Wanted Index. For the periods after 2001, we use the vacancy rate

from JOLTS.

In the data, we measure labor productivity by real output per person in the nonfarm

business sector. We use the demeaned quarterly log growth rate of labor productivity and

relate it to our model variable according to

γdata
p,t − γ̄data

p = Ŷt − N̂t − (Ŷt−1 − N̂t−1), (35)

where γdata
p,t denotes the log growth rate of labor productivity in the data, γ̄data

p denotes the

sample average of labor productivity growth, and Ŷt and N̂t denote the log deviations of

aggregate output and employment from their steady-state levels in our model.

We measure the real wage rate in the data by real compensation per worker in the nonfarm

business sector. We relate the observed real wage growth to the model variables by the

measurement equation

γdata
w,t − γ̄data

w = ŵt − ŵt−1, (36)

where γdata
w,t denotes the log growth rate of the real wage rate in the data, γ̄data

w denotes the

sample average of real wage growth, and ŵt denotes the log deviations of real wages from

the steady-state level in the model.

14Matching the observed fluctuations in labor productivity helps discipline the automation mechanism of

our model, especially because of the productivity slowdown since the mid-2000s (Fernald, 2015).
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Table 2. Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

ē scale for fixed cost of vacancy creation G [5, 1] 3.0703 2.2635 3.9291

x̄ scale for fixed cost of automation G [5, 1] 4.9483 3.4679 6.4300

κa flow cost of automation B [0.9, 1] 0.9788 0.9568 0.9999

ρz AR(1) of neutral technology shock B [0.8, 0.1] 0.9830 0.9696 0.9967

ρθ AR(1) of discount factor shock B [0.8, 0.1] 0.9760 0.9593 0.9930

ρδ AR(1) of separation shock B [0.8, 0.1] 0.9272 0.8838 0.9651

ρζ AR(1) of automation-specific shock B [0.8, 0.1] 0.8924 0.8553 0.9300

σz std of tech shock IG [0.01, 0.1] 0.0168 0.0152 0.0188

σθ std of discount factor shock IG [0.01, 0.1] 0.0469 0.0366 0.0578

σδ std of separation shock IG [0.01, 0.1] 0.0502 0.0446 0.0548

σζ std of automation-specific shock IG [0.01, 0.1] 0.0650 0.0566 0.0739

Log data density 1209.16

Note: This table shows our benchmark estimation results. For the prior distribution types, we use G to

denote the gamma distribution, B the beta distribution, and IG the inverse gamma distribution.

III.2.2. Prior distributions and posterior estimates. The prior and posterior distributions of

the estimated parameters from our benchmark model are displayed in Table 2.

The priors for the structural parameters ē and x̄ are drawn from the gamma distribution.

We assume that the prior mean of each of these three parameters is 5, with a standard

deviation of 1. The priors of the flow cost of automation κa are drawn from the beta

distribution, with a mean of 0.9 and a standard deviation of 1. The priors of the persistence

parameter of each shock are drawn from the beta distribution with a mean of 0.8 and a

standard deviation of 0.1. The priors of the volatility parameter of each shock are drawn

from an inverse gamma distribution with a mean of 0.01 and a standard deviation of 0.1.

The posterior estimates and the 90 percent probability intervals for the posterior distri-

butions are displayed in the last three columns of Table 2. The posterior mean estimate

of the vacancy creation cost parameter is ē = 3.07. The posterior mean estimate of the

automation cost parameter is x̄ = 4.95. The posterior mean estimate of the flow cost of

operating automation equipment is κa = 0.98. The 90 percent probability intervals indicate

that the posterior estimates are significantly different from the priors, suggesting that the

data are informative about these structural parameters.

The estimated and calibrated parameters imply a steady-state automation probability of

qa = 0.096 in our quarterly model, or about 38 percent at the annual frequency, which lies

within the range of firm-level estimates. For example, in a recent study based on the 2019

Annual Business Survey (ABS) of the U.S. Census Bureau, Acemoglu et al. (2022) find that

about 47.6 percent of U.S. firms had adopted at least one type of advanced technologies by
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2018.15 However, not all firms adopted advanced technologies for the purpose of automating

tasks performed by labor. A significant fraction of firms adopted advanced technologies for

other purposes, such as upgrading production processes or improving the quality or relia-

bility of those processes. Acemoglu et al. (2022) report that, in total, 30.4 percent of U.S.

workers are employed at firms using advanced technologies for automating tasks. Exposure

to automation is higher in manufacturing, with 52 percent of manufacturing workers em-

ployed at firms using at least one of the advanced technologies for automation. Outside of

manufacturing, the exposure to automation is lower, at 28.3 percent. The model-implied

automation probability in the steady state (38 percent), which corresponds to the measured

automation exposures, lies within this empirical range.

The posterior estimation suggests that the shocks to both neutral technology and the

discount factor are highly persistent, whereas the automation-specific shock is less persis-

tent but more volatile. The 90 percent probability intervals suggest that the data are also

informative for these shock processes.

The estimated model can generate second moments of automation investment that are in

line with broader measures of automation investment in the data. Specifically, in our model,

automation investment corresponds to the flow of newly adopted automation equipment,

which is given by

Iat ≡ qat (1− qvt−1)vt−1. (37)

Under the estimated parameters and shocks, the model implies that the unconditional volatil-

ity of automation investment relative to that of aggregate output is about 4.71 and the cor-

relation of automation investment with aggregate output is about 0.62. In comparison, in

the quarterly U.S. data from 1985 to 2018, the year-over-year growth of real investment in

information processing equipment—a proxy for automation investment—has a volatility of

about 5.04 times that of real GDP growth and a correlation with real GDP growth of about

0.72.

IV. Economic implications

Based on the calibrated and estimated parameters, we examine the model’s transmission

mechanism and its quantitative performance for explaining labor market dynamics.

IV.1. Impulse responses. To illustrate the mechanism through which the threat of au-

tomation drives labor market dynamics, we calculate the impulse responses of the key vari-

ables following each shock.

15Those advanced technologies include artificial intelligence, robotics, dedicated equipment, specialized

software, and cloud computing. The concept of automation equipment in our model is consistent with the

broad set of advanced technologies in the ABS.
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Figure 1. Impulse responses to a one-standard-deviation positive neutral

technology shock in the benchmark model.

