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We present a framework to identify market responses to firm-level uncertainty gener-
ated from extreme weather events. The stock options of firms with establishments in a
hurricane’s landfall region exhibit large, long-lasting implied volatility increases, reflect-
ing significant uncertainty. Comparing implied volatility to subsequent realized volatil-
ity, we find that investors underreact. After Hurricane Sandy, a particularly damaging
event whose landfall struck the U.S. financial center, this underreaction diminishes.
Despite constituting idiosyncratic volatility shocks, hurricanes affect expected returns.
Discussions between analysts, investors, and management about hurricane impacts are
elevated while uncertainty is high and reveal business interruption, physical damages,
insurance, and demand as predominant channels.

JEL classification: G12, G14, Q54
Keywords: extreme weather, uncertainty, implied volatility, expected returns, climate risks

*We are grateful to our discussants Lint Barrage, Michael Bauer, Riccardo Colacito, Ben Groom, Matthew
Gustafson, Burton Hollifield, Kris Jacobs, Scott Mixon, Zacharias Sautner, Aurelio Vasquez, and Andrea
Vedolin. We thank Jawad Addoum, Rui Albuquerque, Vicki Bogan, Mikhail Chernov, Andrew Ellul, Chris-
tian Heyerdahl-Larsen, Byoung-Hyoun Hwang, Andrew Karolyi, Fang Liu, Ian Martin, Dmitriy Muravyev,
Justin Murfin, David Ng, Emilio Osambela, Andrew Patton, Tarun Ramadorai, Brian Seok, Noah Stoffman,
Greg Vilkov, Scott Yonker, Youngsuk Yook, and seminar participants at ANU, CFTC, Cornell University,
Federal Reserve Board, Indiana University, Johns Hopkins University, NOAA, UCSB, UCSD, University of
Zurich, AERE, AFA, CEPR-EBRD-EoT-LSE Workshop, ECB Symposium on Climate Change, Finance, &
Green Growth, Harvard Kennedy School Northeast Workshop, NBER Asset Pricing Spring Meeting, Re-
sources for the Future, Stanford SITE Conference, UCLA Luskin Symposium on Climate Adaptation, UConn
Finance Conference, OU Energy and Commodities Finance Research Conference, and UToronto-McGill Risk
Management and Financial Innovation Conference in Memory of Peter Christoffersen, for helpful comments.
Keely Adjorlolo, Gus Kmetz, David Rubio, and Alan Yan provided outstanding research assistance. The
views stated herein are those of the authors and are not necessarily the views of the Federal Reserve Bank
of San Francisco or the Federal Reserve System.

�Kruttli: Kelley School of Business, Indiana University. Email: mkruttli@iu.edu. Roth Tran: Federal
Reserve Bank of San Francisco. Email: brigitte.rothtran@sf.frb.org. Watugala: Kelley School of Business,
Indiana University. Email: sumudu@iu.edu.

mailto:mkruttli@iu.edu
mailto:brigitte.rothtran@sf.frb.org
mailto:sumudu@iu.edu


From hurricanes and severe snowstorms to floods and droughts, extreme weather events

have caused widespread devastation. For instance, in the record year of 2017, the estimated

damages from extreme weather events in the United States were over $300 billion.1 While

the unpredictable impact of extreme weather on a firm’s capital, continuity of operations,

and business environment could create significant uncertainty, firms can potentially offset

some of these effects through insurance or adaptation. Thus, it is not obvious a priori that

extreme weather events generate substantial uncertainty for firms. Despite an emerging

climate finance literature and policymaker concerns that mispricing of climatic events in

asset markets could lead to sudden price corrections and threaten financial stability, little is

known about the uncertainty that is generated by extreme weather events for firms or how

such uncertainty is priced.2 In this paper, we present a comprehensive analysis of firm-level

extreme weather uncertainty.

We first use financial markets to isolate and quantify the extent of firm-level extreme

weather uncertainty and then analyze the pricing of this uncertainty.3 The exogenous, iden-

tifiable nature of extreme weather events allows us to isolate the associated uncertainty

cleanly because prevailing conditions of the firm do not affect the timing and likelihood of

such events. Extreme weather events are also local and impact only a subset of firms in

the U.S. economy, creating a unique experimental setting.4 This allows us to thoroughly

investigate first order questions in asset pricing, including on informational efficiency and

whether idiosyncratic shocks impact asset prices not only through the cash flow channel but

also through the discount rate channel.

To ground our empirical analyses, we develop a simple theoretical framework that models

the “incidence uncertainty” faced by a firm regarding whether it will be hit by an extreme

1National Oceanic and Atmospheric Administration (NOAA) damage estimates (https://www.climate.
gov/news-features/blogs/beyond-data/2017-us-billion-dollar-weather-and-climate-disasters-historic-year).

2Government agencies responsible for the resilience of the financial system have begun examin-
ing the potential impact of climatic events. According to the Federal Reserve’s Financial Sta-
bility Report, November 2020: “...uncertainty about the timing and intensity of severe weather
events and disasters, as well as the poorly understood relationships between these events and eco-
nomic outcomes, could lead to abrupt repricing of assets.” (https://www.federalreserve.gov/publications/
2020-november-financial-stability-report-near-term-risks.htm).

3As in this paper, Bloom (2009); Pástor and Veronesi (2012, 2013); Jurado, Ludvigson, and Ng (2015)
and others define uncertainty as expected volatility, distinct from the literature on Knightian uncertainty.

4The local and idiosyncratic nature of extreme weather events differentiates them from the market-wide
shocks generally considered in the disaster risk literature as in Barro (2006).
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weather event and the “impact uncertainty” about the event’s effect on the firm conditional

on it being hit. Although this framework applies to extreme weather events broadly, we

focus our main empirical analyses on U.S. hurricanes due to three key features that enable

identification. First, hurricanes are economically destructive extreme weather events that

impact a wide variety of major centers of economic activity, which include a large number

of firms in a range of industries.5 Second, NOAA publishes a range of relevant data on

hurricane forecasts and realizations. These data are accessible to investors in real time.

Third, hurricanes develop from inception as storms over the ocean and resolve following

landfall or dissipation over fairly short time frames, isolating effects in time. We assess the

external validity of our baseline analysis for other extreme weather events.

We estimate the firm-level uncertainty generated by extreme weather events using changes

to the implied volatility of stock options, a measure that captures investor expectations

of volatility (Bloom, 2009). We collate single-stock options data starting from 1996 and

spanning 24 years with hurricane data and data on the locations of the establishments of

individual firms. We calculate the firm exposure to each hurricane as the share of a firm’s

establishments located in the landfall region. We conduct difference-in-differences analyses

using this firm exposure variable to measure treatment.

Indicative of substantial impact uncertainty, we find that the implied volatilities of firms

with establishments in regions hit by hurricanes are up to 18% above pre-hurricane incep-

tion levels.6 Implied volatilities remain elevated for several months after hurricane landfall,

suggesting that the resolution of impact uncertainty is slow. Mirroring this persistence

in volatility, a systematic textual analysis of the transcripts of calls between analysts, in-

vestors, and firm management reveals that the number of discussions of hurricane impacts

jumps after landfall for hit firms and remains elevated for several months. These results

are consistent with the idea that discussions in analyst calls about a hurricane occur while

its impact on a firm’s performance is potentially material but still uncertain. While it has

been long-documented that volatility can be persistent, little is known about the economic

5For instance, in 2017, $265 billion of the aforementioned $300 billion in damages from extreme weather
events in the U.S. were due to hurricanes.

6Duffee (1995); Albuquerque (2012); Grullon, Lyandres, and Zhdanov (2012) show that, unlike at the ag-
gregate market level, stock returns and volatility at the firm level generally exhibit positive contemporaneous
correlation. As such, since our analysis is on firm-level volatility, the negative return-volatility relationship
documented for market index volatility (e.g., French, Schwert, and Stambaugh (1987)) is not driving our
results.
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mechanisms underlying such persistence.7 Our findings show that learning about how a firm

is affected by a specific event takes time, which leads to volatility persistence.

Understanding investor expectation formation regarding the uncertainty generated by

extreme weather events is important because volatility affects, for example, the risk as-

sociated with investment decisions, the cost of hedging physical climate risks, and option

prices. We analyze how the volatility risk premia (VRP)—computed as the difference be-

tween option-implied volatility and the subsequent realized volatility of the underlying stock

over the remaining life of the option—of hit firms change relative to those of control firms.

We find that the VRP of firms with establishments in a hurricane landfall region are sub-

stantially lower for over a month after landfall. This result implies that investors underreact

to the volatility that arises due to a hurricane and do not efficiently update their volatility

expectations based on the information available in real time.

We further examine whether there is a change to this bias in volatility expectations after a

particularly salient event experienced by investors.8 In our sample, the hurricane most likely

to have had such an effect is Hurricane Sandy, which hit the New York tri-state area in 2012.

Sandy was an unprecedented, highly damaging event that struck the financial center of the

U.S.—an area home to a large share of mutual funds and hedge funds—which had previously

been largely spared from head-on hits by hurricanes. We find that the underreaction to

hurricanes diminishes after Hurricane Sandy, suggesting that the informational efficiency of

markets improved after a particularly salient event that was personally experienced by many

investors.9,10 A salient event inducing such a marked shift in the pricing of long-observed

7See, for example, Mandelbrot (1963) and Fama (1965). Other papers examining the origins of volatility
persistence focus on, for example, the volatility effects of macroeconomic announcements—which affect
all firms—and find only short-lasting effects (Ederington and Lee, 1993; Andersen and Bollerslev, 1998).
Andersen and Bollerslev (1998) write on page 223: “The origin of longer run volatility persistence remains
an important topic for future research.”

8Personal experiences can make investors more attuned to risks. See, for example, Malmendier and Nagel
(2016) on personal inflation experiences and expectations and Alekseev, Giglio, Maingi, Selgrad, and Stroebel
(2022) on local temperature shocks and mutual fund manager portfolio choice.

9The saliency of Hurricane Sandy has been highlighted in other studies. For example, Kuchler, Li, Peng,
Stroebel, and Zhou (2022) find that the liquidity provision of institutional investors decreased shortly after
Sandy made landfall due to operational frictions, and Addoum, Eichholtz, Steiner, and Yönder (2023) show
a shift in how flood risk is priced in commercial real estate.

10The most damaging and arguably most prominent hurricane before Sandy was Hurricane Katrina, which
made landfall in Louisiana in 2005. Katrina is unlikely to have had the same impact on asset managers as
Sandy and indeed, we do not find a shift in pricing efficiency after Katrina.
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events like hurricanes calls into question whether financial markets efficiently price novel

risks stemming from climate change. These findings are in line with the beliefs of finance

professionals and academics that financial markets underestimate climate risks (Stroebel and

Wurgler, 2021).

We determine the real channels that drive extreme weather uncertainty through a sys-

tematic textual analysis of the transcripts of calls between analysts, investors, and firm

management. We identify five topics that come up frequently when discussing hurricane im-

pacts: business interruption, physical damages, insurance, demand, and supply. The more

uncertainty a given channel generates, the more discussion should be allocated to this channel

during calls with firm management in the aftermath of a hurricane. We find that discussions

on analyst calls about hurricane impacts increase by up to 15 paragraphs over the first six

months in response to a hurricane hit. The number of paragraphs in which a hurricane’s

impact on business interruption and physical damages is discussed increases by up to 3 and 5

paragraphs, respectively, relative to control firms. There are also significant, albeit smaller,

increases with the insurance, supply, and demand channels. The finding that there is uncer-

tainty regarding insurance in the aftermath of a hurricane hit suggests it is not immediately

apparent whether firms have coverage and when and to what extent firms’ claims will be

paid. Our findings are directly relevant to the ongoing debate about mandating climate risk

disclosures for firms.11 Our results suggest that disclosures about firms’ business continuity

plans, resilience or vulnerability of physical structures, insurance coverage, and supply and

demand exposures to extreme weather events could generate significant value by reducing

uncertainty.

We next examine if investors require compensation for bearing extreme weather uncer-

tainty through higher expected stock returns. If so, the resulting increase in the firm’s

cost of capital would be a channel that amplifies the negative impacts of extreme weather

by tightening financing constraints just when firms may need capital to rebuild or revamp

their operations. Prior studies on uncertainty in other contexts have focused on systematic

11See, for example, the SEC’s March 2022 Proposed Rules to Enhance and Standardize Climate-Related
Disclosure for Investors. The proposed rules “would require a registrant to disclose information about...
governance of climate-related risks and relevant risk management processes” and “the impact of climate-
related events (severe weather events and other natural conditions) ... on the line items of a registrant’s
consolidated financial statements.” See “SEC Proposes Rules to Enhance and Standardize Climate-Related
Disclosures for Investors” available at https://www.sec.gov/news/press-release/2022-46.
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shocks, which have been shown to affect expected returns (e.g., Anderson, Ghysels, and

Juergens (2009); Pástor and Veronesi (2012, 2013); Brogaard, Dai, Ngo, and Zhang (2019)

analyze general and political uncertainty). In contrast, extreme weather events constitute

local, idiosyncratic shocks. In an extension to our theoretical framework, we model how ex-

treme weather uncertainty can impact both cash flows and expected returns of a firm. Our

model is based on Levy (1978) and Merton (1987), who show theoretically how idiosyncratic

volatility can be “priced” and thus impact discount rates because, in practice, investors

may not hold the market portfolio as predicted by the capital asset pricing model.12 We

test whether expected returns rise due to the increase in expected idiosyncratic volatility

caused by a hurricane.13 We find no evidence that hurricanes affect expected returns in the

early sample, when we find investors underestimate uncertainty. However, after Hurricane

Sandy, when volatility expectations are less biased, there is strong evidence that firms with

higher idiosyncratic volatility due to a hurricane hit have significantly higher expected stock

returns.

