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Andrés Rodrı́guez-Clare Mauricio Ulate Jose P. Vasquez
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We present a dynamic quantitative trade and migration model that incorporates downward

nominal wage rigidities and show how this framework can generate changes in unemploy-

ment and labor participation that match those uncovered by the empirical literature study-

ing the “China shock.” We find that the China shock leads to average welfare increases

in most U.S. states, including many that experience unemployment during the transition.

However, nominal rigidities reduce the overall U.S. gains by around one fourth. In ad-

dition, there are seven states that experience welfare losses in the presence of downward

nominal wage rigidity that would have experienced gains without it.
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1 Introduction

A concern about international trade often raised by the public and the popu-

lar press is that it may destroy jobs and lead to unemployment. Trade economists

have increasingly taken this concern seriously, but the focus has been on the long-

run.1 Thus, we still lack a framework to understand the possibly adverse short-run

employment effects of trade shocks. The need for such a framework becomes par-

ticularly salient in light of the findings by Autor, Dorn, and Hanson (2013, hence-

forth ADH) and others indicating that U.S. local labor markets more exposed to the

“China shock” experienced significant increases in unemployment and decreases

in labor force participation relative to less exposed regions (see Autor et al., 2016;

Redding, 2020, for reviews). If trade shocks can lead to temporary increases in un-

employment, how does this change the way we evaluate their welfare effects?

In this paper, we propose a dynamic quantitative trade and migration model in

which shocks can trigger increases in unemployment and decreases in labor force

participation during a transition period, while allowing for the computation of the

implied aggregate and distributional welfare effects. The key feature of the model

is downward nominal wage rigidity (DNWR) as in Schmitt-Grohe and Uribe (2016),

constraining the nominal wage in any period to be no less than a factor δ times the

nominal wage in the previous period.2 We embed this feature into a dynamic model

in the spirit of Caliendo, Dvorkin, and Parro (2019, henceforth CDP), which we

extend to allow for a difference between the elasticity governing workers’ mobility

across sectors (1/ν in our model) and the elasticity governing mobility across local

labor markets (1/κ in our model).

1Davidson et al. (1999), Helpman et al. (2010), Kim and Vogel (2020b), and Galle et al. (2020) are
papers that focus on the long-run impacts of unemployment. Important exceptions looking at short-
run employment effects are Dutt et al. (2009) and Dix-Carneiro et al. (2020), which we discuss below.

2Several recent papers have found support for the presence of DNWR (e.g., Dickens et al., 2007;
Daly and Hobijn, 2014; Grigsby et al., 2019; Hazell and Taska, 2019). We acknowledge that labor-
market frictions in the real world go significantly beyond DNWR. However, we aim to show that
the DNWR in our model is a powerful yet parsimonious way to capture such frictions.
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We calibrate the key model parameters δ, ν, and κ to results from ADH on how

labor force participation, unemployment, and population across U.S. labor markets

are affected by the China shock. Using dynamic exact hat algebra, we simulate the

effects of the China shock for the 2000-2007 period. The results indicate that al-

though the China shock improves the terms of trade for almost all states (i.e., only

one state would experience a welfare loss in the absence of DNWR), employment

actually falls in most states during the transition, both through an increase in unem-

ployment and a decline in labor force participation. These employment effects have

significant welfare implications, as they lead to a one-fourth reduction in the U.S.

welfare gains from the China shock, and to absolute welfare losses in eight states.

The intuition behind our results is as follows. With flexible wages, the increase

in China’s relative productivity would require a downward adjustment in the U.S.

relative wage. DNWR prevents this adjustment from taking place through a large

decline in the U.S. nominal wage, and a nominal anchor (described below) prevents

it from occurring through a large increase in the Chinese dollar wage. The result

is temporary unemployment in the U.S. In turn, with home production available to

workers, this triggers further declines in labor participation, as more workers prefer

to engage in home production rather than face the possibility of unemployment.

Section 2 presents our model. There are multiple sectors linked by an input-

output structure, sector-level trade satisfies the gravity equation, and a home-pro-

duction sector leads to an upward sloping labor supply curve. Trade takes place

between regions, and workers can move across regions belonging to the same coun-

try. Each period, workers draw idiosyncratic shocks to the utility of working in each

sector-region from a nested Gumbel distribution. Based on these draws, the costs

of moving, and expected future real income adjusted for unemployment, workers

choose which sector-region to participate in. Wages are subject to a DNWR, but are

otherwise determined by supply and demand for labor.

Given the presence of the DNWR, we need to close the model with a nominal

anchor that prevents nominal wages from rising enough to make the DNWR always
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non-binding.3 We assume that world nominal GDP in dollars grows at a constant

and exogenous rate (which we set to zero without loss of generality). While this

nominal anchor is a simplification, it allows us to solve our otherwise-unwieldy

dynamic trade and migration model.4 Qualitatively, we would obtain similar results

if we assumed instead that China uses a combination of monetary and exchange

rate policies to prevent both an appreciation of its currency and large inflationary

pressures – thereby preventing the Chinese wage in dollars from increasing – while

the U.S. does not fully offset this with its own policies.

Section 3 describes our data construction. We combine multiple data sources, a

set of proportionality assumptions, and implications from a gravity model to con-

struct sector-level trade flows across all region pairs in our sample. We also con-

struct migration flows between all sector-states in the U.S. The resulting dataset

contains 87 regions (50 U.S. states, 36 additional countries, and an aggregate rest

of the world region), and 15 sectors (home production, 12 manufacturing sectors,

services, and agriculture), between 2000 and 2007. Incorporating a service sector is

necessary in any analysis of the China shock (due to its size and importance in the

U.S. economy), while the agricultural sector is potentially relevant for understand-

ing the effects of the China shock in certain small or rural states.

Section 4 describes our calibration procedure for parameters δ, ν, and κ as well

as the China shock, which we operationalize as productivity changes in China that

can vary across sectors and years. For any set of parameter values and produc-

tivity changes, we use dynamic hat algebra to compute implied annual changes in

trade flows as well as the changes in labor-force participation, unemployment, and

population over the 2000-2007 period. We then iterate over the parameter values

and productivity changes until the sector-level annual changes in U.S. imports from

3Our baseline analysis also assumes that third countries have flexible exchange rates vis-á-vis the
dollar, but we explore the alternative of fixed exchange rates in Section 6.

4Assuming other types of nominal anchors prevents our model from being solved with an efficient
Alvarez-and-Lucas type algorithm that we develop to deal with the DNWR, thereby increasing the
time required to solve the model by several orders of magnitude.
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China match those predicted in the data and the ADH-style regression coefficients in

the model match those obtained by ADH in the data. Thus, we follow the approach

suggested by Nakamura and Steinsson (2018) and Redding (2020), namely using

causally-identified empirical moments to calibrate our general equilibrium model.

The calibration leads to a value of δ = 0.98, implying that – with constant world

nominal GDP – wages can fall up to 2% annually without the DNWR becoming

binding. This value is similar to the one in Schmitt-Grohe and Uribe (2016).

Section 5 presents the results of the baseline quantitative analysis. In the short

run, unemployment increases in the regions most exposed to the China shock, but

this is reversed over time as the nominal wage adjusts downward. In the long run,

since the real wage governs labor supply and there is no unemployment, employ-

ment eventually increases after the economy fully adjusts to the positive terms of

trade shock. Overall, the China shock leads to increases in the real wage for almost

all regions, including most of the ones for which full employment would require a

decline in the nominal wage.

One benefit of our approach is that we can study the effect of the China shock

on welfare, and in particular explore how this is affected by DNWR. We compute

welfare as the present discounted value of utility flow, with a discount rate of 0.95.

We find that welfare increases in most U.S. states, including many that experience

unemployment during the transition. For the U.S. as a whole, although the China

shock remains beneficial, DNWR reduces the aggregate welfare gains by one fourth

(from 31 to 23 basis points).

The spatial heterogeneity in the employment and income effects of the China

shock implied by our model is similar to that implied by the empirical results in

ADH. This stands in contrast to previous quantitative trade models, such as CDP

and Galle et al. (2020), which deliver too little dispersion, as shown in Adao et al.

(2020) and Autor et al. (2021). The main reason we obtain a higher dispersion is that,

because of the DNWR, our model leads to much larger declines in employment in

the most exposed regions, both directly through higher unemployment, and indi-
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rectly through discouraging labor participation.

Section 6 studies how varying some of the key assumptions in the baseline spec-

ification affects the conclusions. We consider alternative specifications where we:

get rid of migration across U.S. states, impose the same elasticity of mobility across

sectors and regions (i.e., ν = κ as in CDP), introduce DNWR only in manufacturing,

consider some of the increases in trade surpluses that occurred in China as part of

the China shock, and use a different exchange rate regime for third countries. We

highlight three important messages arising from these specifications. First, elimi-

nating migration makes little difference for the model’s fit with ADH results, while

imposing ν = κ significantly worsens the model’s fit. Second, assuming that DNWR

holds only in manufacturing improves the model’s ability to match non-targeted

moments. Finally, taking a broader perspective of the China shock so that it also

includes an increase in the U.S. trade deficit can make the DNWR more binding and

lead to slightly smaller welfare gains from the shock.

Section 7 discusses two additional implications of our analysis. First, we ar-

gue that, controlling for terms-of-trade shocks and assuming that labor supply is

a function of the real wage, ADH’s exposure measure to the China shock becomes

a relevant statistic only thanks to DNWR. Second, we discuss how our results for

aggregate job losses can be seen as arising from the results in ADH plus a correc-

tion for the ”missing intercept problem,” which is positive in our analysis due to the

positive terms-of-trade effect implied by the China shock.

Our paper follows in the footsteps of a large literature that analyzes the impacts

of trade shocks on different regions or countries. Quantitative papers such as CDP,

Galle et al. (2020), and Adao et al. (2020) focus on the effects of the China shock

on regions of the U.S. Our model incorporates nominal rigidities as a mechanism to

deliver involuntary unemployment, which is an uncommon feature in this literature

despite its prominence in the empirical papers studying the China shock.

Another literature explores the effect of trade on unemployment using search

and matching models (e.g. Davidson and Matusz, 2004; Dutt et al., 2009; Helpman
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et al., 2010; Hasan et al., 2012; Heid and Larch, 2016; Kim and Vogel, 2020a,b; Galle

et al., 2020; Dix-Carneiro et al., 2020). In principle, one could calibrate a trade model

with search frictions to make it compatible with ADH moments, but the aggregate

implications would be quite different from those in our model. The reason is that

models with search and matching frictions essentially lead to forces that amplify

the effects of terms-of-trade shocks. Thus, a positive terms-of-trade shock not only

leads to an increase in the real wage and labor participation, but also to a decline in

unemployment. Since the China shock is a positive terms-of-trade shock for most

states, then the search and matching approach would imply that unemployment

actually falls in most states (see Galle et al., 2020).5 In contrast, DNWR can lead to

temporary increases in unemployment even when terms of trade improve.

Also related to our paper is Eaton et al. (2013), which studies the extent to which

unmodeled cross-country relative wage rigidities can explain the increases in unem-

ployment and decreases in GDP observed in countries undergoing sudden stops.

Relative to this paper, our contribution is to show how DNWR can lead to such rela-

tive wage rigidities, to extend the analysis to terms-of-trade shocks in a multi-sector

model with migration, and to quantify the effect of the China shock on unemploy-

ment and nonemployment across U.S. states between 2000 and 2007.

On the side of open-economy macroeconomics, classic contributions such as

Clarida et al. (2002) or Gali and Monacelli (2005, 2008, 2016) have introduced nomi-

nal rigidities in models with a simplified trade structure. Schmitt-Grohe and Uribe

(2016) studies optimal policies in the presence of DNWR in a small open econ-

omy. Nakamura and Steinsson (2014), Beraja et al. (2016), and Chodorow-Reich and

Wieland (2017) deal with multiple heterogeneous regions in models with nominal

rigidities. None of these papers connect to actual sector-level trade flows and hence

cannot be used for a detailed quantitative analysis of an event like the China shock.

5An exception here is Dix-Carneiro et al. (2020), which develops a dynamic multi-sector model to
study the role of trade imbalances on labor market dynamics. By allowing the China shock to go
beyond a trade shock and also lead to an increase in the U.S. trade deficit, their analysis reveals
another way in which the China shock could lead to a temporary increase in unemployment.
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2 A Dynamic Spatial Trade and Migration Model with

Nominal Wage Rigidities

Building on Artuc, Chaudhuri, and McLaren (2010) and more directly on CDP,

we consider a dynamic multi-sector quantitative trade model with an input-output

structure and forward looking agents that decide in which region and sector to

work. Given our goals of matching the results in ADH, we introduce two key exten-

sions to CDP: downward nominal wage rigidity as a mechanism that can generate

unemployment, and a nested structure in the households’ labor supply decision to

allow for different elasticities of moving across regions and sectors. In this section,

we present an abridged description of the model, focusing on its non-standard ele-

ments and relegating some of the details to Appendix A.

2.1 Basic Assumptions

We assume that the world is composed of multiple economies or “regions” (in-

dexed by i or j). There are M regions inside the U.S. (which will be the 50 U.S.

states), plus I − M regions (countries) outside of the U.S. (for a total of I regions).

We assume that there is no labor mobility across different countries, but allow for

mobility across different states of the U.S. There are S + 1 sectors in the economy

(indexed by s or k), with sector zero denoting the home production sector and the

remaining S sectors being productive market sectors. In each region j and period t,

a representative consumer participating in the market economy devotes all income

to expenditure Pj,tCj,t, where Cj,t and Pj,t are aggregate consumption and the price

index respectively. Aggregate consumption is a Cobb-Douglas aggregate of con-

sumption across the S different market sectors with expenditure shares αj,s. As in

a multi-sector Armington trade model, consumption in each market sector is a CES

aggregate of consumption of the good of each of the I regions, with an elasticity of

substitution σs > 1 in sector s.
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Each region produces the good in sector s with a Cobb-Douglas production

function, using labor with share φj,s and intermediate inputs with shares φj,ks, where

φj,s + ∑k φj,ks = 1. Total factor productivity in region j, sector s, and time t is Aj,s,t.

There is perfect competition and iceberg trade costs τij,s,t ≥ 1 for exports from i to

j in sector s. Intermediates from different origins are aggregated in the same way

as consumption goods (i.e., CES with elasticity σs). Letting Wi,s,t denote the wage in

region i, sector s, at time t, the price in region j of good s produced by region i at

time t is then

pij,s,t = τij,s,t A−1
i,s,tW

φi,s
i,s,t ∏

k
Pφi,ks

i,k,t , (1)

where Pi,k,t is the price index of sector k in region i at time t. Given our Armington

assumption, these price indices satisfy

P1−σs
j,s,t =

I

∑
i=1

p1−σs
ij,s,t . (2)

Let Ri,s,t and Li,s,t denote total revenues and employment in sector s of country

i, respectively. Noting that the demand of industry k of country j of intermediates

from sector s is φj,skRj,k,t and allowing for exogenous deficits as in Dekle et al. (2007),

the market clearing condition for sector s in country i can be written as

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
S

∑
k=1

Wj,k,tLj,k,t + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
, (3)

where Dj,t are transfers received by region j, with ∑j Dj,t = 0, and the trade shares

λij,s,t are given by

λij,s,t ≡
p1−σs

ij,s,t

∑I
r=1 p1−σs

rj,s,t

. (4)

In turn, employment must be compatible with labor demand,

Wi,s,tLi,s,t = φi,sRi,s,t. (5)
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Before describing our assumptions regarding labor supply and nominal rigidi-

ties, it is instructive to consider two standard ways to close the model. First, as in

Caliendo and Parro (2015), one could assume that there is perfect labor mobility

across sectors within each region and that labor supply is perfectly inelastic. This

would imply that wages are equalized across sectors within a region, Wi,s,t = Wi,t

for all s, and that employment must add up to some exogenous level, ∑s Li,s,t = L̄i,t.

Alternatively, one could assume that there is a perfectly inelastic labor supply in

each sector-region, Li,s,t = L̄i,s,t. In this case, one could use equations (1)-(5) to solve

for wages (up to a choice of numeraire) at time t given employment levels. Inverting

this relationship we get what could be thought of as labor demand, with employ-

ment {Li,s,t} a function of wages {Wi,s,t}, a concept that we will return to later.

2.2 Labor Supply

Agents can either engage in home production or look for work in the labor

market. If they participate in the labor market, they can be employed in any of the S

market sectors. We let ωi,0,t denote consumption associated with home production

in region i, and ωi,s,t denote consumption associated with seeking employment in

sector s and region i at time t. We assume that ωi,0,t is exogenous and does not vary

over time, while – as explained further below – ωi,s,t is endogenous and depends on

real wages and unemployment. Additionally, we denote the number of agents that

participate in region i, sector s, at time t, by `i,s,t.

Agents are forward looking and they face a dynamic problem where they dis-

count the future at rate β. As in Artuc et al. (2010), migration decisions are subject to

sectoral and spatial mobility costs. There are labor relocation costs ϕji,sk of moving

from region j, sector s to region i, sector k. These costs are time invariant, additive,

and measured in terms of utility. Additionally, agents have additive idiosyncratic

shocks for each choice of region and sector, denoted by εi,s,t.

An agent that starts in region j and sector s observes the economic conditions
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in all labor markets and the idiosyncratic shocks, then earns real income ωj,s,t and

has the option to reallocate. Denoting with νj,s,t the lifetime utility of an agent who

is in region j, sector s, at time t, we have

νj,s,t = U(ωj,s,t) + max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t},

where the expectation is taken over future realizations of the idiosyncratic shocks.

In contrast to CDP, we assume that the joint density of the vector ε at time t is a

nested Gumbel:

F(ε) = exp

− I

∑
i=1

(
S

∑
k=0

exp (−εi,k,t/ν)

)ν/κ
 ,

where κ > ν. This allows us to have different elasticities of moving across regions

and sectors, which will be essential for the model to match the empirical evidence in

ADH. Let Vj,s,t ≡ E(νj,s,t) be the expected lifetime utility of a representative agent

in labor market j, s. As we show in Appendix A.2, we have

Vj,s,t = U(ωj,s,t) + ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
κ

+ γκ, (6)

where γ is the Euler-Mascheroni constant.