Figure 1 shows the impulse responses of several key macro variables to a positive neutral

technology shock (i.e., a one-standard-deviation increase in the neutral productivity) in the

benchmark model. The shock leads to persistent declines in unemployment and persistent

increases in vacancies and hiring. The shock also raises the value of automation. Under our

parameters, the value of automation rises more than does the value of a vacancy, raising the

net value of robot adoption and therefore leading to an increase in the automation probability

in the short run. Over time, the increase in the value of vacancies dominate that in the value

of automation, leading to a decline in the automation probability about six quarters after

the shock.

Increased automation following the neutral technology shock also raises labor produc-

tivity, reinforcing the initial expansionary impact of the shock. However, the increase in

vacancy value also strengthens the firm’s bargaining power in wage negotiations, dampening

the responses of real wages. With muted wage responses and persistent increases in labor

productivity, the shock leads to a persistent decline in the labor income share.

Figure 2 shows the impulse responses to a positive discount factor shock. The shock raises

the present values of a job match and an open vacancy. Thus, it generates a persistent boom

in employment, vacancies, and hiring. Similar to the neutral technology shock, the discount
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Figure 2. Impulse responses to a one-standard-deviation positive discount

factor shock in the benchmark model.

factor shock also raises the net value of automation (i.e., the difference between the value of

a robot and the value of a vacancy), increasing the automation probability and raising labor

productivity. The increased automation threat reduces workers’ bargaining power, leading

to a modest short-run decline in the real wage, while the labor income share falls persistently.

Figure 3 shows the impulse responses to a positive automation-specific shock. The shock

directly raises the value of automation. Since the option of automation boosts the value

of vacancies, the increase in automation leads to more vacancy creation. The increase in

vacancies raises the job finding rate and hiring, reducing unemployment. As in the case

with a neutral technology shock (or a discount factor shock), the automation-specific shock

also weakens workers’ bargaining power, such that the rise in labor productivity does not

translate fully into a rise in wages, leading to a persistent decline in the labor share.16

IV.2. Automation vs. other amplification mechanisms. Our model suggests that the

automation threat effectively weakens workers’ bargaining power and mutes wage changes,

16We report the impulse responses to a job separation shock in the online appendix. As we discuss

there, a job separation shock raises both unemployment and vacancies. Consistent with Shimer (2005), this

counterfactual positive correlation between unemployment and vacancies renders the job separation shock

unimportant for driving labor market dynamics.

https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf


AUTOMATION, BARGAINING POWER, AND LABOR MARKET FLUCTUATIONS 20

0 10 20

-0.04

-0.02

0

P
e
rc

e
n
t 
d
e
v

Unemployment

0 10 20

0

0.01

0.02

0.03
Vacancy

0 10 20

0

5

10
10

-3 Hiring

0 10 20

0

0.2

0.4
Automation prob

0 10 20

0

0.5

1

Vacancy creation

0 10 20

0

0.5

1

Vacancy value

0 10 20

Quarter

0.01

0.015

0.02
Productivity

0 10 20

Quarter

0

2

4

6
10

-3 Wage

0 10 20

Quarter

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

Labor share

Figure 3. Impulse responses to a one-standard-deviation positive

automation-specific shock in the benchmark model.

therefore amplifying labor market fluctuations. The literature has studied other amplifica-

tion mechanisms in the standard DMP framework without automation threats. For exam-

ple, Hagedorn and Manovskii (2008) argue that, in the standard DMP framework, reducing

workers’ bargaining weight or raising the workers’ value of nonmarket activity, such as unem-

ployment insurance (UI) benefits, can amplify fluctuations in unemployment and vacancies.

To evaluate the quantitative importance of the automation channel relative to these al-

ternative amplification mechanisms, we study a counterfactual specification without the

automation threat (labeled “no automation threat”), which is a version of our benchmark

model with the automation probability qat held constant at its steady-state level. We con-

sider two variations of the “no automation threat” specification, one with a higher UI benefit

(raising ϕ from 0.25 to 0.4) and the other with a lower worker bargaining weight (reducing

b from 0.5 to 0.3).

Figure 4 displays the impulse responses to a positive discount factor shock in the bench-

mark model (black solid lines), the counterfactual with no automation threats (blue dashed

lines), and the counterfactual with no automation threats and with a higher UI benefit
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Figure 4. Impulse responses to a positive discount factor shock in the bench-

mark model (black solid lines), the counterfactual with no automation threats

(blue dashed lines), and the counterfactual with no automation threats and

high unemployment insurance (UI) benefits (red dot-dash lines).

(red dotted-dashed lines).17 Absent automation threats, the responses of unemployment and

vacancies would be more muted than in the benchmark. Raising UI benefits in this case

would increase workers’ outside option and amplify the responses of the labor market vari-

ables (Hagedorn and Manovskii, 2008). A key difference from the benchmark model lies in

the responses of wages and the labor share. In our baseline model, the automation threat

generates a short-run decline in wages and persistent declines in the labor share. Without

the automation threat, however, the counterfactual with higher UI benefits generates less

downward pressures on the real wage, leading to a short-run increase in the labor share.

In the counterfactual case without automation threats, mechanically lowering workers’

bargaining weight can also dampen wage adjustments and therefore amplify the responses

of unemployment and vacancies, consistent with Hagedorn and Manovskii (2008). Figure 5

shows the impulse responses to a positive discount factor shock in the benchmark model

(black solid lines), the counterfactual with no automation threats (blue dashed lines), and

17The impulse responses to a neutral technology shock in these counterfactual models display similar

patterns, as we show in the online appendix.

https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf
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Figure 5. Impulse responses to a positive discount factor shock in the bench-

mark model (black solid lines), the counterfactual with no automation threats

(blue dashed lines), and the counterfactual with no automation threats and a

low worker bargaining weight (red dot-dash lines).

the no-automation counterfactual with a lower worker bargaining weight (red dotted-dashed

lines). Similar to the case with higher UI benefits, the real wage rate does not fall as much as

in the benchmark model, such that the labor share rises in the short run, in contrast to the

persistent declines under the threat of automation. These impulse responses suggest that

the automation channel is an important mechanism for amplifying labor market fluctuations

and generating a countercyclical labor income share.