Thus far, we have discussed the uncertainty post landfall, which reflects impact uncer-

tainty in our theoretical framework. We next analyze the uncertainty before landfall, which

reflects both incidence uncertainty and expected impact uncertainty. Here, we use two types

of forecasts: real-time hurricane-specific forecasts and seasonal outlooks. We show that ex-

posure to the forecast path of an imminent hurricane increases firms’ implied volatilities

even at low forecast probabilities. We find that implied volatility responses tend to increase

with the probability of an extreme weather event occurring, increasing as much as 22% for

hurricane wind speed probabilities of at least 50%, in line with the predictions of our theo-

retical framework. However, as in the post-landfall analysis, we find these implied volatility

responses to be an underreaction until Hurricane Sandy. Further, we do not find evidence

that investors react to seasonal outlooks, which are much less informative than the short-

term forecasts for imminent hurricanes. Whether or not investors pay attention and price in

climatic events before they occur is an important question in the climate finance literature.

12Such investor underdiversification has been established empirically and can stem from, for example,
investors only investing in securities that they are familiar with or restricted to (e.g., Erruna and Losq
(1985); Coval and Moskowitz (1999); Polkovnichenko (2005); Goetzmann and Kumar (2008)).

13Each hurricane can be considered an exogenous, idiosyncratic shock in this context because it affects a
subset of firms distributed across different industries and does not affect the general U.S. economy (Strobl,
2011). The vast majority of firms within the market will be unaffected by a specific hurricane. Also, the sets
of affected firms will vary for each hurricane.
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For example, Carney (2015) discusses how the sudden repricing of climate events can be a

threat to financial stability. Our analyses suggest that asset prices respond not only ex post

to extreme weather events but also ex ante to extreme weather event forecasts that have a

track record of being informative. However, these responses may be biased until investors

experience a particularly salient event.

Finally, we conduct a series of robustness checks and additional extensions. We exam-

ine the external validity of our baseline results for other types of extreme weather events.

Consistent with the general predictions of our model of extreme weather uncertainty, we

find that firm-level uncertainty also increases in response to floods, severe snowstorms, and

tornadoes. We show that our baseline findings hold across and within industries, are not

driven by firm selection issues, and are robust to the exclusion of individual hurricanes, to

using model-free instead of model-based implied volatility, to measuring firm exposure based

on the location of sales instead of establishments, and to alternative definitions of hurricane

landfall regions. Further, hurricanes increase the dispersion of hit firms’ abnormal cumula-

tive returns and lead to hit firms’ under- and out-performance compared to control firms at

the tails of the distribution, indicating that these events pose upside as well as downside risk.

While financial firms are excluded from our baseline samples, we show in separate analyses

that the single-stock options of property and casualty insurance firms also react to hurricane

hits and reflect substantial extreme weather uncertainty.

Our paper contributes to the climate finance literature in several ways. Our focus on

understanding how extreme weather shocks affect volatility expectations, whether the pricing

of these expectations is efficient, and the associated real channels of impact makes this paper

distinct. Other papers looking at the pricing efficiency of extreme weather events in this

literature examine stock markets and find evidence of both underreaction (see Hong, Li, and

Xu (2019) on how drought indices predict food company stock returns) and overreaction (see

Alok, Kumar, and Wermers (2020) on mutual fund performance following natural disasters).

Climate finance research that examines volatility has focused on the transition to a low

carbon economy, as opposed to physical climatic events. Ilhan, Sautner, and Vilkov (2021)

analyze option markets and find that the protection against downside risk is costlier for

carbon-intense firms due to climate policy uncertainty. Others, like Andersson, Bolton, and

Samama (2016); Roth Tran (2019); Engle, Giglio, Kelly, Lee, and Stroebel (2020); Bolton and

Kacperczyk (2021); Baker, Hollifield, and Osambela (2022); Sautner, van Lent, Vilkov, and
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Zhang (2022a,b), study stock markets and transition risks. The fact that this transition has

not yet been completed makes it difficult to assess whether financial markets efficiently price

such risks. Other work shows that natural disaster shocks can affect firms and propagate

along supply chains (Barrot and Sauvagnat, 2016; Pankratz and Schiller, 2021). Further,

Hassan, Hollander, Van Lent, and Tahoun (2019); Sautner, van Lent, Vilkov, and Zhang

(2022a,b) use analyst call transcripts to determine which firms are exposed to political and

climate risks that are otherwise difficult to observe. In contrast, we use our empirical strategy

to identify firms exposed to hurricanes and use discussions in call transcripts to understand

the real channels generating extreme weather uncertainty.

The simple theoretical framework we develop formalizes our understanding of uncertainty

before and after extreme weather events. The framework captures incidence and impact un-

certainty and relates them to cash flow, return volatility, and expected returns. Because the

events we study are identifiable, exogenous, and idiosyncratic, our analysis differs from other

types of uncertainty studied previously like macroeconomic or political uncertainty, where

periods of uncertainty are generally endogenous to prevailing conditions of the economy or

firm.14

Further, we exploit the experimental setting of extreme weather shocks to examine three

key questions in asset pricing. First, this paper advances our understanding of the persis-

tence of volatility. Volatility persistence is the basis for the vast literature on autoregres-

sive conditional heteroskedasticity models starting with Engle (1982) and Bollerslev (1986).

Our findings contribute to the understanding of the economic mechanisms underlying the

persistence of volatility because our setting allows us to identify multiple exogenous, non-

systematic shocks to the volatility of some but not all firms. Second, the findings in this

paper contribute to our understanding of volatility expectation formation. Other research

in the volatility literature finds that investors fail to correctly update expectations based on

the realized volatility over the preceding months (Cheng, 2019; Lochstoer and Muir, 2022).

The investor underreaction we document is a distinct phenomenon from the extrapolation

14E.g., Bloom (2009); Jurado, Ludvigson, and Ng (2015); Baker, Bloom, and Davis (2016); Dew-Becker,
Giglio, Le, and Rodriguez (2017); Hassan, Hollander, Van Lent, and Tahoun (2019). Some studies on political
uncertainty like Julio and Yook (2012); Kelly, Pástor, and Veronesi (2016); Jens (2017) focus on scheduled
political events, which are interpreted as known, exogenous points in time when a policy (or regime) change
might occur. However, the likelihood of whether a policy/regime change occurs on the prescheduled date
can still be endogenous to prevailing economic conditions. As Pástor and Veronesi (2012) discuss, such a
change is more likely during downturns.
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of preceding realized volatility because the inception of a hurricane is unrelated to preceding

realized volatility. Our findings could be applicable to other unexpected major events that

lead to sudden spikes in volatility. Third, our analysis on whether the uncertainty associated

with hurricanes impacts firms’ cost of capital contributes to our understanding of the pric-

ing of idiosyncratic volatility. Prior papers such as Ang, Hodrick, Xing, and Zhang (2006)

and Fu (2009) have empirically tested the Merton (1987) prediction assuming a particular

volatility model or factor structure for stock returns and arrived at mixed conclusions.15 In

contrast, by exploiting our empirical setting, we analyze exogenous increases to idiosyncratic

volatility.

The remainder of this paper is structured as follows. We describe our data and research

design in Sections I and II, respectively. Section III presents our main results, followed by

extensions and robustness tests in Section IV. We conclude in Section V.

I. Data

Our analyses use data from a range of sources. We combine NOAA hurricane data with firm

establishment data from the National Establishment Time-Series (NETS) database. We

obtain stock and firm data from the CRSP/Compustat Merged database, and options data

from OptionMetrics. We source transcripts of calls between analysts, investors, and firm

management from Refinitiv. We describe each of these data sources in this section and give

further details in Internet Appendix B.

A. Hurricane data

A hurricane is a tropical cyclone with high-speed surface wind that rotates around an “eye.”

While the air is calm inside the eye, the eyewall has intense winds that radiate outward in a

spiral fashion. These winds can reach a diameter of up to several hundred miles. Hurricanes

originate in the ocean as tropical depressions, strengthening into tropical storms and then

hurricanes as they traverse across water and sometimes over land before dissipating. The

15Martin and Wagner (2019) derive excess return predictions from option prices. Their analysis focuses
on the pricing of firm-specific sensitivity to aggregate volatility shocks like the global financial crisis, not
shocks to purely idiosyncratic volatility. Here, we isolate and examine variation in firm-specific idiosyncratic
volatility, independent of market-wide shocks.
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point at which a hurricane eye crosses from the ocean to land is called landfall. Around

landfall, hurricanes deliver not only intense winds that can exceed 100 miles per hour, but

also significant rainfall and storm surge, all of which can cause major damage. After landfall,

hurricanes continue to move over land, bringing strong winds and rain with them. In the

U.S., hurricanes typically occur between June and November and are most common along

the Gulf Coast and the southern portion of the Atlantic Coast.

We use NOAA hurricane track data to identify hurricane landfall regions for 37 Atlantic

and Gulf Coast hurricanes from 1996 to 2019. These data show the actual location and

intensity of each hurricane’s eye at six-hour intervals. To account for the fact that a hurricane

can impact counties not located in immediate proximity to its eye, we consider a county to

be in the hurricane landfall region if the county’s centroid lies within a specified radius of the

hurricane eye within a 24-hour window before and after landfall.16,17 This window ensures

that we capture counties that lie more inland and, for hurricanes that move along the coast

before turning inland, counties that were close to the eye before landfall. Figure 1 shows

which counties fall within 50, 100, 150, and 200 miles of the eye of hurricanes Katrina (2005),

Sandy (2012), Matthew (2016), and Harvey (2017). Table I Panel A lists the hurricanes in

our landfall sample.

We use a 200-mile radius around the eye as hurricane landfall regions in our main anal-

yses. We validate this choice using NOAA reanalysis data, which include hurricane-specific

estimates of windspeed radii that are released anywhere from weeks to months after hurri-

canes have occurred and are available starting in 2004. These data show that the average

outer border of a hurricane storm system—the area where wind speeds are at least 34KT—is

219 miles from the eye of the storm.18 We also consider landfall regions based on smaller

radii closer to the nucleus of the hurricane. In the Internet Appendix, we show robustness

of our main analyses to using hurricane-specific radii based on the reanalysis data.

16We also consider other time windows, for example, within 12, 36, and 48 hours before and after landfall,
and the results are qualitatively similar.

17Two hurricanes in the sample, Charley in 2004 and Katrina in 2005, made two landfalls in the U.S. To
avoid double-counting these hurricanes, the date when the hurricane made landfall at a higher wind speed—
corresponding to a higher storm category on the Saffir-Simpson scale—is considered the landfall date in our
analysis. Including both landfalls for each hurricane in the analysis leads to qualitatively similar results.

18Although the 200-mile radius is slightly lower than this empirical measure, in practice the two measures
align well because we include a county in the landfall region if the region includes the county centroid but
not necessarily the whole county.
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The NOAA landfall data we use in our analyses are published in real time, meaning that

investors can know the landfall region of a hurricane as soon as it happens. Other papers

that do not focus on market pricing use damaged counties to discern the firms affected by

natural disasters (e.g., Barrot and Sauvagnat (2016); Dessaint and Matray (2017)). In our

setting, where we isolate the uncertainty reflected in option markets, using damage data

would introduce a forward-looking bias because financial market investors do not know at

the time of a hurricane’s landfall which counties will experience damage—this is part of

the uncertainty. County-specific damage estimates generally become available with a lag of

several months.

For our pre-landfall analyses, we draw on two types of NOAA forecast data. First, we

use National Hurricane Center wind speed probability forecast advisories. These text-based

advisories are released in real time, intra-daily, as storms evolve to communicate proba-

bilities of hurricane-level wind speeds occurring in particular locations. These advisories

capture the same underlying model outputs as commonly viewed forecast maps published

by media outlets. We use the last forecast available before market close on each trading day,

which reflects the latest information available to investors before end-of-day option prices

are determined. This analysis includes more storms than our baseline post-landfall analyses

because it includes storms that were forecast to possibly make landfall in U.S. mainland but

that did not ultimately do so. The list of included storms is in Table I Panel B. Figure 3

illustrates how these forecast data capture the evolving forecast path for Hurricane Sandy

in the days leading up to landfall. Second, to examine seasonal dynamics, we use NOAA’s

annual May outlook announcements of the probability of the upcoming hurricane season

being above-normal in terms of the number of hurricanes.