Denote by µji,sk|i,t the number of agents that relocate from market js to ik ex-

pressed as a share of the total number of agents that move from js to ik′ for any

sector k′. Additionally, let µji,s#,t denote the fraction of agents that relocate from

market js to any market in i as a share of all the agents in js. We show in Appendix

A.2 that these fractions are given by

µji,sk|i,t =
exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+1 − ϕji,sh

)1/ν
(7)
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µji,s#,t =

(
∑S

h=0 exp
(

βVi,h,t+1 − ϕji,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
. (8)

We know that the total number of agents that move from js to ik is given by the

multiplication of the two previous quantities, µji,sk = µji,sk|i,t · µji,s#,t, and that par-

ticipation in the different labor markets evolves according to

`i,k,t+1 =
I

∑
j=1

S

∑
s=0

µji,sk|i,tµji,s#,t`j,s,t (9)

Without DNWR there would be no unemployment and hence the expected real

income of participating in a sector-region would be the associated real wage, ωi,s,t =

Wi,s,t/Pi,t, where Pi,t is the aggregate price index in region i at time t,

Pi,t =
S

∏
s=1

Pαi,s
i,s,t. (10)

Equations (1)-(10) combined with ωi,s,t = Wi,s,t/Pi,t would characterize the equilib-

rium of a model that is similar to CDP.6

With DNWR agents must take into account the possibility of unemployment

when deciding which sector-region to participate in. To simplify the analysis, we

assume that the income generated in a sector-region is equally shared between all

participants in that sector-region. Since agents get real wage Wi,s,t/Pi,t with proba-

bility Li,s,t/`i,s,t if they seek employment in sector s of region i at time t, we have

ωi,k,t =
Wi,k,t

Pi,t
· Li,k,t

`i,k,t
. (11)

Note that our setup does not allow unemployed workers to engage in home produc-

tion. As we discuss below, this implies that the threat of unemployment discourages

labor force participation, which is a desirable feature that allows the model to match

the ADH targets with a reasonable labor supply elasticity.

6The main theoretical differences with CDP would be our nested structure for labor supply and the
fact that we do not have a fixed factor as they do.
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2.3 Downward Nominal Wage Rigidity

We denote the number of agents that are actually employed in region i and

sector k at time t with Li,k,t. In the standard trade model, labor market clearing

requires that the labor used in a sector and region be equal to labor supplied to that

sector, i.e. Li,k,t = `i,k,t. We depart from this assumption and instead follow Schmitt-

Grohe and Uribe (2016) by allowing for downward nominal wage rigidity, which

might lead to an employment level that is strictly below labor supply,

Li,k,t ≤ `i,k,t. (12)

All prices and wages up to now have been expressed in U.S. dollars. In contrast,

a given region faces DNWR in terms of its local currency unit. Letting WLCU
i,k,t denote

nominal wages in local currency units, the DNWR takes the following form:

WLCU
i,k,t ≥ δkWLCU

i,k,t−1, δk ≥ 0.

Letting Ei,t denote the exchange rate between the local currency unit of region i and

the local currency unit of region 1 (which is the U.S. dollar) in period t (in units of

dollars per local currency of region i), then Wi,k,t = WLCU
i,k,t Ei,t and so the DNWR for

wages in dollars entails

Wi,k,t ≥
Ei,t

Ei,t−1
δkWi,k,t−1.

Since all regions within the U.S. share the dollar as their local currency unit, then

Ei,t = 1 and WLCU
i,k,t = Wi,k,t ∀ i ≤ M. This means that the DNWR in states of the U.S.

takes the familiar form Wi,k,t ≥ δkWi,k,t−1. For the I −M regions outside of the U.S.,

the LCU is not the dollar and so the behavior of the exchange rate impacts how the

DNWR affects the real economy. The DNWR in dollars can then be captured using

a country-specific parameter δi,k for each sector, i.e.:

Wi,k,t ≥ δi,kWi,k,t−1, δi,k ≥ 0. (13)
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In our baseline specification we assume that all regions outside of the U.S. have a

flexible exchange rate and so the DNWR never binds. We capture these assumptions

by setting δi,k = δk ∀ i ≤ M and δi,k = 0 ∀ i > M. In an extension described in

Section 6.4, we consider an alternative scenario in which other countries have fixed

exchange rates to the U.S. so that δi,k = δk ∀ i. Finally, equations (12) and (13) are

satisfied with complementary slackness,

(`i,k,t − Li,k,t)(Wi,k,t − δi,kWi,k,t−1) = 0. (14)

2.4 Nominal Anchor

So far, we have introduced nominal elements to the model (i.e., the DNWR),

but we have not introduced a nominal anchor that prevents nominal wages from

rising so much in each period as to make the DNWR always non-binding. We now

want to capture the general idea that central banks are unwilling to allow inflation

to be too high because of its related costs (as described in, e.g., Woodford, 2003). In

traditional macro models, this is usually implemented via a Taylor rule, where the

policy rate reacts to inflation in order to keep price growth in check. Instead, we use

a nominal anchor that captures a similar idea in a way that naturally lends itself to

quantitative implementation in our trade model.

Specifically, we assume that world nominal GDP in dollars grows at a constant

gross rate of γ across years,

I

∑
i=1

S

∑
s=1

Wi,s,tLi,s,t = γ
I

∑
i=1

S

∑
s=1

Wi,s,t−1Li,s,t−1. (15)

A similar nominal anchor is used in Guerrieri et al. (2021), albeit in the context of a

static, closed-economy model. This nominal anchor has some desirable properties.

First, it allows us to solve our otherwise-unwieldy model using a fast contraction-

mapping algorithm in the spirit of Alvarez and Lucas (2007) that we develop to deal

with equations (12)-(14) implied by the DNWR. We describe this special algorithm

13



in Section A.7. Second, if γ = 1, it can be seen as capturing a given level of world

aggregate nominal demand in the context of a global savings glut (or zero lower

bound), in the spirit of papers such as Caballero et al. (2015) and Jeanne (2021).

Third, it is flexible enough to allow for unemployment even in the context of two

countries that have a single region each.

Intuitively, we would obtain similar results if we removed (15) and assumed

instead that something prevents the Chinese wage in dollars from rising. This could

occur, for example, if China wants to preserve its competitiveness and uses a combi-

nation of monetary and exchange rate policies to prevent the Chinese wage in dol-

lars from increasing, while the U.S. does not counteract this strongly enough with

its own policies. Additionally, the nominal anchor only matters in determining how

unemployment is generated in the model, but this will be one of our targets in the

calibration exercise. Hence, it will be the empirical evidence, and not our assump-

tion for the nominal anchor, that determines the unemployment response.

Consider a shock that requires the relative wage of some sector k in region i

to fall in order to maintain full employment in that sector-region. The cause could

be a negative productivity shock, an increase in productivity in that sector abroad,

or a decline in transfers to the region. If δk is low enough, or the exchange rate

can depreciate (e.g., δi,k is low), then nominal wages can adjust downwards in the

required magnitude to avoid unemployment. Alternatively, if γ is high enough

then again there would be no unemployment, since no downward adjustment is

needed in the nominal wage. However, there are combinations of δi,k and γ that can

lead to unemployment after the shock, although there would then be a decline in

unemployment as the DNWR and the anchor allow for adjustment year after year.

2.5 Equilibrium

Following CDP, we can think of the full equilibrium of our model in terms of

a temporary equilibrium and a sequential equilibrium. In our environment with
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DNWR, given last period’s nominal world GDP (∑I
i=1 ∑S

s=1 Wi,s,t−1Li,s,t−1), wages

{Wi,s,t−1}, and the current period’s labor supply {`i,s,t}, a temporary equilibrium at

time t is a set of nominal wages {Wi,s,t} and employment levels {Li,s,t} such that

equations (1)-(5) and (12)-(15) hold. Without DNWR then Li,s,t = `i,s,t for all i, s,

and (relative) wages would be determined by equations (1)-(5), as discussed at the

end of Section 2.1, with equations (12)-(15) just serving to pin down nominal wages.

DNWR implies that labor demand and supply may not be equalized and so we need

the full set of equations in (1)-(5) and (12)-(15) to pin down all variables.

In turn, given starting world nominal GDP (∑I
i=1 ∑S

s=1 Wi,s,0Li,s,0), labor sup-

ply {`i,s,0}, and wages {Wi,s,0}, a sequential equilibrium is a sequence {ωi,s,t, Vi,s,t,

µji,sk|i,t, µji,s#,t, `i,s,t, Wi,s,t, Li,s,t, }∞
t=1 such that: (i) at every period t {Wi,s,t, Li,s,t}

constitute a temporary equilibrium given ∑I
i=1 ∑S

s=1 Wi,s,t−1Li,s,t−1, {Wi,s,t−1}, and

{`i,s,t}, and (ii) {ωi,s,t, Vi,s,t, µji,sk|i,t, µji,s#,t, `i,s,t}∞
t=1 satisfy equations (6)-(11).

2.6 Dynamic Hat Algebra

Our goal is to use a calibrated version of the model to compute the employment

and welfare effects of a trade shock. We do this using data for U.S. states as well

as other countries, but without needing to calibrate technology levels and iceberg

trade costs along the transition and without requiring data on nominal wages per

efficiency unit of labor. We follow the exact hat algebra methodology of Dekle et al.

(2007) and its extension to dynamic settings proposed by CDP. Consequently, our

counterfactual exercises only require data on revenues Ri,s,t, value added Yi,b,t ≡

Wi,b,tLi,b,t, trade deficits Di,t, mobility matrices µji,sk|i,t and µji,s#,t, labor supply levels

`j,s,t, and trade shares λij,s,t in period zero (t = t0), whatever shocks we are interested

in, and the model’s parameters, namely δi,k, γ, κ, ν, {σs}, {αj,s}, {φi,s}, and {φi,sk}.

We use ẋt to denote xt/xt−1 for any variable x. In Appendix A.3 we describe

how to express the equilibrium system in dots and only leave it in terms of observ-

able data in period zero. We assume that the economy starts from a point where
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every region had full employment.7 In Appendix A.4 we describe the algorithm

that we use to solve the equilibrium system in dots.

We are interested in obtaining the effects of the China shock as it is introduced in

an economy that did not previously expect this shock. In order to do this, we use x̂t

to denote the ratio between a relative time difference in the counterfactual economy

(ẋ′t) and a relative time difference in the baseline economy (ẋt), i.e. x̂t = ẋ′t/ẋt for

any variable x. Then we compare a counterfactual economy where the knowledge

of the China shock is unexpectedly introduced in the year 2001 (and agents have

perfect foresight about the path of the shock from then on), with a baseline econ-

omy where the China shock does not occur. In Appendix A.5 we describe how to

express the equilibrium system in hats and only leave it in terms of observable data

in period zero or data coming from the baseline economy. Additionally, Appendix

A.6 describes the algorithm used to solve the equilibrium system in hats.

Our general equilibrium model also allows us to compute the welfare effects of

the shock. Using the utility framework described in Section 2.2, we can express the

welfare change in sector s in region j due to the China shock as

ln
(
ζ j,s
)
=

∞

∑
t=1

βt ln

 ω̂j,s,t(
µ̂jj,ss|j,t

)ν (
µ̂jj,s#,t

)κ

 .

This expression corresponds to the permanent equivalent variation in real income

for workers originally employed in region j in sector s, so that V′j,s,0 = Vj,s,0 +

1
1−β ln(ζ j,s).8 For intuition, consider a shock that decreases the expected real wage

7Assuming that the U.S. had full employment in the year 2000 is not problematic, since that year was
the peak of a business cycle, with an unemployment rate of just 4%. This is the lowest unemploy-
ment rate observed in the U.S. in the last 40 years (except for the period from 2018 onward). The
existence of 4% unemployment is consistent with our assumption of “full employment” because the
concept of unemployment in our model is that of “cyclical” unemployment, i.e., the unemployment
in excess of the natural rate of unemployment.

8 See Appendix A.8 for details of this derivation. Trade imbalances supported by international trans-
fers imply that consumption (or real expenditure) may differ from real income. We follow Costinot
and Rodriguez-Clare (2014) and measure welfare by real income rather than consumption to avoid
attributing a positive direct gain to the foreign transfer. Taking into consideration the direct gain
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in sector j, s, ω̂j,s,t < 1. Without mobility we would simply have

ln
(
ζ j,s
)
=

∞

∑
t=1

βt ln
(
ω̂j,s,t

)
,

which is the present discounted value of the changes in real wage. Mobility allows

workers in the sector to move to other sectors and regions, as captured by µ̂jj,ss|j,t < 1

and µ̂jj,s#,t < 1. Finally, given those mobility measures, higher variability parame-

ters ν and κ imply larger gains from moving out of the affected sector.

The welfare expression above is given at the sector-region level. However, in

some parts of the paper we will refer to welfare measures at the region level. Such

regional welfare measures are computed as weighted averages of the corresponding

sector-region welfare levels, with weights given by the shares of population that

participate in a given sector in that region in the initial year.

3 Data

We provide a brief description of our data construction procedure here and rel-

egate additional details to Appendix B. We use trade, production, and employment

data for 50 U.S. states, 36 additional countries, and an aggregate rest of the world

region, for a total of 87 regions from 2000 to 2007. We consider 14 market sectors: 12

manufacturing sectors, one service sector, and one agricultural sector. All sectors are

classified according to the North American Industry Classification System (NAICS).

Labor, consumption, and input shares. For each region j and each sector k, our

model requires data to compute the share of labor in production φj,k, the share of

intermediates from other sectors φj,sk ∀s, and the aggregate consumption shares αj,k.

We use data from the BEA (for U.S. states) and from WIOD to compute the share of

value-added in gross output of region j, which in our model is equivalent to φj,k. We

also scale the relative importance of each U.S. state in the total value added of the

would risk treating deficits as a gift and assuming away their future costs.
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U.S. so that the sum of value added across states matches the aggregate value-added

of the U.S. according to WIOD. We compute φj,sk as the share of purchases of sector

k coming from sector s (the input-output coefficient) using WIOD data.9

Bilateral trade flows. Our model also requires data on bilateral trade flows be-

tween all region pairs in our sample for each sector in order to compute deficits,

revenue, and trade shares for the year 2000. We also require the bilateral trade flows

(combined with input-output coefficients) to infer the αj,k’s. We construct the bilat-

eral trade flow dataset in four steps, which we summarize here while referring the

reader to Appendix B.2 for additional details.

In the first step, we take sector-level bilateral trade between countries directly

from WIOD. In the second step, we follow CDP to calculate the bilateral trade flows

in manufacturing among U.S. states by combining WIOD and the Commodity Flow

Survey (CFS). We first compute the bilateral expenditure shares across regions and

sectors from the CFS, and then use a proportionality rule to assign the total U.S.

domestic sales from WIOD according to those bilateral shares. This step ensures

that the trade flows from the bilateral trade matrix for the 50 U.S. states match the

total U.S. internal sales from WIOD in each sector.

In the third step, we use the Import and Export Merchandise Trade Statistics, a

dataset compiled by the U.S. Census Bureau, to compute – for manufacturing and

agriculture – the sector-level bilateral trade flows between each U.S. state and each

of the other countries in our sample. The U.S. Census data on exports at the sector-

state-country level starts in 2002, and the data on imports starts in 2008. We use these

starting years to project our bilateral trade matrix for previous years until 2000 by

assuming that the importance of each state in the total exports (imports) to (from)

other countries in each sector remains constant at the 2002 (2008) levels. We use a

proportionality rule for the bilateral trade flows between the U.S. states and other

countries to match the aggregate trade flows between the U.S. and other countries

from WIOD in each sector.

9We assume a common input-output matrix for all U.S. states due to data limitations.
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In the fourth and last step, we combine data for region-level production and

expenditure in services from the Regional Economic Accounts of BEA, WIOD data,

and data on bilateral distances to construct the trade flows in services among all

regions consistent with a gravity structure. We follow a similar gravity approach for

the case of trade flows in agriculture using data from the Agricultural Census, the

National Marine Fisheries Service Census, and WIOD. By construction, the bilateral

trade flows in services and agriculture match the aggregates of trade in services and

agriculture between all countries (including the U.S.) and the total production of

U.S. services and agriculture consumed by the U.S.

Labor flows across sectors and regions. For the U.S. states, we construct the matrix

of migration flows µji,sk,t for t = 2000 combining data for intersectoral mobility

from the Current Population Survey (CPS) with data for interstate mobility from the

American Community Survey (ACS). We follow CDP by assuming that interstate

movements (j to i) across sectors follow the same pattern as the intrastate moves

in the destination state i across sectors. We then apply a proportionality rule to the

flows from the CPS so that the total movements between states across sectors add

up to the total movements in the ACS. An important limitation of measuring worker

mobility across region-sectors using the self-reported information from the CPS and

ACS is the well-known problem of artificially large amounts of mobility due to the

prevalence of misclassification errors (Murphy and Topel, 1987; Kambourov and

Manovskii, 2013; Dvorkin, 2021). To avoid this issue, we smoothed the mobility

flows in shares such that the set of migration flows in our first period implies a

steady state in the U.S. in that period.10

Finally, we assume away migration flows between countries. Thus, there is no

need to compute labor flows for that case. In addition, for countries outside of the

U.S. we assume that there are no costs of moving across sectors in the single region

10The change in the flows implied by this procedure is extremely small. In particular, the correlation
between the original flows and the smoothed ones is 99.69%. We provide more details about our
smoothing algorithm at the end of Appendix B.3.
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of each country (due to data limitations). Given this assumption, one can infer the

matrix of migration flows from the labor distribution in 1999 and 2000. We provide

more details in Appendix B.3.