To further illustrate the quantitative importance of the automation mechanism for labor

market fluctuations, we compare the predictions from a few counterfactual models without

automation threats for the volatility of labor market tightness (i.e., the v/u ratio), the

correlation between real wage growth and labor productivity growth, and the volatility of

the v/u ratio relative to that of real wages (i.e., the volatility ratio) with the corresponding

moments in the benchmark model. For ease of comparison, we normalize each of these

labor market moments in the benchmark model to one and we calculate the corresponding

moments in the counterfactual models relative to those in the benchmark. Table 3 displays

these moments, all expressed relative to the corresponding statistics in the benchmark model.
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Table 3. Quantitative importance of automation threat

(a) (b) (c)

Counterfactual model std(ln(v/U)) corr(∆ ln(w),∆ln(p))
std(ln(v/U))
std(ln(w))

(1) No automation threat 0.69 1.10 0.64

(2) No automation threat and

high UI benefits 0.96 0.81 0.82

(3) No automation threat and

low worker bargaining weight 0.96 1.24 0.81

Note: The rows in the table correspond to the alternative models: (1) the counterfactual with

the automation probability held constant at the steady-state level (“No automation threat”);

(2) the model with no automation threat and a higher unemployment insurance (UI) bene-

fit (with ϕ raised from 0.25 to 0.4); and (3) the model with no automation threat and a lower

worker bargaining weight (with b reduced from 0.5 to 0.3). The columns report (a) the standard

deviations of the v/u ratio, (b) the correlation between real wage growth and labor productiv-

ity growth, and (c) the ratio of the standard deviation of the v/u ratio to that of real wages, all

expressed relative to the corresponding statistics in the benchmark model.

The counterfactual model with no automation threats (row 1 of Table 3) predicts a lower

volatility of the v/u ratio (31 percent lower), a higher correlation between real wage growth

and labor productivity growth (10 percent higher), and a lower volatility of the v/u ratio

relative to that of real wages (36 percent lower) than those in the benchmark model. These

results reflect the Shimer (2005) volatility puzzle facing the standard DMP model.

The table also shows that, absent automation threats, raising UI benefits (row 2) or reduc-

ing workers’ bargaining weight (row 3) can amplify the fluctuations in the v/u ratio, bringing

its volatility closer to that in the benchmark model (from 69 percent to 96 percent). The

volatility ratio, however, is about 20 percent lower than that in the benchmark, because real

wages fluctuate more than those in the benchmark. Overall, these counterfactual exercises

illustrate that the threat of automation creates meaningful wage rigidity that amplifies labor

market fluctuations.18

V. Evidence for the model’s mechanism

Our model’s mechanism suggests that the procyclical automation probability dampens

real wage fluctuations. By weakening workers’ bargaining power, automation reduces the

18In another counterfactual, we raised the worker bargaining weight (b) from 0.5 to 0.75 and the scale

parameter of automation costs x̄ from 4.9 to 9.8. This counterfactual captures the earlier decades when

unionization rates were higher and automation was less prevalent. We find that, in this counterfactual

model, the correlation between wage growth and labor productivity growth is roughly 25 percent lower than

that in the benchmark model, while the v/u volatility and the volatility ratio are both roughly comparable to

those in the benchmark model. This finding suggests that higher unionization rates (and lower automation

adoption) in the earlier decades could help explain the disconnect between wages and labor productivity,

contributing to labor market fluctuations. In the more recent decades, the steady declines in unionization

rates allowed other mechanisms such as automation to play a more prominent role in explaining the disconnect

between wages and labor productivity.
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correlation between real wages and labor productivity. This creates endogenous real wage

rigidity and amplifies fluctuations in unemployment and vacancies. We now present some

cross-sectional and time-series evidence that is consistent with the model’s mechanism.

V.1. Cross-sectional evidence. We first present cross-sectional evidence that supports

the model’s mechanism. We estimate the following dynamic panel regression

ln(Yit) = a0 + a1 ln(Yi,t−1) + a2 ln(Pt)× APi + γi + ηt + εit, (38)

where the dependent variable Yit includes the v/u ratio, vacancies, unemployment, and the

real wage rate in industry i and quarter t. The main independent variable of interest is the

interaction term ln(Pt)× APi, which is a proxy for time-varying automation threats. Here,

Pt denotes the aggregate time series of the relative price of computer equipment and APi

denotes the automation potential of industry i, which is a fixed characteristic of tasks in an

industry, as we discuss in more detail below. By combining an aggregate relative price with

physical characteristics of tasks in an industry, our proxy for the threat of automation is

likely exogenous to movements in labor market variables in any given sector. We include the

lagged dependent variable as a regressor to control for serial correlations in the dependent

variable in our quarterly panel. The terms γi and ηt measure the industry fixed effects and

the time fixed effects, respectively. The term εit is a regression residual.

The coefficient a2 measures the relative sensitivity of the industry variable Yit to changes

in the aggregate computer prices, depending on the industry-specific automation risks. Our

model suggests that, for an industry with a higher risk of automation (i.e., with a higher level

of APi), a decline in computer prices should lead to a larger increase in the job vacancy rate

and the v/u ratio. Since automation threats reduce workers’ bargaining power and therefore

dampen wage changes, the effect of a decline in computer prices on real wages is a priori

ambiguous.

To obtain an empirical estimate of the parameter of interest (a2), we estimate the regression

specified in Eq. (38) using industry-level data in the United States. We obtain industry-level

job vacancy rates from JOLTS and unemployment rates and real wages from the Bureau of

Labor Statistics (BLS). We focus on the pre-pandemic periods up to 2019. Our unbalanced

panel of vacancies, unemployment, and the v/u ratio covers 15 NAICS two-digit industries

for the period 2001:Q1 to 2019:Q4. The quarterly panel of real wages covers 12 two-digit

industries for the periods from 1985:Q1 to 2019:Q4.