B. Firm establishment data

We use NETS firm establishment location data to estimate a firm’s exposure to each hur-

ricane. These data, which have been used in several other studies, contain establishment

location information and are updated annually each January.19 Figure 2 shows the number

of establishments per county sorted into deciles using NETS data for 2010, illustrating that

19For example, Neumark, Wall, and Zhang (2011) investigate the job creation of small businesses based
on NETS. Addoum, Ng, and Ortiz-Bobea (2020) use NETS to analyze the effect of temperature fluctuations
on firm sales.

10



economic activity as measured by the density of firm establishments is high in areas exposed

to hurricanes along the Atlantic and Gulf Coasts.

C. Financial data

We obtain daily data on single-name stock options from OptionMetrics. These are American-

style options, for which OptionMetrics obtains implied volatilities using a binomial tree

approach to account for early exercise premia. We use data on traded options with non-

missing pricing information that are slightly out-of-the-money. Such options are generally

more liquid than far out-of-the-money or in-the-money options and have relatively small

price impacts from potential early-exercise premia (Carr and Wu, 2009; Kelly, Pástor, and

Veronesi, 2016; Martin and Wagner, 2019). We apply standard filters to the options data

consistent with the existing literature. In our sample, we include single-stock options that

meet the following criteria: (i) standard settlement; (ii) a positive open interest; (iii) a

positive bid price and bid-ask spread (valid prices); (iv) the implied volatility estimate is not

missing; (v) greater than 7 days and at most 200 calendar days to expiry; and (vi) an option

delta, δ, that satisfies 0.2 ≤ |δ| ≤ 0.5. The estimate for the average implied volatility of firm

i at time t is

IVi,t = IVi,t,M =
1

Z

Z∑
z=1

IVi,z,t,M , (1)

whereM denotes the nearest-to-maturity expiration at time t of options on firm i stock that

satisfy the above six criteria and Z denotes the number of valid options for firm i with that

expiry. IVi,t,M proxies for the ex ante risk-neutral expected value of the future stock return

volatility of firm i between time t andM and is similar to the measure used in Kelly, Pástor,

and Veronesi (2016) for options on international stock indices. While we use a model-based

measure of implied volatility for our analysis, we show in Internet Appendix Section C.6 that

our results are robust to using model-free implied volatility.

The stock data and headquarter address information are from the CRSP/Compustat

Merged dataset. Only stocks that are traded on Amex, NASDAQ, or NYSE are included

in the sample. To ensure that stocks with stale prices are excluded from our analysis, we

require share prices of at least $5 (Amihud, 2002) and show robustness of our results to

excluding stocks in the bottom 20% in terms of market capitalization of NYSE-listed stocks

(Fama and French, 2008). We use transcripts of calls between analysts and firm managers
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obtained from Refinitiv to examine the real channels through which firms are affected by

hurricanes.

We use firm name and headquarter address to link the firms in NETS to those in the

CRSP/Compustat dataset. We then link the matched sample to the OptionMetrics and

Refinitiv data using common firm identifiers. Our linked sample starts in 1996, the first year

of the OptionMetrics data, and ends in 2019. Because financial firms’ geographic exposures

to extreme weather events may not be reflected by their establishment locations and financial

firms are generally excluded in asset pricing studies, we exclude all financial firms from our

baseline analyses by dropping firms with SIC numbers from 6000 to 6799. We separately

analyze insurance firms in Section IV.E.

D. Summary statistics

We report firm-level summary statistics in Table II. Panel A shows that there are 3,254

unique firms in our sample. For comparison, we show summary statistics for both the full

sample and for the subsample of firms that have significant exposure to a hurricane at least

once during our sample period. In this table, a firm is included in the subsample of “hit”

firms if it had 25% or more of its establishments within a 200-mile radius around the eye

of at least one hurricane. This subsample includes 1,799 firms. On average, a firm has 123

establishments in a given year. The average number of establishments for the subsample of

hit firms is similar at 124. The hit firms are also comparable to the non-hit firms in terms

of market capitalization, with a $5.1 billion average market capitalization for hit firms and

an average of $5.0 billion for all firms. The summary statistics of the option measures are

also very similar between the total sample and the subsample of hit firms. The average

(annualized) IV and VRP for all firms are 47.4% and 4.7%, respectively.

Table II Panel B reports summary statistics on firm exposure to hurricane landfalls.

For landfall regions based on 200- and 50-mile radii around the eye of a hurricane, the

average U.S. firm has 7% and 1% of its establishments in a given landfall region, respectively.

These values are reasonable as each hurricane generally only affects a few states and our

sample encompasses firms across the U.S. Columns 5 to 8 show that our sample includes a

large number of firms with a high share of their establishments within a hurricane landfall

region. For example, for the 200- and 50-mile radii, we have 3,131 and 213 firm-hurricane
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observations, respectively, with 25% or more of their establishments in the corresponding

landfall region.

II. Research design

A. Theoretical framework

In this section, we summarize our theoretical framework for examining extreme weather

uncertainty. More details of the framework and its extensions are in Internet Appendix A

where, adapting Merton (1987), we relate extreme weather events to return volatility, cash

flows, and expected returns.

When a firm is located in an area in which an extreme weather event occurs, the firm’s

operations can be affected through a range of channels. For example, the event could damage

the firm’s property or increase demand for its products as part of the rebuilding process.

When the ultimate impact of an extreme weather event on a firm is not immediately dis-

cernible, we call this impact uncertainty.

We specify firm i’s one-period return at time t + 1, when the firm is hit by an extreme

weather event, as
R̃i,t+1 = R̄i + biỸt+1 + σiϵ̃i,t+1 + g̃i,t+1, (2)

where g̃i,t+1 is a random variable that captures the impact of the extreme weather event on

firm i. g̃i,t+1 is distributed with mean µg,i and variance σ2
g,i, where σ

2
g,i captures the impact

uncertainty. This definition of uncertainty as the variance of an unpredictable disturbance

is in line with, for example, Pástor and Veronesi (2012, 2013) and Jurado, Ludvigson, and

Ng (2015). The other return components are independent of the extreme weather event. R̄i

is a drift term, Ỹt+1 is the market factor to which firm i has a sensitivity of bi, and σiϵ̃i,t+1 is

the product of a scalar σi and random variable ϵ̃i,t+1 that has a mean of zero and variance

of 1.

The impact uncertainty described above is conditional on the firm being hit by an ex-

treme weather event. However, ex ante, the occurrence of an extreme weather event is itself

unpredictable, introducing uncertainty about whether an extreme weather event will hit a

firm. Our framework captures this second component of extreme weather uncertainty, de-

fined as incidence uncertainty—the uncertainty about whether an extreme weather event
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will occur where the firm is located. We expand the return specification in equation (2) to

account for incidence uncertainty as follows

R̃i,t+1 = R̄i + biỸt+1 + σiϵ̃i,t+1 + g̃i,t+1θ̃i,t+1, (3)

where the random variable θ̃i,t+1 indicates whether firm i is hit by the extreme weather event.

θ̃i,t+1 has a Bernoulli distribution (one draw of a binomial distribution), θ̃i,t+1 ∼ B(1, ϕ),

where Pr(θ̃i,t+1 = 1) = 1 − Pr(θ̃i,t+1 = 0) = ϕ and 0 ≤ ϕ ≤ 1. Whether a firm will be hit

by an extreme weather event is independent of the impact conditional on the hit, that is,

E(g̃i,t+1θ̃i,t+1) = E(g̃i,t+1)E(θ̃i,t+1).
20 The variance of the return is

V art(R̃i,t+1) = b2i + σ2
i + σ2

g,iϕ+ µ2
g,iϕ(1− ϕ), (4)

where σ2
g,iϕ is the expected impact uncertainty and µ2

g,iϕ(1−ϕ) is the incidence uncertainty.21

While the expected impact uncertainty monotonically increases with ϕ, the relationship

between incidence uncertainty and ϕ is non-monotonic. Incidence uncertainty is highest

when ϕ equals 0.5.

In our empirical analysis, we use implied volatility backed out from option prices to

measure the expected volatility of a firm’s stock returns, that is, uncertainty, similar to Bloom

(2009); Kelly, Pástor, and Veronesi (2016); Dew-Becker, Giglio, and Kelly (2021) and others.

Option-implied variance captures the risk-neutral expected variance. In our framework,

equation (4) captures the true expected variance. Option-implied variance is a function of

the true expected variance and VRP, where the VRP can capture variance risk premia or

mispricing (e.g., Bollerslev, Tauchen, and Zhou (2009); Lochstoer and Muir (2022)). While

we abstract from VRP in this simple framework, we investigate the empirical effects of

extreme weather events on VRP in Section III.B. The predominant focus of our analyses is

the extreme weather uncertainty after hurricane landfall (after the extreme weather event

has occurred), which captures impact uncertainty. In Section III.E, we also analyze the

20Intuitively, firm i’s expected return conditional on being hit or not is, respectively, Et(R̃i,t+1|θ = 1) =

R̄i + µg,i and Et(R̃i,t+1|θ = 0) = R̄i. The variance of the firm’s returns conditional on being hit or not is,

respectively, V art(R̃i,t+1|θ = 1) = b2i + σ2
i + σ2

g,i and V art(R̃i,t+1|θ = 0) = b2i + σ2
i .

21This is obtained by V art(g̃i,t+1θ̃i,t+1) = Et(g̃
2
i,t+1θ̃

2
i,t+1) − (Et(g̃i,t+1θ̃i,t+1))

2 = Et(g̃
2
i,t+1)Et(θ̃

2
i,t+1) −

(Et(g̃i,t+1))
2(Et(θ̃i,t+1))

2, where Et(g̃
2
i,t+1)Et(θ̃

2
i,t+1) = [V art(g̃i,t+1) + (Et(g̃i,t+1))

2][V art(θ̃i,t+1) +

(Et(θ̃i,t+1))
2] = µ2

g,iϕ+ σ2
g,iϕ.
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uncertainty before hurricane landfall (before the extreme weather event occurs) by looking at

forecasts for individual hurricanes and hurricane seasons. These forecasts give us probabilities

of firm exposure to a hurricane, which proxy for ϕ.

A variety of factors can make it difficult to predict at the time of an extreme weather

event how firms will be affected. For example, it can be challenging if not impossible to

know ex ante which areas will flood in a particular storm, the extent and duration of power

outages, whether a levy will break, or how long infrastructure repairs will take. Such factors

could create significant extreme weather uncertainty for firms. At the same time, firms

could insure against extreme weather events, relocate establishments away from vulnerable

locations, or implement other adaptations to lower the extreme weather uncertainty they

face. Thus, whether or not extreme weather uncertainty is substantial is ultimately an

empirical question.

B. Firm exposure to hurricanes

We determine firm exposure to hurricane landfall in two steps. First, we determine which

counties are in the landfall region of a hurricane. Second, we calculate the share of a firm’s

establishments located in these counties. This share is our continuous measure of treatment

intensity for each firm and each hurricane. Figure 4 Panel A shows a stylized example of

this approach to measuring a firm’s exposure to a landfall region.

In basing our firm exposure measure on the share of establishments in hurricane landfall

regions, we place equal weight on different types of establishments that could potentially

be important to firms. For example, while a store location that generates sales could be

important for one firm, a manufacturing plant without any direct sales could be crucial to

another. In the Internet Appendix, we show robustness to using an alternative measure of

landfall region exposure based on establishment-level sales data from NETS.

We define a county c to be in the set LR,h of counties in the landfall region if the county

centroid lies inside a radius R of the eye of hurricane h. We then calculate the share of firm

i’s establishments in counties within the hurricane’s landfall region. Firm i’s exposure to the

landfall region of hurricane h is

LandfallRegionExposurei,R,h =
∑
c

(FirmCountyExposurei,c × Ic∈LR,h
), (5)
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where FirmCountyExposurei,c is the share of firm i’s establishments in county c in the year

hurricane h hits, and Ic∈LR,h
is an indicator equal to 1 if county c is in the landfall region for

hurricane h. A firm’s exposure to a hurricane landfall region is thus a continuous variable

ranging from 0 to 1. With larger R, the average intensity of impact on hit firms decreases,

but the number of firms with a meaningful share of establishments in the landfall region

increases. For example, in Figure 4 Panel A, a larger R would translate to more counties

in the shaded area and a larger share of a firm’s establishments within the landfall region.

Table II Panel B also illustrates this point, showing that the number of firms with high

LandfallRegionExposurei,R,h increases with R.

