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Abstract

The correlation between uncertainty shocks, as measured by changes in the VIX, and changes in break-

even inflation rates declined and turned negative after the Great Recession. This estimated time-varying

correlation is shown to be consistent with the predictions of a standard NewKeynesianmodel with a lower

bound on interest rates and a trend decline in the natural rate of interest. In one equilibrium of the model,

higher uncertainty raises the probability of large shocks that leave the central bank constrained by the lower

bound and unable to offset negative shocks. Resulting inflation shortfalls lower average inflation rates.
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I Introduction

Over the past quarter century, there has been a marked downward trend in the correlation between changes

in market-based measures of uncertainty and expected inflation in the United States. At the beginning of

this century, this correlation was essentially zero, but it has since turned negative. The emergence of a

negative relationship between uncertainty shocks and expected inflation raises the concern that uncertainty

shocks now have a more pronounced effect on the economy than two decades ago and thereby pose greater

challenges for the conduct of monetary policy.

In this paper, we document this significant repricing in financial markets reflected in changes to financial

correlations and analyze them within a macroeconomic model. Our main contributions are two-fold. The

first is a theoretical analysis of the effects of uncertainty shocks on expected inflation and interest rates within

a standard New Keynesian model. We show how the presence of a lower bound on interest rates affects

this correlation. The second is an empirical analysis of the predictions of the theory, which indicate that

the decline in the natural real rate of interest to low levels has contributed to the emergence of the negative

relationship between uncertainty and inflation expectations evident in the data.

In the theoretical section of the paper, we use a standard New Keynesian model with a lower bound on

nominal interest rates for an analytical derivation of the theoretical predictions. For simplicity, we focus on

demand shocks as the only source of disturbances. We show the implications of a change in the level of

interest rates, as determined by the natural rate of interest, on the joint behavior of uncertainty and inflation

expectations. The analysis gets complicated by the fact that the presence of the lower bound implies the

existence of two distinct ergodic distributions for endogenous variables that are delineated by the probability

of a binding lower bound, as in Mertens and Williams (2021). The equilibrium with the lower probability,

which we refer to as the target equilibrium, leaves the central bankmostly unconstrained and able to stabilize

inflation. In the second equilibrium, which we denote as the liquidity trap equilibrium, the lower bound

bindsmore oftenwhich results inmore frequent and larger inflation shortfalls. The presence of a lower bound

and the type of equilibrium the economy is in are key determinants of the correlation between uncertainty

shocks and changes in inflation expectations.

Without a lower bound on interest rates, a mean-preserving increase in uncertainty has no systematic

effect on the unconditional means of expected inflation and interest rates. This is because the central bank

can use its interest rate policy in response to positive and negative shocks symmetrically to stabilize inflation.

In contrast, in the presence of an occasionally binding lower bound on interest rates, a mean-preserving
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spread to the distribution of shocks affects the unconditional mean rate of inflation, decreasing it in the

target equilibrium and increasing it in the liquidity trap equilibrium. In the case of the target equilibrium, an

increase in uncertainty implies that policy is constrained in a larger region of the state space. This asymmetric

constraint on the ability to respond to negative shocks results in a reduction in the unconditional means of

expected inflation and interest rates. In the case of the liquidity trap equilibrium, an increase in uncertainty

contracts the region in which the lower bound binds and thereby increases the unconditional means of

inflation and interest rates.

In the target equilibrium, a decline in the natural rate of interest leads to the observed effects of changes

in uncertainty on inflation expectations when the probability of a binding lower bound is sufficiently small

in the case of general distributions. Under additional assumptions such as Gaussian distributions, this result

holds for any probability in the target equilibrium.

Second, we empirically assess these theoretical predictions using data from the United States. Therefore,

we construct rolling-window correlations between changes in market-based measures of uncertainty, such as

the VIX, and changes in expectations of far-forward future inflation and interest rates. The New Keynesian

model predicts that, analogously to the correlation for inflation expectations, the correlation between uncer-

tainty shocks and changes in expected interest rates should turn negative as well. Indeed, this correlation

fell from close to zero to around -0.5 over the same time period. These changes took place as estimates of

the natural rate of interest declined and the incidence of monetary policy being near or at the lower bound

increased.

To test this prediction, we regress the correlations for interest rate and inflation expectations on estimates

of the natural rate of interest and find that the empirical evidence is qualitatively consistent with the U.S.

economy being in the target equilibrium, in line with evidence reported in Mertens and Williams (2021). We

furthermore establish the robustness of the results in Figure 1. We show that we obtain consistent results

at daily and monthly frequencies, removing term premia, or using alternative measures of uncertainty

shocks and inflation expectations. For the latter, we show that our results are robust to using survey-based

measures of expected inflation from the Survey of Professional Forecasters and to using both an aggregate

econometric measure of economic financial uncertainty and a news-based economic policy uncertainty index

for uncertainty shocks (see Ludvigson et al. (2021) and Baker et al. (2016)).

Finally, we assess the implications of greater uncertainty about aggregate demand for the design of

monetary policy. We show that, in the target equilibrium, the benefits of average-inflation targeting relative
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to standard inflation targeting increase with greater macroeconomic uncertainty. We implement average-

inflation targeting through an adjustment in the level of the policy rule for nominal interest rates. Lowering

the intercept leads inflation to overshoot the target inflation rate during times when policy is unconstrained.

This policy framework thereby makes up for shortfalls in inflation at times when the lower bound on interest

rates is strictly binding.

We highlight one caveat to our analysis. To maintain analytical tractability, we do not model time

variation in correlations explicitly. Instead, we study changes in the derivative of expectations with respect

to uncertainty when there is an exogenous shift in the natural real rate of interest. Therefore, we do not

generalize these findings to models of monetary policy with richer dynamics nor address the potential

endogeneity of the decline in the natural real rate.

Our analysis relates to several strands of the literature. First, it relates to models that incorporate a lower

bound on interest rates into a New Keynesian economy, such as Fuhrer and Madigan (1997), Eggertsson and

Woodford (2003), Adam and Billi (2006), Campbell et al. (2012), and Cochrane (2018). Papers in this literature

that deal with the multiplicity of equilibria include Benhabib et al. (2001), Mendes (2011), Hills et al. (2016),

Nie and Roulleau-Pasdeloup (2021), Cuba-Borda and Singh (2022), and Bilbiie (2022). Our analysis relates to

the work by Swanson and Williams (2014) and Mertens and Williams (2021) in that it measures the effects

of the lower bound on interest rates from financial market data. Second, it relates to a literature that studies

changing correlations in financial markets and links them to macroeconomic outcomes. Baele et al. (2010),

Duffee (2022), and Pflueger (2023) document changing correlations between stocks and bonds. Campbell et

al. (2020) point out macroeconomic drivers behind this phenomenon. And Bilal (2017) and Gourio and Ngo

(2020) argue that the lower bound on interest rates might be behind this finding, while Datta et al. (2021)

link the lower bound to the changing equity-oil correlation. Third, this paper contributes to the large and

fast-growing literature on uncertainty shocks and their effects on the economy. Seminal contributions on the

measurement include Jurado et al. (2015) and Baker et al. (2016). Leduc and Liu (2016) study the effects of

uncertainty shocks in a New Keynesian economy while Basu and Bundick (2017), Plante et al. (2017) and

Nakata (2017) take the lower bound on interest rates into account.

II Stylized Fact

This section discusses a new stylized fact: Since the mid-2000s, the correlation between uncertainty shocks

and changes in long-run inflation expectations has turned negative from a level of close to zero. While we
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Figure 1: Five-year trailing-windowSpearman (solid line) and conventional (Pearson, dotted line) correlations
of monthly changes in the VIX with monthly changes in the five-year, five-year-forward breakeven inflation
(BEI) rate. The underlying variables are monthly averages of daily market-close values.

purposefully keep this section brief, Section V discusses the robustness of these findings.

To demonstrate these patterns, we measure uncertainty shocks as changes in expected volatility in the

stock market via the VIX volatility index. For expected inflation, we use market-implied breakeven inflation

(BEI) rates, measured as the difference between yields of nominal and inflation-protected Treasury bonds. We

use five-year inflation expectations five years ahead to focus on expectations of inflation in the longer term.

We retrieve daily time series on each of these variables from Bloomberg.1 To get monthly observations, we

construct changes in monthly averages of the daily market-close values and compute the correlation between

these monthly changes in the VIX and changes in inflation expectations for five-year rolling windows. The

overall sample for the monthly changes is restricted by the introduction of Treasury inflation-protected

securities (TIPS) in February of 1999, such that the five-year trailing-window correlations begin in February

2004. We end the sample in July of 2020 before the Federal Reserve’s announcement of its average-inflation

targeting framework (FOMC (2020)).

Figure 1 plots the Spearman and conventional (Pearson) correlations between these measures of uncer-

1Appendix B summarizes the sources and details of all data used in this paper.
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tainty shocks and changes in inflation expectations at the monthly frequency. Spearman correlations are the

conventional (Pearson) correlations of the rank of each observation in the sample. Since they use the rank

rather than the observation itself, Spearman correlations are more robust to outliers and thus our preferred

measure.2 The decline in this correlation occurred during the mid-2000s and accelerated as the federal funds

ratewas lowered to the effective lower bound. It remained highly negative throughout the initial lower bound

period and increased after liftoff from the lower bound. After the onset of the COVID-19 pandemic and the

ensuing recession, the correlation turned highly negative again.

We interpret an increase in the VIX as reflecting an increase in uncertainty. There is a literature docu-

menting a negative relationship between increases in the VIX and stock prices. One possible channel for

this connection might be that the increase in uncertainty leads to an increased risk premium, rather than

there being a negative correlation between the level and volatility of shocks. However, the mechanism in our

model would still apply if the mean and volatility of shocks are negatively correlated. As a robustness check,

we also analyze other measures of uncertainty.