To measure industry-specific automation exposures (APi), we use the technological au-

tomation potential for two-digit industries constructed by the McKinsey Global Institute

(see Manyika et al. (2017)). This measure captures the weighted average of the automation

potential of tasks in an industry based on their physical characteristics. The relative price of
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Table 4. Summary statistics

(1)

Mean count SD Min Max

ln(v) 1.04 1140 0.40 -0.51 1.93

ln(u) 1.67 1140 0.45 0.17 3.08

ln(v/u) -0.63 1140 0.72 -3.25 1.31

ln(w) 3.00 1680 0.22 2.49 3.54

ln(ComputerPrice)× AP 2.72 1972 0.90 1.19 5.33

ln(ComputerPrice) 5.91 1972 1.45 4.41 8.88

AP 0.46 1972 0.10 0.27 0.73

computer equipment is the ratio of the quality-adjusted chain price index for private invest-

ment in computers and peripherals to the chained personal consumption expenditures price

index (PCEPI), with both price series taken from the Bureau of Economic Analysis (BEA).

We use the time series of the relative price of computing equipment to capture changes in ag-

gregate economic conditions such as technological changes that drive automation decisions.

We provide detailed descriptions of these data in Appendix B.

Since computer prices are common for all industries, the main source of cross-industry

variations of our key independent variable stems from APi. As shown in the summary

statistics presented in Table 4, there are meaningful variations in APi across industries,

ranging from low scores of about 0.3 (educational services, professionals, and management) to

high scores above 0.6 (accommodation and food services, manufacturing, and transportation

and warehousing). The standard deviation of APi is about 22 percent of its average level

(0.1/0.46). This cross-industry variation, along with the time-series variation in computer

prices, leads to substantial variations in the interaction term between computer prices and

APi.
19

We estimate the empirical specification (38) using the Arellano-Bond estimator for dy-

namic panel data.20 Table 5 reports the estimation results. The columns show the regression

19An alternative measure of industry-level automation exposures is robot density (e.g., the operation stock

of industrial robots per thousand employees). However, the IFR—the main source of robot data—covers

mainly manufacturing industries. This would create a challenge for our empirical work since our industry-

level data on vacancies, unemployment, and wages include many non-manufacturing industries (e.g., retail,

wholesale, real estate, education, and professional services) that are not covered by the IFR data. For this

reason, we focus on the automation potentials (APi) constructed by McKinsey as our baseline measure for

automation exposures.
20The Arellano-Bond estimator first takes the differences of all variables in Eq. (38) to remove the con-

stant and the industry fixed effects. It then applies the generalized method of moments (GMM) approach
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Table 5. Automation threat and labor market outcomes: Cross-sectional

evidence

Dep. Var. ln(v/u) ln(v) ln(u) ln(w)

ln(ComputerPrice)×AP -0.411∗∗ -0.354∗∗ 0.216∗ 0.002∗

(0.174) (0.141) (0.115) (0.001)

Lagged ln(v/u) 0.470∗∗∗

(0.028)

Lagged ln(v) 0.393∗∗∗

(0.028)

Lagged ln(u) 0.407∗∗∗

(0.029)

Lagged ln(w) 0.979∗∗∗

(0.004)

Constant 0.868∗∗ 1.096∗∗∗ 0.856∗∗∗ 0.061∗∗∗

(0.365) (0.315) (0.259) (0.010)

Observations 1125 1125 1125 1668

Time Periods 2001Q1:2019Q4 2001Q1:2019Q4 2001Q1:2019Q4 1985Q1:2019Q4

No. of industries 15 15 15 12

Note: This table shows the panel estimation results using NAICS two-digit industry-level data under

the empirical specification in Eq. (38). Each column indicates the dependent variable of each regression,

including the v/u ratio (v/u), the vacancy rate (v), the unemployment rate (u), and the real wage rate

(w), all in log units and at the quarterly frequency. In each regression, the independent variables include

one lag of the dependent variable, the interaction between the relative price of computers and peripher-

als and the industry-specific automation potential (AP ), and industry and time fixed effects. Standard

errors are reported in parentheses. The stars denote the p-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

results for alternative industry-level dependent variables, including the v/u ratio (v/u), the

vacancy rate (v), the unemployment rate (u), and the real wage rate (w), all in log units.

The first row shows the estimated coefficient a2 on the interaction term between computer

prices (also in log units) and the industry-specific automation risks.

The table shows that, in an industry more exposed to automation risks (i.e., with a higher

APi), a decline in computer prices is associated with a greater increase in both the v/u

ratio and the vacancy rate and a greater decline in the unemployment rate.21 The estimated

impact of the automation threat (measured by the interaction term) on these labor market

variables are statistically significant and economically important. For instance, a 1 percent

increase in our measure of the automation threat (i.e., a 1 percent decline in the interaction

between computer prices and APi) raises vacancies by 0.35 percent relative to its mean.

This magnitude is in line with our model’s predicted impulse responses of vacancies to an

to estimating the parameters of interest, using lagged dependent variables as a part of the instrumental

variables. We implement this estimator with the command “xtabond2” in Stata. Since the estimator uses

first differences of the variables, the coefficient a2 measures the sensitivity of changes in the dependent vari-

able for each industry to changes in the relative price of computer equipment, depending on the industry’s

exposure to automation risks measured by APi.
21Our discussion here focuses on the effects of a decline in computer prices. If the estimated coefficient a2

is negative, as in the case for the v/u ratio (for instance), it means that a decline in computer prices raises

the v/u ratio.
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automation-specific shock shown in Figure 3.22 A decline in computer prices is also associated

with a significant reduction in real wages in industries more exposed to automation risks,

consistent with the independent evidence documented by Acemoglu and Restrepo (2021).23

Our industry-level evidence suggests that the diffusion of automation in the past two

decades had significantly different impacts on labor market variables in industries that face

different exposures to automation risks. This evidence lends empirical support to our model’s

implication that the threat of automation weakens workers’ bargaining power, restraining

wage increases, and thus amplifying labor market fluctuations.

A potential confounding factor, however, could be variations in unionization rates over

time, because changes in unionization rates could also induce changes in bargaining power

and impact labor market fluctuations. To address this concern, we now add a control for

industry-specific variations in unionization rates in the regressions.24 Table 6 displays the

regression results. It shows that, after controlling for variations in unionization rates (both

across time and across industries), we obtain similar point estimates of the coefficient a2

to those obtained in the benchmark specification reported in Table 5. The main difference

is in the wage regression, where the point estimate of a2 becomes larger (0.006 vs. 0.002),

although it is less precisely estimated than in the benchmark specification.