C. Baseline uncertainty estimation strategy

We employ a difference-in-differences strategy to estimate the uncertainty dynamics sur-

rounding hurricanes. We jointly estimate the treatment effect across all hurricanes, where

each hurricane landfall yields a separate treatment. Treatment intensity varies due to the

continuous nature of the hurricane landfall exposure variable defined in equation (5). Firms

with zero exposure to a particular hurricane serve as the controls for that event.22 As il-

lustrated in Figure 1, which depicts the landfall regions of four hurricanes in our sample,

hurricanes can strike different regions of the U.S. As such, the set of hit firms varies across

hurricanes. We follow the recommendation of Bertrand, Duflo, and Mullainathan (2004)

by collapsing the time series information into a pre- and post-treatment period for each

difference in differences, that is, each hurricane. Figure 4 Panel B illustrates the hurri-

cane timeline, with T h
0 − 1 marking the pre-treatment period as the last trading day before

hurricane inception, which occurs up to two weeks before landfall.23

We estimate uncertainty at hurricane landfall using the following firm-hurricane panel

regression model, where each hurricane enters as a separate time period:

22We exclude firms that have been hit by a hurricane from the control set of other hurricanes that occur
within 180 calendar days to avoid distortions due to overlapping. For this purpose, we deem a firm “hit” if
the landfall region exposure is at least 0.25. Varying this threshold leads to qualitatively similar results.

23We specify the inception day as the first day that NOAA publicizes a wind speed probability forecast
advisory that, with at least 1% probability, the hurricane will ultimately make landfall. For hurricanes before
2007, when these forecast advisories are unavailable, we specify the inception day as the first day that the
hurricane appeared as a tropical depression.
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log

(
IVi,Th

L+τ

IVi,Th
0 −1

)
= λL,R,τLandfallRegionExposurei,R,h + πh + ψInd + ϵi,h,τ . (6)

The dependent variable is the change in implied volatility from the day before hurricane

inception (T h
0 −1) to τ trading days after landfall (T h

L+τ). We include hurricane fixed effects

(πh), which is equivalent to including time fixed effects because each hurricane enters the

regression as a separate time period. This fixed effect parametrically accounts for correlation

of errors across firms within a time period (Petersen, 2009). We include industry fixed effects

(ψInd) based on SIC classifications either by themselves or interacted with the hurricane

(time) fixed effects to absorb industry-wide shocks. Given that we measure the hurricane

shock at the county level, firms with establishments predominantly in the same county likely

experience correlated changes due to a hurricane. Therefore, we cluster standard errors by

county, assigning each firm to the county where it has the most establishments.24

Shortly after landfall, investors know that the hurricane made landfall and where it

landed. But they do not necessarily know what the eventual impact on exposed firms will

be. While a hurricane can move inland, by five days post landfall, it has either dissipated

or is no longer a hurricane. Thus, incidence uncertainty has been largely resolved, and we

interpret the estimate of λL,R,τ as of five or more trading days after landfall as reflecting

impact uncertainty.

D. Efficiency of volatility expectations

To test the efficiency of the volatility expectations, we define the volatility risk premium

(VRP) as the difference between the ex ante risk-neutral expectation and ex post realization

of return volatility. We then examine how this spread varies for firms exposed to a hurricane

relative to controls. We use IVi,t,M as our measure of the ex ante risk-neutral expected value

of the future stock return volatility of firm i between time t and M . We use the annualized

standard deviation of the underlying stock’s daily returns over the remaining life of the

option, between t and M , as the measure of realized volatility, RVi,t,M . V RPi,t is defined as

V RPi,t = V RPi,t,M = IVi,t,M −RVi,t,M . (7)

24Our results are robust to alternate clustering choices including clustering by firm, county-hurricane
(county-time), or by county after assigning each firm to the county of its headquarter location.
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This definition of VRP captures the difference between ex ante market expectations of future

volatility over a period and the ex post realized volatility over the same period, not a lagged or

predicted measure of realized volatility. This is important because we use our VRP measure

to analyze how efficiently investors price the uncertainty associated with extreme weather

events. Our definition of VRP is similar to that used by Lochstoer and Muir (2022) when

analyzing underreaction and overreaction in volatility expectations and by Kelly, Pástor,

and Veronesi (2016) and others.25

To analyze the effect of hurricane landfall on VRP, we estimate the regression:

V RP i,Th
L+τ = λV RP

L,R,τLandfallRegionExposurei,R,h + πh +Ψi + ϵi,h,τ . (8)

The dependent variable is VRP averaged from landfall to τ trading days after landfall. Ψi

is a firm fixed effect that absorbs the differences unrelated to hurricanes in the VRP levels

across firms.26 A negative estimate of λV RP
L,R,τ is consistent with investor underreaction. This

would represent a systematic bias in option prices for hurricane-hit firms compared to control

firms.

E. Real channels

To identify the real channels through which hurricanes generate uncertainty for a firm,

we examine the transcripts of calls between analysts, investors, and firm management by

applying natural language processing tools. A discussion in an analyst call of a particular

channel in relation to an extreme weather event likely occurs when the impact of that channel

on the firm’s performance is potentially material but not obvious. Indeed, we find that

discussions of hurricanes in these calls jump after landfall for hit firms and remain elevated

while uncertainty is high (see Figure 5). For example, investors could be uncertain about

25For instance, Kelly, Pástor, and Veronesi (2016) define the variance risk premium as EQ
t [RV 2

i,t,M ] −
EP

t [RV 2
i,t,M ] = IV 2

i,t,M −RV 2
i,t,M because the realized variance over the remaining life of the option, RV 2

i,t,M ,
is an unbiased estimate of the expected variance over the remaining life of the option. Instead of variance
risk premia, we use volatility risk premia in our empirical analysis for its intuitive interpretation, as in
Della Corte, Ramadorai, and Sarno (2016).

26Unlike with the implied volatility regression (6), it is not possible to subtract the pre-inception value of
the dependent variable in these VRP regressions because the realized volatility over the remaining life of an
option calculated on the pre-inception date, RVi,Th

0 −1,M , will include the hurricane’s impact. Including a
firm fixed effect instead effectively allows for the estimation of deviations from a firm’s mean VRP.
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how the hurricane affects the demand for a firm’s product or to what extent a firm’s property

is insured. In such cases, discussions on these topics would occur in analyst calls to obtain

information when available and potentially resolve uncertainty. The more uncertainty exists

around a given channel, the more this channel will be discussed during calls in the aftermath

of an extreme weather event.

We focus on “hurricane paragraphs”—analyst call paragraphs that contain some form

of the terms “hurricane” or “tropical storm”—that follow a hurricane hit. By carefully

examining a random sample constituting 5% of all hurricane paragraphs, we identify five

distinct channels: business interruption, physical damages, insurance, supply, and demand.

For each channel, we set a paragraph-level indicator equal to 1 if a hurricane paragraph

contains a term assigned to the channel in our dictionary (see Internet Appendix Table C.1).

We develop this dictionary by applying judgment to balance Type I and Type II errors. We

validate this methodology by performing a latent Dirichlet allocation analysis of all hurricane

paragraphs, which confirms that we are not missing any major channels through our manual

inspection. More details on the data processing and methodology are in Section C.1 of the

Internet Appendix.

To analyze the relevance of the real channels through which hurricanes generate uncer-

tainty, we estimate the regression:

HurricaneDiscussionsi,Th
L+120 = λRC

L,RLandfallRegionExposurei,R,h + πh + ψInd + ϵi,h. (9)

The dependent variable is the number of paragraphs in analyst calls of a firm over 120

trading days (6 months) after landfall that discuss hurricanes or alternatively hurricanes

in combination with a real channel (i.e., business interruption, physical damages, insurance,

supply, or demand). We choose a six-month period to capture multiple analyst calls but avoid

any overlap with the subsequent hurricane season. The λRC
L,R estimate would be positive if

the real channel is associated with the firm-level uncertainty caused by hurricanes. For a

given landfall region exposure, a higher λRC
L,R means that more discussions occur regarding

the channel, suggesting its greater relevance for uncertainty.
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III. Results

A. Uncertainty after landfall

A.1. Magnitude of uncertainty

We begin by estimating the firm-level uncertainty generated by hurricanes post landfall. In

Table III, we present results from estimating equation (6) for 1 week (5 trading days) and

1 month (20 trading days) after landfall. We show results from regressions for which the

landfall region is based on a 200-mile radius around the hurricane eye in Panel A. In Panels

B and C, the radius is set to 100 and 50 miles, respectively. The number of observations

decreases for radii below 200 miles in Panels B and C because the firms that have exposure

to the 200-mile landfall region but not to the 100- and 50-mile landfall regions are dropped

from the control set.

Table III Panel A shows that for the 200-mile radius the λL,R,τ estimates go up to close

to 8% and are positive and significant across all specifications. In Panels B and C, exposure

is based on smaller radii, which means that the treated establishments are on average hit

more intensely. The estimates based on these radii are as high as 18%, suggesting that

having establishments closer to the epicenter of the hurricane increases impact uncertainty

by more. The results imply that relative to its pre-inception IV level, a firm with 100% of

its establishments within 50 miles of landfall will see its implied volatility increase by about

18%. These are substantial magnitudes for impact uncertainty. The coefficient estimates

are higher one month after landfall than one week after landfall, which could stem from the

slow diffusion of information or investor inattention.

To obtain intuition regarding the dollar value of the implied volatility increases, we per-

form a back-of-the-envelope calculation of the implied increased cost of purchasing sufficient

options to insure the total equity market value of hit firms. We estimate that the total

additional cost of the post-hurricane landfall impact uncertainty over our sample period

would have been as high as $94 billion in 2019 inflation-adjusted terms.27 This magnitude

is considerable and represents around 14% of the $659 billion in total hurricane damages

27These values are based on coefficient estimates of implied volatility changes for the 200-mile radius
around the eye of the hurricane, as shown in Table III, of 7.676 for 20 trading days after landfall. The
implied volatility, landfall region exposure, vega, and number of shares outstanding of hit firms are used for
the computation.
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estimated by NOAA for the same time period (see Table I).

A.2. Persistence of uncertainty

We find that extreme weather uncertainty effects are persistent. In Figure 5 Panel A, each

point shows the coefficient estimate from a separate regression estimating equation (6) for

τ trading days after landfall. This figure shows how the effect of exposure to hurricane

landfall on firms’ implied volatilities evolves over the 120 trading days (about 6 months)

after landfall. As in Table III, the coefficient estimates increase until about 1 month after

landfall, at which point it reaches close to 8%. From around 30 trading days, the implied

volatility effect gradually decreases but remains statistically significant for just over 3 months.

The length of time over which we observe elevated uncertainty after landfall is similar to

the length of time over which we observe elevated levels of discussions of hurricane impacts in

calls between analysts and managers of hit firms. Figure 5 Panel B shows that the frequency

of analyst call discussions of hurricanes per call increases sharply after hurricane landfall

for hit firms but not for control firms. Discussion levels then remain high for some time

before dropping sharply around 3 months after landfall. These results suggest that learning

about how a firm is affected by a specific hurricane takes time and is an important driver of

uncertainty persistence.

B. Do investors underreact to extreme weather uncertainty?

We next examine how the increase in expected volatility priced in option markets compares

to the subsequent realized volatility for hurricane-hit firms. Do option markets efficiently

price the effects of extreme weather on volatility or is there evidence of underreaction?

Table IV reports the results of the regression specification in equation (8). The coeffi-

cient captures the VRP (i.e., the spread between the ex ante market expectations of future

volatility and ex post realized volatility) change due to a hurricane hit. The table shows

the effects of hurricanes on average VRP over several time frames post landfall. In line with

investors underreacting to hurricanes, the one week post-landfall coefficient estimates are

consistently negative and significant. Panel B shows that the underreaction is particularly

strong for firms with establishments within 50 miles of the hurricane’s eye—a firm with all

its establishments within that landfall region experiences up to a 21 percentage point lower
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VRP relative to control firms. In both Panels A and B, the investor underreaction becomes

smaller as the post-landfall horizon extends but remains severe even a month after landfall.

Thus, our results show that investors correctly anticipate that a hurricane will lead to higher

realized volatility but underestimate by how much.

Internet Appendix Section C.3 presents the returns to a trading strategy that takes

on the implied volatility exposure using delta-neutral straddles at landfall for firms hit by

hurricanes against the returns to the same strategy for control firms that are not hit. The

results show that the trading strategy can profitably exploit the underreaction of option

prices to hurricanes.

We next examine if this underreaction diminishes in response to a particularly salient

hurricane. In our sample, the hurricane most likely to have had such an effect is Hurricane

Sandy in 2012, which made landfall in the New York tri-state area. Not only was Sandy very

damaging as reported in Table I, but it also hit an area that had previously been largely

spared from head-on hits by hurricanes. The New York Stock Exchange closed for two days as

a result. New York City and the surrounding states of Connecticut and New Jersey are home

to a large share of mutual funds and hedge funds. Personal experiences can make investors

more attuned to risks (Malmendier and Nagel, 2016; Alekseev, Giglio, Maingi, Selgrad, and

Stroebel, 2022) and Hurricane Sandy was particularly salient for financial investors (Kuchler,

Li, Peng, Stroebel, and Zhou, 2022; Addoum, Eichholtz, Steiner, and Yönder, 2023). As such,

experiencing Hurricane Sandy may have made investors more aware of extreme weather risks

and led to increased pricing efficiency through the capital they manage.

We test whether the negative VRP effect diminished after Hurricane Sandy by estimating

the regression in equation (8) with an additional term that interacts the landfall exposure

variable with a PostSandyh indicator that equals one for hurricanes from 2013 onward.