4 Calibration

In this section we describe how we calibrate our main parameters (δ, ν, κ), as

well as the China shock. We focus on the effect of the China shock as captured by

a set of productivity shocks in China given by {ÂChina,s,t} that apply only to the 12

manufacturing sectors. Inspired by ADH, and following CDP and Galle et al. (2020),

we calibrate these shocks to match the changes in U.S. imports from China predicted

from the changes in imports from China to other high-income countries.11

We decompose the total productivity shock in sector s and time t into a compo-

nent coming from a sector-level productivity increase that is constant from 2000 to

2007 and a component coming from a productivity increase over time that is con-

stant across sectors, i.e. ÂChina,s,t = Â1
China,t Â2

China,s. This means we have to estimate

19 parameters. We choose {Â1
China,t} and {Â2

China,s} to match two targets. The first

target is the vector of annual predicted changes in U.S. imports from China in all

manufacturing sectors combined, obtained from the following regression:

∆XC,US,t = a + b1∆XC,OC,t + εt,

where ∆XC,US,t is the change in U.S. imports from China between year t − 1 and

year t in all manufacturing sectors, ∆XC,OC,t is the change in imports from China by

the other high-income countries between year t− 1 and year t in all manufacturing

sectors, and b1 is the coefficient of interest. We denote the predicted values from this

regression by { ̂∆XC,US,t}.
The second target is the vector of predicted changes in U.S. imports from China

11We use the subset of ADH countries that are also present in the 2013 version of the WIOD, namely
Australia, Germany, Denmark, Spain, Finland, and Japan. New Zealand and Switzerland are in-
cluded in the “other high-income countries” category of ADH but are not included in WIOD.
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between 2000 and 2007 across sectors, obtained from the following regression

∆X2007−2000
C,US,s = b2∆X2007−2000

C,OC,s + εs,

where ∆X2007−2000
C,US,s is the change in U.S. imports from China between 2000 and 2007

in sector s, ∆X2007−2000
C,OC,s is the change in imports from China by the other high-

income countries between 2000 and 2007 in sector s, and b2 is the coefficient of in-

terest. The predicted values from this regression are denoted { ̂∆X2007−2000
C,US,s }.12 We

choose {Â1
China,t} and {Â2

China,s} such that the total productivity changes in China

{ÂChina,s,t} deliver changes in imports in our model that simultaneously match the

7 values of { ̂∆XC,US,t} and the 12 values of { ̂∆X2007−2000
C,US,s }.13

The calibration of the key model parameters (described below) is based on

matching moments that capture the relative effect of the China shock on labor force

participation, unemployment, and population. These moments come from regres-

sions of changes in these variables across regions differentially exposed to the China

shock, as captured by an exposure measure that follows the one proposed by ADH:

Exposurei ≡
S

∑
s=1

Li,s,2000

Li,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (16)

where RUS,s,2000 is total U.S. production in sector s in the year 2000, Li,s,2000 is the

employment of region i in sector s in year 2000, Li,2000 ≡ ∑s Li,s,2000, and ̂∆X2007−2000
C,US,s

is the predicted 2000-2007 change in U.S. imports in sector s from China as in ADH

and explained above. Besides the calibration, we will also use this exposure measure

to present the results of the model for non-targeted variables such as manufacturing

and non-manufacturing employment, as well as for welfare, so that we can see how

these predictions vary across states differentially exposed to the China shock.

For our baseline specification, we assume that all countries outside the U.S.

12We exclude the constant in this regression because it can lead to negative predicted imports from
China, which is impossible. While the regression only has 12 observations, it has an R2 of 0.99.

13The multiplicative nature of ÂChina,s,t = Â1
China,t Â2

China,s, implies that their level is not identified.
We use the normalization ∑S

s=1 Â2
China,s = 1. For more details see Appendix A.9.
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have a flexible exchange rate that adjusts in such a way that they retain full employ-

ment, implying that δi = 0 for all i > M. We do not calibrate γ and δ separately –

since only their relative value matters – and instead assume that γ is 1, so that the

burden of adjustment falls entirely on δ, as in Schmitt-Grohe and Uribe (2016).

We choose δ, ν, and κ simultaneously to match three empirical estimates ob-

tained by ADH. The first one is that a $1,000 per worker increase in import expo-

sure to China increases the unemployment to population rate by 0.22 percentage

points. The second one is that the same rise in import exposure increases the not-

in-labor-force (NILF) to population rate by 0.55 percentage points. The third one is

that the same rise in import exposure leads to a 0.05 percentage points decrease in

population.14 In broad terms, one could say that δ mostly governs the amount of

unemployment generated by exposure to China for given ν and κ, ν mostly governs

the amount of change in labor force participation generated by exposure to China

for given δ and κ, and κ mostly governs the change in population generated by

exposure to China for given δ and ν.

The calibration results in values of δ = 0.98, ν = 0.55, and κ = 12.3. The

value of δ = 0.98 implies that nominal wages can fall up to 2% annually, and falls

in the range advocated by Schmitt-Grohe and Uribe (2016) who obtain an annual δ

of 0.984 (after “normalizing” γ to one as we do).15 The quantitative implications of

this calibration would be the same if we had instead set γ = 1.02 and δ = 1, which

is consistent with the U.S. typically having 2% annual inflation and nominal wage

cuts being relatively infrequent.

Our estimates for ν and κ compare to a value of ν = κ = 2.02 in CDP.16 Im-

14These results correspond to the ones in Panel B of Table 5 and Panel C of Table 4 in ADH. Following
ADH, we also take the 2006-2008 averages of unemployment and labor force participation in our
estimation. Some recent papers such as Borusyak et al. (2021) have revised some of the results
in ADH. We focus on ADH’s results as targets since ADH is the most influential paper in this
literature. That said, our quantitative analysis can accommodate any other target.

15Using a set of countries that excludes the U.S., Schmitt-Grohe and Uribe (2016) obtain a quarterly
value of δ = 0.996. This value corresponds to an annual δ of 0.984. However, they end up using a
δ of 0.96 in their paper as a conservative estimate.

16Our model has an annual frequency, so we compare our elasticity estimates with the appropriately
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posing ν = κ = 2.02 as in CDP would lead to effects on labor force participation

that are too small and effects on population that are too high relative to those esti-

mated by ADH. Alternatively, we could constrain our model to satisfy ν = κ, but

without setting this single elasticity to the CDP value of 2.02. Calibrating ν (or κ)

and δ to match the unemployment and participation targets from ADH would lead

to ν = κ = 0.56, similar to our baseline estimate of ν = 0.55, but very far from

our other baseline estimate κ = 12.3 (we discuss this in more detail in Section 6.1).

This would lead to a population response to Chinese exposure that is a full order

of magnitude greater than the population response in ADH (i.e., -0.52 instead of -

0.05). This shows the importance of our nested structure with different elasticities

of moving across regions and sectors.

Finally, we assume that the trade elasticity σs is constant across sectors and takes

the value of 6, consistent with the trade literature (e.g. Costinot and Rodriguez-

Clare, 2014). We also use a discount factor β of 0.95 and explore the sensitivity with

respect to this parameter in Section 6.5.

5 Effects of the China Shock in the Baseline Model

5.1 Comparison of Cross-Sectional results with ADH

We now use the calibrated model to study the effects of the China shock across

U.S. states. We first obtain the changes in real wages, employment, unemploy-

ment, labor force participation, and population for all the 87 regions included in

our model. Then we run OLS regressions across U.S. states of the changes in the

variables of interest on the exposure measure in equation (16). We present the re-

sulting coefficients in Table 1, along with the analogous coefficients from ADH.

Column (1) of Table 1 reports the results of ADH.17 Rows one, two and five

annualized version of CDP’s single elasticity.
17Specifically, we use the ADH estimates presented in their panel B of Table 5, panel B of Table 7, and

panel C of Table 4.
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Table 1: Employment, population, wage, and welfare effects of exposure to
China across U.S. regions and associated parameters generating them

ADH Baseline NM ν = κ DNWRM
(1) (2) (3) (4) (5)

Change in Population Shares
Unemployment (targeted) 0.221∗∗ 0.221 0.221 0.221 0.221
NILF (targeted) 0.553∗∗ 0.553 0.553 0.553 0.553
Mfg Employment -0.596∗∗ -0.331 -0.337 -0.340 -0.543
Non-mfg Employment -0.178 -0.442 -0.437 -0.434 -0.230

Percentage Changes
Population (targeted) -0.050 -0.050 -0.000 -0.521 -0.050
Mfg Wage 0.150 -0.214 -0.182 -0.049 0.152
Non-mfg Wage -0.761∗∗ -0.689 -0.717 -0.623 -1.065

Welfare
Welfare vs exposure -0.053 -0.079 -0.044 -0.047
Mean welfare change 0.229 0.235 0.225 0.197
Mean welf. change no DNWR 0.310 0.313 0.311 0.298

Parameters
ν 0.551 0.594 0.562 0.496
κ 12.30 0.562 11.21
δ 0.980 0.980 0.981 0.987

Notes: The changes for the first four coefficients are measured from 2000 to an average of 2006-2008,
multiplied by 10/7 to turn into decadal changes. Wages are simply measured in percentage change
(between 2000 and 2006-2008), still turned into decadal changes. Welfare is obtained as described at
the end of Section 2.6. ν is the parameter that governs substitution between sectors, κ is the one that
governs substitution between regions, and δ governs the DNWR. Column 1 reproduces the ADH
results from their Tables 4 (panel C, first column), 5 (panel B, first row) and 7 (Panel B, columns 1
and 4), stars denote significance, one star for 5%, and two for 1%. Column 2 gives the results in our
baseline specification. Column 3 eliminates migration across U.S. states. Column 4 imposes ν = κ.
Column 5 imposes the DNWR only in manufacturing. In column (5) κ is not reported, because,
without migration, this parameter is irrelevant.

correspond to our targeted regression coefficients. Column (2) of Table 1 presents

the results of our baseline model. We focus on the results related to employment

and wages in this section, and discuss the welfare effects in Section 5.3.18 Columns

(3) and (4) present results for versions of the model that eliminate migration across

U.S. states and that impose the DNWR only in manufacturing. The discussion of

these columns will be postponed to Section 6.

Our results in column (2) show that exposure to China measured as in ADH

18We focus on a state-level analysis because this is the level at which one can construct bilateral trade
matrices and mobility flows without further assumptions on how the state-level flows are split
between different commuting zones. This simplification is a consequence of data availability and
not of our model. Moreover, running simple ADH state-level regressions without controls yields
similar response-to-exposure coefficients that do not change our conclusions substantively.

24



leads to a fall in manufacturing and non-manufacturing employment of 0.33 per-

centage points and 0.44 percentage points, respectively. These are moments that we

did not target in our calibration.19 Our results from the baseline model understate

the fall in manufacturing employment and overstate the fall in non-manufacturing

employment, but are in a reasonable ballpark.20

Regarding the effect of exposure to China on wages, our baseline model indi-

cates that manufacturing wages fall by 21 basis points while the non-manufacturing

wage falls by 69 basis points. These results preserve the ordering of the empirical ev-

idence in ADH, with the response of the manufacturing wage to exposure to China

being small and the non-manufacturing wage falling more than the manufacturing

wage in response to more exposure to the China shock. Since the wage moments

are completely untargeted in our exercise, these results are reassuring.21

Additionally, our results imply a dispersion in the impacts of the China shock

on the employment rate and income per capita across U.S. states that is comparable

to the one predicted by the ADH specification in the 2000-2007 data. To assess this,

we first compute the predicted variation in the employment to population ratio and

income per capita by running ADH’s main regression specification on their data at

the commuting zone level.22 We then compute the population-weighted average of

these predicted values across all commuting zones within the same state. Finally,

19The only restriction is that the coefficients have to add up to 0.77 since this is the sum of the targeted
unemployment and NILF coefficients in ADH.

20As we discuss in Section 5, the model can match these two ADH moments better if we assume that
the DNWR only applies to the manufacturing sector.

21Autor et al. (2014) use worker-level data to show that the wage effects were more prominent for
individuals with low initial wages, low initial tenure, and low attachment to the labor force. There-
fore, selection is at least part of the explanation for the small relative declines in local average wages
documented by ADH. It is important to note that we do not obtain our value of δ from changes
in wages. Instead, our DNWR parameter is identified jointly with the mobility elasticities across
sectors and regions from changes in unemployment, nonemployment, and migration flows. This
alleviates the concern of selection driving wage rigidity and the welfare effects in our calibrated
model.

22For the variation in employment rate we focus on the change in the ratio of total employment to
working age population using data from ADH. For the variation in income per capita we follow
the left hand side of equation 8 in Autor et al. (2021) to compute the deviation in changes in income
per capita of each commuting zone relative to the national weighted average. We use the total
salary income per adult from column 2 of Table 9 in ADH as the measure of income per capita.
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we compare these empirical predictions to their model-implied counterparts.

The standard deviation (s.d.) of the changes in the state-level employment to

population ratio predicted by the model is 1.35, which is similar to the s.d. of 1.18

implied by the empirical estimates. In turn, the s.d. of the changes in income per

capita predicted by the model is 2.5, while the one associated with the empirical

estimates is 1.9. These results stand in contrast to previous quantitative models

such as CDP and Galle et al. (2020), which imply too little spatial heterogeneity

in the employment and income effects relative to ADH (as shown by Adao et al.,

2020; Autor et al., 2021). There are two reasons why our model generates more

dispersion in employment and income effects. First, because of DNWR, our model

leads to much larger declines in employment in the most exposed regions, both

directly through higher unemployment, and indirectly through discouraging labor

participation. Second, by allowing for a difference between the elasticity of moving

across sectors and that of moving across regions and calibrating these elasticities to

ADH moments for the effect of the China shock on employment and population, we

arrive at lower mobility across states and a higher labor supply elasticity than CDP.

5.2 Aggregate Employment Effects

We now use our general equilibrium model to go beyond cross-sectional impli-

cations and obtain the implied aggregate effects of the China shock on unemploy-

ment and other variables. In Figure 1, we plot the aggregate U.S. unemployment

generated by the China shock according to our model. This variable increases grad-

ually, reaching 1.4 percent in 2007 and falling back to zero by 2010. Notice that in

our model, once shocks are no longer hitting the economy, all excess unemploy-

ment generated by the DNWR eventually disappears. This occurs because, since

the nominal wage can fall up to 2% per year, the nominal wage (and hence the real

wage) eventually reaches the level required to make all unemployment disappear.

This is a desirable feature of the model since it is hard to square a permanent ag-
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Figure 1: Path of aggregate U.S. unemployment over time between 2000 and
2011 in the baseline specification.

gregate unemployment effect of the China shock with the historically low levels of

unemployment observed in the U.S. between 2016 and 2019.

Regarding labor force force participation, there is a sign reversal throughout the

transition. On impact, the China shock leads to a temporary decline in participation,

stemming from the fact that unemployment discourages participation due to the

risk of participating in the labor market but not being able to obtain a job. Aggregate

labor force participation falls by up to 25 basis points in 2004. However, when the

China shock stops hitting the economy and the nominal wage has room to fully

adjust, labor force participation ends up increasing relative to its original level. This

increase happens because the China shock is a positive terms-of-trade shock for the

U.S., which translates to a higher real wage and an increase in labor supply. By

2010, aggregate labor force participation in the U.S. has already reversed sign and

increased roughly 1% relative to its pre-shock value.

The results imply that most states experience both a long-run increase in the real

wage and a temporary increase in unemployment. This may seem paradoxical, but

it is a natural consequence of a shock that implies both an improvement in the terms
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of trade and a decline in the export price index in a setting with DNWR. To see this

more clearly, consider a small open economy and imagine that the price index of its

exports falls while the price index of its imports falls even more. Since the terms of

trade have improved, the real wage and employment would increase in the absence

of nominal frictions. However, the fact that the price index of its exports has fallen

requires the nominal wage to decline, and if this decline is higher than 1− δ, there

would be temporary unemployment.

We illustrate this mechanism via a simple supply and demand analysis in Fig-

ure 2. Both panels in the figure have the nominal wage in the vertical axis and em-

ployment in the horizontal axis. The China shock leads to a fall in producer prices,

shifting the labor demand down. At the same time, the China shock also leads to

a decline in consumer prices, shifting the labor supply to the right. The final result

is a fall in the nominal wage from W0 to W∗, a fall in prices from P0 to P∗ (not il-

lustrated), an increase in the real wage from W0/P0 to W∗/P∗ (prices fall more than

nominal wages), and an increase in the amount of labor supplied from L0 to L∗.

Panel (b) of Figure 2 shows the adjustment in the presence of DNWR assuming

that δ3W0 < W∗ < δ2W0. In the first year, the nominal wage only falls from W0

to W1 ≡ δW0 and employment falls from L0 to L1, as determined by the demand

curve. Since the nominal wage does not fully adjust in the first year, the fall in

prices is also smaller than in the frictionless case, and hence the labor supply curve

only moves from LS to LS
1 . The gap between the labor supplied at point A and labor

demanded L1 is the level of unemployment. In the second year, nominal wages

adjust further down (to W2 ≡ δW1 = δ2W0), the labor supply curve moves to LS
2 ,

employment increases from L1 to L2, labor supplied moves from point A to point

B, and unemployment decreases. In the third year, nominal wages finally adjust

fully and there is no more unemployment. Notice that the final equilibrium of the

economy is the same with and without DNWR, and it involves higher labor supply,

a higher real wage, and no unemployment.
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Figure 2: Illustration of wage and employment effects, with and without
DNWR. The nominal wage is in the vertical axis, hence price movements results
in shifts in the labor supply curve. Employment is in the horizontal axis.

29



0 1 2 3 4 5 6

 Exposure to China

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 W
el

fa
re

 c
ha

ng
e,

 in
 p

er
ce

nt

AL

AK

CA

IN

LA

NV

NH

NCOH

RI
SC

WA

Figure 3: Welfare change vs exposure to China across U.S. states in the baseline
specification.

5.3 Welfare Effects

We find that U.S. states more exposed to the China shock experience lower

model-implied welfare gains: a $1,000 per worker increase in exposure to China de-

creases welfare by around 5.3 basis points (this is the coefficient displayed in Table

1, column 2, row 8). Figure 3 presents a scatter plot of the percentage change in wel-

fare across states against exposure to China, while Figure 4 displays a welfare map

across the 50 U.S. states. There are 42 states that gain from the China shock while 8

states experience welfare losses. Of these 8 states, only 1 experiences a worsening of

its terms of trade, which implies a lower steady state real wage. The other 7 states

that suffer losses actually experience improvements of their terms of trade, but these

are dominated by temporary increases in unemployment due to the DNWR.

When we consider the U.S. as a whole, and measure welfare by the population-

weighted average across U.S. states, we see that the China shock leads to an increase

in welfare of roughly 23 basis points. This is true even though we match the un-
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Figure 4: Welfare change across U.S. states in the baseline specification.

employment effects captured by ADH, which have sometimes been interpreted as

implying that the China shock had adverse overall welfare effects. We can also com-

pare the results of our baseline model against those from a model without nominal

rigidity (i.e., with δ = 0). In this alternative version of the model without DNWR

and without recalibrating other parameters (such as ν or κ), all but 1 state experience
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Figure 5: Histogram of welfare changes across different sector-states of the U.S.
in the baseline specification.
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welfare gains from the China shock, and the U.S. as a whole experiences gains of 31

basis points.23 Comparing these two models, we see that the temporary increase in

unemployment due to DNWR reduces the aggregate gains from the China shock by

around one fourth.