Similar to changes in unionization, changes in offshoring could also affect U.S. labor market

outcomes and potentially confound the effects of automation. However, industry-level data

on offshoring (i.e., importing of intermediate goods) are available only for tradable sectors

such as agriculture, manufacturing, and mining. Thus, we cannot add an explicit control

22In the model, a one-standard-deviation positive shock to the automation-specific technology—or equiv-

alently, a 6.5 percent increase in the shock—raises vacancies about 2 percent on impact (see Figure 3). The

empirical estimate reported in Table 5 suggests that a 6.5 percent increase in the automation threat would

raise vacancies by about 6.5 × 0.35 ≈ 2.3 percent. A similar calculation suggests that the magnitude of

the impulse responses of unemployment to an automation-specific shock in our model is comparable to the

empirical estimate reported in Table 5.
23We have also estimated a similar empirical specification for industry-level labor shares using the BLS

annual data from 1987 to 2019 (not reported in the paper). The estimation suggests that an increase

in automation threat leads to a larger reduction in the labor share in an industry that is more exposed

to automation, in line with our model’s implications. However, these effects (i.e., the coefficient a2) are

imprecisely estimated, partly because the sample is relatively small (at the annual frequency, instead of

quarterly).
24We measure the two-digit industry-level unionization rates by the shares of private employed wage and

salary workers that are members of a labor union. The data are available at the annual frequency from

the BLS (through Haver Analytics), from 2000 to 2021. We extrapolate the annual unionization data to a

quarterly frequency by assuming that, for each industry, the unionization rate stays the same within a year.
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Table 6. Automation threat and labor market outcomes: Controlling for

unionization

Dep. Var. ln(v/u) ln(v) ln(u) ln(w)

ln(ComputerPrice)×AP -0.435∗∗ -0.301∗∗ 0.284∗∗ 0.006

(0.178) (0.143) (0.118) (0.005)

Lagged ln(v/u) 0.471∗∗∗

(0.028)

Lagged ln(v) 0.383∗∗∗

(0.029)

Lagged ln(u) 0.405∗∗∗

(0.029)

Lagged ln(w) 0.973∗∗∗

(0.008)

ln(Union) 0.0447 -0.101∗∗ -0.111∗∗ -0.002

(0.070) (0.0498) (0.044) (0.002)

Constant 0.843∗∗ 1.669∗∗∗ 0.349 0.078∗∗∗

(0.367) (0.306) (0.243) (0.019)

Observations 1125 1125 1125 960

Time Periods 2001q2:2019q4 2001q2:2019q4 2001q2:2019q4 2000q1:2019q4

No. of industries 15 15 15 12

Note: This table shows the panel estimation results using NAICS two-digit industry-level data un-

der the empirical specification in Eq. (38), adding controls for industry-specific unionization rates

(Union, in log units). The unionization rate data are available at the annual frequency, which are

extrapolated to quarterly frequency (by assuming that the within-year values are identical to the

annual value). The other variables are the same as those reported in Table 5. Standard errors are

reported in parentheses. The stars denote the p-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

for offshoring in the industry-level regressions, because the sample covers a number of non-

manufacturing industries with little exposure to offshoring. As an alternative, we isolate the

effects of automation from those of offshoring by re-estimating the industry-level regressions

without the tradable sectors. We find that the main results obtained in our benchmark

specification are robust.25

V.2. Time-series evidence. Our model’s mechanism is also broadly consistent with time-

series data. Since the early 2000s, the importance of automation in the United States has

risen steadily. As shown in Figure 6, the ratio of real investment in information processing

equipment to real GDP and robot density (i.e., the operation stock of robots per thousand

manufacturing employees)—two different measures of automation—have both increased sub-

stantially during the past two decades (left panel). Our model mechanism suggests that,

given the increases in automation, the volatility of labor market tightness (i.e., the v/u ra-

tio) should increase and the correlation between real wages and labor productivity should

decrease during this period. These model implications are broadly consistent with the U.S.

time-series data.

Figure 7 shows that the standard deviation of labor market tightness initially declined

from the 1980s to the 1990s, consistent with the “Great Moderation” hypothesis. Since the

25The detailed results are shown in Appendix C.
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Figure 6. Trends in automation and offshoring in the United States. The

left panel shows two measures of automation: the ratio of real investment

in information processing equipment to real GDP (blue line) and the robot

density measured by the operation stock of industrial robots per thousand

manufacturing employees (green line). The right panel shows the ratio of real

imports to real GDP. The shaded bars indicate NBER recession dates.

Source: U.S. Bureau of Economic Analysis, Bureau of Labor Statistics, Haver

Analytics, International Federation of Robotics, and authors’ calculations.

early 2000s, however, the volatility of the v/u ratio has increased steadily. The volatility of

the v/u ratio in the 2010s (prior to the global pandemic) was about double that in the 1990s.

The correlation between real wages and labor productivity initially increased from the 1980s

to the 1990s, and then declined substantially since the early 2000s. The correlation in the

2010s was less than half of that in the 1990s.

Our model suggests that these time-series changes in labor market dynamics might be

partly driven by the rising threat of automation. To get a quantitative sense of the extent

to which automation has contributed to the changes in labor market dynamics over time,

we consider a counterfactual version of the model, in which we reduce the steady-state share

of intermediate goods produced by automation equipment relative to those produced by

workers. Specifically, we raise the weight on intermediate goods produced by workers in the

final goods production function from the calibrated value of αn = 0.535 to 0.682, such that

the steady-state ratio of automation investment to aggregate output is about one-third of

that in the benchmark model. This counterfactual captures the economy in earlier decades

(such as the late 1980s and the early 1990s) when automation was less prevalent. For

example, in the late 1980s and early 1990s, the ratio of information processing equipment

investment to real GDP was about one-third of the sample median from 1985 to 2019. With
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Figure 7. Changes in labor market volatilities and correlations over time.