Table V reports the results for 1 week, 1 month, and 2 months (5, 20, and 40 trading days)

after landfall. The coefficient estimates on the interaction term are always positive and are

significant for the majority of the specifications. The coefficients are also economically large,

canceling out the negative coefficient estimate on the uninteracted LandfallRegionExposure

term in several specifications at longer time horizons.

In Figure 6, we show how long after hurricane landfall it takes for the negative VRP effect

to revert back to zero, at which point investor underreaction has resolved. The figure depicts

the estimates of λV RP
L,R,τ in equation (8) with VRP averaged over five-trading-day increments
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after landfall. In Panel A, we see that before Hurricane Sandy, investor underreaction persists

for about one-and-a-half months (30 trading days). Panel B shows that after Hurricane

Sandy, the VRP effect was generally not distinguishable from zero. In fact, we estimate a

significant positive effect around 20 to 30 trading days, indicating that option markets price

in a premium.

The Internet Appendix contains additional analyses on the saliency of Hurricane Sandy.

First, we show that the post-Sandy indicator variable does not simply capture general con-

cerns about climate change. We include two climate change concern indices interacted with

landfall region exposure as control variables. The first index is from Ardia, Bluteau, Boudt,

and Inghelbrecht (2022), who use textual analysis of news articles to create their measure.

They build on the methodology of Engle, Giglio, Kelly, Lee, and Stroebel (2020) by expand-

ing the set of included news outlets and covering a more recent time period. The second

index is the Google Trends measure for searches on the topic of climate change in the U.S.

The results in Table C.13 show that the post-Sandy interaction term remains significant and

positive after including these controls. Second, in Table C.14, we show results for a modified

regression specification where we split the post-Sandy interaction term into year-specific in-

teraction terms, some of which capture relatively few hit firms. The results reveal that the

reversal is generally largest for the first year in the post-Sandy sample, in line with Hurricane

Sandy representing a saliency shock for investors.

Overall, these results suggest that option markets have started to price the uncertainty

associated with hurricanes more efficiently. However, it took a particularly salient event

for efficiency to improve. This finding calls into question whether financial markets will be

attentive and react quickly to efficiently price extreme weather events that are novel in terms

of intensity or location due to climate change.

C. Real channels of extreme weather uncertainty

We next investigate the real channels driving the uncertainty faced by firms hit by extreme

weather events.

Table VI presents results from regressing the frequency of discussions of hurricanes and

real channels on the LandfallRegionExposure variable, as given in equation (9). Column 1

shows that the number of hurricane paragraphs increases significantly with landfall exposure.
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In Panel A, the coefficient estimate implies that a firm with all its establishments in a

hurricane landfall region based on a 200-mile radius around the hurricane eye discusses

hurricanes across 4 more paragraphs than it would have otherwise. Panel B shows that a

firm with all its establishments within a 50-mile radius around the hurricane eye is predicted

to discuss hurricanes even more frequently, across 15 paragraphs more than control firms.

In columns 2 to 6, we examine the channels that are brought up when discussing hurricane

impacts. A firm’s LandfallRegionExposure increases discussion of the five channels to

varying degrees.28 Relative to control firms, a hurricane’s impact on business interruption

and physical damages is discussed in up to 3 and 5 paragraphs more, respectively. There are

also significant, albeit smaller, increases with the insurance, supply, and demand channels.

Firm-level uncertainty may be generated through these channels due to several factors. In

the absence of constraints, firms with vulnerable operations and infrastructure could relocate

away from hurricane-prone coastal areas. However, the large increase in uncertainty associ-

ated with business interruption and physical damages suggests that a substantial number of

vulnerable firms are located in these coastal areas.29 In the U.S., centers of economic activity

are often located along the coast, as shown in Figure 2. Many firms locate near population

centers due to customer demand and labor supply. In our data, 35% of all establishments are

in counties located within 50 miles of the Atlantic or Gulf Coasts. Over 90% of these coastal

establishments are concentrated in the top 10% most populous counties within that region.

We also find that relocation is rare.30 High costs, location of natural resources, inflexibility,

myopia, and agency problems are other factors that could prevent firms from relocating.

Firms could potentially reduce uncertainty through insurance. The coefficient estimates

for insurance in column 4 are positive and strongly significant in both panels. These estimates

suggest that following a hurricane hit, there is uncertainty about the extent to which a firm is

insured against the costs from physical damages and business disruptions. Insurance is likely

28The observation count changes in columns 2 to 6 because we restrict the sample to the firm-storm
observations for which hurricanes are discussed at least once. This ensures that we are not simply measuring
again the fact that hurricanes are being discussed. This also ensures that we only count the discussion of a
specific channel if hurricane terms are also mentioned.

29While some of these discussions may consist of firms explaining that they experienced no damages
or disruptions, the fact that they discuss at least the potential is evidence that investors consider them
vulnerable to business interruption and physical damages.

30An analysis of NETS data relocations reveals across-county relocations are fairly rare, with the 75th
percentile showing zero county relocations and the 90th percentile showing just one (see Internet Appendix
Table C.19).
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only material when physical damages and business disruptions are not de minimis, which

could explain why the coefficient on insurance discussions is small relative to the coefficients

in columns 2 and 3. High costs may prevent some firms from buying insurance. Firms that

are willing to spend on insurance may not be able to fully insure against the impacts of

extreme weather events due to lack of availability. Even when insurance against property

damage and business interruption is available, insurance generally does not provide coverage

against impacts of hurricanes on general demand or labor supply in a local economy.31

The significant increases in discussions around supply and demand in columns 5 and 6

indicate that firms are affected by hurricanes through market dynamics over which they may

have little control or means to adapt to or insure against. Also, unlike in the cases of physical

damages, business interruption, and insurance, where uncertainty centers on the extent of

losses, changes in demand can present opportunities for firms who face greater customer

demand after a hurricane hit, for example, for products like building materials, generators,

and mosquito remediation.32 Thus demand is a key channel through which extreme weather

uncertainty reflects both upside and downside risk.

The relatively small increase in discussions of supply could reflect that suppliers of hit

firms are often located outside the hurricane path. However, the small response could also

reflect inattention. In Internet Appendix Section C.1, we regress VRP on the frequency of

discussions of real channels and find that the supply channel is associated with the strongest

underreaction by investors, consistent with the prior literature showing investors are inat-

tentive to shocks to a firm’s suppliers (Menzly and Ozbas, 2010).

31Insurance companies have been shown to move out of areas that they deem too risky and costly to insure
given regulatory constraints and other frictions. The New York Times writes in July 2021: “And it adds to
growing concern among economists about a new issue in the climate crisis: whether some parts of the United
States are becoming too risky to insure, at least at a cost that most people can afford.” While FEMA and
other government programs could step in to assist, such aid for businesses is limited and could introduce
uncertainty around timing and magnitude.

32For example, in discussions with analysts, Procter & Gamble Co. states on November 4, 2003: “Another
factor was the blackout and hurricane Isabel. Obviously, both were bad news for a lot of people but for
Duracell, they created a surge in battery buying.” American Vanguard Corp on November 2, 2017: “...we
recorded strong sales of Dibrom, our mosquito adulticide, as domestic customers responded to FEMA’s
requirement for aerial spraying of about 6 million acres over coastal Texas and Florida in the aftermath of
Hurricanes Harvey and Irma.”
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D. Extreme weather uncertainty and expected returns

We next examine whether the uncertainty generated for firms by hurricanes is priced in the

underlying stocks. Our analysis sheds light on how the idiosyncratic shocks associated with

hurricanes impact firms through the cost of capital channel, yielding a more complete view

of the real effects of extreme weather. If firms’ cost of capital increases in the immediate

aftermath of an extreme weather event due to the generated uncertainty, it would amplify

impacts by tightening financing constraints just when firms may need capital to rebuild or

revamp their operations.

Motivating our empirical analysis, in Internet Appendix A, we show theoretically with

a simple extension of the Merton (1987) model how extreme weather uncertainty can affect

expected returns even if the shock is purely idiosyncratic. Under the standard capital asset

pricing model, such shocks would be diversifiable and would not affect the discount rate of

the representative investor. However, shocks to expected idiosyncratic volatility due to an

extreme weather event affect expected returns when investors are not perfectly diversified

due to segmented markets or other frictions.

In this section, we use our difference-in-differences setting to estimate the impact on

expected returns from changes in idiosyncratic volatility due to exogenous extreme weather

events.33 We estimate a firm-hurricane panel regression model similar to our previous spec-

ifications. Here, the dependent variable is the cumulative abnormal return (CAR) relative

to the Fama-French five-factor model (Fama and French, 2015), but results are qualitatively

similar when using excess returns (see Internet Appendix Table C.17.) We first estimate

the Fama-French five-factor model for each stock and hurricane based on 120 trading days

(roughly half a calendar year) before the hurricane inception date. We next use the co-

efficient estimates from this first stage to compute for each firm and hurricane the CAR

earned during a defined period that occurs after hurricane landfall. We use this CAR as our

dependent variable in the following regression:

CARi,h,Th
L+τ :Th

L+τ+ReturnHorizon = λRet
L,R,τLandfallRegionExposurei,R,h + πh + ψInd + ϵi,h,τ ,

(10)

where LandfallRegionExposurei,R,h serves as our proxy for firm uncertainty caused by hur-

33In the Internet Appendix, we analyze the variance decomposition and show that hurricane shocks affect
the stocks of hit firms via both the discount rate and the cash flow channels.
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ricane landfall. We set T h
L + τ , the starting point of the CARs, to 30 trading days post

landfall. This is around when IV tends to peak after hurricane landfall. However, the results

are qualitatively similar for smaller values of τ . We examine multiple return horizons, with

ReturnHorizon equal to 20, 30, and 40 trading days, in line with the average expiry of

options in our sample, which exceeds a month (see Table II).

If the uncertainty caused by a hurricane leads to higher abnormal returns, we would

expect the estimate of λRet
L,R,τ in equation (10) to be positive. In the results shown in Table

VII Panel A, the coefficient estimates are insignificant for all specifications. These results

are inconsistent with investors demanding a premium for holding stocks of firms subject to

higher uncertainty due to hurricanes.

A potential explanation for this finding is that investors fail to correctly price the un-

certainty because they systematically underestimate the extent of uncertainty generated by

hurricanes. In this case, the underestimation of the volatility of affected firms could yield

noisy and insignificant return estimates because prices do not adjust sufficiently. We discuss

this case more formally in the context of our theoretical framework in Internet Appendix A.

Other factors might contribute to the mispricing. For example, investors might have biased

expectations of how the hurricane affects a firm’s cash flow.

Given that we find less systematic bias in the uncertainty reflected in options markets

after Hurricane Sandy, the price of this uncertainty may also be different in equity markets

in the later period. We thus extend the regression model in equation (10) by adding a term

that interacts our landfall region exposure variable with an indicator that equals one for the

hurricanes in our sample after Sandy. We report the results in Table VII Panel B. While the

coefficient estimates on LandfallRegionExposure are always negative and insignificant, the

coefficient estimates on LandfallRegionExposure interacted with the post-Sandy indicator

are always positive and significant. The estimates on the uninteracted variable predict an

effect on returns of around -1%, while the prediction from the estimates on the interacted

variable range from 2.9% to 7.0%. The sum of the two coefficient estimates is always positive,

ranging from 1.9% to 6.0%, capturing that the net effect on abnormal returns is positive

after Sandy. Correspondingly, the regressions on the subsample including only post-Sandy

hurricanes show positive and significant effects on returns (see Internet Appendix Table

C.16). Further, these results are qualitatively similar when using excess returns in place of

abnormal returns, and when excluding firms below the 20th percentile of NYSE-listed equity
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(see Tables C.17 and C.18 in the Internet Appendix, respectively).

These results indicate that uncertainty associated with hurricanes is priced and affects

firms’ equity cost of capital in the post-Sandy sample.

E. Uncertainty before landfall

In this section, we examine how uncertainty reflected in option markets before landfall is

related to the short-term, daily forecasts for a hurricane’s path after its inception and the

longer-term, annual hurricane season forecasts made by NOAA. In the context of the the-

oretical framework described in Section II.A, the uncertainty generated for a firm before

an extreme weather event occurs includes both incidence uncertainty and expected impact

uncertainty. After the event occurs (e.g., after a hurricane makes landfall), incidence uncer-

tainty is resolved and only impact uncertainty remains.

E.1. Short-term forecasts of a hurricane path

We use NOAA hurricane wind speed forecast text advisories to develop daily firm-specific

exposures to hurricanes before landfall. As with our approach in Section II.B, we first identify

which counties are exposed to hurricane forecasts and then develop continuous firm forecast

exposure measures based on each firm’s share of establishments in counties in the forecast

path of a hurricane.