So far, in this section, we have discussed welfare at the state level. However,

as mentioned in Section 2.6, our measure of welfare changes is at the sector-region

level, which would capture the welfare changes experienced by a worker who starts

the period at sector s of region i. Figure 5 presents a histogram of welfare changes

for sector-states of the U.S. There is higher variation in this disaggregated measure,

with welfare effects ranging from -40 to 100 basis points, compared to the measure

at the state level, where the welfare effects range only from -13 to 64 basis points.

6 Alternative Specifications

In this section, we discuss the robustness of the baseline results. First, we dis-

cuss how the results change with different assumptions regarding migration across

states. At one extreme we shut down migration between U.S. states, while at the

other extreme we force the elasticity of moving across states to be the same as the

elasticity of moving across sectors as in CDP (implying much higher migration

flows). Second, we examine the consequences of introducing the DNWR only in

manufacturing (and not in services or agriculture). Third, we introduce some of the

increases in trade surpluses that happened in China between 2000 and 2007 as an

integral part of the China shock. Fourth, we explore fixed exchange rate regimes for

other countries. Finally, we examine how our welfare results change if we assume

different discount factors. For each of these specifications we recalibrate parameters

{δ, ν, κ} as well as the China shock, {ÂChina,s,t}.

23This is comparable to the gains obtained in recent papers studying the same setting (e.g., CDP,
Galle et al., 2020).
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6.1 Different Migration Assumptions

Given the potential importance of migration for determining the dispersion of

welfare effects across U.S. states, we now study two polar options for migration: no

migration and ν = κ, which leads to a lot more migration across states in response

to the China shock.

In the first case workers only have the option of moving between sectors within

a state. We start from a mobility matrix that matches intra-state migration flows

from the CPS data, which has good coverage about employment status and industry

of each respondent who stayed in the same state between waves of the survey. We

then compute the impacts of the China shock in the same way as in the baseline

model except for the fact that migration flows across states have been shut down.

The results of this extension are described in column (3) of Table 1. Notice that in this

case κ is no longer relevant, so we leave this field blank in the table. And evidently,

we no longer match the response of population to exposure to China in ADH.

The calibrated ν increases relative to our baseline exercise, but the calibrated

δ remains similar. In addition, many (non-targeted) moments, such as the changes

in manufacturing and non-manufacturing employment and wages, as well as our

inferred welfare changes (with and without DNWR) also stay relatively unchanged.

The biggest change occurs in the coefficient measuring the response of welfare to ex-

posure, which decreases from -0.053 to -0.079. The direction of this result is intuitive:

if agents cannot leave states that are severely hit by the China shock, the gains and

loses from the shock will be more concentrated. The approximately 50% increase

in the coefficient measuring the response of welfare to exposure is still surprising,

given that we are matching a relatively small effect of exposure on population (i.e.

the -0.05 response of population to exposure target that we obtain from ADH). Fur-

thermore, if we look simply at the variance of the welfare change, we get an even

bigger discrepancy between the two exercises, as the variance of the welfare change

more than doubles when we shut down inter-state migration. This result indicates
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that even a seemingly small population response to a trade shock can already de-

crease the variance in the welfare effects of the shock substantially.

In our second alternative specification, we impose that ν = κ, which is necessar-

ily true in the framework of CDP. As in the previous extension, we do not target the

population response in ADH, and only target the unemployment and participation

responses to exposure. The results are described in column (4) of Table 1. We find

that ν = κ = 0.562, similar to our baseline estimate of ν, but very different from our

baseline estimate of κ. In the restricted model, κ is much lower than in the baseline,

leading to a population response to the China shock that is an order of magnitude

greater than the one in the baseline model (-0.521 vs -0.050). Other results in column

(4), like the calibrated δ and employment changes, are more similar to those from

the baseline model. Wage changes are both closer to zero but in a similar ballpark as

in the baseline model. In contrast to the case with no migration across states, here

the response of welfare to exposure becomes less negative because agents can more

easily flow out of the more negatively affected states.

6.2 DNWR Only in Manufacturing

While our baseline specification approximates the non-targeted moments in

ADH – the changes in employment and wages in manufacturing and non-manu-

facturing – relatively well, there is some room for improvement. In particular, one

could think of letting the DNWR have a different δ in manufacturing compared

to non-manufacturing. In this section, in the interest of parsimony, we investigate

the results of introducing the DNWR only in manufacturing (i.e., δM f g > 0 and

δNon−M f g = 0), implying no unemployment in the agriculture and service sectors.24

We discuss below how this experiment allows us to better match some of the non-

targeted moments from ADH and then comment on why this extension could plau-

24An alternative would be to calibrate two different δ’s and match some of the currently-non-targeted
moments from ADH. The exercise in this section allows us to almost match the non-targeted ADH
moments while remaining parsimonious.
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sibly capture important real-world features in a reduced-form way.

Column (5) of Table 1 presents the results. Parameters ν and κ decrease a little

relative to the baseline calibration, while the required δ increases from 0.98 to 0.987.

A higher value of δ is intuitive. Since the DNWR only applies to the manufacturing

sector, it needs to bind more strongly in order to match the required response of

unemployment to exposure.

The responses of the employment shares in manufacturing and non-manufact-

uring are very close to the ones in ADH. The wage responses are also similar to

ADH, with the manufacturing wage exhibiting a coefficient that is very close to

zero and the non-manufacturing wage responding strongly to exposure. Overall,

the results in column (5) of Table 1 are very close to the empirical results obtained

by ADH and hence this model provides a good benchmark to understand the effects

of trade shocks on unemployment, labor force participation, and wages. Using this

version of the model, we find that the U.S. experiences an average welfare gain of

20 basis points (weighing each state by its population), which is around two-thirds

of what the model without DNWR finds.

Given the improved performance of the version of the model in which there

is DNWR only in the manufacturing sector, it is worth discussing whether this is a

realistic assumption. There are a few papers documenting a substantial degree of

heterogeneity in wage rigidity across sectors and occupations (Radowski and Bonin,

2010; Du Caju et al., 2012). More recently and for the U.S., Hazell and Taska (2019)

explore this heterogeneity using a dataset containing wages for new vacancies with

specific job descriptions for each establishment. Their paper finds that production

workers face a higher degree of DNWR than workers in non-production occupa-

tions. If production workers are a higher share of total labor in manufacturing com-

pared to non-manufacturing, this could explain why the DNWR could bind more

strongly in manufacturing. Another explanatory element could be the presence of

stronger unionization in manufacturing relative to services.25

25Apart from the aforementioned evidence that the DNWR could be more binding in manufacturing,
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6.3 Changing Deficits as Part of the China Shock

In the previous versions of our model, we kept the deficits for all regions con-

stant in terms of world GDP. However, it is plausible that part of the increase in

Chinese surpluses that occurred between 2000 and 2007 could be part of the China

shock. In this section, we explore what happens if, besides a Chinese productivity

increase, the China shock also includes an increase in the Chinese surplus, which

has to be offset by a rise in the deficits of other regions.

We perform two separate exercises where we explore different assumptions re-

garding how we treat the increase in the Chinese surplus.26 In the first exercise, we

only incorporate the increase in Chinese surpluses that occurred because China’s

GDP increased relative to world GDP (i.e., we keep the surplus to GDP ratio con-

stant in China), while in the second exercise we incorporate the changes in the Chi-

nese surplus observed in the data. An increase in the surplus of China implies an

equal change in the combined deficits of the other countries, since total deficits must

always sum to zero. We keep the deficits of all other countries besides the U.S. un-

changed in terms of world GDP in both exercises, thus having the U.S. deficit offset

the whole increase in China’s surplus. We distribute this increased deficit across

U.S. states according to their shares in U.S. GDP.

The results for these two exercises are shown in Table 2, which has the same

structure as Table 1 (the first column repeats column (2) in Table 1, to facilitate com-

we suggest a broader reading of this experiment. We interpret the model with DNWR only in
manufacturing as a simplified way to capture forces pushing for reallocation of labor away from
manufacturing before the impact of the China shock. Even with the same DNWR in manufacturing
and non-manufacturing, these forces would make the DNWR in manufacturing more likely to be
binding once the China shock hits the economy.

26These two exercises keep the assumption of exogenous deficits and focus on how changes in deficits
affect our baseline results. Dix-Carneiro et al. (2020) present a model with endogenous deficits and
analyze the counterfactual where shocks to China between 2000 and 2014 are equal to the average
of shocks across all other economies. They find that the behavior of the U.S. trade deficit is barely
affected, implying that little of the change in the U.S. deficit is explained by the exceptional produc-
tivity shocks that China experienced over this period. Note that in Dix-Carneiro et al. (2020) there
is a single region in the U.S., which makes dealing with endogenous deficits more computationally
plausible than in our model with 50 different U.S. states.
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Table 2: Employment, wage, and welfare effects of exposure to China across
U.S. regions and associated parameters generating them (continued)

Baseline Def. Low Def. High Fixed ER
(2) (6) (7) (8)

Change in Population Shares
Unemployment (targeted) 0.221 0.221 0.221 0.221
NILF (targeted) 0.553 0.553 0.553 0.553
Mfg Employment -0.331 -0.340 -0.400 -0.299
Non-mfg Employment -0.442 -0.434 -0.374 -0.475

Percentage Changes
Population (targeted) -0.050 -0.050 -0.050 -0.050
Mfg Wage -0.214 -0.180 0.015 -0.165
Non-mfg Wage -0.689 -0.661 -0.541 -0.574

Welfare
Welfare vs exposure -0.053 -0.052 -0.051 -0.048
Mean welfare change 0.229 0.232 0.221 0.185
Mean welf. change no DNWR 0.310 0.323 0.386 0.284

Parameters
ν 0.551 0.548 0.571 0.521
κ 12.30 11.87 10.38 10.37
δ 0.980 0.981 0.986 0.987

Notes: All definitions are the same as the ones in Table 1. Column 2, which contains the results from
the baseline specification, repeats Column 2 from Table 1 to facilitate comparison. Column 6 gives the
results from our model when we introduce a modest increase in Chinese surplus as part of the China
shock, while in column 7 this increase is larger. Column 8 gives the results when other countries
have fixed exchange rates relative to the U.S.

parisons of the new results with those in the baseline). Column (6) presents the

results of the first exercise, while column (7) shows the results from the second ex-

ercise. Column (6) is labeled “Def. Low”, because the U.S. deficit increases mod-

erately (i.e., around 10% in total over the 2000-2007 period), while column (7) is

labeled “Def. High”, because the U.S. deficit rises substantially (i.e., around 57% in

total over the 2000-2007 period).

Most of the results in column (6) are similar to those of our baseline calibration,

although manufacturing employment falls slightly more, wages fall marginally less,

ν and κ both decrease slightly and δ increases a bit. These changes from the baseline

model to column (6) are amplified in column (7), because the U.S. deficit grows more

in response to the China shock, but the overall pattern is the same.

The most surprising result in our deficit exercises regards the mean welfare
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change, which increases as we move from column (2) to (6) but then decreases from

column (6) to (7).27 In fact, the mean welfare change is smaller in column (7) than in

our baseline model (column 2), which could seem counter-intuitive, since the U.S.

is given a positive transfer. To understand this result, notice that increasing U.S.

deficits has two opposing results. On one hand, it increases U.S. wages, which leads

to an increase in the mean welfare change. The higher wages are due to the fact

that, in the presence of trade costs, a transfer from abroad leads to a worldwide

shift in demand towards domestic goods and this in turn improves the recipient’s

terms of trade, as shown in Dornbusch et al. (1977). On the other hand, it leads

to a transition from manufacturing production to non-manufacturing production.

This can exacerbate the binding DNWR in manufacturing in certain regions, leading

to higher temporary unemployment and lower welfare gains. When going from

column (2) to (6) the first effect dominates, leading to an increase in the mean welfare

change, whereas when going from column (6) to (7) the second effect dominates,

leading to a fall in the mean welfare change. In the absence of DNWR only the

first effect would be present. Indeed, notice that the mean welfare change in the

absence of DNWR increases monotonically from column (2) to column (6) and then

to column (7). In contrast, the fraction of the mean welfare change in the model with

DNWR as a share of the mean welfare change in the model without it decreases

monotonically from 74% in column (2) to 72% in column (6) and 57% in column (7).

The fact that incorporating a large enough increase in Chinese surplus as part

of the China shock can eventually lead to a fall in the U.S. welfare due to the DNWR

is very interesting. In particular, it speaks to the flexibility of our dynamic trade and

migration model with nominal rigidities as capturing some potentially “real-world”

elements that are hard to capture in previous frameworks.

27Recall that we measure welfare as real income rather than consumption – see footnote 8.
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6.4 Fixed vs. Flexible Exchange Rates

So far, we have assumed that all countries outside of the U.S. have a fully flexi-

ble exchange rate with respect to the U.S. dollar. Adjustments in their exchange rate

can then ensure that the DNWR never binds, and hence countries outside of the U.S.

never experience unemployment. In this section, we consider the consequences of

assuming that all countries have a fixed exchange rate with respect to the U.S. dollar,

implying a potentially binding DNWR, Wi,s,t ≥ δsWi,s,t−1 ∀i. Compared to the base-

line, we will no longer have countries devaluing their currencies relative to the U.S.

dollar, implying less of a need for the nominal wage to fall in the U.S., and hence

lower unemployment in U.S. labor markets.

Column (8) of Table 2 presents the results of this exercise. Overall, our results

are remarkably robust to the new assumption regarding the exchange rate regime.

The only notable change is that δ increases from 0.98 to 0.987. This increase in δ

occurs because the other countries “absorb” part of the China shock, so a higher δ is

needed in the U.S. to match the target response of unemployment to exposure.

6.5 Different Discount Factors

We now study how changing the discount factor affects our results. The dis-

count factor matters directly for computing welfare as well as indirectly through its

impact on the relocation decisions of forward-looking agents. Since it affects the

equilibrium, changing the discount factor requires a full recalibration of our model.

Reassuringly, we find that our calibrated parameter values for δ, κ, and ν do

not change much when we vary β. Additionally, the non-targeted moments also do

not vary much. The welfare calculations do change substantially, especially because

a higher discount factor implies that agents are more patient and do not suffer that

much from a temporary period of unemployment.

To fully convey the results, Table 3 shows the different welfare changes in the

model with and without DNWR, for several values of the discount factor β. As men-
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Table 3: Welfare gains from the China shock across different discount factors

δ = 0 calibrated δ % decrease
β (1) (2) (3)

0.99 0.382 0.362 5.33
0.97 0.344 0.289 15.85
0.95 0.310 0.228 26.22
0.93 0.278 0.177 36.41
0.91 0.250 0.134 46.42

Notes: This table displays the average welfare gains from the China shock, for the U.S. as a whole,
across different values of the discount factor β. Column (1) displays the gains in percent when the
DNWR is inactive (δ = 0). Column (2) displays the gains in percent for the calibrated δ, ν, and κ that
match the ADH targets (these parameters differ in each row of the table because the whole model
has to be re-calibrated whenever β changes). Finally, column (3) displays the percentage decrease in
the welfare gain when going from δ = 0 to the calibrated δ.

tioned above, for β = 0.95, our baseline value, the model without DNWR overesti-

mates the welfare gains by approximately 26% relative to our baseline model. For

higher discount factors, such as β = 0.99, this overestimation is just 5%, whereas for

lower discount factors, such as β = 0.91 it is 46%.

7 Discussion

7.1 Different Exposure Measures

The measure of exposure to China that we have been using throughout the

paper (defined in equation 16) follows the one in ADH. This measure is a Bartik

instrument where the “shift component” is given by the predicted change in imports

from China to the U.S. in a sector and the “share component” is given by the share

of employment in that sector-region. However, this exposure measure cannot fully

capture the welfare effects of the China shock, because it misses the impact through

consumer prices.28

28Consider, for example, a region that did not produce a good at all (and hence would have a zero
employment share) but consumed it in a positive amount. This region would benefit from an
increase in Chinese productivity in that sector, even though the ADH measure would imply a zero
exposure of that sector to the shock.
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As we show in Appendix C, in a simple neoclassical environment with an up-

ward sloping labor supply curve but without nominal rigidities, a sufficient statistic

for the first-order changes in employment resulting from the China shock would

use net exports as the “share” component, as in

ExposureNX
i ≡

S

∑
s=1

TXi,s,2000 − TMi,s,2000

Ri,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (17)

where TXi,s,2000 are the total sales of region i in sector s in year 2000, and TMi,s,2000 is

total expenditure of region i on sector s in year 2000. This captures the effect of the

shock on the economy’s terms of trade, which in turn affects the equilibrium real

wage and employment according to labor demand and supply elasticities. In con-

trast, when the wage does not adjust because of the DNWR, the employment shares

become directly relevant, since the change in employment is determined entirely by

the shift in the demand curve. Of course, in a more realistic situation where wages

are sometimes sticky in the short run due to the DNWR but can eventually adjust to

their frictionless level, then both measures of exposure are expected to be relevant.

To illustrate this point, we regress the state-level changes in welfare and em-

ployment generated by the model on both exposure measures (and a constant), with

and without the DNWR. The results are reported in Table 4. Columns (1) and (3)

reveal that, without DNWR, only the net export exposure measure is significant

for employment and welfare, while ADH exposure is not significant. In contrast,

columns (2) and (4) show that in the model with DNWR both the ADH exposure

measure and the net export exposure measure are significant. These results indicate

that a mechanism similar to DNWR is likely to be active in the U.S. economy, and

this is what leads to the ADH exposure measure being relevant.29

29In our framework, nominal rigidities lead to a separate effect of labor demand on employment
over and above those that would come through terms-of-trade effects. Adao et al. (2020) obtain
similar effects through a more general reduced-form specification of the labor market where labor
supply is a function of the nominal wage and the consumption price entering separately rather
than through the real wage.
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Table 4: ”Horse race” between different exposure measures in the baseline
model with and without DNWR

(1) (2) (3) (4)
Welf. Flex. Welf. DNWR Empl. Flex. Empl. DNWR

Constant 0.513** 0.522** 3.204** 4.732**
(0.043) (0.048) (0.338) (0.861)

ADH Exposure −0.016 −0.031* −0.168 −0.944**
(0.012) (0.014) (0.097) (0.248)

NX Exposure −0.076** −0.092** −0.537** −1.168**
(0.012) (0.014) (0.097) (0.248)

N 50 50 50 50
R squared 0.491 0.554 0.460 0.503
Mean dep. var. 0.269 0.198 1.351 −0.821

Notes: This table shows the results of regressing several variables of interest on a constant, ADH
exposure, and net export exposure. The exposure variables are described in the text. The dependent
variables are: welfare change from the China shock in the baseline model without DNWR (column
1), welfare change from the China shock in the baseline model with DNWR (column 2), percentage
change in total employment between 2000 and 2007 in the baseline model without DNWR (column
3), and percentage change in total employment between 2000 and 2007 in the baseline model with
DNWR (column 4). Stars denote significance, one star for 5%, and two for 1%.