In the following section, we provide an explanation for this stylized fact. We argue that the lower bound on

interest rates can lead to the observed pattern within a basic New Keynesian model. In such an environment,

increases in uncertainty raise the possibility that monetary policy is unable to eliminate inflation shortfalls.

III Model

In this sectionwe study a simple version of the standard log-linearized three-equationNewKeynesianmodel,

as in, e.g., Woodford (2003), to which we add a lower bound on interest rates. For simplicity and analytical

tractability, our model features only demand shocks that are independent and identically distributed (i.i.d.)

over time.

The Phillips curve describes the evolution of inflation �C

�C = �GC + �EC�C+1 , (1)

where � > 0 is the sensitivity of inflation to changes in the output gap, � ∈ (0, 1) is the discount factor, and

inflation expectations are based on the information set available at time C.

2For the remainder of the paper, we only report Spearman correlations. The analogous charts for conventional Pearson correlations
are in Internet Appendix A.
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The IS relation describes the behavior of the output gap GC

GC = &C − 
(8C − EC�C+1 − A∗) + ECGC+1 , (2)

where 
 > 0 is the responsiveness of the output gap to deviations of the real interest rate from its long-run

natural rate, A∗.

The demand shock &C = &̄ + �C has mean &̄. The noise component �C has mean zero, is assumed to be i.i.d.

over time, and follows a distribution with infinite support, probability density function 6(·), and cumulative

density function �(·) that satisfies lim�→−∞ ��(�) = 0.3

The central bank sets the nominal rate 8C optimally under discretion but is constrained by a lower bound

8!� < A∗ that lies below the natural real rate of interest. It aims to minimize a loss function ℒ that penalizes

output gaps as well as deviations of inflation from its target, which is normalized to zero,4

min
8C≥8!�

ℒ = min
8C≥8!�
(1 − �)E0

[ ∞∑
C=0

�C(�2
C + �G2

C )
]
, (3)

where � ≥ 0 is the relative weight the central bank places on the output gap relative to deviations of inflation

from target. We focus on optimal monetary policy under discretion, when the central bank lacks the ability to

commit to future actions and thus takes inflation expectations as given. The central bank and private sector

are assumed to have full knowledge of the model, including the distribution of the shock processes.

The state space of the system consists only of the current realization of the shock &C . Due to the shock being

purely temporary, its current realization has no predictive content for future realizations of the shock process.

As a result, conditional expectations of future variables based on the current information set coincide with

unconditional expectations. This is reflected in the proceeding analysis with the conditional time subscript C

dropped from the expectations operator.

It is convenient to define a shadow rate iC as

iC = � + A∗ + #E�C+1 +
1


&C ,

where# = 1+ 1

� −

��

�(�2+�) > 1. For � = 0, the shadow rate is the optimal policy rate under discretionwithout

3While the results hold more generally, we work with an infinite support of the shock to avoid the distinction of the cutoff for a
binding lower bound lying within or outside the support of the distribution.

4More generally, the same results follow for nonzero inflation target, with �C then representing deviations in inflation from target.
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the lower bound constraint. In a later section, we use the parameter � to introduce different monetary policy

frameworks.

In the presence of a lower bound, the optimal discretionary policy is to set the interest rate equal to the

shadow rate whenever feasible and to the lower bound otherwise:

8C = max{iC , 8!�} = iC + 8ΔC .

We furthermore define the interest rate wedge 8ΔC as the difference between the policy rate and the shadow

rate, 8ΔC = 8C − iC , as in the second part of the above equation. Since the policy rate 8C is either equal to the

shadow rate it or set above the shadow rate at 8!� when the shadow rate falls below the lower bound, the

interest rate wedge 8ΔC is always nonnegative.

Equipped with this notation, we rewrite the model equations in terms of the interest rate wedge by

substituting iC + 8ΔC for the nominal rate 8C . The system of equations (1) and (2) then becomes

�C =
�

�2 + ��EC�C+1 − 
�(8ΔC + �) (4)

and

GC = −
�

�2 + ��EC�C+1 − 
(8ΔC + �).

In these equations for inflation and the output gap defined in terms of the interest rate wedge, the first

terms reflect what holds when the lower bound is not binding and when � = 0, as in the standard New

Keynesian model (see Clarida et al. (1999)). The demand shock is fully offset and there is no tradeoff between

stabilizing inflation and output, i.e., “divine coincidence” holds. However, the final term in each of these

equations shows that a binding lower bound leads, ceteris paribus, to lower inflation and a negative output

gap. Moreover, monetary policy can raise inflation on average by lowering interest rates on average, that is,

by setting � to be negative.

III.A Model Solution

Absent a lower bound, equation (4) shows that there is a unique equilibrium. Taking unconditional expec-

tations on both sides results in an equilibrium where inflation is at target, E�C = 0, and the nominal interest

rate equals the long-run natural rate, 8C = A∗.
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The presence of a lower bound on interest rates in the model gives rise to the possibility of a second

equilibrium. To see this, we split equation (4) into parts depending on whether the lower bound binds in the

current period or not

�C =


��

�2 + �EC�C+1 − 
�� if iC ≥ 8!�

�&C − 
�(8!� − � − A∗) + (1 − 
�)EC�C+1 if iC < 8!� .

(5)

In a deterministic version of our model, each part of equation (5) delivers one equilibrium. The determin-

istic steady state stemming from the upper equation is characterized by inflation at its target of zero (� = 0)

and the nominal interest rate equal to the long-run natural real rate (8C = A∗). The lower equation gives rise

to an equilibrium in which monetary policy is constrained such that the interest rate is permanently at the

lower bound, 8C = 8!�, as in Benhabib et al. (2001). The corresponding steady-state inflation is equal to the

difference between the lower bound and the long-run natural real rate, � = 8!� − A∗ < 0, and thus below its

target of zero.

Characterizing the equilibrium in the stochastic environment with demand shocks requires solving for

expectations of future inflation, the output gap, and the interest rate wedge. To this end, we recognize that

these expectations are linked in the model via

E�C+1 =
�

1 − �EGC+1 = −
1

# − 1 (E8
Δ
C+1 + �). (6)

Furthermore, the Fisher equation holds

E�C = E8C − A∗ −
1


&̄.

Appendix A contains details on the derivation of these equations.

Equation (6) and the Fisher equation imply that it is sufficient to characterize one of the expectations. In

the following analysis, we focus on solving for the expected interest rate wedge E8Δ, which translates into

inflation expectations and, by the Fisher equation, into expected interest rates.

Computing the expected interest rate wedge results in

E8Δ =

∫ �̄!�

−∞
(8!� − iC)6(�C)3�C =

1


�(�̄!�), (7)
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where

�̄!� = 


(
8!� − � − A∗ +

#

# − 1 (E8
Δ + �)

)
− &̄ (8)

defines the cutoff for the innovation to the demand shock below which the lower bound binds. �(�C) is

the super-cumulative distribution function of the demand shock �C , which is obtained by integrating the

cumulative distribution function. This is to say that �′(�) = �(�) where �(·) is the cumulative distribution

function associated with the probability density function 6(·).

Using the definition of the cutoff, we plug in for the expected interest rate wedge using equation (7) to

get the equilibrium correspondence

�(�̄!�) =
# − 1
#




(
1


(�̄!� + &̄) − 8!� − 1

# − 1� + A
∗
)
. (9)

Solving this equation for the cutoff value delivers the solution to the model as the cutoff determines expected

interest rate wedges via equation (7). Appendix A.A contains the derivations and more details.

According to equation (9), an equilibrium of the model occurs when the super-cumulative distribution

function equals the right-hand side of the equation. This right-hand side is linear in the cutoff �̄!� and

depicted in the black line in Figure 2.

Since one can obtain this function by integrating over the cumulative distribution function, it becomes

clear that the function converges to zero for �̄!� → −∞ and to infinity for �̄!� → ∞. Furthermore, since its

second derivative is the probability density function, it is nonnegative and� is convex.

Due to the convexity of the super-cumulative distribution function, there can be either zero, one (in a

knife-edge case), or two equilibria. As we saw above, the deterministic case always features two equilibria.

We label the equilibrium to the left the target equilibrium. In the deterministic case, it turns into the equilibrium

in which the lower bound does not bind. With uncertainty, however, the lower bound becomes occasionally

binding. The equilibrium to the right is a liquidity trap equilibrium and is associated with the deterministic

equilibrium in which the lower bound binds. In the stochastic version, there can also be an occasionally

binding constraint.

The probability with which the lower bound binds is

%!� = �(�̄!�) =
∫ �̄!�

−∞
6(�)3�. (10)
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With this definition, we get the following lemma.

Lemma 1 Depending on the amount of uncertainty, there exist two, one, or zero equilibria in this economy. Furthermore,

in the case of two distinct equilibria, there is a threshold #−1
# such that the probability of a binding lower bound is always

below the cutoff in the target equilibrium and always above the cutoff in the liquidity trap equilibrium.

Appendix A.A.2 contains the proof.

In the presence of uncertainty, the lower bound on interest rates is occasionally binding in both equilibria.

When there are two equilibria, the probability of a binding lower bound in the target equilibrium always

falls below the cutoff value whereas it exceeds it in the liquidity trap equilibrium. In the knife-edge case of a

unique equilibrium, the probability of a binding lower bound is #−1
# . We denote the corresponding cutoff by

�̄∗.

As an illustration of the solution of the model, we consider the case of a normal distribution for the shock.

There, the super-cumulative function takes the form

�
norm(�̄!�) = �̄!�Φ

(
�̄!�

�

)
+ �2)

(
�̄!�

�

)
,

where Φ(·) denotes the cumulative distribution function (c.d.f.) of the standard normal distribution, )(·) the

corresponding probability density function (p.d.f.), and � is the standard deviation of the demand shock.