The left panel shows the standard deviations of labor market tightness mea-

sured by the v/u ratio for each of the four decades from 1980 to 2019. The

right panel shows the correlations between year-over-year growth in real wages

and in labor productivity in each of those four decades.

Source: Bureau of Labor Statistics, JOLTS, Haver Analytics, and authors’

calculations.

a lower automation share, which translates into a lower automation probability, the volatility

of labor market tightness is about half of that in the benchmark model, while the correlation

between wage growth and labor productivity growth is about 30 percent higher. These

patterns are consistent with the observed increases in the volatility of the v/u ratio and the

substantial decline in the correlation between wage growth and productivity growth since

the early 2000s shown in Figure 7.

Our model mechanism does not inherently rely on firms’ ability to substitute automation

equipment for workers but on the possibility of adopting labor-saving technologies, such as

offshoring of intermediate goods production. For example, Arseneau and Leduc (2014) show

that the threat of offshoring can affect domestic wages through its impact on firms’ outside

options. Elsby et al. (2013) show that rising offshoring has played an important role in ex-

plaining the declines in the labor share from the mid-1980s up to the Great Recession in the

late 2000s. Since the 2010s, however, the importance of offshoring has diminished, as the in-

crease in the ratio of real imports to real GDP in the United States has slowed significantly

following the trade collapse in 2008-2009 (right panel of Figure 6). Recent supply-chain

disruptions stemming from the U.S.-China trade wars and the COVID-19 pandemic fur-

ther highlight the fragility of global supply chains (Antràs, 2020). The use of automation
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technologies, in contrast, has been steadily rising, suggesting that the importance of the

automation channel has increased relative to the offshoring channel, at least since the 2010s.

VI. Robustness of the model mechanism

Our benchmark model shows that the threat of automation can effectively weaken workers’

bargaining power, resulting in sluggish adjustments in real wages and therefore amplifying

fluctuations in unemployment and vacancies. We now consider three variations of the bench-

mark model and examine the robustness of the model’s main transmission mechanism.26

VI.1. Production lags. In the benchmark model, automation equipment becomes produc-

tive without delays. In reality, however, it may take some time for newly adopted equipment

to become productive, reflecting adjustment costs in using the new equipment. We now con-

sider a variation of the benchmark model with production lags associated with the automa-

tion technology. For simplicity, we consider a one-period lag, such that a firm that operates

the automation technology can produce intermediate goods using automation equipment

built in the previous period.

With production lags, the profit flow generated from an automation equipment built in

period t can be materialized in period t + 1. Thus, the present value of automation would

become

Ja
t = (1− ρo)EtDt,t+1

[
pa,t+1Zt+1ζt+1 − κa + Ja

t+1

]
. (39)

The market-clearing condition for intermediate goods produced by the automation tech-

nology is now given by

Yat = ZtζtAt−1, (40)

where the input is the previous-period stock of automation equipment At−1 instead of the

current-period equipment.

The market-clearing condition (31) for final goods also needs to be modified such that the

per-period fixed cost of operating the automation technology is given by κaAt−1.

For ease of comparison, we solve this version of the model with production lags using the

same parameters as in the benchmark model. The implications of the model are very similar

to those of the benchmark. For example, the unconditional volatility of the labor market

tightness and the volatility ratio in this model are, respectively, about 97 percent and 98

percent of those corresponding moments in the benchmark model. The impulse responses to

each shock are also very similar to those in the benchmark model, as we show in the online

appendix. Thus, our model mechanism is not sensitive to introducing production lags.

26To conserve space, we sketch the key ingredients of each model in the text and describe the full equi-

librium system in the online appendix.

https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf
https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf
https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf
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VI.2. Automating jobs. In our benchmark model, we assume that firms can automate a

vacancy if that vacancy is not filled with a worker. A plausible alternative way of thinking

about automation is to allow firms to automate an existing job instead of an open vacancy.

We now consider such an alternative setup.

In the beginning of period t, after observing all aggregate shocks, a firm can decide whether

or not to replace a worker in an existing job match with automation equipment. The firm

draws a cost x of automation from an i.i.d. distribution F (x) and chooses to automate if

the cost lies below the expected benefits of automation. There exists a threshold level of the

automation cost—denoted by x∗
t—such that the firm automates the job position if and only

if x ≤ x∗
t . Thus, the automation probability is given by qat = F (x∗

t ). If the firm automates

the job, it obtains the automation value Ja
t (see Eq. (20)), but gives up the employment

value Je
t . Thus, the automation threshold is given by x∗

t = Ja
t − Je

t .

The employment value takes into account the possibility of automation and is given by

Je
t = pntZt−wt+Etβθt+1

Ct

Ct+1

{
δt+1J

v
t+1 + (1− δt+1)

[
qat+1J

a
t+1 −

∫ x∗
t

0

xdG(x) + (1− qat+1)J
e
t+1

]}
.

(41)

A job match yields the flow profit pntZt − wt in period t. In period t + 1, the job can be

exogenously separated (with the probability δt+1), in which case the firm obtains the vacancy

value Jv
t+1. If the job is not separated, it can be automated with the probability qat+1, in

which case the firm obtains the automation value Ja
t+1 net of the equipment adoption costs.

If the job is neither separated nor automated, then the firm obtains the continuation value

of employment Je
t+1.

Since a fraction of nonseparated jobs are automated, employment follows the law of motion

Nt = (1− δt)(1− qat )Nt−1 +mt. (42)

We simulate the model based on the calibrated and estimated parameters as in the bench-

mark model. We recalibrate the relative productivity of automation such that the model

with automated jobs implies the same steady-state probability of automation as that in the

benchmark model.

Figure 8 shows the impulse responses of a few key macro and labor market variables follow-

ing a positive discount factor shock. The shock raises the net present value of automation

and thus increases the probability of automation. The increase in automation probabil-

ity has two opposing effects on employment. Automation directly replaces workers in this

model, pushing up the unemployment rate. At the same time, automation improves labor

productivity, raising the employment value and boosting employment. With the calibrated

parameters, the employment-boosting effect dominates the job-displacing effect, such that

a positive discount factor shock leads to persistent declines in the unemployment rate. The
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Figure 8. Impulse responses to a positive discount factor shock in the alter-

native model with automated jobs instead of vacancies.

discount factor shock increases the value of vacancies, encouraging firms to create new vacan-

cies and leading to large and persistent increases in the stock of vacancies. As a result, the

labor market tightness (i.e., the v/u ratio) increases persistently (not shown in the figure).