7.2 Quantifying Job Losses

In this section, we quantify the aggregate employment changes due to the China

Shock. Recall that ADH find a cross-sectional estimate indicating that a $1,000 per

worker increase in import exposure to China leads to a decrease in the employment

to population ratio of 77 basis points (22 basis points from increased unemployment

and 55 basis points from reduced labor force participation). We start by using the

ADH estimate in a naive calculation that assumes that a U.S. state with zero ADH

exposure would have no employment changes (meaning that the cross-sectional re-

gression has an absolute intercept of zero). This calculation implies that the China

shock generated employment losses of 0.77 · 2.63 · 220 million = 4.4 million jobs

(where 2.63 is the mean exposure, and 220 million is approximately the U.S. popu-

lation over 16 years between 2000 and 2007).

However, our quantitative results imply that U.S. states with zero ADH expo-

sure to the China shock increased their employment because they experienced a
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positive terms-of-trade shock. This means that the cross-sectional regression of em-

ployment on exposure to China has a negative intercept.30 In particular, this inter-

cept is approximately -1.75. A back-of-the-envelope calculation using this intercept

would add 1.75 · 220 = 3.85 million jobs. Combining the intercept number of 3.85

million jobs gained with the cross-sectional estimate of 4.4 million jobs lost would

result in a net loss of 550 thousand jobs.

The previous discussion is based on a simple regression to highlight the impor-

tance of the “missing intercept”. While this approximation using a simple regression

is possible because the model allows us to compute aggregate employment effects,

we can also compute the actual general equilibrium effect of the shock using our full

model. The quantification using the full model implies that 467 thousand jobs were

lost by 2007 due to the China shock. This number is similar to the aforementioned

back-of-the-envelope calculations incorporating a non-zero intercept.

It is important to point out that in all of these estimates we stop the account-

ing of job losses in 2007. If we continue the analysis into further years, we would

obtain that the China shock actually led to a net job gain in the U.S., since by 2010

labor force participation in our model has already recovered and is approximately

1% higher than its original value. These findings align with those of Bloom et al.

(2019), who find sizable net negative employment effects due to the China shock

between 2000 and 2007 but weakened impacts after 2007. In Bloom et al. (2019),

these findings are consistent with firm and labor market adaptation. In our model,

the labor market adaptation comes from the temporary nature of the DNWR and

the fact that the China shock becomes less strong over time. At the same time, it is

important to note that our model abstracts from structural forces that could lead the

adverse impacts of the China shock to endure in the long run, which recent evidence

has documented for less-educated commuting zones (Autor et al., 2021).

30As shown in Adao et al. (2020), this intercept not only captures the effects coming directly from the
China shock, but also includes indirect effects of the shock on the state’s trading partners.
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8 Conclusion

In this paper, we propose a dynamic quantitative trade and migration model

with downward nominal wage rigidity and use it to study the path of adjustment

in unemployment, labor force participation, population, and welfare after a trade

shock. We show that even a shock that improves an economy’s terms of trade can

lead to unemployment if it requires a fall in the nominal wage that is larger than the

one permitted by nominal frictions.

We calibrate the model to match the reduced-form evidence in Autor et al.

(2013), and find that the China shock is responsible for up to 1.4 percentage points of

the increase in unemployment in the U.S. over the period 2000-2007. This increase

can go as high as 3 percentage points for the states affected the most. Although the

U.S. as a whole still gains from the China shock, such gains are approximately one

fourth lower than the gains without nominal rigidities, and there are seven states

that experience welfare losses despite the improvement in their terms of trade.

We acknowledge that the way we have captured nominal forces and trade im-

balances in our model is simplistic relative to traditional models in open-economy

macroeconomics. A more satisfactory approach from a macroeconomic perspective

would model monetary policy by adding a Taylor Rule with a zero lower bound,

allow agents to make savings and investment decisions, and incorporate interna-

tional financial flows affecting exchange rates, among other features. We have in-

stead chosen to capture these forces via simple rules so that we can have a rich trade

structure with many countries and sectors, intermediate inputs, and forward look-

ing migration decisions while still being able to conduct the quantitative analysis

in a transparent way (i.e., using dynamic exact hat algebra). Our aim is that this

exercise serves to identify the key elements that future models need to incorporate.
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Appendices for Online Publication

A Model Details

A.1 Production

Technology to produce the differentiated good of industry s in region i at time t is

Yi,s,t =

(
φ
−φi,s
i,s

S

∏
k=1

φ
−φi,ks
i,ks

)
Ai,s,tL

φi,s
i,s,t

S

∏
k=1

Mφi,ks
i,ks,t,

where Mi,ks,t is the quantity of the composite good of industry k used in region i to produce

in sector s at time t, φi,s is the labor share in region i, sector s, φi,ks is the share of inputs that

sector s uses from sector k in region i, and 1− φi,s = ∑S
k=1 φi,ks. The resource constraint for

the composite good produced in region j, sector k, at time t is

Mj,k,t = Cj,k,t +
S

∑
s=1

Mj,ks,t.

In turn, the resource constraint for good s produced by region i is Yi,s,t = ∑I
j=1 τij,s,tYij,s,t. The

composite in sector k is produced according to

Mj,k,t =

(
I

∑
i=1

Y
σk−1

σk
ij,k,t

) σk
σk−1

.

Let Pi,s,t be the price of Mi,s,t, pij,s,t be the price of Yi,s,t in j at time t, and Wi,s,t be the nominal

wage in region i, sector s, at time t. We know that pii,s,t = A−1
i,s,tW

φi,s
i,s,t ∏S

k=1 Pφi,ks
i,k,t , pij,s,t =

τij,s,t pii,s,t, and Pj,s,t =
(

∑I
i=1 p1−σs

ij,s,t

)1/(1−σs)
. Combining these we obtain:

P1−σs
j,s,t =

I

∑
i=1

(
τij,s,t A−1

i,s,tW
φi,s
i,s,t

S

∏
k=1

Pφi,ks
i,k,t

)1−σs

,
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The price of final output in region j at time t is given by Pj,t = ∏S
s=1 P

αj,s
j,s,t. Multiplying the

resource constraint for Mj,k,t by Pj,k,t we get

Zj,k,t = Pj,k,tCj,k,t +
S

∑
s=1

Pj,k,t Mj,ks,t,

where Zj,k,t ≡ Pj,k,t Mj,k,t denotes the total expenditure of region j in industry k. Let the share

of that expenditure spent on imports from i be λij,k,t ≡
pij,k,tYij,k,t

Zj,k,t
. We know that

λij,k,t =
p1−σk

ij,k,t

∑l p1−σk
l j,k,t

=
p1−σk

ij,k,t

P1−σk
j,k,t

=

(
τij,k,t A−1

i,k,tW
φi,k
i,k,t ∏S

s=1 Pφi,sk
i,s,t

)1−σk

∑I
r=1

(
τrj,k,t A−1

r,k,tW
φr,k
r,k,t ∏S

s=1 Pφr,sk
r,s,t

)1−σk
.

Let Ri,k,t = pii,k,tYi,k,t represent the sales of good k by region i. Multiplying the resource

constraint for Yi,k,t above by pii,k,t we get pii,k,tYi,k,t = ∑I
j=1 τij,k,t pii,k,tYij,k,t, and hence Ri,k,t =

∑I
j=1 λij,k,tZj,k,t. Plugging in from the resource constraint for Zj,k,t we have

Ri,k,t =
I

∑
j=1

λij,k,t

(
Pj,k,tCj,k,t + ∑

s
Pj,k,t Mj,ks,t

)
.

Note that Pj,k,t Mj,ks,t = φj,ksRj,s,t. Additionally, the total amount available for consumption

in region j at time t is the sum of total labor income (denoted Ij,t, notice Ij,t ≡
S
∑

k=1
Wj,k,tLj,k,t)

and the deficit (denoted Dj,t). So we get Pj,k,tCj,k,t = αj,k
(

Ij,t + Dj,t
)

, hence

Ri,k,t =
I

∑
j=1

λij,k,t

(
αj,k
(

Ij,t + Dj,t
)
+ ∑

s
φj,ksRj,s,t

)
.

We know that a fraction φi,k of Ri,k,t is payed to labor, hence Wi,k,tLi,k,t = φi,kRi,k,t.

A.2 Labor Supply

As mentioned in the text, an agent’s utility in region j, sector s, at time t is given by

νj,s,t = U(ωj,s,t) + max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t},
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with the joint density of vector ε being i.i.d over time and nested Gumbel,

F(ε) = exp

− I

∑
i=1

(
S

∑
k=0

exp (−εi,k/ν)

)ν/κ


with ν ≤ κ. If there is an strict inequality such that ν < κ, that means that the elasticity across

sectors (1/ν) is greater than the elasticity across locations (1/κ). Denote Vi,k,t+1 ≡ E[νi,k,t+1].

In this appendix, we will prove two main results. First, the probability that an agent in js

will choose to move to ik conditional on moving to region i is

µji,sk|i,t =
exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+1 − ϕji,sh

)1/ν
,

while the probability that an agent in js will move to any sector in region i is

µji,s#,t =

(
∑S

h=0 exp
(

βVi,h,t+1 − ϕji,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
.

Second,

E

 max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}

 = ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν
)ν/κ

κ

+ γκ,

where γ is the Euler-Mascheroni constant. The previous expression implies

Vj,s,t = U(ωj,s,t) + ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
κ

+ γκ.

To show the first result, note that an agent that is in market js at time t will choose to

switch to ik if and only if the following expression holds for all mh:

βVi,k,t+1 − ϕji,sk + εi,k,t ≥ βVm,h,t+1 − ϕjm,sh + εm,h,t,

3



which is equivalent to εm,h,t ≤ νxim,kh + εi,k,t, where

xim,kh ≡
β (Vi,k,t+1 −Vm,h,t+1)−

(
ϕji,sk − ϕjm,sh

)
ν

.

Denoting

Φj,s,t ≡ E

[
max

{i,k}I,S
i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}
]

We know that

Φj,s,t =
I

∑
i=1

S

∑
k=0

∫ +∞

−∞

(
βVi,k,t+1 − ϕji,sk + εi,k,t

)
Gik(εi,k,t, xi,k,t)dεi,k,t

where Gik(εi,k,t, xi,k,t) is the partial derivative of F(·) w.r.t. to the ik element of the vector ε,

with the ik element of the vector evaluated at εi,k,t and the generic element in position mh of

the vector evaluated at νxim,kh,t + εi,k,t. Given our function F(ε) above, the partial derivative

w.r.t the element in position ik is

∂F(ε)
∂εi,k

=
1
κ

(
∑
h

exp (−εi,h/ν)

)ν/κ−1

exp (−εi,k/ν) exp

−∑
m

(
∑
h

exp (−εm,h/ν)

)ν/κ


We then have

Gik(εi,k,t, xi,k,t) =
1
κ

(
∑
h

exp (−xii,kh,t)

)ν/κ−1

exp (−εi,k,t/κ)

· exp

− exp (−εi,k,t/κ)∑
m

(
∑
h

exp (−xim,kh,t)

)ν/κ


where we have used the fact that xii,kk,t = 0. Integrating this over εi,k,t yields

∫ +∞

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t =

(∑h exp (−xii,kh,t))
ν/κ−1

∑m (∑h exp (−xim,kh,t))
ν/κ

∫ +∞

−∞

1
κ

exp (−εi,k,t/κ)

· T exp

[
− exp (−εi,k,t/κ) T

]
dεi,k,t,
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where

T ≡∑
m

(
∑
h

exp (−xim,kh,t)

)ν/κ

.

But note that

∫ +∞

−∞

1
κ

exp (−εi,k,t/κ) T exp

[
− exp (−εi,k,t/κ) T

]
dεi,k,t = 1,

because the integrand is the density associated with exp (− exp (−εi,k,t/κ) T), a univariate

Gumbel. Hence, the previous expression simplifies to

∫ ∞

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t =

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν

∑
h

exp
(

βVi,h,t+1 − ϕji,sh

)1/ν

(
∑
h

exp
(

βVi,h,t+1 − ϕji,sh

)1/ν
)ν/κ

∑
m

(
∑
h

exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

It is easy to see that the first fraction is µji,sk|i,t, while the second one is µji,s#,t.

Now we want to solve for

E

[
max

{i,k}I,S
i=1,k=0

{βVi,k,t+1 − ϕji,sk + εi,k,t}
]

Let’s compute

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]

To do this, first note that the joint probability that βVi,k,t+1 − ϕji,sk + εi,k,t ≤ a while at the

same time arg maxmh
{

βVm,h,t+1 − ϕjm,sh + εm,h,t
}
= ik, is

∫ a−(βVi,k,t+1−ϕji,sk)

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t

=
(∑h exp (−xii,kh))

ν/κ−1

∑m (∑h exp (−xim,kh))
ν/κ

∫ a−(βVi,k,t+1−ϕji,sk)

−∞

1
κ

T exp (−z/κ) exp (−T exp (−z/κ)) dz

A change of variables with y = exp (z) implies that dy/y = dz and

∫ a−(βVi,k,t+1−ϕji,sk)

−∞

1
κ

T exp (−z/κ) exp (−T exp (−z/κ)) dz
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= exp
(
−T exp

[(
βVi,k,t+1 − ϕji,sk

)
/κ
]

exp (−a/κ)
)

Thus, the joint probability we are interested in is

(∑h exp (−xii,kh))
ν/κ−1

∑m (∑h exp (−xim,kh))
ν/κ

exp
(
−T exp

[(
βVi,k,t+1 − ϕji,sk

)
/κ
]

exp (−a/κ)
)

and hence the probability of (βVi,k,t+1 − ϕji,sk + εi,k,t ≤ a) conditional on

arg max
mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik,

is

exp
(
−T̃ exp (−a/κ)

)
,

where now

T̃ ≡ T exp
[(

βVi,k,t+1 − ϕji,sk
)

/κ
]

.

In turn, this implies that

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]
=

∫ +∞

−∞
ad exp

(
− exp

(
−
(
a− ln T̃κ

)
κ

))
,

where we have used

T̃ exp (−a/κ) = exp

(
−
(
a− ln T̃κ

)
κ

)
.

This is the expectation of a variable distributed Gumbel with location parameter µ = ln T̃κ

and scale parameter β = κ. But we know that the expectation of a variable distributed

Gumbel with µ and β is µ + βγ, where γ is the Euler-Mascheroni constant, hence we have

∫ ∞

−∞
ad exp

(
−T̃ (exp a)−κ

)
= ln T̃κ + γκ.
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This implies that

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]

= ln

∑
m

(
∑
h

exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
κ

+ γκ

Since this does not depend on ik, then we have

E

 max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}

 = ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν
)ν/κ

κ

+ γκ,

as we wanted to show.

A.3 Equilibrium in Relative Time Changes (Dots)

Now we will describe the equilibrium equations in relative changes from one period to

the next. We use the notation ẋt = xt/xt−1. We start by deriving the dot equations for the

labor market block of the economy. We will denote uj,s,t ≡ exp(Vj,s,t) and assume that the

utility function takes log form: U(ωt) = log(ωt). We have,

µji,sk|i,t+1

µji,sk|i,t
=

exp
(

βVi,k,t+2 − ϕji,sk
)1/ν / exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+2 − ϕji,sh

)1/ν / ∑S
h′=0 exp

(
βVi,h′,t+1 − ϕji,sh′

)1/ν

=
exp (Vi,k,t+2 −Vi,k,t+1)

β/ν

∑S
h=0 µji,sh|i,t exp (Vi,h,t+2 −Vi,h,t+1)

β/ν
,

while

µji,s#,t+1

µji,s#,t
=

(
∑S

h=0 exp (Vi,h,t+2 −Vi,h,t+1)
β/ν µji,sh|i,t

)ν/κ

∑I
m=1 µjm,s#,t

(
∑S

h=0 exp (Vm,h,t+2 −Vm,h,t+1)
β/ν µjm,sh|m,t

)ν/κ
.

Since uj,s,t ≡ exp(Vj,s,t) then

u̇nj
t+2 ≡ uj,s,t+2/uj,s,t+1 =

exp(Vj,s,t+2)

exp(Vj,s,t+1)
= exp(Vj,s,t+2 −Vj,s,t+1)

(u̇j,s,t+2)
β
ν = exp(Vj,s,t+2 −Vj,s,t+1)

β
ν .
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Introducing this in the previous results and writing the equations for period t instead of

t + 1, we obtain

µji,sk|i,t =
µji,sk|i,t−1u̇

β
ν

i,k,t+1

∑S
h=0 µji,sh|i,t−1u̇

β
ν

i,h,t+1

(A1)

µji,s#,t =

µji,s#,t−1

(
∑S

h=0 µji,sh|i,t−1u̇
β
ν

i,h,t+1

)ν/κ

∑I
m=1 µjm,s#,t−1

(
∑S

h=0 µjm,sh|m,t−1u̇
β
ν

m,h,t+1

)ν/κ
. (A2)

Take the difference between Vj,s,t+1 and Vj,s,t using equation (6) to get

Vj,s,t+1 −Vj,s,t = U(ωj,s,t+1)−U(ωj,s,t)

+ ln


(

∑I
i=1

(
∑S

k=0 exp
(

βVi,k,t+2 − ϕji,sk

)1/ν
)ν/κ

)κ

(
∑I

m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

)κ


eVj,s,t+1−Vj,s,t = exp(ln(ωj,s,t+1/ωj,s,t)) exp

ln

 I

∑
i=1

(
S

∑
k=0

u̇
β
ν
i,k,t+2µji,sk|i,t

)ν/κ

µji,s#,t

κ .

Thus, we finally obtain

u̇j,s,t+1 = ω̇j,s,t+1

 I

∑
i=1

µji,s#,t

(
S

∑
k=0

µji,sk|i,tu̇
β
ν

i,k,t+2

)ν/κ
κ

. (A3)

The equilibrium in changes includes equations (A1), (A2), (A3), together with the dot

versions of the remaining equations in (1) - (15).