Figure 2 depicts this super-cumulative distribution function and the condition leading to an equilibrium.

The blue line shows the super-cumulative distribution for a normally distributed demand shock as a function

of the cutoff �̄!�.

As can be seen in Figure 2, the equilibrium cutoffs and thus expected interest rate wedges are closer to

each other in the case of uncertainty compared to the deterministic counterpart. In the deterministic target

equilibrium, the lower bound on interest rates does not bind.

Figure 3 depicts the distributions for shadow rates in the case with uncertainty. The target equilibrium

(blue line) endogenously has a higher mean than in the liquidity trap (red line). In the target equilibrium,

there is a cutoff for the demand shock belowwhich the central bank becomes constrained by the lower bound.

This is because the central bank aims at offsetting the demand shock and lower realizations cause it to cut

interest rates. With the demand shock being sufficiently low, the shadow rate falls below the lower bound.

In the liquidity trap equilibrium, the logic is reversed. The lower bound always binds in the deterministic

steady state. Adding uncertainty results in situations where the demand shock is so high that the shadow
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Figure 2: Equilibrium correspondence. Solid straight black line plots �(�̄!�) as a linear function of �̄!�, as
given by equation (9). The other lines plot the super-cumulative distribution function�

norm(�̄!�) for the case
of a normal distribution, with mean zero and varying standard deviations (�). The intersection points with
the solid black line indicate equilibria for these various values of � under normality.

rate is above the lower bound and the central bank finds itself unconstrained. Since there are now situations

in which the central bank stabilizes the economy, average inflation—and thus inflation expectations—rise.

Further increasing uncertainty eventually leads the two equilibria to be identical. Beyond this knife-edge

case, any further increase in uncertainty leads to non-existence of equilibria.

To summarize, without a lower bound on interest rates, the New Keynesian model results in a unique

equilibrium where inflation expectations are anchored at the target level. Introducing a lower bound adds a

liquidity trap equilibrium that is characterized by a higher probability of a binding lower bound compared

to the target equilibrium. We now turn to analyzing the effects of changes in uncertainty on the economy.

III.B The effects of uncertainty and demand shocks

This section studies the impact of an increase in uncertainty on the economy. It shows that the lower bound

plays a crucial role: Without it, an increase in uncertainty has no effect on inflation and output. With a lower

bound, higher uncertainty increases the region of the state space in which the lower bound is binding in the

12



Figure 3: Shadow interest rate distributions in the target (blue) and liquidity trap (red) equilibria. The lower
bound on interest rates (dashed line) truncates these shadow rate distributions in the model.

target equilibrium while it shrinks the region in a liquidity trap equilibrium.

In the absence of a lower bound, uncertainty has no effect on the economy since demand shocks can be

fully offset. Optimal interest rate policy shields inflation and output from the effect of demand shocks. More

volatile demand leads to more volatile interest rates but does not transmit to prices or the real economy.

The lower bound on interest rates changes these predictions. We show that the expected interest rate

wedge increases in the target equilibrium and falls in a liquidity trap equilibrium. We demonstrate these

effects for general distributions with unbounded support. Therefore, we show that a mean-preserving

spread alters the probability of a binding lower bound and, in turn, expected interest rate wedges and

inflation expectations.

Let !C = �C + B�C be a series of mean-preserving spreads of �C , indexed by B ≥ 0, where E[�C |�C] = 0.

A larger value of B implies a higher variance of the mean-preserving spread. Denote the super-cumulative

distribution function of !C by�(B, !C). Then we get the following lemma.5

5For a proof, see Rothschild and Stiglitz (1970).
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Lemma 2 (Mean-preserving spread and second-order stochastic dominance)

The following statements are equivalent:

1. !C is a mean-preserving spread of �C with p.d.f. 6(B, !C) and c.d.f. �(B, !C).

2. �(B, !C) second-order stochastically dominates �(�C) for all B > 0.

3. �(B, !) ≥ �(!) for all ! and B > 0.

4. There exist
¯
! and !̄ such that �(B, !C) ≥ �(!C) for all !C ≤

¯
! and �(B, !C) ≤ �(!C) for all !C ≥

¯
!.

A general increase in uncertainty through a mean-preserving spread pushes mass into the tails. In that

case, the distribution for the more volatile demand shock is said to second-order stochastically dominate the

distribution without the mean-preserving spread. As a consequence, the cumulative distribution function

rises in the left tail, thereby increasing its integral, the super-cumulative distribution function, as shown in

Lemma 2.

Figure 2 depicts these effects for the case of the normal distribution. While the linear relationship between

expected interest rate wedges and the cutoff �̄!� in the black line is unaffected by an increase in uncertainty,

the super-cumulative distribution function increases and the two equilibria move closer together. Further

increases in uncertainty eventually lead to a unique equilibrium and non-existence for yet higher levels of

uncertainty.

From this picture, it is also evident that the cutoff �̄!� rises with uncertainty in the target equilibrium (the

point of intersection to the left) and, as a result, the lower bound binds over a larger portion of the support for

the demand shock. The opposite prediction holds in a liquidity trap equilibrium. Proposition 1 summarizes

these results.

Proposition 1 (Effects of uncertainty)

Neither a mean-preserving spread nor lower average demand have an effect on inflation expectations absent the lower

bound; in the presence of a lower bound, higher uncertainty raises (lowers) the expected interest rate wedge in a target

(liquidity trap) equilibrium.6

We analyze the derivative of inflation expectations with respect to an increase in the mean-preserving

6Appendix C.A contains the proof.
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spread
dE8Δ

dB =
1



# − 1
#

�
!
1 (B, �̄

!�)
#−1
# − %!�

.

We interpret this expression as the model’s analogue of the correlation of changes in expectations due to an

uncertainty shock, as measured by a change in the mean-preserving spread. This expression formalizes the

discussion of the effects of changes in uncertainty. When there is no lower bound, the function�(�C) is zero

everywhere for all values of B. Thus, the derivative of the wedge vanishes as well, and changes in uncertainty

have no effects on the inflation expectations absent the lower bound.

With a lower bound on interest rates, the sign of the effects of changing uncertainty on expectation

is determined by the equilibrium the economy is in. The numerator is positive, �1(B, �C) > 0, according to

Lemma 2. We furthermore established that the lower boundprobability is below the threshold (#−1)/#when

the economy is in a target equilibrium and above in a liquidity trap equilibrium. Consequently, increases in

uncertainty raise interest rate wedges, and thus lower inflation expectations, in the target equilibrium and

have the opposite effect in the liquidity trap equilibrium.

Any negative correlation between uncertainty shocks and average demand would reinforce this channel.

With a fall in the mean of the demand shock, inflation expectations fall in the target equilibrium due to a

higher probability of a binding lower bound.

3%!�

3&̄
= −

# − 1
#

1
#−1
# − %!�

6(�̄!�)

In the liquidity trap equilibrium, the effects are reversed.

The impact of changes in uncertainty on the probability of a binding lower bound ismore subtle. While the

region of the state space expands (contracts) with higher uncertainty in the target (liquidity trap) equilibrium,

the probability of a binding lower bound does not always change in the same direction. The reason is that

there can be two opposing forces. In the target equilibrium, the cutoff �̄!� increases with uncertainty,

suggesting that the probability of a binding lower bound should increase. However, a mean-preserving

spread has a direct effect on the distribution function that can result in a lower value at the cutoff. To see this,
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we differentiate the definition of the lower bound probability with respect to B 7

3%!�

3B
= �1(B, �̄!�) + 6(B, �̄!�)

�1(B, �̄!�)
#−1
# − �(B, �̄!�)

. (11)

The first term in the final expression can be responsible for the lower bound probability and the cutoffmoving

in opposite directions.

Lemma 3 establishes that the lower bound probability and the cutoff alwaysmove in the same direction in

response to increases in uncertainty when the probability of a binding lower bound is sufficiently low (high)

in the target (liquidity trap) equilibrium.

Lemma 3 There are values
¯
� and �̄ such that an increase in uncertainty raises the probability of a binding lower bound

whenever �̄!� <
¯
� in the target equilibrium and lowers it for all �̄!� > �̄ in the liquidity trap equilibrium. When the

demand shock is normally distributed, these results hold globally, i.e.,

3%!�

3B
=


> 0 for �̄!� < �̄∗ (target equilibria).

< 0 for �̄!� > �̄∗ (liquidity trap equilibria).

For any continuous distribution, lower average demand raises (lowers) %!� in the target (liquidity trap) equilibrium.

Appendix C.C contains a proof.

Intuitively, in the target equilibrium, the probability of a binding lower bound increases in the tails with

uncertainty since the likelihoodof largemovements increases. In the liquidity trap equilibrium, the prediction

is reversed, since, with higher uncertainty, the probability of a sufficiently positive shock increases in the

tails that lifts the interest rate off the lower bound. When the demand shock follows a normal distribution,

any increase in volatility raises the probability of a binding lower bound in the target equilibrium, i.e., when

the probability of a binding lower bound falls below the cutoff (# − 1)/#; in the liquidity trap equilibrium,

the probability falls. Therefore, imposing a normal distribution implies that the sign of the derivative of the

probability of being at the lower bound to a mean-preserving spread depends only on which equilibrium the

economy is in.8

7Appendix C.B contains a derivation of this expression.
8A similar set of results holds under more stringent assumptions. When the distribution is unimodal and symmetric and # = 2,

the results hold globally. When# ∈ (1, 2), we can show that the lower bound probability riseswith uncertainty for all target equilibria
and, when # > 2, the lower bound probability declines for higher uncertainty across all liquidity trap equilibria. Appendix C.E
contains details.
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Together these results indicate that changes in uncertainty should have an effect on inflation expectations

only in close proximity to the lower bound. Looking at the stylized fact about changing correlations of

uncertainty shocks and inflation expectations through this lens, the model is consistent with close to zero

correlations in the early 2000s when the lower bound had a low probability of binding. Later in the sample,

when the lower bound became a more salient concern, the correlation between uncertainty shocks and

inflation expectations turned negative. The following comparative statics show within the model that a

decline in the natural real rate of interest is the most likely source of these developments.