To estimate how hurricane forecast exposure affects uncertainty, we compute the log

change in the implied volatility from the last trading day before hurricane inception, T h
0 − 1,

to Γ days before a storm makes landfall or dissipates, T h
L − Γ (see Figure 4 Panel B for an

illustration of the timeline). Then, we regress this change in IV on a firm’s forecast exposure:

log

(
IVi,Th

L−Γ

IVi,Th
0 −1

)
= λF,P,ΓForecastExposurei,P,Th

L−Γ + πh + ψInd + ϵi,h,Γ. (11)

We estimate this regression model separately for Γ ranging from 1 to 5 days and probability

thresholds P from 1% to 50%, where each regression includes at least 5 storms.

Table VIII presents the results. The results in each column are from a separate regres-

sion performed for the specified Γ and P . Location-specific NOAA wind speed probabilities

generally remain low when a hurricane is far from landfall. As such, there are fewer proba-
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bility thresholds with observations when days before landfall or dissipation increase. Also,

the number of firms with a given exposure to the forecast path of a hurricane decreases as

the probability threshold increases because the region facing a higher probability is smaller.

The results show that substantial uncertainty arises for firms in a hurricane forecast path.

The estimates of λF,P,Γ are always positive and statistically significant, regardless of whether

time and industry fixed effects are included separately (Panel A) or interacted (Panel B).

For a given Γ, the magnitude of the coefficient estimate tends to increase with higher land-

fall probabilities, reaching up to 22% in column 5, consistent with the predictions of our

theoretical framework. This indicates that having all its establishments in the likely path of

a hurricane can increase a firm’s implied volatility up to 22%.

The results show that investors pay attention and react to NOAA’s hurricane forecasts,

a finding that is not obvious given prior investigations showing mixed results on investor

attention to other climatic events (e.g., Bernstein, Gustafson, and Lewis (2019); Hong, Li,

and Xu (2019); Baldauf, Garlappi, and Yannelis (2020); Murfin and Spiegel (2020); Giglio,

Maggiori, Rao, Stroebel, and Weber (2021); Bakkensen and Barrage (2022)). When analyz-

ing VRP, and in line with the post-landfall analyses, we find that investors underreact to

these forecasts until Hurricane Sandy (see Internet Appendix Table C.15).

E.2. Seasonal hurricane forecasts

We next examine whether investors also price in longer-term seasonal hurricane forecasts.

NOAA releases seasonal outlooks every May for the hurricane season from June to November.

Dating back to 2001, each seasonal outlook reports NOAA’s estimated probability that the

season will be above-normal, near-normal, or below-normal.34 In the Internet Appendix, we

include a plot of these data, which shows significant annual variation in these outlooks.

We test whether the options of firms with establishments in higher risk counties ex-

hibit higher implied volatilities when NOAA forecasts a hurricane season with above-normal

activity. For this analysis, we use options with 120 to 210 calendar days to expiry to

span the majority of the hurricane season. We use two methods to measure a firm’s ex-

posure to hurricane season s. First, we compute the share of a firm’s establishments in

counties along the Atlantic and Gulf Coasts, CoastalExposurei,s. Second, we compute

34E.g., National Weather Service “NOAA 2012 Atlantic Hurricane Season Outlook” https://www.cpc.
ncep.noaa.gov/products/outlooks/hurricane2012/May/hurricane.shtml.
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HistoricalHurricaneExposurei,s, the share of a firm’s establishments in counties with high

historical probabilities of being hit, which we define as having been hit in at least 10% or

25% of the previous 30 years. Our regression specification is as follows:

log

(
IVi,T s

0+5

IVi,T s
0−1

)
=λS,1CoastalExposurei,s × AboveNormalSeasonProbs

+ λS,2CoastalExposurei,s + πs + ψInd + ϵi,s, (12)

where T s
0 −1 is the last trading day before NOAA’s hurricane season outlook is announced in

May, and T s
0 +5 occurs 5 trading days after the announcement. Alternative time frames yield

qualitatively similar results. The variable AboveNormalSeasonProbs denotes the probabil-

ity of an above-normal hurricane season. A positive estimate of λS,1 would be consistent

with investor attention to longer-term seasonal forecasts and imply heightened uncertainty

if the probability of an above-normal season is high.

Table IX presents the estimates using firm exposure to coastal counties in Panel A and

to counties with a high historical probability of being hit by a hurricane in Panel B. None of

the estimates of λS,1 are statistically significant, and some point estimates are even negative.

One potential explanation for this lack of investor response to seasonal hurricane forecasts

is that the forecasts do not have sufficient predictive power for damaging hurricanes making

landfall. In the Internet Appendix, we include a plot that shows only a weakly positive

relationship between the seasonal outlooks and the number of hurricanes making landfall in

a given year. Another potential explanation is that investors do not pay attention to seasonal

forecasts because these forecasts are longer term and lack the immediacy of specific hurricane

path forecasts. While it is not feasible to distinguish between these two explanations with

the available data, exploring investor reactions to short- and long-term forecasts of climatic

risks is an interesting avenue for future research.

IV. Robustness and extensions

A. Other types of extreme weather events

While the main empirical analysis in this paper focuses on hurricanes, the theoretical frame-

work and empirical approach can also be applied to other extreme weather events. We test
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for external validity by examining if option markets reflect higher uncertainty when firms are

exposed to other types of extreme weather events, namely floods (unrelated to hurricanes),

snowstorms, and tornadoes. This analysis captures both a wider range of extreme weather

event types and a broader set of affected geographic regions.

We use FEMA disaster declarations to determine which counties have been hit and when

each event began. ImpactRegionExposurei,h measures the share (from 0 to 1) of firm i’s

establishments in the impacted region for a specific extreme weather event h. We esti-

mate the regression model in equation (6), with LandfallRegionExposure replaced with

ImpactRegionExposure. Because there is no readily and consistently available forecast in-

formation for these types of extreme weather events, we use the date one week before the

reported incident begin date for each event as the pre-period.

The results in Table X show that the implied volatilities of exposed firms rise in response

to floods, snowstorms, and tornadoes. The coefficient estimates and statistical significance

are mostly lower than for hurricanes, which is likely due to these extreme weather events

being less destructive and affecting a smaller number of firms. Tornadoes exhibit the largest

uncertainty response, with a magnitude comparable to the estimates for hurricanes. Inter-

estingly, the uncertainty dynamics of these extreme weather events are similar to hurricanes.

The implied volatility remains elevated for an extended period of time and peaks at least

one month after the start date.

B. Industry effects

We analyze whether our baseline results are driven by a particular industry by adding an

industry-specific interaction term to equation (6). We analyze the construction, manufac-

turing, mining, retail, services, transportation, and wholesale industries based on firm SIC

numbers. We exclude the agriculture and non-classified categories due to the small number

of firms.

Table XI presents the results. The uninteracted LandfallRegionExposure coefficient

estimates remain positive and significant in every industry specification, suggesting that

our baseline results presented in Table III are not driven by just one sector. The coefficient

estimates on the interaction terms are insignificant for most specifications, suggesting limited

industry-specific heterogeneity. Construction is the only industry for which the coefficient
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estimate on the interaction term is strongly significant and negative. The negative sum of

the interacted and uninteracted coefficient estimates for the construction industry suggests

that investors perceive lower uncertainty for construction firms due to hurricanes, which

could reflect an expected boost in demand from rebuilding activity. The negative coefficient

estimate on the interaction term for manufacturing suggests that manufacturing firms could

also benefit from increased demand from rebuilding activity. However, this coefficient is only

weakly significant and not large enough to offset the positive coefficient on the uninteracted

term.

For mining, the interacted coefficient estimate is strongly significant and positive, indi-

cating that mining firms experience disproportionately large uncertainty after a hurricane

hit. This is consistent with anecdotal evidence that Gulf Coast hurricanes can affect much of

the oil and gas extraction sector. Further, mining firms are generally geographically bound

to be close to natural resources, giving them less discretion over where to set up operations

when trying to avoid hurricanes. Wholesale firms also have a significant and positive coef-

ficient estimate. The relatively higher uncertainty for wholesale firms could be due to their

operations being less diversified compared to, for example, a retail company. They have

fewer but larger establishments and customer shipments.

C. Firm selection

Another potential question is whether our results are driven by small firm size. Our baseline

analysis only includes firms with publicly traded options, which excludes very small firms.

Further, as reported in Table II, relative to the total sample, the subsample of hit firms—

those that had a significant exposure to a hurricane at least once—has a comparable, if

slightly higher, average market capitalization.

Firms with coastal exposure can differ from other firms based on unobserved characteris-

tics, but for a given hurricane event, we have coastal firms in both the treatment and control

sets. A firm that is severely affected by one hurricane could have zero exposure to others. As

such, selection on a specific set of coastal firms is unlikely to drive our results. Further, it is

possible that firms that would be more vulnerable to hurricanes because of their particular

line of business avoid being exposed to the Atlantic or Gulf Coasts. However, such sorting

would bias us against finding evidence of large extreme weather uncertainty priced in option
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markets.

D. Tail effects

We explore whether the large estimates of extreme weather uncertainty are driven by down-

side risk alone or both upside and downside risk. Some firms might profit from opportunities

presented by hurricanes while others suffer losses. For example, as discussed in Sections III.C

and IV.B, some firms appear to experience increased demand for their products as a result

of rebuilding.

In Internet Appendix Table C.6, we analyze the cross-sectional dispersion of cumulative

abnormal returns and excess returns following hurricane inception of the stocks of hit firms

and control firms.35 We find that the dispersion of returns is larger for hit firms than

for control firms, which is consistent with the higher stock return volatility of hit firms

documented in Section III. Underperforming hit firms have lower cumulative returns than

underperforming control firms. However, the dispersion is not only restricted to the left

tail of the distribution. Outperforming hit firms also have higher cumulative returns than

outperforming control firms.

E. Insurance firms

While we exclude financial firms from the main analyses, we separately conduct a similar

analysis on the stock options of property and casualty insurance firms. We use statutory

financial statements data from S&P Global Market Intelligence to obtain the share of total

premiums written by U.S. property and casualty insurance firms in each state. We estimate

the regression in equation (6) for these property and casualty insurance firms, measuring

an insurance firm’s exposure to a hurricane by the firm’s share of total premiums written

in states that are in the landfall region. We find even larger estimates of extreme weather

uncertainty for insurance firms than in our baseline results. The IV is estimated to increase

by 70% for an insurance firm that has all its premiums in states hit by a hurricane. Internet

Appendix Section C.5 provides more details.

35We analyze returns instead of option-based measures of tail risk like the IV slope because a large share of
the firms in our sample do not have a sufficient number of liquid options at different strike prices to reliably
compute the IV slope.
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V. Conclusion

This paper presents a comprehensive analysis of firm-level extreme weather uncertainty.

Extreme weather events constitute exogenous shocks because prevailing conditions of the

firm do not affect the timing and likelihood of such events. Their impact regions are local

and thus affect only a subset of firms in the economy, creating a unique experimental setting

to study the pricing of firm-level uncertainty. We present a simple model distinguishing

between incidence uncertainty and impact uncertainty. We isolate and estimate extreme

weather effects through a well-identified empirical framework focusing on hurricanes.

We find that the stock options of firms operating in regions affected by a hurricane

have considerably higher implied volatility after the hurricane hits, implying substantial im-

pact uncertainty. Implied volatility returns to pre-hurricane levels only several months after

landfall, indicating that the impact uncertainty resolves slowly. Mirroring this finding of

significant and prolonged increases to uncertainty, a systematic textual analysis of the tran-

scripts of calls between analysts and firm management reveals that discussions of hurricanes

jump after landfall for hit firms and remain elevated for a prolonged time. Our results show

that learning about how a firm is affected by a specific event takes time, which can drive the

observed volatility persistence.

Despite these large increases in the expectations of volatility implied by option markets,

we find that investors underestimate a hurricane’s impact on the eventual realized return

volatility of hit firms until Hurricane Sandy in 2012. After Sandy hit the financial center

of the U.S. in an unprecedented and highly damaging manner, the ex ante expectations of

future volatility embedded in the option prices of hit firms are closer to the ex post realized

volatility over the life of the option. This suggests that the informational efficiency of markets

increased after many investors personally experienced a particularly salient event.

We find that the idiosyncratic extreme weather shocks impact firms’ cost of capital. In

the post-Sandy period, the increase in expected idiosyncratic volatility caused by a hurricane

predicts higher returns.

A systematic analysis of discussions in transcripts of calls between analysts, investors, and

firm management reveals that there are multiple real channels through which hit firms are

affected by hurricanes, namely, business interruption, physical damages, insurance, demand,

and supply. Our results suggest that firms are likely not fully adapted to or insured against
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extreme weather risks. Even when a firm is insured or adapted, the extent of such measures

may not be immediately apparent to investors.

Overall, our results suggest that markets need time to learn how to price extreme weather

events and are unlikely to efficiently price novel climatic risks stemming from climate change.