Increased automation probability leads to a muted response of the real wage rate, reflecting

that the threat of automation weakens workers’ bargaining power. Since labor productivity

rises and wage responses are relatively muted, the labor share declines following a positive

discount factor shock, as in our benchmark model. Thus, the automation channel that we

have identified in the benchmark model is robust when we consider automating jobs instead

of vacancies.

VI.3. Heterogeneous worker skills. In our benchmark model, workers are homogeneous.

We now generalize the benchmark model to incorporate heterogeneity in worker skills. We

show that the model mechanism survives this generalization. Furthermore, the model im-

plies that automation has a skill-upgrading effect that raises the relative demand for skilled

workers and the skill wage premium, in line with firm-level evidence (Acemoglu et al., 2022).

The economy has two types of workers, skilled and unskilled, and all workers are members

of the representative household family. A firm can produce a homogeneous consumption

good by either hiring an unskilled worker from the frictional labor market or adopting an
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automation equipment and hiring skilled workers in a competitive spot labor market to

operate the equipment. Thus, automation equipment is a complementary input for skilled

workers but a substitute for unskilled workers.27

To keep the model tractable, we assume that the aggregate supply of skilled workers is

inelastic and fixed at s̄.28 Skilled workers face a spot labor market with the competitive wage

rate wst. Unskilled workers face search frictions in the labor market, and they each receive

either the unskilled wage rate wnt if employed or the UI benefit ϕ if unemployed.

The household utility function remains the same (see Eq. (9)). The budget constraint now

includes the additional wage income from skilled workers and is given by

Ct +
Bt

rt
= Bt−1 + wntNt + wsts̄+ ϕ(1−Nt) + dt − Tt. (43)

Since the supply of skilled workers is inelastic, introducing skilled workers does not affect

the household’s optimizing decisions relative to the benchmark model. The only required

modification in the household’s problem is that, in the employment surplus expression (13),

the wage rate wt should be replaced by the unskilled wage rate wnt.

An intermediate goods producer (i.e., a firm) can choose a technology at the beginning

of each period: one requires an unskilled worker as the only input, and the other requires

automation equipment along with st skilled workers as inputs. If the firm hires an unskilled

worker for production, then it can produce ynt = Zt units of output. If the firm chooses the

automation technology, then it optimally chooses the input of skilled workers st, with the

production function

yat = Ztζ
γa
t s1−γa

t , (44)

where γa ∈ (0, 1) denotes the output elasticity of the equipment input.

If a firm chooses the automation technology, then it takes the skilled wage rate wst as

given and chooses st to maximize the profit before paying the fixed costs of operating the

automation equipment. The value of automation is given by

Ja
t = πa

t + (1− ρo)Etβθt+1
Ct

Ct+1

Ja
t+1, (45)

27Our approach here is similar to that in Krusell et al. (2000), who study a neoclassical model in which

capital equipment complements skilled labor but substitutes for unskilled labor.
28Given our focus on business cycles, assuming a constant supply of skilled workers seems innocuous

since human capital accumulation is likely a slow-moving process. In the data, the share of skilled workers

(e.g., those with a bachelor’s degree or higher) has been rising steadily over time, and it shows little cyclical

fluctuation. See He and Liu (2008) for a general equilibrium extension of the Krusell et al. (2000) model

that incorporates endogenous skill accumulation.
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Figure 9. Impulse responses to a positive neutral technology shock in the

model with heterogeneous worker skills.

where πa
t ≡ maxst patZtζ

γa
t s1−γa

t −wstst−κa. Therefore, different from our benchmark model,

automation now entails both a flow fixed cost and a variable cost through the use of skilled

workers as a complementary input.

We use the calibrated and estimated parameters in the benchmark model (where appropri-

ate), and calibrate three additional parameters in this generalized model. We set γa = 0.32,

such that the skilled labor share is 68 percent of the revenue generated by the automation

technology. We normalize the supply of skilled workers and calibrate the average level of the

automation-specific productivity (relative to the neutral technology) such that the model

implies a steady-state skill premium of 55 percent, in line with the ratio of median weekly

earnings of workers with a bachelor’s degree or higher to those of workers with some college

or associate degrees.

Figure 9 shows the impulse responses following a positive neutral technology shock. The

shock lowers unemployment and raises vacancies in the short run, although the responses

are somewhat smaller in magnitude than those in the benchmark model. The shock boosts

the present value of automation, raising the automation probability and labor productivity,

which is measured by the ratio of aggregate output to aggregate employment, including both

skilled and unskilled workers.
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The increased threat of automation raises the firm’s reservation value in wage bargaining,

restraining wage increases for unskilled workers. Since automation equipment and skilled

workers are complementary inputs in production, increases in automation raises the skilled

wage rate, resulting in a persistent increase in the skill premium.

Under our calibration, despite the wage increases for both types of workers, the model

predicts that the labor share (defined as the ratio of aggregate labor income—including

skilled and unskilled labor—to aggregate output) falls in response to a positive neutral

technology shock.29

Since skilled workers are required to operate the automation equipment, the flow cost

of using the automation technology increases with skilled wages. All else being equal, a

business cycle boom that raises skilled wages would reduce the net value of automation,

mitigating the increase in the automation probability. This feature is parallel to that for op-

erating the manual technology, under which an increase in the wage rate of unskilled workers

would reduce the present value of employment and thus discourage hiring. Nonetheless, the

central mechanism of our benchmark model remains robust: increased automation weakens

(unskilled) workers’ bargaining power, dampens wage increases, and thus amplifies labor

market fluctuations.

VII. Conclusion

We studied the role of automation in explaining the observed labor market dynamics in a

tractable quantitative general equilibrium framework. The threat of automation raises the

firm’s reservation value in wage bargaining, reducing the worker’s effective bargaining power

and dampening increases in real wages in a business cycle boom. By lowering the correlation

between wages and labor productivity, automation creates a source of real wage rigidity that

amplifies labor market fluctuations. The automation mechanism is supported by empirical

evidence and quantitatively important.