III.C Changes in the effects of uncertainty on expectations

This section explores the effects of a change in the natural real rate of interest on the relationship between

uncertainty and inflation expectations. We find that, without the lower bound, our model cannot generate

the observed change in the effects of increased uncertainty on expected inflation and interest rates. With a

lower bound, the equilibrium of the economy again determines the sign of the effects. In the general case, we

find that the target equilibrium is consistent with the stylized facts of Section II, provided that the probability

of a binding lower bound is sufficiently small. With normally distributed shocks, the results hold for any

probability in the target equilibria.

We now explore the changing impact of uncertainty on expectations when the natural real rate of interest

falls. Therefore, we continue to interpret the correlation between expectations and changes in uncertainty as

the derivative of expected interest rate wedges with respect to uncertainty.

Proposition 2 (Changes in the natural real rate and the effects of changes in uncertainty) Changes inuncer-

tainty do not affect expected interest rate wedges in the absence of a lower bound on interest rates, independent of the

level of the natural rate of interest A∗. In the presence of a lower bound, the following expression determines whether the

sensitivity of the expected interest rate wedge to changes in uncertainty increases or falls with the natural real rate of

interest

32E8Δ

3A∗3B
= − ©­«
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#

#−1
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ª®¬
2
3%!�

3B
. (12)

The analogous expression for average demand 32E8Δ

3A∗3&̄ is unambiguously positive (negative) in the target (liquidity trap)

equilibrium.

Appendix C.D contains the proof of these results.
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This proposition allows us to sign the direction in which a fall in the natural rate pushes the sensitivity

of the expected interest rate wedge to changes in uncertainty. The determining factor is whether uncertainty

raises the probability of a binding lower bound. Using Lemma 3, the right-hand side of equation (12) is

always negative in the target equilibrium and always positive in the liquidity trap equilibrium, provided that

shocks are normally distributed. The results furthermore hold for any distribution if the likelihood of being

constrained is sufficiently low (high) in the target (liquidity trap) equilibrium.

As a consequence, the sensitivity of inflation expectations with respect to uncertainty declines in the

target equilibrium as the natural real rate of interest falls. In the liquidity trap equilibrium, this sensitivity

rises. Measuring this sensitivity through the correlation of changes in inflation expectations and uncertainty

shocks therefore shows that the results in Section II are consistent with the target equilibrium and at odds

with the liquidity trap equilibrium. We investigate this connection more formally in Section IV.

Intuitively, when the natural real rate falls, the policy rate is closer to the lower bound in the target

equilibrium, making it more likely to bind. When shocks display higher uncertainty, the probability of a

binding lower bound increases, constraining the ability to offset negative demand shocks. As a consequence,

the mean inflation rate declines.

We now turn to the question ofwhether themonetary policy framework has an impact on the transmission

of uncertainty to the real sector. Here, we allow the central bank to permanently commit to any policy

parameter �. The central bank is given the ability to permanently adjust the level of its interest rate rule

through the choice of the intercept parameter �. Adjusting this parameter amounts to static average-inflation

targeting, as laid out in Mertens and Williams (2019, 2020) and Diwan et al. (2020).

Through lowering the interest rate intercept, the central bank provides more stimulus whenever it is not

constrained by the lower bound. Consequently, it runs inflation above its target level during times when it

is unconstrained to correct for the downward bias in inflation expectations due to the lower bound. That

is, the central bank makes up for shortfalls during recessions by overshooting the inflation target during

expansions. In that sense, it averages over the business cycle.

We are interested in the effect static average-inflation targeting has on the effects of changes in uncertainty

on inflation expectations. We get the following result.

Proposition 3 (Static average-inflation targeting and the effects of changes in uncertainty)

Changes in uncertainty do not affect expected interest rate wedges in the absence of a lower bound on interest rates,

independent of the level of the policy intercept �. In the presence of a lower bound, the following expression determines
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whether the sensitivity of the expected interest rate wedge to changes in uncertainty increases or falls with the policy

intercept �

32E8Δ
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The analogous expression for average demand 32E8Δ

3�3&̄ is unambiguously negative (positive) in the target (liquidity trap)

equilibrium.

Appendix C.F contains the proof of these results.

Proposition 3 demonstrates that a change in the policy intercept can prevent the effects of a fall in the

natural rate. A negative intercept � lowers the expected interest ratewedge and increases inflation on average.

This is because the central bank raises inflation above its target when unconstrained to make up, on average,

for shortfalls during episodes of a binding lower bound. In the liquidity trap equilibrium, the sign of these

effects is reversed.

As a result, the derivative of the expected interest rate wedge with respect to uncertainty rises when the

central bank lowers the intercept of the policy rule. These results hold globally for normally distributed

shocks and for low (high) probabilities of a binding bound in the target (liquidity trap) equilibrium for any

distribution.

III.D Discussion

Themodel in the previous section features demand shocks as a single source of disturbances. We intentionally

leave out markup or other supply-side shocks to highlight a simple set of assumptions that gives rise to the

mechanism discussed in this paper. The link between uncertainty shocks and inflation expectations would,

however, survive in a model with both demand and markup shocks.

Adding markup shocks would lead to a negative correlation between inflation and the output gap absent

a lower bound. Currently, the baseline case has no correlation since interest rate policy can perfectly offset

demand shocks away from the lower bound, a feature often referred to as “divine coincidence.” The lower

bound leads the output gap and inflation to comove together, irrespective of whether supply-side shocks are

present or not.

Although we do not study these implications here, this changing correlation patterns have implications

for the correlation of stocks and bonds, a subject of significant attention in the macro-finance literature (see,

e.g., Campbell et al. (2020), Duffee (2022), and Pflueger (2023)). The basic finding is that during the 1960s to
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mid-1990s, the correlation between stock returns and changes in interest rates was negative. This correlation

flipped sign in the mid-1990s such that high stock returns have been associated with increasing interest rates

since. This latter correlation is consistent with the lower bound being a more salient constraint. Negative

shocks close to the lower bound lead to below-target inflation and negative output gaps, consistent with the

positive correlation since the mid-1990s (see also Bilal (2017)).

In the following section, we document the empirical patterns around inflation expectations and expected

interest rates and link them to movements in the natural real rate of interest.

IV Empirical Implications

We approach the empirical tests of the theoretical model in three steps. First, we recognize that the New

Keynesian model predicts that the stylized fact should appear in the correlation of uncertainty shocks and

changes in expectations of interest rates. After confirming this, we provide evidence that the natural real rate

of interest fell during our sample period. Consistent with the theoretical predictions of our model, we show

that the correlations of interest rates fell with it. And, lastly, we perform formal tests that link changes in the

correlations with the natural real rate of interest.

IV.A Stylized fact for interest rates

The theoreticalmodel of the previous section shows that the stylized fact for inflation expectations should also

apply to interest rate expectations. The reason behind this prediction is the Fisher equation: As uncertainty

changes inflation expectations, interest rate expectations adjust accordingly.

Figure 4 demonstrates that, as the correlation between uncertainty shocks and changes in inflation expec-

tations turned negative, so did the correlation between uncertainty shocks and changes in expected interest

rates. Here, expected interest rates are measured as the five-year ahead five-year Treasury forward rate (TFR)

that we compute using constant maturity Treasury yields.

We interpret this declining correlation as the economy initially being shielded from uncertainty shocks,

while over time their impact spills over increasingly to the real sector. With monetary policy serving as the

primary tool to guard the economy against adverse shocks, the negative correlation between uncertainty

shocks and changes in interest rates and inflation expectations, respectively, suggest that the lower bound

affected the ability to respond to negative shocks using the policy rate over the sample period.
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Figure 4: Five-year trailing-window Spearman correlation of monthly changes in the VIX with monthly
changes in the five-year ahead five-year forward Treasury constant maturity rate.

IV.B The Macroeconomic Driver Behind Changing Correlations

There are two potential drivers behind the declining correlation in the model: The uncertainty of shocks and

the natural real rate of interest, A∗. We investigate the plausibility of a change in either parameter.

For the uncertainty to play an increasing role and lead to a larger probability of a binding lower bound, the

distribution of shocks would need to widen. There are at least two ways to see that this is an unlikely source

of variation in the data. First, Figure 5 shows the covariance between inflation expectations and uncertainty

shocks, the analogue of Figure 1. The pattern that emerges from the covariance is consistent with the one

for the correlation. There is no obvious sign that there was a trend increase in uncertainty from this chart.

Second, estimates from options data show a decline in uncertainty after the Great Recession, the opposite of

what would be necessary to explain the stylized facts in this paper (see Mertens and Williams (2021).

Instead, we explore time variation in A∗. In recent years, a body of research has documented a decline in

the natural real rate of interest in the United States and other advanced economies over the past few decades

(Williams, 2017).9 Figure 6 plots the natural interest rate from 1999 to 2020, using daily estimates of the real

9See, for example, Laubach and Williams (2003), Kiley (2015), Lubik and Matthes (2015), Johannsen and Mertens (2016), Holston
et al. (2017), Crump et al. (2017), Del Negro et al. (2017) and Christensen and Rudebusch (2019). Estimates from these models for A∗
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Figure 5: Five-year trailing-window covariance of monthly changes in the VIX with monthly changes in the
five-year ahead five-year-forward breakeven inflation (BEI) rate.

natural rate fromChristensen and Rudebusch (2019) and daily five-year forward zero-coupon TIPS yields five

years ahead fromGürkaynak et al. (2010) as a proxy for the natural rate. Over the sample period, estimates of

the natural real rate of interest from Christensen and Rudebusch (2019) declined by 8 basis points per year on

average and five-year five-year forward zero-coupon TIPS yields started out from a higher level and declined

by 18 basis points per year on average. The persistent downward trend over time resulted in historically low

levels of the natural rate in recent years.