A.4 Algorithm to Solve the Dot System

Group the equations of the dot equilibrium system into 3 categories:

1. The ones that are needed to obtain new migration and new labor supply from a guess

8



of utilities (block 1):

µji,sk|i,t =
µji,sk|i,t−1u̇

β
ν

i,k,t+1

∑S
h=0 µji,sh|i,t−1u̇

β
ν

i,h,t+1

µji,s#,t =

µji,s#,t−1

(
∑S

h=0 µji,sh|i,t−1u̇
β
ν

i,h,t+1

)ν/κ

∑I
m=1 µjm,s#,t−1

(
∑S

h=0 µjm,sh|m,t−1u̇
β
ν

m,h,t+1

)ν/κ

`i,s,t =
I

∑
j=1

S

∑
k=0

µji,ks|i,t−1µji,k#,t−1`j,k,t−1

With these equations, if one has an initial distribution of labor supply (`i,s,0), initial

mobility matrices (µji,sk|i,0 and µji,s#) and an initial guess for the utility dots (u̇(0)
i,s,t ∀ t),

one can obtain the entire path of labor supplies (`i,s,t ∀ t > 0), and the entire path

of mobility matrices (µji,sk|i,t and µji,s#,t ∀ t > 0) without needing to use the other

equations at all.

2. The ones that are needed to obtain the temporary equilibrium (wages, actual labor,

sectoral prices, trade shares, revenue levels) from a given set of shocks and labor sup-

ply (block 2):

Ṗ1−σs
i,s,t =

I

∑
j=1

λji,s,t−1

(
τ̇ji,s,t Ȧ−1

j,s,tẆ
φj,s
j,s,t

S

∏
k=1

Ṗ
φj,ks
j,k,t

)1−σs

λij,s,t =
λij,s,t−1(τ̇ij,s,t Ȧ−1

i,s,tẆ
φi,s
i,s,t ∏S

k=1 Ṗφi,ks
i,k,t )

1−σs

∑I
r=1 λrj,s,t−1(τ̇rj,s,t Ȧ−1

r,s,tẆ
φr,s
r,s,t ∏S

k=1 Ṗφr,ks
r,k,t )

1−σs

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
∑

s
Ẇj,s,t L̇j,s,tYj,s,t−1 + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
Ẇi,s,t L̇i,s,tYi,s,t−1 = φi,sRi,s,t

t

∏
q=1

L̇i,s,q ≤
t

∏
q=1

˙̀ i,s,q , Ẇi,s,t ≥ δi,s , Complementary Slackness

γ
I

∑
i=1

S

∑
s=1

Yi,s,t−1 =
I

∑
i=1

S

∑
s=1

Ẇi,s,t L̇i,s,tYi,s,t−1
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3. The ones that are needed to update the guess for the path of utilities (block 3):

Ṗi,t =
S

∏
s=1

Ṗαi,s
i,s,t

ω̇i,s,t =
Ẇi,s,t L̇i,s,t

Ṗi,t ˙̀ i,s,t
(but with ω̇i,s,t = 1 if s = 0)

u̇j,s,t+1 = ω̇j,s,t+1

 I

∑
i=1

µji,s#,t

(
S

∑
k=0

µji,sk|i,tu̇
β
ν

i,k,t+2

)ν/κ
κ

The algorithm would work as follows:

1. Guess a path for the utility dots (which can be all of them being equal to one).

2. Use block one to obtain paths for the µ’s and `’s using the guessed path for utility.

3. Use block two to solve the temporary equilibrium using the path for the `’s.

4. Use block three to obtain a new guess for the utility dots. This uses the fact that in

a far enough point in the future (called T) even the new guess of utility dots should

have u̇(1)
i,s,T = 1. With u̇(1)

i,s,T = 1, the path for µ’s and the sectoral compensations one

can obtain u̇(1)
i,s,T−1. And from those obtain u̇(1)

i,s,T−2, and so on until u̇(1)
i,s,1.

5. If the two guessed paths of utility dots u̇(0) and u̇(1) are close enough, stop the algo-

rithm, otherwise return to item one with the new guess and iterate again.

A.5 Equilibrium in Counterfactual Relative to Baseline (Hats)

Now we want to describe the equilibrium equations in ratios of changes in a coun-

terfactual economy relative to the same changes in the baseline economy. We will use the

notation x̂t = ẋ′t/ẋt, where ẋ′t is the relative change from period t− 1 to t in the counterfac-

tual economy and ẋt is the same thing but for the baseline economy. First, we want to get

the evolution of µ′ji,sk|i,t. Start from equation (A1) for the case of the counterfactual economy,

µ′ji,sk|i,t =
µ′ji,sk|i,t−1(u̇

′
i,k,t+1)

β
ν

∑S
h=0 µ′ji,sh|i,t−1(u̇

′
i,h,t+1)

β
ν

.
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Divide this by the same expression in the case of the baseline economy and rearrange to get:

µ′ji,sk|i,t =
µ′ji,sk|i,t−1µ̇ji,sk|i,tû

β
ν

i,k,t+1
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

. (A4)

To obtain the evolution of µ′ji,s#,t, start from equation (A2) for the counterfactual economy,

µ′ji,s#,t =
µ′ji,s#,t−1

(
∑S

h=0 µ′ji,sh|i,t−1(u̇
′
i,h,t+1)

β
ν

)ν/κ

∑I
m=1 µ′jm,s#,t−1

(
∑S

h=0 µ′jm,sh|m,t−1(u̇
′
m,h,t+1)

β
ν

)ν/κ
.

Divide this by the same expression in the case of the baseline economy and rearrange to get:

µ′ji,s#,t =

µ′ji,s#,t−1µ̇ji,s#,t

(
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

)ν/κ

I
∑

m=1
µ′jm,s#,t−1µ̇jm,s#,t

(
S
∑

h=0
µ′jm,sh|m,t−1µ̇jm,sh|m,tû

β
ν

m,h,t+1

)ν/κ
. (A5)

Now we want to derive an expression for utility in hats. Start from equation (A3) for the

counterfactual economy (but for period t instead of t + 1):

u̇′j,s,t = ω̇′j,s,t

 I

∑
i=1

µ′ji,s#,t−1

(
S

∑
k=0

µ′ji,sk|i,t−1(u̇
′
i,k,t+1)

β
ν

)ν/κ
κ

.

Dividing by this equation in the baseline economy and rearranging yields

ûj,s,t = ω̂j,s,t

 I

∑
i=1

µ′ji,s#,t−1µ̇ji,s#,t

(
S

∑
k=0

µ′ji,sk|i,t−1µ̇ji,sk|i,tû
β
ν

i,k,t+1

)ν/κ
κ

. (A6)

However, at t = 1 the equilibrium conditions are slightly different. This is the result of

the timing assumption in CDP (which we adopt in this paper too), that the counterfactual

fundamentals are unknown before t = 1. This means that at t = 0, ûj,s,0 = 1, µ′ji,sk|i,0 =

µji,sk|i,0, µ′ji,s#,0 = µji,s#,0, and `′i,k,1 = `i,k,1 = ∑I
j=1 ∑S

s=0 µji,sk|i,0µji,s#,0`j,s,0. To account for the
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unexpected change in fundamentals at t = 1, the right equations are

µ′ji,sk|i,1 =
θji,sk|i,0ûβ/ν

i,k,2

∑S
h=0 θji,sh|i,0ûβ/ν

i,h,2

(A7)

µ′ji,s#,1 =
µji,s#,1

(
∑S

h=0 θji,sh|i,0ûβ/ν
i,h,2

)ν/κ

∑I
m=1 µjm,s#,1

(
∑S

h=0 θjm,sh|m,0ûβ/ν
m,h,2

)ν/κ
(A8)

ûj,s,1 = ω̂j,s,1

 I

∑
i=1

µji,s#,1

(
S

∑
k=0

θji,sk|i,0ûβ/ν
i,k,2

)ν/κ
κ

, (A9)

where

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1.

The equilibrium in hats includes equations (A4), (A5), (A6), together with the hat ver-

sions of the remaining equations in (1) - (15).

A.6 Algorithm to Solve the Hat System

As in the previous algorithm, group the equations into 3 categories:

1. The ones that are needed to obtain new mobility shares and new labor supply from a

guess of utilities (block 1):

µ′ji,sk|i,t =
µ′ji,sk|i,t−1µ̇ji,sk|i,tû

β
ν

i,k,t+1
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

µ′ji,s#,t =

µ′ji,s#,t−1µ̇ji,s#,t

(
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

)ν/κ

I
∑

m=1
µ′jm,s#,t−1µ̇jm,s#,t

(
S
∑

h=0
µ′jm,sh|m,t−1µ̇jm,sh|m,tû

β
ν

m,h,t+1

)ν/κ

`′i,s,t =
I

∑
j=1

S

∑
k=0

µ′ji,ks|i,t−1µ′ji,k#,t−1`
′
j,k,t−1
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But period one works differently:

µ′ji,sk|i,1 =
θji,sk|i,0ûβ/ν

i,k,2

∑S
h=0 θji,sh|i,0ûβ/ν

i,h,2

µ′ji,s#,1 =
µji,s#,1

(
∑S

h=0 θji,sh|i,0ûβ/ν
i,h,2

)ν/κ

∑I
m=1 µjm,s#,1

(
∑S

h=0 θjm,sh|m,0ûβ/ν
m,h,2

)ν/κ

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1

With these equations, if one has an initial distribution of labor supply (`′i,s,0, which

should be the same as `i,s,0), the mobility matrices in the baseline economy and an

initial guess for the utility hats (û(0)
i,s,t ∀ t), one can obtain the entire path of labor

supplies (`′i,s,t ∀ t > 0), and the entire path of mobility matrices without needing to

use the other equations at all.

2. The ones that are needed to obtain the temporary equilibrium (wages, actual labor,

sectoral prices, trade shares, revenue levels) from a given set of shocks and labor sup-

ply (block 2):

P̂1−σs
i,s,t =

I

∑
j=1

λ′ji,s,t−1λ̇ji,s,t

(
τ̂ji,s,t Â−1

j,s,tŴ
φj,s
j,s,t

S

∏
k=1

P̂
φj,ks
j,k,t

)1−σs

λ′ij,s,t =
λ′ij,s,t−1λ̇ij,s,t(τ̂ij,s,t Â−1

i,s,tŴ
φi,s
i,s,t ∏S

k=1 P̂φi,ks
i,k,t )

1−σs

P̂1−σs
j,s,t

R′i,s,t =
I

∑
j=1

λ′ij,s,t

(
αj,s

(
∑

s
Ŵj,s,t L̂j,s,tY′j,s,t−1Ẇj,s,t L̇j,s,t + D′j,t

)
+

S

∑
k=1

φj,skR′j,k,t

)
φi,sR′i,s,t = Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t

t

∏
q=1

L̂i,s,q L̇i,s,q ≤
t

∏
q=1

˙̀ ′
i,s,q , Ŵi,s,tẆi,s,t ≥ δi,s , Complementary Slackness

I

∑
i=1

S

∑
s=1

Y′i,s,t−1 =
1
γ

I

∑
i=1

S

∑
s=1

Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t

With these equations, if we have a set of shocks in hats (τ̂ and Â, as well as deficits

in the counterfactual economy D′), together with initial values for the counterfactual

economy (like trade shares and nominal incomes) and the solution for the baseline

economy (including trade shares dot, wages dot and labor dot), we can solve for hat
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prices, new trade shares in levels, new revenues in levels, actual labor hats and wages

hat.

3. The ones that are needed to update the guess for the path of utilities (block 3):

P̂i,t =
S

∏
s=1

P̂αi,s
i,s,t

ω̂i,s,t =
Ŵi,s,t L̂i,s,t

P̂i,t ˆ̀ i,s,t
(but with ω̂i,s,t = 1 if s = 0)

ûj,s,t = ω̂j,s,t

 I

∑
i=1

µ′ji,s#,t−1µ̇ji,s#,t

(
S

∑
k=0

µ′ji,sk|i,t−1µ̇ji,sk|i,tû
β
ν

i,k,t+1

)ν/κ
κ

But period one works differently:

ûj,s,1 = ω̂j,s,1

 I

∑
i=1

µji,s#,1

(
S

∑
k=0

θji,sk|i,0ûβ/ν
i,k,2

)ν/κ
κ

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1.

The algorithm would work as follows:

1. Guess a path for the utility hats (which can be all of them being equal to one).

2. Use block one to obtain paths for the µ′ and `′ using the guessed path for the utility

hat and the solution for the baseline economy.

3. Use block two to solve the temporary equilibrium using the path for `′, the hat shocks

and the solution for the baseline economy.

4. Use block three to obtain a new guess for the utility hats. This uses the sectoral com-

pensations obtained in the previous step and the fact that in a far enough point in the

future (called T) the change in utility in the baseline economy should be the same as

the change in utility in the counterfactual, so we should have û(1)
i,s,T = 1. With û(1)

i,s,T = 1,

the path for the µ′ and the sectoral compensations one can obtain û(1)
i,s,T−1. And from

those obtain û(1)
i,s,T−2, and so on until û(1)

i,s,2. û(1)
i,s,1 needs to be obtained with a special

equation.

5. If the two guessed paths of utility hats û(0) and û(1) are close enough, stop the algo-

rithm, otherwise return to item one with the new guess and iterate again.
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A.7 Algorithm to Solve the Temporary Equilibrium

Block two of the previously described outer algorithms (which solve the equilibrium

system in dots or hats) solves for the temporary equilibrium of the baseline or counterfactual

economy. Given the presence of an inequality constraint due to the DNWR, solving this

temporary equilibrium is an unwieldy process that would be infeasible with any traditional

solver. To overcome this limitation, we develop an augmented version of Alvarez and Lucas

(2007) to be able to handle the existence of DNWR. This inner algorithm is very efficient

and allows us to solve the temporary equilibrium of the full model with DNWR extremely

fast (provided we use the nominal anchor described in equation 15). In this appendix, we

describe this inner algorithm in the case of the hat system. The inner algorithm for the dot

system is analogous.

Notice first that, if one knows a given period’s wages in hats (as well as the solution for

the baseline economy, the previous period’s trade shares, and the shocks to trade costs and

technology), it is possible to obtain the corresponding prices in hats from the equation:

P̂1−σs
i,s,t =

I

∑
j=1

λ′ji,s,t−1λ̇ji,s,t

(
τ̂ji,s,t Â−1

j,s,tŴ
φj,s
j,s,t

S

∏
k=1

P̂
φj,ks
j,k,t

)1−σs

,

using traditional contraction mapping algorithms. The new trade shares can then easily be

obtained from the following equation,

λ′ij,s,t =
λ′ij,s,t−1λ̇ij,s,t(τ̂ij,s,t Â−1

i,s,tŴ
φi,s
i,s,t ∏S

k=1 P̂φi,ks
i,k,t )

1−σs

P̂1−σs
j,s,t

.

Knowing the previous elements, employment in hats, the previous periods output levels,

and the shock to deficits, allows one to solve for revenues using the linear (albeit massive)

system described by the following set of equations

R′i,s,t =
I

∑
j=1

λ′ij,s,t

(
αj,s

(
∑

s
Ŵj,s,t L̂j,s,tY′j,s,t−1Ẇj,s,t L̇j,s,t + D′j,t

)
+

S

∑
k=1

φj,skR′j,k,t

)
.

The previous argument implies that we can write revenues in the counterfactual economy

in a given period as a function of that same period’s wages and employment hats, i.e.
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R′i,s,t(Ŵ, L̂) (where the bold W and L stand for the vector of wages and employment hats

in all the regions and sectors).

What remains is to show how to solve the following system in wages and employment

hats for all regions and sectors:

φi,sR′i,s,t(Ŵ, L̂) = Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t

L̂i,s,t ≤ LU
i,s,t , Ŵi,s,t ≥WL

i,s,t , Complementary Slackness (C.S.)
I

∑
i=1

S

∑
s=1

Y′i,s,t−1 =
I

∑
i=1

S

∑
s=1

Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t.

This is where we will use an augmented version of the Alvarez and Lucas (2007) algorithm

that accounts for the presence of DNWR. Imagine that one has an initial guess for wages and

employment in hats, denoted Ŵ(0)
i,s,t and L̂(0)

i,s,t. We use an algorithm that updates this guess as

follows:

Ŵ(1)
i,s,t = max


(1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

, WL
i,s,t


L̂(1)

i,s,t = min

LU
i,s,t,

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

 .

These new guesses obviously satisfy L̂(1)
i,s,t ≤ LU

i,s,t and Ŵ(1)
i,s,t ≥ WL

i,s,t. The new guesses also

satisfy the C.S. condition. To see this, notice that it cannot happen that:

Ŵ(1)
i,s,t =

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

L̂(1)
i,s,t =

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

,

since that would require:

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

≥ WL
i,s,t

16



LU
i,s,t ≥

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

.

Putting the last two inequalities together we get:

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0), L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t
≥WL

i,s,tL
U
i,s,t ≥ (1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0), L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t
,

which is impossible unless both inequalities hold with equality (in which case all the rele-

vant conditions are satisfied anyway). This means that unless we are in a knife edge case

(where everything works fine) we are going to be either in the point:

(
L̂(1)

i,s,t, Ŵ(1)
i,s,t

)
=

LU
i,s,t,

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

 ,

or in the point:

(
L̂(1)

i,s,t, Ŵ(1)
i,s,t

)
=

 (1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

, WL
i,s,t

 ,

which means that the C.S. condition is satisfied. It is also true that the new guess satisfies

the nominal anchor if the previous guess did. To see this, notice that (from the observation

that we are always in either of those special points) the following always holds:

Ŵ(1)
i,s,t L̂

(1)
i,s,t = (1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
.

Multiplying this by Y′i,s,t−1Ẇi,s,t L̇i,s,t and summing it over i and s we get:

I

∑
i=1

S

∑
s=1

Ŵ(1)
i,s,t L̂

(1)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t = (1− λ)

I

∑
i=1

S

∑
s=1

Ŵ(0)
i,s,t L̂

(0)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t

+ λ
I

∑
i=1

S

∑
s=1

φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t.
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Focusing on the last term, it is possible to show that:

I

∑
i=1

S

∑
s=1

φi,sR′i,s,t =
I

∑
j=1

S

∑
r=1

Ŵ(0)
j,r,t L̂

(0)
j,r,tY

′
j,r,t−1Ẇj,r,t L̇j,r,t.

This makes it clear that:

I

∑
i=1

S

∑
s=1

Ŵ(1)
i,s,t L̂

(1)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t =

I

∑
i=1

S

∑
s=1

Ŵ(0)
i,s,t L̂

(0)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t.

Therefore, if the initial guess satisfies the nominal anchor the new guess will do so as well.