A natural extension of our model framework is to incorporate firm heterogeneity in automa-

tion adoption. Recent surveys by the U.S. Census Bureau find that the use of automation

technology is not widespread across firms; instead, it is highly skewed towards large and

high-productivity firms (Zolas et al., 2020; Acemoglu et al., 2022). In a more general frame-

work with firm heterogeneity and labor market search frictions, one could study how worker

bargaining power and wages may depend on firm size through heterogeneous automation

decisions. Research along these lines is an important and promising avenue for future work.

29The impulse responses to a discount factor shock and an automation-specific shock are reported in the

online appendix.

https://www.frbsf.org/wp-content/uploads/sites/4/wp2019-17_appendix.pdf
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Appendix A. Macro time-series data

We fit the DSGE model to four time series of quarterly U.S. data, including the unem-

ployment rate, the job vacancy rate, real wage growth, and labor productivity growth. The

sample covers the period from 1985:Q1 to 2018:Q4.

(1) Unemployment: civilian unemployment rate (age 16 years and over) from the Bu-

reau of Labor Statistics, seasonally adjusted monthly series (LRUSECON in Haver).

(2) Job vacancies: for pre-2001 periods, we use the vacancy rate constructed by Bar-

nichon (2010) based on the Help Wanted Index. For the periods starting in 2001,

we use the job openings rate from the Job Openings and Labor Turnover Survey

(JOLTS), seasonally adjusted monthly series (LIJTLA@USECON in Haver).

(3) Real wages: real compensation per worker in the nonfarm business sector. We

first compute the nominal wage rate as the ratio of nonfarm business compensa-

tion for all persons (LXNFF@USECON in Haver) to nonfarm business employment

(LXNFM@USECON) and then deflate it using the nonfarm business sector implicit

price deflator (LXNFI@USECON).

(4) Labor productivity: nonfarm business sector real output per person (LXNFS@USECON

in Haver).

Appendix B. Industry-level data

The empirical regressions presented in Section V.1 use industry-level data of the job va-

cancy rate, the unemployment rate, real wages, and the labor income share, along with the

cross-sectional data of automation potentials and the time-series data of the relative price of

computer equipment. Below, we describe the source and sample range of each variable used

in the regressions.

(1) Job vacancy rate: covers 15 two-digit NAICS industries in private nonfarm sec-

tors from 2001 to 2019. Monthly values are converted to quarterly by taking the

quarter-end values. The 15 industries include accommodation and food services;

manufacturing; transportation, warehousing, and utilities; retail trade; mining and

logging; other services; construction; wholesale trade; finance and insurance; arts, en-

tertainment, and recreation; real estate and rental and leasing; health care and social

assistance; information; professional and business services; and educational services.

Source: JOLTS.

(2) Unemployment rate: covers 15 two-digit NAICS industries in private nonfarm

sectors from 2001 to 2019. Monthly values are converted to quarterly by taking the

quarter-end values. The 15 industries are the same as those for the job vacancy rate.

Source: BLS.
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(3) Real wages: average hourly earnings of production and nonsupervisory workers

in 12 two-digit NAICS industries from 1985 to 2019, deflated by the chained per-

sonal consumption expenditures price index (PCEPI). Monthly values are converted

to quarterly by taking the quarter-end values. The 12 industries are the same as

those for vacancies and unemployment, plus utilities and minus accommodation and

food services, arts/ entertainment/recreation, real estate and leasing, and health

care/social assistance. Source: BLS.

(4) Automation potentials: technical potential for automation by industry estimated

by the McKinsey Global Institute. The index of automation potential is constructed

based on the within-industry mix of activity types including “manage,” “exper-

tise,” “interface,” “collect data,” “process data,” “unpredictable physical,” and “pre-

dictable physical.” The index is constructed for 19 industries, including accommoda-

tion and food services; manufacturing; transportation and warehousing; agriculture;

retail trade; mining; other services; construction; wholesale trade; finance and in-

surance; arts, entertainment, and recreation; real estate; administrative; health care

and social assistance; information; professionals; management; and education ser-

vices. Source: Manyika et al. (2017) (Exhibit E4).

(5) Computer prices: quarterly chain price index of private investment in computers

and peripherals, with quality adjusted based on hedonic studies. This computer price

series is deflated by the PCEPI to obtain the relative price of computers. Source:

BEA.

(6) Unionization rate: share of private employed wage and salary workers that are

members of a labor union, available at the annual frequency for the periods of 2000-

2021. Source: BLS/Haver Analytics.

Appendix C. Robustness: Controlling for offshoring

Table A1 shows the regression results when we remove the tradable sectors (manufacturing

and mining) from the baseline sample. The results are robust to this alternative sample,

indicating that the empirical relations between automation and the labor market variables

that we obtained using the industry-level data are not driven by offshoring.
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Table A1. Automation threat and labor market outcomes: Excluding trad-

able sectors from sample

Dep. Var. ln(v/u) ln(v) ln(u) ln(w)

ln(ComputerPrice)×AP -0.282∗ -0.200 0.222∗∗ 0.003∗

(0.169) (0.141) (0.107) (0.001)

Lagged ln(v/u) 0.385∗∗∗

(0.031)

Lagged ln(v) 0.379∗∗∗

(0.030)

Lagged ln(u) 0.259∗∗∗

(0.032)

Lagged ln(w) 0.980∗∗∗

(0.004)

Constant 0.625∗ 0.847∗∗∗ 1.191∗∗∗ 0.049∗∗∗

(0.343) (0.302) (0.237) (0.008)

Observations 975 975 975 1390

Time Periods 2001q2:2019q4 2001q2:2019q4 2001q2:2019q4 1985q2:2019q4

No. of industries 13 13 13 10

Note: This table shows the panel estimation results using NAICS two-digit industry-level data

under the empirical specification in Eq. (38), with tradable sectors (manufacturing and mining)

excluded from the sample to control for potential effects of offshoring. The variables in the regres-

sions are identical to those in the baseline regressions reported in Table 5. Standard errors are

reported in parentheses. The stars denote the p-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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