The low natural rates of interest are likely to persist for an extended period of time for at least three

reasons. First, measures of historical levels of A∗ display a significant amount of persistence. The estimates

aim to capture the low frequency component of real short-term interest rates and, as such, are highly

persistent. Holston et al. (2017) show that their estimates of the natural rate are nonstationary, reflecting a

high degree of persistence. Second, even well into the recovery from the Great Recession of 2007-2009, A∗

had not returned to historically normal levels. Therefore, it is likely that long-term influences are holding

the natural rate of interest down. Third, many possible explanations for low A∗, not only in the United States

but internationally, reflect highly persistent forces affecting the global supply and demand for savings. For

show a decline consistent with that from the measure used in this paper.
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Figure 6: The green line depicts the effective federal funds rate at the daily frequency, while the dark blue
line shows daily estimates of the natural real rate of interest from Christensen and Rudebusch (2019) (CR),
and the light blue line shows the five-year ahead five-year forward zero-coupon TIPS rate (TIPS) computed
by Gürkaynak et al. (2010) from Treasury real yields.

example, one potential explanation for the decline in A∗ is a dramatic slowdown in trend real GDP growth in

many advanced economies. For a more detailed discussion, see Williams (2017).

To investigate the possibility of a structural break in the level of A∗, we apply the Andrews (1993) test,

which shows the existence of a structural break in all measures of the natural rate.10 The test identifies July

2011 as the breakpoint for both the CR and TIPS measures of the natural rate. Based on this dating of the

structural break in A∗, in the remainder of this subsection we split our overall sample into two subsamples:

January 1999 through June 2011, and July 2011 through July 2020. We end the sample in July 2020 before the

announcement of the flexible average-inflation targeting framework by the Federal Reserve. Our theoretical

analysis suggests that the new framework should lead to a different data-generating process for our variables

of interest.

Table 1 reports the average A∗ and the average correlation of changes in expected inflation and interest

rates with changes in the VIX for each subsample. To test for differences across subsamples, we compute

the C-statistic for the null hypothesis that the estimates are the same across subsamples, controlling for serial

10For the CR measure of the natural rate, the sup � value is 621.55 which occurs in July 2011, and for the TIPS measure, the sup �
value is 662.94 which also occurs in July 2011. In both cases, the null hypothesis of structural stability in the level of A∗ is rejected at
the 1% level.
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correlation using the methodology outlined by Wilks (1997).11 In the earlier subsample, the natural real rate

of interest is higher than in the later sample. This feature allows us to assess the theoretical predictions of

the model. In the target equilibrium of our theoretical model, a decline in the natural real rate lowers the

correlation between uncertainty shocks and changes in expectations about inflation and interest rates further

into negative territory, at least in the tails of the distribution. In the liquidity trap equilibrium, the predictions

are reversed.

Table 1: Differences in moments across subsamples

mean A∗ mean correlation
with ΔVIX

A∗CR A∗TIPS BEI BEI TFR TFR
frequency monthly monthly daily monthly daily monthly

Jul 2011 - Jul 2020 0.54 0.83 -0.27 -0.33 -0.31 -0.26
Jan 1999 - Jun 2011 1.47 2.88 -0.08 0.00 -0.15 -0.10

difference -0.93∗∗∗ -2.05∗∗∗ -0.19∗∗∗ -0.33∗∗∗ -0.16∗∗∗ -0.16∗∗

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlations are the trailing-
window Spearman correlation of the change in the variable with the change in the VIX (here referred to as
ΔVIX). Spearman correlations are computed over one-year windows at the daily frequency and over five-
year windows at the monthly frequency. A∗CR denotes estimates of the natural rate from Christensen and
Rudebusch (2019), and A∗TIPS is the five-year ahead five-year forward zero-coupon TIPS rate computed from
Gürkaynak et al. (2010) used as a proxy for the natural rate. BEI is the five-year ahead five-year forward
breakeven inflation rate, while TFR is the five-year ahead five-year forward Treasury constant maturity yield.

Consistent with the target equilibrium of our theoretical model, the mean daily correlation, measured

over a one-year trailing-window, between changes in five-year ahead five-year forward breakeven inflation

expectations (BEI) and changes in the VIX declined from -0.09 in the earlier subsample to -0.29 in the later

subsample. This decline is statistically significant at the 1% level.

The analogous mean correlation, again measured at the daily frequency over a one-year trailing-window,

between changes in five-year five-year forward Treasury constant maturity yields (TFR) and changes in the

VIX declined from -0.16 in the earlier subsample to -0.33 in the later subsample. This difference across

subsamples is significant at the 1% level.

These changes in the link between uncertainty shocks and interest rates and inflation, respectively, hold

11Appendix D.A outlines the details of constructing the C-statistic as applied in this context.
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up at different frequencies. As Table 1 shows, the corresponding monthly correlation for breakeven inflation

rates, measured over a five-year trailing window, fell from -0.08 to -0.35 across subsamples, a statistically

significant decline at the 1% level. Similarly, the correlation for interest rates declined as well with the

changes being statistically significant at the 5% level.

IV.C Lower Natural Rate and the Effects of Uncertainty Shocks on Inflation

This section tests the empirical prediction of our theoretical model that the correlation between uncertainty

shocks and movements in inflation expectations changes as the natural real rate of interest falls. The target

equilibrium of our model predicts a fall in the correlation while a liquidity trap equilibrium implies a

movement in the opposite direction.

To investigate whether either equilibrium is consistent with the data, we run a time series regression of

the correlation between changes in the VIX and changes in inflation expectations on the real natural rate of

interest and an intercept.

The correlation between uncertainty shocks and changes in breakeven inflation rates serving as the

dependent variable is our baseline correlation. We compute it in three different ways. First, we compute the

correlation from daily data over a 14-day rolling window. Despite obtaining a noisier measure, we choose

a short window for computing the correlation to avoid having a highly persistent regressor. Second, we

compute it at the monthly frequency using a five-year rolling window. And third, we compute a correlation

at the monthly frequency from daily data within this month, labeled as “within.” Further details can be

found in Section II. Data for the natural rate of interest, A∗, are the daily estimates of Christensen and

Rudebusch (2019) and daily data on the five-year ahead five-year forward zero-coupon TIPS yield computed

from Gürkaynak et al. (2010); for the monthly and within specifications, we take the monthly average of the

daily values of A∗. The sample period for the daily regression and the within regression is January 1999 to

July 2020, while the sample for the monthly regression is January 2004 to July 2020.12

Together, all empirical specifications show a significantly positive coefficient on the natural rate of interest.

Table 2 reports the estimated coefficients, accounting for serial correlation usingNewey-West standard errors.

The left panel – Columns (1), (2), and (3) – uses the CR measure of A∗ as a regressor, while the right panel –

Columns (4), (5), and (6) – uses the TIPS proxy for A∗. Column (1), the regression of the two-week trailing-

12There is a shorter sample with a later start date for the monthly regression because the correlation is computed at the monthly
frequency with a long enough trailing window to allow for a meaningful calculation. With daily data, a trailing window correlation
can be computed with the same number of data points with fewer calendar months of data being cut off.
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Table 2: Regression of correlation between changes in VIX and BEI on the natural rate of interest

Dependent variable:
corr(ΔVIXC ,ΔBEIC)

A∗CR A∗TIPS

(1) (2) (3) (4) (5) (6)
A∗ 0.161∗∗∗ 0.395 0.167∗∗∗ 0.077∗∗∗ 0.157 0.081∗∗∗

(0.039) (0.540) (0.040) (0.018) (0.202) (0.019)

constant −0.317∗∗∗ −0.520 −0.330∗∗∗ −0.298∗∗∗ −0.423 −0.313∗∗∗
(0.048) (0.608) (0.045) (0.043) (0.444) (0.038)

Frequency daily monthly within daily monthly within
Sample Start Jan 1999 Jan 2004 Jan 1999 Jan 1999 Jan 2004 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,374 199 259 5,371 199 259
R2 0.054 0.590 0.100 0.059 0.483 0.112

Note: Newey-West (HAC) standard errors. ∗? < 0.10; ∗∗? < 0.05; ∗∗∗? < 0.01.

window correlation between changes in the VIX and changes in inflation expectations on the CR estimates of

A∗ at the daily frequency, shows a highly significant positive relationship between the sensitivity of inflation

expectations to uncertainty shocks and the natural rate of interest. Column (2), changing the frequency to

monthly and computing the correlation over a five-year trailing window, increases the estimated coefficient

on the CR A∗ measure, which remains significant at the 1% level. Finally, as a robustness check, the within

specification in Column (3) computes the correlation within each calendar month and regresses the resulting

time series on monthly averages of the natural rate of interest. This approach avoids any sample overlap in

the time series for the trailing-window correlation entering the regression. The estimated coefficient on A∗ in

this specification is positive, with a magnitude about the same as for the regression at the daily frequency,

and is and also significant at the 1% level.

Columns (4), (5), and (6), running the analogous specifications using the five-year five-year zero-coupon

TIPS rates as a proxy for A∗, yields the same conclusions. The estimated coefficients on the TIPS A∗ in

these regressions are slightly lower, due to the greater range in this measure over the sample period, but

are still positive in magnitude and significantly different from zero at the 1% level, so they have the same

interpretation as the other estimates.

These results establish a significantly positive link between the natural real rate of interest and the
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impact of uncertainty shocks on inflation expectations. The positive sign of the coefficient indicates that this

correlation between changes in uncertainty and changes in inflation expectations tends to decline when A∗

falls, as we observe broadly in the data over our sample period. This positive sign is consistent with the target

equilibrium of our theoretical model and at odds with the liquidity trap equilibrium.