Further, extreme weather events that are predicted to become more frequent and severe may

not be diversified away by investors and could affect firms’ cost of capital even if the events

are local. One potential way to reduce the uncertainty associated with extreme weather

events and increase pricing efficiency could be to require better firm disclosures related to

the real channels driving extreme weather uncertainty.
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(a) 2005 Katrina (b) 2012 Sandy

(c) 2016 Matthew (d) 2017 Harvey

Figure 1: Counties in a hurricane landfall region

This figure shows the counties that are within 50, 100, 150, and 200 miles of the eye of the hurricane at
landfall for four selected hurricanes from our sample of 37 hurricane landfalls.
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Figure 2: Firm establishments by county

This figure plots counties based on the number of establishments located in that county in 2010. The counties
are sorted into deciles based on the number of establishments for the firms in our sample. The darker the
shade the greater the number of establishments in a county. Data are from the National Establishment Time
Series.
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4 days before landfall

3 days before landfall

2 days before landfall

1 day before landfall

≥1% ≥10% ≥20% ≥50%

Figure 3: Hurricane forecasts by day and wind speed probability threshold
This figure presents an example of the processed wind speed forecast data. Each map shows the counties
included in the forecast path for Hurricane Sandy given the number of days before landfall in each row (from
4 days to 1 day before landfall) and the wind speed probability threshold in each column (≥1% , ≥10%,
≥20%, and ≥50%).
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(a) Stylized example of firm exposure

𝑇𝑇0ℎ
(Inception) 

𝑇𝑇𝐿𝐿ℎ
(Landfall/dissipation) 

Forecast period Post-landfall periodPre-inception 
(control) period

𝑇𝑇0ℎ − 1 𝑇𝑇𝐿𝐿ℎ − Γ 𝑇𝑇𝐿𝐿ℎ + 𝜏𝜏

(b) Hurricane timeline

Figure 4: Identification strategy

Panel A shows a stylized example of firm exposure to a hurricane landfall region based on the share
of establishments located in counties in the landfall region. These firm exposures illustrate the variable
LandfallRegionExposure in our analysis. Panel B illustrates the timeline of a hurricane.
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(b) Hurricane discussions in analyst calls

Figure 5: Uncertainty after hurricane landfall

Panel A plots coefficient estimates from running separate regressions estimating specification (6) when vary-
ing the number of trading days after landfall. Changes in implied volatilities from the day before hurricane
inception to up to 120 trading days (6 months) post-hurricane landfall are regressed on the share of firm
establishments in the landfall region. A coefficient estimate of, for example, 5 means that a firm with all its
establishments in the landfall region is estimated to experience a 5% increase in implied volatility, relative to
control firms with no establishments in the landfall region. The landfall region is based on a 200-mile radius
around the hurricane eye. Confidence bands of 95% are shown. Panel B shows discussions of hurricanes
in Refinitiv transcripts of calls between analysts, investors, and firm management. Each point reflects the
average number of paragraphs per call discussing hurricanes over the given week. For firms with positive
exposure to the landfall region (hit firms), the number of paragraphs are weighted by the firm’s landfall
exposure. A value of, for example, 3 means that a firm with all its establishments in the landfall region has
3 paragraphs per call discussing hurricanes.
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(a) Pre-Sandy
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(b) Post-Sandy

Figure 6: Changes in volatility risk premium post hurricane landfall

This figure plots coefficient estimates when regressing VRP averaged over increments of 5 trading days on the
landfall region exposure of a firm, as shown in equation (8). VRP is the difference between ex ante implied
and ex post realized volatility, as shown in equation (7). A coefficient estimate of, for example, -5 means that
a firm with all its establishments in the landfall region is estimated to have a 5 percentage points lower VRP
than control firms. Panel A shows estimates for the subsample of hurricanes from 1996 up to and including
Hurricane Sandy in 2012. Panel B shows estimates for the subsample of post-Sandy hurricanes from 2013 to
2019. The landfall region is based on a 200-mile radius around the eye of the hurricane. Confidence bands
of 95% are shown.
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Table I: Hurricane sample

Panel A lists the hurricanes in our landfall analyses along with their landfall and inception dates. The damage
estimates come from the National Hurricane Center’s Tropical Cyclone Reports and have been inflated to
2019 values using the consumer price index from the U.S. Bureau of Labor Statistics. Panel B lists the
storms in the forecast analysis. This sample includes storms that were at some point forecasted to produce
hurricane-force winds in U.S. mainland locations with a probability of at least 1%. Because the forecasts
include storms that ultimately never made landfall in the U.S. (and dissipated out at sea), we indicate storms
that made landfall with asterisks (∗).

Panel A: Hurricanes in landfall analyses

Damages Damages
Hurricane Landfall Inception 2019 $mn Hurricane Landfall Inception 2019 $mn

Bertha Jul. 12, 1996 Jul. 5, 1996 440 Humberto Sep. 13, 2007 Sep. 13, 2007 62
Fran Sep. 6, 1996 Aug. 23, 1996 5,214 Dolly Jul. 23, 2008 Jul. 20, 2008 1,247
Danny Jul. 18, 1997 Jul. 16, 1997 159 Gustav Sep. 1, 2008 Aug. 25, 2008 5,484
Bonnie Aug. 27, 1998 Aug. 19, 1998 1,129 Ike Sep. 13, 2008 Sep. 2, 2008 35,053
Earl Sep. 3, 1998 Aug. 31, 1998 124 Irene Aug. 27, 2011 Aug. 21, 2011 17,958
Georges Sep. 28, 1998 Sep. 15, 1998 9,983 Isaac Aug. 29, 2012 Aug. 22, 2012 2,617
Bret Aug. 23, 1999 Aug. 18, 1999 92 Sandy Oct. 30, 2012 Oct. 24, 2012 55,676
Floyd Sep. 16, 1999 Sep. 7, 1999 10,588 Arthur Jul. 4, 2014 Jul. 1, 2014 2
Irene Oct. 15, 1999 Oct. 13, 1999 1,228 Hermine Sep. 2, 2016 Sep. 1, 2016 586
Lili Oct. 3, 2002 Sep. 21, 2002 1,315 Matthew Oct. 8, 2016 Sep. 29, 2016 10,652
Claudette Jul. 15, 2003 Jul. 8, 2003 250 Harvey Aug. 26, 2017 Aug. 23, 2017 130,373
Isabel Sep. 18, 2003 Sep. 6, 2003 7,461 Irma Sep. 10, 2017 Sep. 4, 2017 52,149
Charley Aug. 13, 2004 Aug. 9, 2004 20,454 Nate Oct. 8, 2017 Oct. 5, 2017 235
Frances Sep. 5, 2004 Aug. 25, 2004 12,867 Florence Sep. 14, 2018 Sep. 8, 2018 24,435
Ivan Sep. 16, 2004 Sep. 2, 2004 25,471 Michael Oct. 10, 2018 Oct. 8, 2018 25,453
Jeanne Sep. 26, 2004 Sep. 13, 2004 10,367 Barry Jul. 13, 2019 Jul. 11, 2019 600
Dennis Jul. 10, 2005 Jul. 4, 2005 3,332 Dorian Sep. 6, 2019 Aug. 27, 2019 1,600
Katrina Aug. 29, 2005 Aug. 23, 2005 141,377
Rita Sep. 24, 2005 Sep. 18, 2005 15,757
Wilma Oct. 24, 2005 Oct. 15, 2005 27,499

Panel B: Storms in forecast analyses

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Dean Dolly* Ana Alex Don Debby Andrea Arthur* Ana Colin Cindy Alberto Barry*
Noel Edouard Bill Bonnie Emily Ernesto Karen Bill Herm.* Harvey* Chris Dorian*

Fay Danny Earl Irene* Isaac* Erika Matt.* Irma* Florence*
Gustav* Ida Paula Katia Leslie Joaquin Jose Gordon
Hanna Richard Nate Sandy* Maria Michael*
Ike* Nate*
Kyle
Paloma
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Table III: Hurricane effects on implied volatility

This table reports coefficients and test statistics from estimating the panel model in equation (6). The
dependent variable is the change (in %) in implied volatility of firm i from the trading day before hurricane
inception (Th

0 − 1) to 1 week (5 trading days) and 1 month (20 trading days) after landfall (Th
L + 5 and

Th
L + 20, respectively). The independent variable is the share (from 0 to 1) of a firm’s establishments that

are within a radius of 200 miles (Panel A), 100 miles (Panel B), or 50 miles (Panel C) around the hurricane
eye at landfall. The data span from 1996 to 2019. T-statistics are shown in parentheses. The standard errors
are clustered by county based on a firm’s largest establishment share. The specifications include industry,
time, and industry-time fixed effects as indicated. The time fixed effect can be interpreted as a hurricane
fixed effect because each hurricane enters the regression as one separate time period. The significance of
each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: 200-mile radius landfall region

Dependent variable: Change in IV (in %), log
(
IVi,Th

L+τ/IVi,Th
0 −1

)
1 week post landfall 1 month post landfall

LandfallRegionExposurei,R,h 3.698∗∗∗ 3.818∗∗∗ 2.751∗∗ 7.661∗∗∗ 7.676∗∗∗ 6.148∗∗∗

(2.706) (2.809) (2.173) (3.155) (3.178) (2.831)

Adjusted R2 (%) 12.459 12.463 12.964 24.570 24.598 25.099
Observations 38,886 38,886 38,886 38,905 38,905 38,905
Hurricanes 37 37 37 37 37 37

Industry FE No Yes No No Yes No
Time (Hurricane) FE Yes Yes No Yes Yes No
Industry × Time (Hurricane) FE No No Yes No No Yes

Panel B: 100-mile radius landfall region

LandfallRegionExposurei,R,h 6.887∗∗∗ 7.021∗∗∗ 5.644∗∗∗ 9.466∗∗∗ 9.408∗∗∗ 7.061∗∗

(3.490) (3.555) (2.973) (2.819) (2.801) (2.438)

Adjusted R2 (%) 12.696 12.696 13.215 25.479 25.491 26.069
Observations 33,310 33,310 33,310 33,323 33,323 33,323
Hurricanes 37 37 37 37 37 37

Industry FE No Yes No No Yes No
Time (Hurricane) FE Yes Yes No Yes Yes No
Industry × Time (Hurricane) FE No No Yes No No Yes

Panel C: 50-mile radius landfall region

LandfallRegionExposurei,R,h 11.513∗∗ 11.589∗∗ 8.043∗ 17.925∗ 17.728∗ 10.509
(2.434) (2.451) (1.911) (1.925) (1.883) (1.378)

Adjusted R2 (%) 12.198 12.203 12.762 25.155 25.169 25.790
Observations 28,041 28,041 28,041 28,042 28,042 28,042
Hurricanes 37 37 37 37 37 37

Industry FE No Yes No No Yes No
Time (Hurricane) FE Yes Yes No Yes Yes No
Industry × Time (Hurricane) FE No No Yes No No Yes
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Table IV: Hurricane effects on volatility risk premium

This table reports coefficients and test statistics from estimating the panel model in equation (8). The
dependent variable is the VRP (in %) averaged over 1 week, 1 month, and 2 months (5, 20, and 40 trading
days, respectively) after landfall. The VRP is computed as the difference between the ex ante implied and
ex post realized volatility, as specified in equation (7). The independent variable is the share (from 0 to 1)
of a firm’s establishments that are within a radius of 200 miles (Panel A) and 50 miles (Panel B) around
the hurricane eye at landfall. The data span from 1996 to 2019. T-statistics are shown in parentheses. The
standard errors are clustered by county based on a firm’s largest establishment share. The specifications
include firm, time, and industry-time fixed effects as indicated. The time fixed effect can be interpreted
as a hurricane fixed effect because each hurricane enters the regression as one separate time period. The
significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: 200-mile radius landfall region

Dependent variable: VRP (in %) avg. over τ trading days post landfall, V RP i,Th
L+τ

1 week post landfall 1 month post landfall 2 months post landfall

LandfallRegionExposurei,R,h -6.035∗∗∗ -4.655∗∗∗ -2.918∗∗∗ -5.315∗∗∗ -3.727∗∗∗ -1.753∗ -3.566∗∗∗ -1.467 0.165
(-4.414) (-3.607) (-2.798) (-3.043) (-2.606) (-1.937) (-2.752) (-1.492) (0.241)

Adjusted R2 (%) 17.206 26.914 28.221 22.454 34.212 35.491 22.653 38.599 40.001
Observations 36,539 36,539 36,539 36,675 36,675 36,675 36,674 36,674 36,674
Hurricanes 37 37 37 37 37 37 37 37 37

Firm FE No Yes Yes No Yes Yes No Yes Yes
Time (Hurricane) FE Yes Yes No Yes Yes No Yes Yes No
Industry X Time (Hurricane) FE No No Yes No No Yes No No Yes

Panel B: 50-mile radius landfall region

LandfallRegionExposurei,R,h -21.463∗∗∗ -16.123∗∗ -8.799∗∗ -21.232∗∗∗ -15.523∗ -7.828∗ -14.679∗∗∗ -8.895 -2.268
(-3.286) (-2.139) (-2.050) (-3.012) (-1.871) (-1.695) (-3.030) (-1.612) (-0.761)

Adjusted R2 (%) 16.854 26.410 27.766 20.959 32.925 34.080 20.494 37.368 38.648
Observations 26,090 26,090 26,090 26,185 26,185 26,185 26,166 26,166 26,166
Hurricanes 37 37 37 37 37 37 37 37 37