Finally, when the algorithm converges, for example at iteration N, the following holds:

Ŵ(N)
i,s,t L̂(N)

i,s,t = (1− λ)Ŵ(N)
i,s,t L̂(N)

i,s,t + λ
φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
,

which implies Ŵ(N)
i,s,t L̂(N)

i,s,t Y′i,s,t−1Ẇi,s,t L̇i,s,t = φi,sR′i,s,t, indicating that the final guess solves our

desired system. We use the following initial guess which satisfies the nominal anchor,

Ŵ(0)
i,s,t =

1
Ẇi,s,t

, L̂(0)
i,s,t =

1
L̇i,s,t

.

A.8 Welfare

We start from our previous result that

Vj,s,t = ln(ωj,s,t) + κ ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
+ γκ.

Using

µjj,s#,t =

(
∑S

h=0 exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
,

we then have

I

∑
m=1

(
S

∑
h=0

exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ

= µ−1
jj,s#,t

(
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

.
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Next, using

µjj,ss|j,t =
exp

(
βVj,s,t+1

)1/ν

∑S
h=0 exp

(
βVj,h,t+1 − ϕjj,sh

)1/ν
,

we have
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

= µ−1
jj,ss|j,t exp

(
βVj,s,t+1

)1/ν ,

and hence

µ−1
jj,s#,t

(
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

= µ−1
jj,s#,tµ

−ν/κ
jj,ss|j,t exp

(
βVj,s,t+1

)1/κ .

This implies that

κ ln

 I

∑
m=1

(
S

∑
h=0

exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

 = βVj,s,t+1 − κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
.

We then write

Vj,s,t = ln(ωj,s,t)− κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
+ γκ + βVj,s,t+1.

Iterating this equation forward, we obtain

Vj,s,t =
∞

∑
r=t

βr−t
(

ln(ωj,s,t)− κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
+ γκ

)
.

We define the CV in consumption for market js at time t = 0 to be the scalar ζ j,s such that

V ′j,s,0 = Vj,s,0 +
∞

∑
r=0

βr ln(ζ j,s) =
∞

∑
r=0

βr

ln

 ωj,s,rζ j,s(
µjj,ss|j,r

)ν (
µjj,s#,r

)κ

+ γκ

 .

Rearranging the definition, we can write:

(V ′j,s,0 −Vj,s,0) = ln(ζ j,s)
∞

∑
r=0

βr

ln(ζ j,s) = (1− β)(V ′j,s,0 −Vj,s,0)
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=
∞

∑
r=1

βr ln

 ω̂j,s,r(
µ̂jj,ss|j,r

)ν (
µ̂jj,s#,r

)κ

 ,

which is the expression that we will use for the “welfare change” stemming from the China

shock, formally the compensating variation in consumption due to the shock.

A.9 More on Calibration

As we discussed in the main text, the multiplicative nature of our productivity decom-

position, ÂChina,s,t = Â1
China,t Â2

China,s, implies that their level is not identified. For example, if

we multiply all the Â2
China,s by a constant c and we divide all the Â1

China,t by c, then we would

have the same ÂChina,s,t. Thus, we use the normalization ∑S
s=1 Â2

China,s = 1. Correspond-

ingly, the model is only able to produce changes in imports that satisfy ∑2007
t=2001 ∆Xmodel

C,US,t =

∑S
s=1 ∆X2007−2000,model

C,US,s . This condition is automatically satisfied by the actual changes, i.e.

∑2007
t=2001 ∆XC,US,t = ∑S

s=1 ∆X2007−2000
C,US,s , but not necessarily by the predicted changes, due to

the lack of a constant in the second regression. We adjust the predicted changes in manu-

facturing so that they satisfy: ∑2007
t=2001

̂∆XC,US,t = ∑S
s=1

̂∆X2007−2000
C,US,s , this adjustment is very

small. In all of our applications we match our targets with an accuracy greater than 99.9%.

B Data Construction

In this appendix section, we provide details on the construction of the data we briefly

described in Section 3. We divide this appendix into three parts. Appendix B.1 describes

all data sources. Appendix B.2 discusses how we combine the different data sources to

compute an internally consistent bilateral trade-flow matrix for all sectors for the years when

all the data is available. It also discusses how we use the previous step to project a bilateral

trade-flows between states and countries for the years before full data availability. Finally,

Appendix B.3 discusses the construction of the initial employment allocations for all regions

and the bilateral migration flows between sectors and U.S. states.
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B.1 Data Description and Sources

List of sectors. We use a total of 14 sectors. The list includes 12 manufacturing sectors,

one catch-all services sector, and one agriculture sector. We follow CDP in the selection of

the 12 manufacturing sectors. These are: 1) Food, beverage, and tobacco products (NAICS

311-312, WIOD sector 3); 2) Textile, textile product mills, apparel, leather, and allied prod-

ucts (NAICS 313-316, WIOD sectors 4-5); 3) Wood products, paper, printing, and related

support activities (NAICS 321-323, WIOD sectors 6-7); 4) Mining, petroleum and coal prod-

ucts (NAICS 211-213, 324, WIOD sectors 2, 8); 5) Chemical (NAICS 325, WIOD sector 9); 6)

Plastics and rubber products (NAICS 326, WIOD sector 10); 7) Nonmetallic mineral prod-

ucts (NAICS 327, WIOD sector 11); 8) Primary metal and fabricated metal products (NAICS

331-332, WIOD sector 12); 9) Machinery (NAICS 333, WIOD sector 13); 10) Computer and

electronic products, and electrical equipment and appliance (NAICS 334-335, WIOD sector

14); 11) Transportation equipment (NAICS 336, WIOD sector 15); 12) Furniture and related

products, and miscellaneous manufacturing (NAICS 337- 339, WIOD sector 16). There is a

13) Services sector which includes Construction (NAICS 23, WIOD sector 18); Wholesale and

retail trade sectors (NAICS 42-45, WIOD sectors 19-21); Accommodation and Food Services

(NAICS 721-722, WIOD sector 22); transport services (NAICS 481-488, WIOD sectors 23-26);

Information Services (NAICS 511-518, WIOD sector 27); Finance and Insurance (NAICS 521-

525, WIOD sector 28); Real Estate (NAICS 531-533, WIOD sectors 29-30); Education (NAICS

61, WIOD sector 32); Health Care (NAICS 621-624, WIOD sector 33); and Other Services

(NAICS 493, 541, 55, 561, 562, 711-713, 811-814, WIOD sector 34).31

List of countries: We use data for 50 U.S. states, 37 other countries including a con-

structed rest of the world. The list of countries is: Australia, Austria, Belgium, Bulgaria,

Brazil, Canada, China, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France,

Germany, Greece, Hungary, India, Indonesia, Italy, Ireland, Japan, Lithuania, Mexico, the

Netherlands, Poland, Portugal, Romania, Russia, Spain, the Slovak Republic, Slovenia, S.

Korea, Sweden, Taiwan, Turkey, the United Kingdom, and the rest of the world.

31The only difference with respect to CDP in the definition of manufacturing sectors is that we in-
clude Mining (NAICS 211-213) together with Petroleum and Coal Products (NAICS 324) in our
sector 4.
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Data on bilateral trade between countries. World Input-Output Database (WIOD).

Release of 2013. We use data for 2000-2007. We map the sectors in the WIOD database

to our 14 sectors in the following way: 1) Food Products, Beverage, and Tobacco Prod-

ucts (c3); 2) Textile, Textile Product Mills, Apparel, Leather, and Allied Products (c4-c5); 3)

Wood Products, Paper, Printing, and Related Support Activities (c6-c7); 4) Petroleum and

Coal Products (c8); 5) Chemical (c9); 6) Plastics and Rubber Products (c10); 7) Nonmetallic

Mineral Products (c11); 8) Primary Metal and Fabricated Metal Products (c12); 9) Machin-

ery (c13); 10) Computer and Electronic Products, and Electrical Equipment and Appliances

(c14); 11) Transportation Equipment (c15); 12) Furniture and Related Products, and Miscel-

laneous Manufacturing (c16); 13) Construction (c18), Wholesale and Retail Trade (c19-c21),

Transport Services (c23-c26), Information Services (c27), Finance and Insurance (c28), Real

Estate (c29- c30); Education (c32); Health Care (c33), Accommodation and Food Services

(c22), and Other Services (c34); 14) Agriculture and Mining (c1-c2). We follow Costinot and

Rodriguez-Clare (2014) to remove the negative values in the trade data from WIOD.

Data on bilateral trade in manufacturing between U.S states. We combine the 2002

and 2007 Commodity Flow Survey (CFS) with the WIOD database. The CFS records ship-

ments between U.S states for 43 commodities classified according to the Standard Classifi-

cation of Transported Goods (SCTG). We follow CDP and use CFS 2007 tables that cross-

tabulate establishments by their assigned NAICS codes against commodities (SCTG) ship-

ped by establishments within each of the NAICS codes. These tables allow for mapping of

SCTG to NAICS.

Data on bilateral trade in manufacturing and agriculture between U.S states and the

rest of the countries. We obtain sector-level imports and exports between the 50 U.S. states

and the list of other countries from the Import and Export Merchandise Trade Statistics,

which is compiled by the U.S. Census Bureau. This dataset reports imports and exports in

each NAICS sector between each U.S. state and each other country in the world. Data for

exports at the state×sector level starts in 2002. Data for imports at the state×sector level

starts in 2008.

Data on sectoral and regional value added share in gross output. Value added for each

of the 50 U.S. states and 14 sectors can be obtained from the Bureau of Economic Analysis
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(BEA) by subtracting taxes and subsidies from GDP data. In the cases when gross output

was smaller than value added we constrain value added to be equal to gross output. For

the list of other countries we obtain the share of value added in gross output using data on

value added and gross output data from WIOD.

Data on services expenditure and production. We compute bilateral trade in services

using a gravity approach explained in Appendix B.2. As part of this calculations we require

data on production and expenditure in services by region. We obtain U.S. state-level services

GDP from the Regional Economic Accounts of the Bureau of Economic Analysis (BEA). We

obtain U.S. state-level services expenditure from the Personal Consumption Expenditures

(PCE) database of BEA. Finally, for the list of other countries we compute total production

and expenditure in services from WIOD.

Data on agriculture expenditure and production. We also compute bilateral trade

in agriculture using a gravity approach explained in Appendix B.2. To get production in

agriculture for the U.S. states we combine the 2002 and 2007 Agriculture Census with the

National Marine Fisheries Service Census to get state-level production data on crops and

livestock and seafood. We infer state-level expenditure in agriculture from our gravity ap-

proach explained in Appendix B.2. Finally, for the list of other countries we compute total

production and expenditure in agriculture from WIOD.

Data on population and geographic coordinates. As part of the gravity approach to

compute bilateral trade in services, we also need to compute bilateral distances between

regions. We follow the procedure used in the GeoDist dataset of CEPII to calculate interna-

tional (and intranational) bilateral trade distances. We thus require data on the most popu-

lated cities in each country, the cities’ coordinates and population, and each country’s pop-

ulation. We obtain this information from the United Nations’ Population Division website.

In particular, we use the population of urban agglomerations with 300,000 inhabitants or

more in 2018, by country, for 2000-2007. For Austria, Cyprus, Denmark, Estonia, Hungary,

Ireland, Lithuania, Slovakia and Slovenia we use the two most populated cities.32 For the

case of U.S. states, we use population and coordinates data for each U.S county within each

U.S state. The data for the U.S. counties comes from the U.S. CENSUS.

32For the specific case of Cyprus, the cities’ information comes from the country’s Statistical Service.
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Data on employment and migration flows. For the case of countries, we take data

on employment by country and sector from the WIOD Socio Economic Accounts (WIOD-

SEA). For the case of U.S. states, we take sector-level employment (including unemployment

and non-participation) from the 5% sample PUMS files of the 2000 Census. We only keep

observations with age between 25 and 65, who are either employed, unemployed, or out of

the labor force. We construct a matrix of migration flows between sectors and U.S. states by

combining data from the American Community Survey (ACS) and the Current Population

Survey (CPS). Finally, we abstract from international migration.

B.2 Construction of the Bilateral Trade Flows Between Regions

We follow the notation from Costinot and Rodriguez-Clare (2014) and omit the time

subscripts t that are relevant in our quantitative model. Define Xij,ks as sales of intermediate

goods from sector k in region i to sector s in region j, and Xij,kF as the sales of sector k in

region i to the final consumer of region j. Our final objective is to construct a bilateral trade

flows matrix between all regions in our sample with elements equal to Xij,k = ∑s Xij,ks +

Xij,kF. This matrix allows us to compute the trade shares λij,k, and the sector-level revenues

Rj,k = ∑l Xjl,k for each region, which are crucial elements in our hat algebra described in

Section 2.6.

As additional definitions, take Ej,k = ∑i Xij,k as the total expenditure of region j in

sector k, Fj,k = ∑i Xij,kF as the final consumption in region j of sector k, Fj = ∑k Fj,k as the

total final consumption of region j, and Xj,ks = ∑i Xij,ks as the total purchases that sector

s in region j makes from sector k. We construct the matrix of Xij,k in four parts explained

below. With some abuse of notation, we refer to a region i as a U.S. state (country) by i ∈ US

(i /∈ US).

Step 1: Bilateral trade between countries. In the first step we focus on the case where

both i and j are countries. Thus, we simply take Xij,k = XWIOD
ij,k , where XWIOD

ij,k are the

bilateral trade flows that come directly from the WIOD database.

Step 2: Manufacturing trade among U.S. states. In the second step we focus on man-

ufacturing bilateral trade between U.S. States. For this, we combine the closest Commodity

Flow Survey (CFS) for each year with WIOD Data for the total trade of the U.S. with itself.
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We first compute the shares that each state i exports to state j in sector k represent in the total

trade of sector k according to CFS. Then, we calculate the total exports of state i to state j in

sector k as WIOD’s U.S. trade with itself in sector k multiplied by the share computed in the

previous step to ensure that bilateral trade between states adds up to the WIOD total.

Step 3: Manufacturing trade between U.S. states and countries. For the third step,

we combine Census and WIOD data to calculate the trade flows between each of the 50 U.S.

states and the other 37 country regions. There is limited availability for the state×sector-

level trade data coming from the CENSUS. Data for exports at the state×sector-level starts

in 2002 and data for imports starts in 2008. We scale state-level imports and exports data

from the Import and Export Merchandise Trade Statistics to match the U.S. totals in WIOD.

More precisely, the exports (imports) of state i to (from) country j in manufacturing sector k

are computed as a proportion of WIOD’s U.S. export (imports) to (from) country j in sector

k. This proportion is equal to the exports (imports) of state i to (from) country j in sector k

relative to the total U.S. exports (imports) to (from) country j in sector k.

Since the Import and Export Merchandise Trade Statistics data for exports starts in

2002 and for imports starts in 2008, the bilateral trade flows between regions for the years

before the data starts cannot be computed directly from the data. We adapt our computation

method to take into account this issue. All previous procedures remain the same. Denote

Xbase
ij,k as the matrix Xij,k for the first year where the exports or imports data is available (the

base year). Define the share of exports of U.S. State i in sector k, going to country j in the

base year as ybase
ij,k ≡

Xbase
ij,k

∑h∈US Xbase
hj,k

∀i ∈ US , j /∈ US. Similarly, define the share of imports of

U.S. state j in sector k, coming from country i in the base year as ebase
ij,k ≡

Xbase
ij,k

∑l∈US Xbase
il,k

∀i /∈

US , j ∈ US. Finally for each sector k in manufacturing or agriculture; and any year before

the base year define Xij,k = ebase
ij,k XWIOD

i US,k ∀i /∈ US, ∀j ∈ US and Xij,k = ybase
ij,k XWIOD

US j,k ∀i ∈

US, ∀j /∈ US.

Step 4: Trade in services and trade in agriculture. We compute bilateral trade flows

for services and agriculture separately using a gravity structure that matches WIOD to-

tals for trade between countries (including the U.S.). We start with the standard gravity

equation (for simplicity, we remove the subscript of the sector) Xij =
(

wiτij
Pj

)−ε
Ej, where

P−ε
j = ∑i

(
wiτij

)−ε. We know that ∑j Xij = Ri and hence ∑j

(
wiτij

Pj

)−ε
Ej = Ri. This implies
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w−ε
i Π−ε

i = Ri, where Π−ε
i = ∑j τ−ε

ij Pε
j Ej. Let P̃j ≡ P−ε

j and Π̃i ≡ Π−ε
i , and τ̃ij ≡ τ−ε

ij . Given{
Ej
}

, {Ri}, and
{

τ̃ij
}

, one we can get
{

P̃j
}

and
{

Π̃i
}

from the following system:

P̃j =∑
i

τ̃ijΠ̃−1
i Ri

Π̃i =∑
j

τ̃ijP̃−1
j Ej (B1)

The solution for
{

P̃j, Π̃i
}

is unique up to a constant (Fally, 2015). This indeterminacy re-

quires a normalization. We thus impose P̃1 = 100 in each exercise. Then one can compute

our outcome of interest
{

Xij
}

from

Xij = τ̃ijΠ̃−1
i P̃−1

j RiEj. (B2)

Computation of the bilateral resistance τ̃ij. To solve the gravity system, we must first compute

τ̃ij ∀i, j. We proceed by assuming the following functional form: τ̃ij = β
ιij
0 distβ1

ij exp
(
ξij
)

,

where ιij is an indicator variable equal to 1 if i = j, and ξij is an idiosyncratic error term. β1

captures the standard distance elasticity and β0 captures the additional inverse resistance of

trading with others versus with oneself.

To calculate distij, we follow the same procedure used in the GeoDist dataset of CEPII

to calculate international (and intranational) bilateral trade distances. The idea is to calculate

the distance between two countries based on bilateral distances between the largest cities of

those two countries, those inter-city distances being weighted by the share of the city in the

overall country’s population (Head and Mayer, 2002).

We use population for 2010 and coordinates data for all U.S. counties, and all cities

around the world with more than 300,000 inhabitants. For those countries with less than

two cities of this size, we take the two largest cities. Coordinates are important to calculate

the physical bilateral distances in kms between each county r in state i and county s in state

j (drs ∀r ∈ i , s ∈ j and ∀i, j = 1, ..., 50), and define dist (ij) as:

dist (ij) =

(
∑
r∈ i

∑
s∈ j

(
popr

popi

)(
pops

popj

)
dθ

rs

)1/θ

, (B3)
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where poph is the population of country/state h. We set θ = −1.