In the following section, we show that these results carry over to nominal interest rates.

IV.D The Effects of Uncertainty Shocks on Interest Rates

We now turn to test the empirical prediction of our model that the correlation between uncertainty shocks

and changes in interest rates also moves with a decline in the natural real rate of interest.

Analogously to Table 2 above, Table 3 presents time series regression results to formally test this hypothe-

sis. Now the correlation is between changes in the VIX and changes in interest rates as measured by five-year

ahead five-year forward Treasury constant maturity yields (TFR). Again, the left panel – Columns (1), (2),

and (3) – uses the CR measure of A∗ as a regressor, while the right panel – Columns (4), (5), and (6) – uses the

TIPS proxy for A∗.

Table 3: Regression of correlation between changes in VIX and TFR on the natural rate of interest

Dependent variable:
corr(ΔVIXC ,ΔTFRC)

A∗CR A∗TIPS

(1) (2) (3) (4) (5) (6)
A∗ 0.129∗∗∗ 0.198∗ 0.144∗∗∗ 0.071∗∗∗ 0.069 0.079∗∗∗

(0.046) (0.107) (0.049) (0.021) (0.081) (0.023)

constant −0.334∗∗∗ −0.372∗∗∗ −0.373∗∗∗ −0.335∗∗∗ −0.310 −0.373∗∗∗
(0.058) (0.132) (0.059) (0.051) (0.197) (0.051)

Frequency daily monthly within daily monthly within
Sample Start Jan 1998 Jan 1998 Jan 1998 Jan 1999 Jan 1999 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,625 271 271 5,381 259 259
R2 0.035 0.443 0.071 0.048 0.329 0.097

Note: Newey-West (HAC) standard errors. ∗? < 0.10; ∗∗? < 0.05; ∗∗∗? < 0.01.

As shown in Column (1) of the table, the regression of the two-week trailing-window correlation between

changes in the VIX and changes in long-term expected interest rates on the CR estimates of A∗ and an
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intercept at the daily frequency, we estimate a positive and statistically significant relationship between the

responsiveness of interest rate expectations to uncertainty shocks and the natural rate of interest. The same

result holds for the regression on the TIPS proxy for A∗ at the daily frequency, shown inColumn (4) of the table,

with an estimated coefficient on the natural rate lower in magnitude but nonetheless positive and statistically

significant. Moving from daily to monthly frequency for these time series regressions, with monthly results

shown in Columns (2) and (5), leads to an estimated coefficient on A∗ that is still positive, but that is no longer

significant. However, computing the correlation within a month (as described above), shown in Columns (3)

and (6), yields positive estimated coefficients on A∗ that are significant at the 1% level.

In sum, all the empirical results in this paper are consistent with the theoretical prediction of the target

equilibrium described in the theoretical section of this paper, and inconsistent with being in a liquidity trap

equilibrium. These results supporting the U.S. economy being in a target equilibrium are consistent with the

findings of Mertens and Williams (2021) using data from derivatives markets.

V Robustness of Empirical Results

We assess the robustness of our main empirical results along two dimensions, using alternative measures

of uncertainty and of inflation expectations. Overall, we find that our qualitative results are robust to these

alternative measures, although the level of statistical significance is weaker in some instances.

Our first robustness concerns the length of the sample period that was determined by data availability.

To extend the time dimension, we use 5-year forward Treasury yields five years out as in Figure 4. Instead

of changes in the VIX, we study changes in realized volatility, a close substitute to the VIX.13 We compute

realized volatility as the backward-looking moving average over 30 days (21 trading days) of squared daily

returns in the S&P 500 index starting in 1962.

Figure 3 shows the Spearman correlation between changes in realized volatility and changes in five-year

five-year ahead Treasury yield. This correlation broadly hovered around zero between themid-sixties and the

Great Recession. A small correlation is consistent with the natural real rate of interest being sufficiently large

for the lower bound not to be a significant constraint on equilibrium quantities. Note that this prediction

is only consistent with the target equilibrium. The correlation only turned substantially negative in the

aftermath of the Great Recession when the correlation between uncertainty shocks and inflation expectations

13Figure 3 in Internet Appendix A shows the close relationship between the VIX and realized volatility during the period when
both measures are available.
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turned negative as well.

Figure 7: Five-year trailing-windowSpearmancorrelationofmonthly changes in realizedvolatility [computed
as the backward-looking moving average over 30 days (21 trading days) of squared daily returns in the S&P
500 index] with monthly changes in the five-year five-year ahead Treasury constant maturity rate.

Our second robustness exercise examines alternative measures of inflation expectations. The breakeven

inflation measure analyzed earlier is potentially contaminated by time-varying liquidity and risk premiums.

To assess the importance of these premiums on our results, we consider twomeasures of inflation expectations

that are arguably less prone to this type of mismeasurement.

The first alternative measure of inflation expectations is the five-year, five-year forward expected inflation

rates, which are constructed to remove estimated risk and liquidity premiums byD’Amico et al. (2018) (DKW).

The third column of Table 4 reports the subsamplemean correlations between changes in the VIX and changes

in this measure of inflation expectations at the daily frequency over one-year trailing windows. These results

are similar to those using the breakeven inflation rates, and the difference in the mean correlations across

subsamples is statistically significant.

The time series for the DKW measure is available at the daily frequency going back in time further

than the BEI series. This longer time series allows us see how the correlation between changes in long-run

inflation expectations and uncertainty shocks behaved in the 1990s. Figure 8 shows that this correlation using
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Figure 8: Spearman correlation between changes in the VIX and changes in the five-year, five-year forward
expected inflation rate, adjusted for risk premia and the liquidity premium using the estimates of D’Amico
et al. (2018): monthly frequency, five-year trailing-window correlation.

the DKW estimates of inflation expectations was positive in the late 1990s, before trending downward over

the subsequent two decades. Consistent with our baseline specifications, we turn the DKW measure into

monthly averages.

Our second alternative measure of inflation expectations is the median ten-year CPI inflation expectation

from theFederalReserveBankofPhiladelphia’s SurveyofProfessional Forecasters (SPF).14 Unlike thefinancial

market data that can be analyzed at higher frequencies, the SPF data are collected quarterly. Therefore, for

this measure, we average the VIX over each quarter up through the first month of the quarter to be broadly

consistent with the information set available to survey participants. We compute five-year trailing-window

correlations with changes in the VIX for this survey-based measure of expected inflation.

The fourth column of Table 4 shows that the results using the SPF measure of inflation expectations are

broadly consistent with those using market-based measures. The difference in the mean correlations across

subsamples using the SPF is both of similar size to those using market-based measures and is statistically

significant.

14The SPF also collects five-year ahead forecasts on CPI inflation, but this measure is only available for a shorter sample. We use
ten-year inflation expectations for consistency with the sample used throughout this paper.
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Third, we consider two alternative measures of uncertainty: the one-year-ahead estimate of economic

financial uncertainty (EFU) from Ludvigson et al. (2021) and the economic policy uncertainty (EPU) index

of Baker et al. (2016). Unlike the VIX, which is priced in financial markets, the EFU index is a weighted

average of conditional standard deviations of one-year-ahead forecast errors across a variety of financial

indicators, while the EPU index is a news-based measure. The final two columns of Table 4 report subsample

comparisons using these measures of uncertainty. These statistics are constructed as in Table 1.

Table 4: Differences in moments across subsamples.

mean correlation
with ΔVIX

mean correlation
with ΔBEI

BEI BEI DKW SPF EFU EPU
frequency daily monthly monthly quarterly monthly monthly

Jul 2011 - Jul 2020 -0.27 -0.33 -0.30 -0.24 -0.23 -0.18
Jan 1999 - Jun 2011 -0.08 0.00 -0.15 -0.02 -0.09 -0.09

difference -0.19∗∗∗ -0.33∗∗∗ -0.15∗∗ -0.22∗∗∗ -0.14∗ -0.09

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlation is the trailing-
window correlation of the change in the variablewith the change in the breakeven inflation rate (here denoted
as ΔBEI) or the change in the VIX (here denoted as ΔVIX), as labeled. Correlations are computed over one-
year windows at the daily frequency and over five-year windows at the monthly and quarterly frequencies.
EFU is the one-year ahead estimate of economic financial uncertainty from Ludvigson et al. (2021), and EPU
is the economic policy uncertainty index of Baker et al. (2016). BEI is the five-year ahead five-year forward
breakeven inflation rate, and DKW is the five-year ahead five-year forward breakeven inflation rate from
D’Amico et al. (2018) which removes risk premia and liquidity premia from the Treasury-implied rate. SPF
is the median ten-year ahead CPI inflation rate from the Survey of Professional Forecasters conducted by the
Federal Reserve Bank of Philadelphia.

As seen in the table, the subsample changes in mean correlations using these alternative measures of

uncertainty are qualitatively consistent with those using the VIX as the measure of uncertainty (shown in the

first two columns of the table). That said, the magnitudes of the declines in the mean correlations are smaller

than in the case of the VIX.

These robustness exercises demonstrate that our key findings are not sensitive to the presence of liquidity

or risk premiums in breakeven inflation expectations. Although the results using these alternative measures

of uncertainty are not as quantitatively or statistically strong as for the market-based measure, qualitatively

they are in the same direction and consistent with the model prediction for the target equilibrium.
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VI Conclusion

This paper documents a marked downward trend in the correlation between changes in market-based mea-

sures of uncertainty and changes in expected inflation and expected interest rates over the past quarter

century. These changing correlations have occurred at the same time that estimates of the natural rate of in-

terest declined significantly and the incidence of monetary policy being near or at the lower bound increased.

In this paper, we show that this constellation of observations is consistent with the predictions of a standard

New Keynesian model with a lower bound on interest rates when the economy is in the target equilibrium.