Firm FE No Yes Yes No Yes Yes No Yes Yes
Time (Hurricane) FE Yes Yes No Yes Yes No Yes Yes No
Industry X Time (Hurricane) FE No No Yes No No Yes No No Yes

50



Table V: Hurricane effects on volatility risk premium post Sandy

This table reports the coefficients and test statistics when estimating the panel model in equation (8) with a
post-Sandy (post-2012) interaction term added. The dependent variable is the VRP (in %) averaged over 1
week, 1 month, and 2 months (5, 20, and 40 trading days, respectively) after landfall. The VRP is computed
as the difference between the ex ante implied and ex post realized volatility, as specified in equation (7).
The independent variable is the share (from 0 to 1) of a firm’s establishments that are within a radius of 200
miles around the hurricane eye at landfall. In addition, the landfall region exposure variable is interacted
with an indicator variable that equals 1 for all hurricanes post Sandy (after 2012). The data span from
1996 to 2019. T-statistics are shown in parentheses. The standard errors are clustered by county based on
a firm’s largest establishment share. The specifications include firm, time, and industry-time fixed effects as
indicated. The time fixed effect can be interpreted as a hurricane fixed effect because each hurricane enters
the regression as one separate time period. The significance of each coefficient estimate is indicated by * for
p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: VRP (in %) avg. over τ trading days post landfall, V RP i,Th
L+τ

1 week post landfall 1 month post landfall 2 months post landfall

LandfallRegionExposurei,R,h -7.579∗∗∗ -5.807∗∗∗ -3.317∗∗ -7.843∗∗∗ -5.835∗∗∗ -3.167∗∗∗ -4.838∗∗∗ -2.788∗∗ -0.755
(-3.701) (-3.302) (-2.543) (-3.271) (-2.917) (-2.661) (-2.914) (-2.289) (-0.884)

LandfallRegionExposurei,R,h 4.620∗ 3.677∗ 1.237 7.572∗∗∗ 6.718∗∗∗ 4.372∗∗∗ 3.891∗ 4.299∗∗∗ 2.905∗∗

×PostSandyh (1.651) (1.761) (0.676) (2.739) (3.132) (2.732) (1.932) (3.532) (2.471)

Adjusted R2 (%) 17.221 26.921 28.220 22.506 34.247 35.504 22.672 38.619 40.009
Observations 36,539 36,539 36,539 36,675 36,675 36,675 36,674 36,674 36,674
Hurricanes 37 37 37 37 37 37 37 37 37

Firm FE No Yes Yes No Yes Yes No Yes Yes
Time (Hurricane) FE Yes Yes No Yes Yes No Yes Yes No
Industry X Time (Hurricane) FE No No Yes No No Yes No No Yes
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Table VI: Hurricane effects and real channels

This table reports coefficients and test statistics when estimating the panel model in equation (9) using
transcript data of calls between analysts, investors, and firm management. In column (1), the dependent
variable is the count of call paragraphs discussing hurricanes after landfall. In columns (2) to (6), the
dependent variables are the number of paragraphs discussing hurricanes with at least one term associated
with the channel in question (see Internet Appendix Table C.1 for the dictionary of terms). The independent
variable is the share (from 0 to 1) of a firm’s establishments within a radius of 200 miles (Panel A) or 50
miles (Panel B) around the hurricane eye at landfall. The data span from 2002 to 2019. T-statistics are
shown in parentheses. The standard errors are clustered by county based on a firm’s largest establishment
share. The specifications include industry and time fixed effects. The time fixed effect can be interpreted
as a hurricane fixed effect because each hurricane enters the regression as one separate time period. The
significance of each coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: 200-mile radius landfall region

Discussion of hurricane and channel

Hurricane
discussions

Business
interruption

Physical
damages Insurance Supply Demand

LandfallRegionExposurei,R,h 4.037∗∗∗ 1.157∗∗∗ 1.520∗∗∗ 0.369∗∗ 0.213∗∗ 0.574∗∗∗

(9.544) (6.131) (6.859) (2.445) (2.193) (4.106)

Industry FE Yes Yes Yes Yes Yes Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes

Adjusted R2 (%) 16.240 11.141 11.947 5.890 7.232 2.862
Observations 18,733 4,966 4,966 4,966 4,966 4,966
Obs. Landfall Exposure > 0 11,550 3,876 3,876 3,876 3,876 3,876
Obs. Landfall Exposure ≥ 0.25 1,195 448 448 448 448 448
Hurricanes 28 28 28 28 28 28

Panel B: 50-mile radius landfall region

Discussion of hurricane and channel

Hurricane
discussions

Business
interruption

Physical
damages Insurance Supply Demand

LandfallRegionExposurei,R,h 15.012∗∗∗ 3.308∗∗∗ 5.191∗∗∗ 1.390∗∗ 0.330 1.312∗∗∗

(5.135) (5.823) (5.410) (2.001) (1.075) (3.185)

Industry FE Yes Yes Yes Yes Yes Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes

Adjusted R2 (%) 16.958 8.970 9.632 4.314 5.120 2.976
Observations 12,571 3,491 3,491 3,491 3,491 3,491
Obs. Landfall Exposure > 0 5,388 2,401 2,401 2,401 2,401 2,401
Obs. Landfall Exposure ≥ 0.25 61 27 27 27 27 27
Hurricanes 28 28 28 28 28 28
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Table IX: Effects of hurricane season outlooks on implied volatility

This table reports the coefficients and test statistics when estimating the panel model in equation (12). The
dependent variable is the change (in %) in implied volatility of firm i from the last trading day before NOAA’s
outlook for the hurricane season is released (T s

0 − 1) to 5 trading days thereafter (T s
0 + 5). Longer-dated

options that cover the majority of the hurricane season (120 to 210 days to expiry) are used. The independent
variable AboveNormalSeasonProbabilitys is the probability NOAA assigns to an “above average” hurricane
season in terms of number of storms. In Panel A, the independent variable CoastalExposurei,s is the share
of a firm’s establishments located in Atlantic and Gulf coastal counties. For columns (4) and (5), the counties
on the Atlantic Coast north of Florida are excluded from this measure. In Panel B, the independent variable
HistoricalHurricaneExposurei,s is the share of a firm’s establishments (0 to 1) located in counties that
had a historical probability of being hit by a hurricane in a given season of at least 0.10 and 0.25. The data
span from 2001 to 2019. T-statistics are shown in parentheses. Standard errors are clustered by county
based on a firm’s largest establishment share. The specifications include industry, time, and industry-time
fixed effects as indicated. The significance of each coefficient estimate is indicated by * for p < 0.10, ** for
p < 0.05, and *** for p < 0.01.

Panel A: Atlantic and Gulf coast counties

Dependent variable: Change in IV (in %), log
(

IVi,Ts
0 +5

IVi,Ts
0 −1

)
All coastal counties Excl. counties north of FL

CoastalExposurei,s 0.356 0.356 1.229∗ 1.092
(0.740) (0.755) (1.940) (1.624)

CoastalExposurei,s 0.187 0.193 -1.122 -0.732
×AboveNormalSeasonProbs (0.179) (0.974) (-0.718) (-0.590)

Adjusted R2 (%) 5.157 5.696 5.161 5.700
Observations 21,117 21,117 21,117 21,117
Total firm obs. with exposure > 0 17,738 17,738 13,439 13,439
Total firm obs. with exposure ≥ 0.25 11,404 11,404 2,291 2,291

Industry FE Yes No Yes No
Time FE Yes No Yes No
Industry × Time FE No Yes No Yes

Panel B: Counties selected based on historical probability of being hit

Counties with prob. ≥ 0.10 Counties with prob. ≥ 0.25

HistoricalHurricaneExposurei,s 0.565 0.514 0.463 0.661
(1.095) (1.020) (0.574) (0.800)

HistoricalHurricaneExposurei,s -0.225 -0.188 0.184 -0.333
×AboveNormalSeasonProbs (-0.192) (-0.165) (0.098) (-0.179)

Adjusted R2 (%) 5.162 5.697 5.149 5.687
Observations 21,117 21,117 21,117 21,117
Total firm obs. with exposure > 0 18,615 18,615 13,835 13,835
Total firm obs. with exposure ≥ 0.25 16,535 16,535 2,455 2,455

Industry FE Yes No Yes No
Time FE Yes No Yes No
Industry × Time FE No Yes No Yes
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Table X: Implied volatility responses to other extreme weather events

This table reports the coefficients and test statistics of panel regressions estimating how implied volatility
responds to floods (not hurricane-related), snowstorms, and tornadoes, where ImpactRegionExposurei,h is
based on FEMA disaster declarations. The “landfall” date (Th

L) is defined as the reported FEMA incident
begin date and the inception date (Th

0 ) is 7 days before the FEMA incident begin date. The independent
variable, ImpactRegionExposurei,h, measures the share (from 0 to 1) of a firm’s establishments that are in
the impacted region for the specific event. The number of firm observations with an impact region exposure
of greater than 0 and at least 0.25 are shown. T-statistics are shown in parentheses. The standard errors
are clustered by county based on a firm’s largest establishment share. The specifications include industry
and time fixed effects. The time fixed effect can be interpreted as an event fixed effect because each extreme
weather event enters the regression as one separate time period. The significance of the coefficient estimate
is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Floods

Dependent Variable: Change in IV (in %), log(IVi,Th
L+τ/IVi,Th

0 −1)

Time post landfall 1 week 1 month 2 months 3 months

ImpactRegionExposurei,h 1.591∗ 3.325∗∗∗ 2.871∗ 4.710∗∗

(1.904) (3.185) (1.735) (2.119)

Industry FE Yes Yes Yes Yes
Time (Event) FE Yes Yes Yes Yes

Adjusted R2 (%) 10.449 14.766 15.443 17.479
Observations 371,348 372,479 372,956 373,470
Observations Expos. > 0 77,437 77,566 77,580 77,578
Observations Expos. ≥ 0.25 2,684 2,698 2,706 2,713
Floods 340 340 340 340

Panel B: Snowstorms

Time post landfall 1 week 1 month 2 months 3 months

ImpactRegionExposurei,h 0.586 4.932∗∗ 5.712∗ 6.153
(0.376) (2.210) (1.827) (1.446)

Adjusted R2 (%) 8.245 9.371 6.380 5.226
Observations 36,260 36,338 36,433 36,488
Observations Expos. > 0 9,003 9,012 9,003 9,022
Observations Expos. ≥ 0.25 575 579 573 576
Snowstorms 32 32 32 32

Panel C: Tornadoes

Time post landfall 1 week 1 month 2 months 3 months

ImpactRegionExposurei,h 5.166 17.220∗∗ 21.834∗∗ 14.908
(0.936) (2.284) (1.982) (1.241)

Adjusted R2 (%) 8.711 6.514 7.821 11.508
Observations 13,775 13,847 13,880 13,906
Observations Expos. > 0 2,464 2,473 2,478 2,482
Observations Expos. ≥ 0.25 27 26 27 27
Tornadoes 13 13 13 13
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Table XI: Hurricane effects on implied volatility by industry

This table reports coefficients and test statistics from estimating the panel model in equation (6) with SIC
industry indicator interaction terms added. The dependent variable is the change (in %) in implied volatility
of firm i from the day before hurricane inception (Th

0 −1), until 1 week (5 trading days) after landfall (Th
L+5).

The independent variable is the share (from 0 to 1) of a firm’s establishments that are within a 200-mile
radius around the hurricane eye at landfall. The data span from 1996 to 2019. T-statistics are shown in
parentheses. The standard errors are clustered by county based on a firm’s largest establishment share. The
specifications include industry and time fixed effects. The time fixed effect can be interpreted as a hurricane
fixed effect, as we include a separate time period in the panel for each hurricane. The significance of each
coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Dependent variable: Change in IV (in %), log
(
IVi,Th

L+5/IVi,Th
0 −1

)
Industry interacted with LandfallRegionExposurei,R,h

Manufacturing Wholesale Services Transport Retail Mining Construction

LandfallRegionExposurei,R,h 5.739∗∗∗ 3.381∗∗ 4.094∗∗∗ 3.282∗∗∗ 3.892∗∗∗ 2.985∗∗ 3.929∗∗∗

(3.379) (2.459) (2.659) (2.608) (2.845) (2.271) (2.870)

LandfallRegionExposurei,R,h -4.343∗ 10.311∗∗ -1.685 3.771 -1.796 5.567∗∗ -8.144∗∗

×Industryi (-1.947) (2.213) (-0.680) (1.043) (-0.436) (2.055) (-1.990)

Adjusted R2 (%) 12.475 12.473 12.462 12.466 12.461 12.471 12.463
Observations 38,886 38,886 38,886 38,886 38,886 38,886 38,886
Observations in interacted industry 19,258 1,487 7,697 4,163 3,305 2,148 614
Hurricanes 37 37 37 37 37 37 37

Industry FE Yes Yes Yes Yes Yes Yes Yes
Time (Hurricane) FE Yes Yes Yes Yes Yes Yes Yes
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