Given our definition of τ̃ij we can write the gravity equation between countries as Xij =

β
ιij
0 distβ1

ij exp
(
ξij
)

Π̃−1
i P̃−1

j RiEj. Taking logs we can write the previous equation as:

ln Xij = δo
i + δd

j + β̃0ιij + β1 ln distij + ξij, (B4)

where β̃0 = ln β0 and the δs are fixed effects. We first estimate the equation above sep-

arately for services and agriculture using a 2000-2011 panel of bilateral trade flows be-

tween countries from WIOD. We present our OLS estimation results in Table B.1. Columns

(1) and (2) refer to the estimated coefficients for the case of services and agriculture, re-

spectively. Both regressions include year-by-origin and year-by-destination fixed effects.

We take these estimates and compute the bilateral resistance term in each sector as ˆ̃τij =

exp( ˆ̃β0ιij + β̂1 ln distij).

Table B.1: Estimation of Own-Country Dummy and Distance Elasticity

(1) (2)
Dep. Var.: ln Xij,t Services Agriculture
ιij 7.357 ∗∗∗ 4.143∗∗∗

(0.126) (0.145)
ln distij -0.376∗∗∗ -1.745∗∗∗

(0.037) (0.020)
Year×Orig. Yes Yes
Year×Dest. Yes Yes
Observations 17,328 17,328
Adjusted R2 0.66 0.76

Notes: This table displays the OLS estimates of specifications analogous to the one in
equation (B4). The outcome variable ln Xij,t is the log exports of country i sent to country
j. The own-country dummy ιij is defined as an indicator function equal to one whenever
country i is the same as country j. Finally, ln distij is the log distance between country i
and country j. This variable is computed according to equation (B3). Robust standard
errors are presented in parenthesis. *** denotes statistical significance at the 1%.

Trade in services. As inputs, we need total expenditures in services for each region (Ei), as

well as total production in services (Ri). For the case of countries we take this directly

from WIOD. For the case of U.S. states we take these variables from the Regional Economic

Accounts of the Bureau of Economic Analysis. We scale the state-level services production
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and expenditures so that they aggregate to the U.S. totals in WIOD.

We incorporate the information on bilateral trade in services between countries (in-

cluding the U.S.) that comes from WIOD to the gravity system of equation (B1) by first

writing the system as P̃j = ∑i/∈US τ̃ijΠ̃−1
i Ri + ∑i∈US τ̃ijΠ̃−1

i Ri and Π̃i = ∑j/∈US τ̃ijP̃−1
j Ej +

∑j∈US τ̃ijP̃−1
j Ej. Then, we define λ̃j ≡ 1− ∑i/∈US Xij

Ej
for j /∈ US (the share of imports of re-

gion j /∈ US coming from the U.S.) and λ̃∗i ≡ 1 − ∑j/∈US Xij
Ri

for i /∈ US (total exports of

region i /∈ US to other regions not in the U.S.). Using these two definitions and substituting

τ̃ij = XijΠ̃i P̃jR−1
i E−1

j whenever i, j /∈ US in the previous system of equations we have the

final system we solve for services:

P̃j = ∑
i

τ̃ijΠ̃−1
i Ri j ∈ US

Π̃i = ∑
j

τ̃ijP̃−1
j Ej i ∈ US

λ̃jP̃j = ∑
i∈US

τ̃ijΠ̃−1
i Ri j /∈ US

λ̃∗i Π̃i = ∑
j∈US

τ̃ijP̃−1
j Ej i /∈ US

Once we find solutions for
{

P̃j, Π̃i
}

, we compute the final bilateral trade matrix accord-

ing to equation (B2).

Trade in agriculture. As inputs, we need total expenditures in services for each region (Ei),

as well as total production in agriculture (Ri). For the case of countries we take this directly

from WIOD. For the case of U.S. states we compute total production (Ri) by combining data

from the Agriculture Census and the National Marine Fisheries Service Census. We scale the

state-level agriculture production so that it aggregates to the U.S. total in WIOD. However,

it is not possible to find state-level agriculture expenditure for U.S. states. To overcome

this data unavailability, we combine the U.S. input-output matrix (φj,ks) together with the

shares of value-added in gross production (φj,k) in order to compute a value of (Ei) that is

consistent with the full bilateral trade matrix for all regions and all sectors.

In order to describe our procedure, note that the total expenditure of region j in sector k

(Ej,k) could be written as Ej,k = ∑s φ̃j,ksRj,s + Fj,k, where φ̃j,ks = φj,ks(1− φj,s). We make two

assumptions. First, we assume that φ̃j,ks = φ̃US,ks ∀j ∈ US, which means that we assume
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common input-output matrix and value-added shares across U.S. states and equal to the

ones of the U.S. as a whole. Second, we assume identical Cobb-Douglas preferences across

U.S. states. This means that when j ∈ US we have that Fj,k =
Fj

FUS
FUS,k = Fjγk, where γk ≡

FUS,k
FUS

. Using these two assumptions we get Fj = Ej,k −∑s φ̃j,ksRj,s + ∑r 6=k
(
Ej,r −∑s φ̃j,rsRj,s

)
.

Substituting the previous equation in the definition of Ej,k for the agriculture sector (k =

AG), and j ∈ US we find

Ej,AG = ∑
s

φ̃j,AG sRj,s +
γAG

1− γAG
∑

r 6=AG

(
Ej,r −∑

s
φ̃j,rsRj,s

)
,

which can be computed using state-level production of all sectors and state-level expendi-

ture data of all other sectors (excluding agriculture), combined with the U.S.-level input-

output matrix, value-added shares, and sector-level consumption shares.

Once we obtain the state-level expenditure values in agriculture, we can proceed with

the gravity system in equation (B1). As in the case of services, we incorporate the infor-

mation on bilateral trade in agriculture between countries that comes from WIOD. We also

incorporate the bilateral trade in agriculture between U.S. states and other countries coming

from the Import and Export Merchandise Trade Statistics. Thus, we only need to focus on{
P̃j
}

j∈US and
{

Π̃i
}

i∈US. Define χ∗i = 1− ∑j/∈US
Xij
Ri

for i ∈ US (the share of sales of state i

that stay in the U.S.) and χj = 1−∑i/∈US
Xij
Ej,k

for j ∈ US (the share of purchases of state i that

come from the U.S.). The final system we solve for agriculture becomes:

χjP̃j = Σi∈USτ̃ijΠ̃−1
i Ri, ∀j ∈ US

χ∗i Π̃i = Σj∈USτ̃ijP̃−1
j Ej, ∀i ∈ US

As before, once we find solutions for
{

P̃j, Π̃i
}

, we compute the bilateral trade in agri-

culture between U.S. states according to equation (B2).
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B.3 Initial Employment Allocations for each Region and Bilateral

Migration Flows between Sectors and U.S. States

This subsection explains how to compute the initial labor allocation and the bilateral

labor mobility matrix. Most of the steps follow CDP.

Employment allocation in each region and sector. For the case of countries outside of

the U.S., we first compute the employment distribution by country-sector from the WIOD-

SEA. We treat unemployed and out of labor force as an additional sector. The data for that

sector combines WIOD-SEA’s worker population and each country’s labor force participa-

tion rate from World Bank data. Since SEA does not include the RoW directly and since the

remaining countries in SEA are too few, we define RoW’s employment such that its produc-

tion to employment ratio equals the respective average ratio of the other 37 countries. This

calculation is done separately for each sector.

For the case of U.S. states, we calculate the employment level for each state and sec-

tor (including unemployment and non-participation) in the year 2000 from the 5 % sample

PUMS files of the 2000 Census. We only keep observations type ”P” (persons) aged 25 to 65,

who are either employed, unemployed, or out of the labor force. We take unemployment

plus non-participation as a different sector. Finally, we apply proportionality so that the

aggregate employment at the sector level coincides with the totals for the U.S. in WIOD.

Workers’ mobility matrix for U.S. states. Let Lji,sk be the number of workers who move

from state j and sector s to state i and sector k between two periods (we ignore the time

subscript for simplicity). We want to compute the mobility matrix for the shares µji,sk, for

each origin state j, origin sector s, destination state i, and destination sector k, with the shares

defined as µji,sk =
Lji,sk

∑i′ ∑k′ Lji′ ,sk′
. To do this we combine data from the American Community

Survey (ACS) and the Current Population Survey (CPS) as explained below.

The ACS provides details of workers’ current employment status, sector, and state. It

also asks the state in which respondents lived the prior year. However, this survey does not

provide information regarding people’s employment status and sector in the previous year.

This means that we can construct from the ACS data LACS
ji,#k ∀j, i ∈ US and destination sector

k (interstate flows but without knowing the sector of origin). The CPS provides details of
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people’s employment status and industry each month, but it does not provide information

regarding movements across states. This means that we can construct from the CPS data

LCPS
jj,sk ∀j ∈ US and any origin or destination sectors s, k (intra-state flows of people between

sectors).33

To combine both LACS
ji,#k ∀j, i ∈ US and LCPS

jj,sk ∀j ∈ US to compute the labor transitions

across states and sectors, we follow CDP by assuming that interstates movements (j to i)

across sectors follow the same pattern that intrastate moves in the destination state i across

sectors. We then apply proportionality to the flows from CPS to sum up to total flows in

ACS (which do not require additional assumptions and are available for interstate move-

ments). This means that we define Lji,sk = ∑k′ LACS
ji,#k′ ×

LCPS
ii,sk

∑s′ ∑k′ LCPS
ii,s′k′

∀i, j ∈ US, ∀s, k. Note

that ∑k ∑s Lji,sk = ∑q LACS
ji,#q (so the total movements between states add up to the total move-

ments from ACS.). Also note that Ljj,sk
Ljj,sk′

=
LCPS

jj,sk

LCPS
jj,sk′

(so that the relative importance between

destination sectors comes from CPS data). Finally, in the few cases when the diagonal value

of the matrix (same state and sector in origin and destination) is zero, we change it to the

minimum non-zero diagonal value.

Smoothing flows in shares. As discussed in the main text, using self-reported informa-

tion from the CPS and ACS surveys to measure mobility flows is known to be problematic

due to the prevalence of misclassification errors (Murphy and Topel, 1987; Kambourov and

Manovskii, 2013; Dvorkin, 2021). For instance, Dvorkin (2021) shows that interindustry mo-

bility rates computed using uncorrected PSID data could be around twice as large than al-

ternative data for which misclassification is likely absent, even when using broad one-digit

ISIC sector codes.

To avoid the artificially large mobility flows due to the misclassification issue, we

smoothed the mobility flows in shares such that the set of migration flows in our first period

implies a steady state in the U.S. in that period. This smoothing means that given a set of

33The CPS surveys households in a 4-8-4 format; that is, it interviews the household for four consec-
utive months, gives them an 8-month break, and interviews them again for four straight months.
We match CPS observations (individuals) across time using the interview number. The first four
monthly interviews are 12 months apart from the final four interviews, and the first four and final
four are consecutive in months. Since we are interested in recording annual changes, we only keep
interview months (1,5) which is equivalent to following each individual for the first twelve months
she appears in the survey. To avoid noise in our sample, we use observations for the previous two
years and the following two years for the year of interest.
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µji,sk coming from the data for 2000, we find a new set of flows µ′ji,sk that satisfy the following

conditions:

1. They are greater than zero µ′ji,sk ≥ 0 and they sum to one for each sender market over

all receiver markets: ∑I
i=1 ∑S

k=0 µ′ji,sk = 1.

2. They imply a steady state with the labor data in 2000, which we will denote with

Lj,s. This means that if the original distribution of labor is described by the Lj,s’s, this

distribution is preserved after the flows occur: Li,k = ∑I
j=1 ∑S

s=0 µ′ji,skLj,s.

3. The probability that someone in any given region-sector is stays in region i is the same

across the original and the new mobility matrices ∑S
k=0 µii,sk = ∑S

k=0 µ′ii,sk.

4. If the original mobility matrix has a given flow as zero, then this must still be the case

in the new mobility matrix: µ′ji,sk = 0 if µji,sk = 0.

5. The new µ′ji,sk minimize the sum of square differences between the new µ’s and the

original ones, i.e.:
I

∑
j=1

I

∑
i=1

S

∑
s=0

S

∑
k=0

(µ′ji,sk − µji,sk)
2.

We solve the previous problem of minimizing the sum of squared differences subject to the

constraints in items 1-5. The change in the flows implied by this procedure is very small. In

particular, the correlation between the original µji,sk and the µ′ji,sk is 99.69%.

Mobility matrix for non-U.S. regions. We do not take the mobility matrix for each

country outside of the U.S. from the data, which would be cumbersome because we have

37 other countries. However, it can be shown (details provided upon request), that for a

country with a single region (such as non-U.S. countries in our context), the fact that there

are no mobility costs can be captured by setting a special mobility matrix between 1999 and

2000. Thus, we compute the elements of that mobility matrix between 1999 and 2000. To do

this, we take as given the labor distribution in 1999 (Li,s,0) and 2000 (Li,s,1) and compute the

following formula:

µii,sk,0 =
Li,k,1

∑S
r=1 Li,r,0

Notice that the flows between sector s and sector k do not depend on information of the

sender sector (s), which is implicitly encoding the information that in the countries outside
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of the U.S., mobility between sectors is unlimited.

C Exposure measures

Consider an economy producing a set of homogeneous goods across sectors s = 1, ..., S

with prices ps. Labor is the only factor of production that is mobile across sectors, and

there are decreasing returns to labor in each sector so that qs = Fs(ls) with F′s(·) > 0 and

F′′s (·) < 0. Preferences are given by U(c) − V(l), where l ≡ ∑s ls, U(c) is homogeneous

of degree one, and V ′(·) > 0 and V ′′(·) > 0. We are interested in the effect of a foreign

shock on employment in two different cases. In the first case the wage w is fixed and labor

is fully determined by labor demand (we assume that labor supply is higher than labor

demand at the fixed wage w), while in the second case the wage is fully flexible and clears

the labor market. Below we show that further assuming that ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε for all s

and µ(l) ≡ V′′(l)l
V′(l) = µ, then in the case of a fixed wage we have

d ln l =
1
ε ∑

s

( psqs

I

)
d ln ps (C1)

while in the case of flexible wages we have

d ln l =
1

ε + µ ∑
s

(
psqs − pscs

I

)
d ln ps, (C2)

where I ≡ ∑s psqs. Thus, if the wage is fixed and if we know the log changes in prices

resulting from the foreign shock then we can interact them with revenue shares, psqs
I , to

construct a Bartik-style sufficient statistic for the first order effect on employment. In con-

trast, if the wage fully adjusts to equalize labor supply and demand, then the appropriate

weights (share components in the Bartik measure) for the price changes are instead given by

net exports as a share of GDP, to capture the implied terms-of-trade effects. If the economy

is small, then prices are exogenous and one could further replace d ln ps by the underlying

Chinese productivity shocks.

Let’s start with the case where w is fixed. Fully differentiating the equilibrium condition

psF′s(ls) = w implies d ln ls =
d ln ps
εs(ls)

, where ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

. We then have d ln l = ∑s ms
d ln ps
εs(ls)

,

33



where ms ≡ ls
∑s ls . Assuming that εs(ls) = ε we know that psqs/I = ms and hence we get

(C1).

Now let’s consider the case with a flexible wage. The equilibrium is given by w, l, λ

and {ls, cs}s such that the following equations hold

psF′s(ls) = w (C3)
∂Us

∂cs
= λps (C4)

V ′(l) = λw (C5)

∑
s

ls = l (C6)

∑
s

pscs = ∑
s

ps fs(ls). (C7)

Differentiating equation (C5) yields µ(l)d ln l = d ln λ + d ln w, where µ(l) ≡ V′′(l)l
V′(l) . Thus

d ln l =
d ln (w/P)

µ(l)
, (C8)

with P ≡ 1/λ. Next, totally differentiating equations (C3) and (C6) yields d ln ps − εd ln ls

= d ln w and ∑s msd ln ls = d ln l. Combined, the previous two equations imply ∑ msd ln ps

−εd ln l = d ln w, which combined with (C8) implies (after some rearranging):

d ln (w/P) =
µ

µ + ε

(
∑ msd ln ps − d ln P

)
. (C9)

But equation (C4) implies that ∑s
∂Us
∂cs

cs = λ ∑s pscs. Since U(c) is homogeneous of degree

one this implies U(c) = λ ∑s pscs. Totally differentiating this equation yields ∑s
∂Us
∂cs

dcs =

(∑s pscs) dλ + λ ∑s psdcs + λ ∑s csdps. Using equation (C4) we get ∑s λpsdcs = (∑s pscs) dλ

+λ ∑s psdcs +λ ∑s csdps, which, after simplifying, implies

d ln P = d ln (1/λ) = ∑
s

θsd ln ps, (C10)

where θs ≡ pscs
∑s pscs

. Plugging into (C9) and combining with (C8) we get

d ln l =
1

µ + ε ∑ (ms − θs) d ln ps = d ln l.
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Finally, note that ms ≡ ls
∑s ls = wls

∑s wls = psF′s(ls)ls
∑s psF′s(ls)ls

. Using ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε, we know that

Fs(ls) ∝ l1−ε
s and F′s(ls) ∝ (1− ε) l−ε

s , hence ms = psFs(ls)
∑s psFs(ls)

= psqs
∑s psqs

= psqs
I . On the other

hand, using (C7) we have θs ≡ pscs
∑s pscs

= pscs
I . Combining all of this we obtain (C2).

35


	Introduction
	A Dynamic Spatial Trade and Migration Model with Nominal Wage Rigidities
	Basic Assumptions
	Labor Supply
	Downward Nominal Wage Rigidity
	Nominal Anchor
	Equilibrium
	Dynamic Hat Algebra

	Data
	Calibration
	Effects of the China Shock in the Baseline Model
	Comparison of Cross-Sectional results with ADH
	Aggregate Employment Effects
	Welfare Effects

	Alternative Specifications
	Different Migration Assumptions
	DNWR Only in Manufacturing
	Changing Deficits as Part of the China Shock
	Fixed vs. Flexible Exchange Rates
	Different Discount Factors

	Discussion
	Different Exposure Measures
	Quantifying Job Losses

	Conclusion
	Model Details
	Production
	Labor Supply
	Equilibrium in Relative Time Changes (Dots)
	Algorithm to Solve the Dot System
	Equilibrium in Counterfactual Relative to Baseline (Hats)
	Algorithm to Solve the Hat System
	Algorithm to Solve the Temporary Equilibrium
	Welfare
	More on Calibration

	Data Construction
	Data Description and Sources
	Construction of the Bilateral Trade Flows Between Regions
	Initial Employment Allocations for each Region and Bilateral Migration Flows between Sectors and U.S. States

	Exposure measures