The lower bound on interest rates is crucial because, absent the lower bound, the correlations studied here

would be zero. We also show that average-inflation targeting policies can mitigate the effects of uncertainty

shocks on the unconditional means of inflation and output.

Throughout this paper, we focus on the theoretical predictions for unconditional moments and empirical

counterparts of far-forward expectations. A future extension of this analysis is to examine business-cycle

frequency comovements between uncertainty and inflation and interest rate expectations in the presence of

persistent shocks to the economy.
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Appendix

A Model Derivations: The New Keynesian Model with a Lower Bound

Equations (1) and (2) describe the textbook log-linearized New Keynesian model on which we impose the

restriction that demand shocks &C are i.i.d. With this assumption, we can express these two equations in

terms of inflation expectations and without expected output gaps. To this end, we solve equation (1) for the

output gap as

GC =
1
�
(�C − �EC�C+1), (13)

iterate forward, and take conditional expectations to get

EGC+1 =
1
�
(EC�C+1 − �EC�C+2).

Using the law of iterated expectations, we simplify ECEC+1�C+2 = EC�C+2. Substituting these expressions for

GC and ECGC+1 in equation (2) yields

�C − EC�C+1 = �[&C − 
(8C − EC�C+1 − A∗)] + �(EC�C+1 − EC�C+2).

Taking unconditional expectations and using that E�C = E�C+9 = E� yields

�C − EC�C+1 = �[&C − 
(8C − EC�C+1 − A∗)]. (14)

The Fisher relation follows.

Minimizing the central bank’s loss function, taking expectations as given, results in optimal discretionary

policy

8C = max{iC , 8!�}.

Policy thus follows the shadow rate whenever feasible, and the policy rate is at the lower bound otherwise.

To write the model in terms of the interest rate wedge, substitute iC + 8ΔC for the nominal interest rate

8C in equation (14) to yield equation (4). Then substitute equation (4) for �C in equation (13) to yield the

corresponding equation for the output gap.

To derive the Fisher equation, take unconditional expectations of equation (14), again using that E�C =
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E�C+9 = E�.

To derive the first and second equalities in equation (6), take unconditional expectations of (1) and (4),

respectively, using that E�C = E�C+1.

A.A Derivation for Cutoff of Binding Lower Bound

Start from the following equations:

%!� = �(�̄!�); (15)

�̄!� = 


(
8!� − � − A∗ +

#

# − 1 (E8
Δ + �)

)
− &̄; (16)

E8Δ =
1



∫ �̄!�

−∞
(�̄!� − �)6(�)3�. (17)

A.A.1 Link between expectations, cutoff, and lower bound probability

Equation (16) implies that the link between expectations in equation 6 can be written as

− 1
# − 1 (E8

Δ + �) = 1
#

(
8!� − � − A∗ − 1




[
&̄ + �̄!�

] )
=

1
#

(
8!� − � − A∗ − 1




[
&̄ + �−1(%!�)

] )
.

A.A.2 Critical value for %!�

We rewrite equation (16) as

−
#

# − 1E8
Δ = 8!� − A∗ − 1




[
&̄ + �̄!�

]
+

(
#

# − 1 − 1
)
�

This equation gives us an affine relationship between the expected wedge E8Δ and the cutoff �̄!�. The slope
1


#−1
# is positive.

Equation (17) is zero for �̄!� → −∞. It is monotonic since the integrand is nonnegative. Furthermore, it

is concave as we shall see below. And it tends to infinity for �̄!� → ∞. As a result, it can intersect with the

previous line twice, once, or not at all. Now note that

3E8Δ

3�̄!�
=

3

3�̄!�

[
1



∫ �̄!�

−∞
(�̄!� − �)6(�)3�

]
=

1



∫ �̄!�

−∞
6(�)3� = 1



%!�

by Leibniz’s rule. This derivative is always positive and increasing in �̄!�. The two lines thus have the same
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slope when

%̄!� =
# − 1
#

.

The two intersections between the two lines must thus be to the left and right of the value for � such that

%!� = %̄!�. In the case with one intersection, it coincides with the critical lower bound probability.

A.A.3 Expression for expected interest rate wedge through integration by parts

We start from equation (17) and compute the integral over the first term of the integrand:

E8Δ =
1



(
�̄!�%!� −

∫ �̄!�

−∞
�6(�)3�

)
. (18)

For the second term of the integrand, use the formula for integration by parts to simplify this expression

further: ∫ �̄!�

−∞
�6(�)3� = [��(�)]�̄

!�

−∞ −
∫ �̄!�

−∞
�(�)3� = [��(�)]�̄

!�

−∞ − [�(�)]�̄
!�

−∞ = �̄!��(�̄!�) −�(�̄!�), (19)

where �(·) denotes the cumulative distribution function and�(·) denotes the super-cumulative distribution

function, i.e. the primitive of the c.d.f. Plugging this into the previous expression results in

E8Δ =
1


�(�̄!�). (20)
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B Data Appendix

variable description frequency sample source

Measures of uncertainty
VIX CBOE Volatility Index daily 1990- Bloomberg: VIX Index
EFU economic financial uncertainty monthly 1960- Jurado et al. (2015)15
EPU news-based policy uncertainty index daily 1985- Baker et al. (2016)16

Measures of long-term inflation expectations
BEI Treasury-implied breakeven inflation rate daily 1999- Bloomberg: USGG5Y5Y Index
DKW dynamic factor model daily 1983- D’Amico et al. (2018)17
SPF Survey of Professional Forecasters quarterly 1991- Philadelphia Fed - SPF: CPI10 18

Measures of long-term interest rate expectations
TFR five-year ahead five-year forward

Treasury constant maturity rate
daily 1962- Federal Reserve Board

Measures of the real natural rate of interest (A∗)
CR no-arbitrage model-implied daily 1998- Christensen and Rudebusch (2019)11
TIPS five-year ahead five-year forward

zero-coupon TIPS rate
daily 1999- Gürkaynak et al. (2010)11

15Updated data downloaded from the authors’ website: www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
16Updated data downloaded from the authors’ website: www.policyuncertainty.com/us_monthly.html - Daily News Index
17Data from: www.federalreserve.gov/econres/notes/feds-notes/DKW_updates.csv
18Data from: www.philadelphiafed.org/surveys-and-data/data-files
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C Proofs and Derivations

C.A Proof of Proposition 1

Proof: For the comparative statics with respect to the mean-preserving spread, take the derivative with

respect to B.

dE8Δ

dB =
d
dB

1


�

!(B, �̄!�)

=
1


�

!
1 (B, �̄

!�) +�!
2 (B, �̄

!�)
#

# − 1
dE8Δ

dB

=
1



�
!
1 (B, �̄

!�)
1 − #

#−1�
!
2 (B, �̄

!�)

=
1



# − 1
#

�
!
1 (B, �̄

!�)
#−1
# −�

!
2 (B, �̄

!�)

�

Turning to changes in average demand, we compute the comparative statics with respect to &̄. From the

equilibrium correspondence,

�2(�̄!�)
3�̄!�

3&̄
=
# − 1
#

(
3�̄!�

3&̄
+ 1

)
⇐⇒ 3�̄!�

3&̄
= −

# − 1
#

1
#−1
# − %!�

From the equation for the cutoff,
3�̄!�

3&̄
= −1 + 


#

# − 1
dE8Δ

d&̄

Together,

dE8Δ

d&̄ =
1



# − 1
#

©­«1 −
# − 1
#

1
#−1
# − %!�

ª®¬ .
To see that the sign of this expression switches depending on the equilibrium, notice that the sign

is determined by the expression in parentheses. This expression is clearly positive in the liquidity trap

equilibrium since there %!� > #−1
# . In the target equilibrium, this expression

1 −
# − 1
#

1
#−1
# − %!�

= 1 − 1
1 − #

#−1%
!�

41



is negative: for 0 < %!� <
#−1
# , the denominator in the rightmost expression less than 1 and the whole

expression is thus negative.

C.B Derivation of comparative statics to lower bound probability

Differentiating the equilibrium correspondence in equation (9) on both sides with respect to B yields

�1(B, �̄!�) + �(B, �̄!�)
3�̄!�

3B
=
# − 1
#

3�̄!�

3B
.

Consequently, we get
3�̄!�

3B
=

�1(B, �̄!�)
#−1
# − �(B, �̄!�)

.

To sign the derivative 3%!�/3B, we plug the expression for the derivative of the cutoff into the derivative of

%!� to get

3%!�

3B
= �1(B, �̄!�) + 6(B, �̄!�)

3�̄!�

3B

= �1(B, �̄!�) + 6(B, �̄!�)
�1(B, �̄!�)

#−1
# − �(B, �̄!�)

.
(21)

The analogous expression for the derivative with respect to &̄ is

3%!�

3&̄
= 6(�̄!�)3�̄

!�

3&̄
= −

# − 1
#

1
#−1
# − %!�

6(�̄!�). (22)

C.C Proof of Lemma 3

Proof: We start by differentiating the equilibrium correspondence in (9) to get

# − 1
#

3�̄!�

3B
= �2(B, �̄!�)

3�̄!�

3B
+�1(B, �̄!�).

Rewriting this expression, we get (
# − 1
#
− %!�

)
3�̄!�

3B
= �1(B, �̄!�) > 0.

Consequently, (#−1
# −%!�) and 3�̄!�

3B are of the same sign. The cutoff is thus increasing in the target equilibrium
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and decreasing in the liquidity trap equilibrium. �

Intuitively, by Lemma 2, the function �(·) shifts up when uncertainty increases. We furthermore know

that lim�→−∞�(�) = 0 since� is obtained by integrating over the cumulative density function. Furthermore,

for the same reason, the slope of� converges to 1 for large values

lim
�→∞

�
′(�) = 1.

Lastly, since �
′′(�) = 6(�) is the probability density function and thus non-negative, the function �(·) is

convex. At the same time, the right-hand side of the equilibrium correspondence in (9) is independent of

uncertainty.

As Figure 2 illustrates, the �-function intersects the right-hand side of the equilibrium correspondence

from above to below in the target equilibrium and from below to above in the liquidity trap equilibrium.

As a result, increasing uncertainty will weakly shift the intersection to the right in the target equilibrium

andweakly to the left in the liquidity trap equilibrium. That is, the equilibrium cutoff �̄!� shifts to the right in

the target equilibrium, thereby weakly increasing the part of the state space in which the lower bound binds.

In the liquidity trap equilibrium, the predictions are reversed: The equilibrium cutoff �̄!� shifts to the

left, thereby weakly lowering the probability of a binding lower bound.

Under normality, these results hold globally. The term that determines the sign of the change in the lower

bound probability in response to higher uncertainty is

3%!�

3B
= �1(B, �̄!�) + 6(B, �̄!�)

�1(B, �̄!�)
#−1
# − �(B, �̄!�)

.

Assuming a normal distribution of the demand shock, i.e. � ∼ #(0, �2), we write this term as

3%!�

3B
=

1
2��

©­­«
4
−
(
�̄!�
�

)2

#−1
# −Φ

(
�̄!�

�

) − √2� �̄
!�4
− 1

2

(
�̄!�
�

)2

�

ª®®¬ ,
where Φ(·) is the c.d.f. of the standard normal distribution. Substituting �̄!� = −

√
2�� and recognizing that

the term outside the bracket is always positive, we analyze the term in the bracket

 (�) = 1
2

1
#−1
# −Φ(−

√
2�)
+ 4�2√

��
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that is independent of the volatility parameter �.

We now show that the sign of  (�) is negative for � < �∗ where �∗ = Φ−1
(
#−1
#

)
is the point of the

singularity and positive for � > �∗. To this end, we proceed in the following steps.

First, when � approaches negative infinity,  (�) < 0 approaches negative infinity, i.e. lim�→−∞ (�) = −∞.

Both terms in the expression are negativewith one of thembeing bounded. On the other end,  (�) approaches

infinity for large values of �, i.e. lim�→∞ (�) = ∞.

Next, approaching the singularity from the left leads the function value to approach negative infinity,

lim�→− �̄∗ (�) = −∞. Approaching the singularity from the right leads to positive unbounded function values

lim�→+ �̄∗ (�) = ∞.

Third, the function has only one singularity where the denominator of the first term is zero. It is analytic

otherwise. Therefore, the function starts from unbounded negative values, reaches a maximum, and then

converges to negative infinity when approaching the singularity. On the right-hand side of the singularity,

the function starts from a high value, falls to a minimum, and then converges to positive infinity. Next we

compute the two extrema and show that the maximum to the left of the singularity sits below zero and the

minimum to the right above zero.

To compute the extrema, we take first-order conditions and set them to zero, i.e.,  ′(�) = 0, which results

in

2�42�2 (
1 + 2�2) − 1(

#−1
# −Φ(−

√
2�)

)2 = 0.

Rearranging the equation and taking the square root results in two conditions that hold at the extrema

1
#−1
# −Φ(−

√
2�1)

= −4�2
1

√
2�(1 + 2�2

1)

and
1

#−1
# −Φ(−

√
2�2)

= +4�2
2

√
2�(1 + 2�2

2).

Since the left-hand side is negative in the first and positive in the second equation, the two extrema are on

opposite sides of the singularity at �∗.

Evaluating the function value shows that the function value at the maximum to the left of the singularity

is below zero. Therefore, replace the first expression in  (·)with the expression from the first-order condition
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to arrive at

 (�1) =
√
�4�

2
1

(
�1 −

√
1
2 + �

2
1

)
< 0.

As a result,  (�1) < 0 for all � < �∗. For � > �∗, we get

 (�2) =
√
�4�

2
2

(
�2 +

√
1
2 + �

2
2

)
> 0.

Since themaximum to the left of the singularity lies below zero, all function values for � < �∗ are negative.

And since the minimum to the right is above zero, all function values for � > �∗ are positive.

The results for lower average demand follow directly from equation (22).

C.D Proof of Proposition 2

Proof: We start from the derivative of the expected wedge with respect to the natural rate

3E8Δ

3A∗
=

1


�2(B, �̄!�)

3�̄!�

3A∗
. (23)

Now, computing the second mixed derivative as

32E8Δ

3A∗3B
=

1


�1,2(B, �̄!�)

3�̄!�

3A∗
+ 1


�2,2(B, �̄!�)

3�̄!�

3A∗
3�̄!�

3B
+ 1


�2(B, �̄!�)

32�̄!�

3A∗3B
,

where we get the last term by computing

3�̄!�

3A∗
= −


(
1 −

#

# − 1
3E8Δ

3A∗

)
(24)

and
32�̄!�

3A∗3B
= 


#

# − 1
32E8Δ

3A∗3B
.

Plugging these expressions into the second mixed derivative yields

32E8Δ

3A∗3B
=

1



# − 1
#

1
#−1
# − %!�

(
�1,2(B, �̄!�) + 6(B, �̄!�)

3�̄!�

3B

)
3�̄!�

3A∗
. (25)
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We combine equations (23) and (24) to get

# − 1
#

(
1 + 1



3�̄!�

3A∗

)
=

1


�2(B, �̄!�)

3�̄!�

3A∗
,

or, rewritten,
3�̄!�

3A∗
= −


#−1
#

#−1
# − %!�

. (26)

Taken together and using equation (21) results in

32E8Δ

3A∗3B
= − ©­«

#−1
#

#−1
# − %!�

ª®¬
2 (

�1,2(B, �̄!�) + 6(B, �̄!�)
3�̄!�

3B

)
= − ©­«

#−1
#

#−1
# − %!�

ª®¬
2
3%!�

3B
.

�

To extend this proof to the mixed derivative with respect to A∗ and &̄, start again from equation (23) and

differentiate:
32E8Δ

3A∗3&̄
=

1


3%!�

3&̄
3�̄!�

3A∗
+ 1


%!�

32�̄!�

3A∗3&̄
.

Using equation (24), we get
32�̄!�

3A∗3&̄
= 


#

# − 1
32E8Δ

3A∗3&̄
.

Combining these equations with equation (22) to solve for the mixed derivative gives

32E8Δ

3A∗3&̄
= − 1




# − 1
#

1
#−1
# − %!�

6(�̄!�) ©­«−

#−1
#

#−1
# − %!�

ª®¬ + 1


%!�

(



#

# − 1
32E8Δ

3A∗3&̄

)
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©­«
#−1
#

#−1
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ª®¬
3

6(�̄!�)

= − ©­«
#−1
#

#−1
# − %!�

ª®¬
2
3%!�

3&̄
.

C.E Details on Symmetric and Unimodal Distributions

For symmetric and unimodal distributions, we get following result.
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Lemma 4 (Global result for symmetric unimodal distributions)

In the case of # = 2 and a unimodal symmetric distribution, a lower natural real rate of interest implies a more negative

impact of increased uncertainty on inflation expectations across all target equilibria. Across all liquidity trap equilibria

in this special case, a lower natural rate renders the impact of higher uncertainty on inflation expectations less negative.

The result also holds for all target equilibria when # ∈ (1, 2) and all liquidity trap equilibria for # > 2.

Proof: We start by showing that the result of Proposition 2 holds globally for unimodal symmetric distri-

butions when # = 2. Therefore, start with the observation that, in this case,

%!� =
# − 1
#

=
1
2 .

Due to the symmetry of the distribution, this case corresponds to a cutoff �̄!� = 0. An increase in uncertainty

for a symmetric unimodal distribution exhibits the single-crossing property for the distributions. As a result,

the c.d.f. of the riskier distribution lies above the less risky distribution for all negative values and below for

all positive values.

Due to single-crossing of the distributions, the probability of a binding lower bound increases for all

negative values and decreases for all positive values with higher uncertainty. Formally, �1,2(B, �) > 0 for all

� < 0 and�1,2(B, �) < 0 for all � > 0. Consequently the steps in the proof of Proposition 2 hold globally.

By the same logic, when # ∈ (1, 2), the critical value for the lower bound #−1
# < 1

2 . As a result, all

the target equilibria have a lower bound probability of less than 50% and, with a symmetric distribution,

the corresponding critical cutoff is in the negative territory. With single crossing, �1,2(B, �) > 0 for all target

equilibria. When# > 2, the critical cutoff is in positive territory and the results for the liquidity trap equilibria

hold globally. �

C.F Proof of Proposition 3

Proof: We follow analogous steps as in Section C.D. We start from the derivative of the expected wedge

with respect to the intercept � in the policy rule

3E8Δ

3�
=

1


�2(B, �̄!�)

3�̄!�

3�
. (27)
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Now, computing the second mixed derivative as

32E8Δ

3�3B
=

1


�1,2(B, �̄!�)

3�̄!�

3�
+ 1
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3�̄!�
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+ 1


�2(B, �̄!�)
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3�3B
,

where we get the last term by computing

3�̄!�

3�
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(
1

# − 1 +
#
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3E8Δ

3�

)
(28)

and
32�̄!�

3�3B
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#
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32E8Δ

3�3B
.

Plugging these expressions into the second mixed derivative yields

32E8Δ

3�3B
=

1



# − 1
#

1
#−1
# − %!�

(
�1,2(B, �̄!�) + 6(B, �̄!�)

3�̄!�
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)
3�̄!�

3�
.

We combine equations (27) and (28) to get

3�̄!�

3�
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!�)3�̄
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3�
,

or, rewritten,
3�̄!�

3�
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#

1
#−1
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.

Taken together and using equation (21) results in

32E8Δ

3�3B
=

1
# − 1

©­«
#−1
#

#−1
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ª®¬
2
3%!�

3B
.

�

Extending this proof to the mixed derivative of the interest rate wedge with respect to � and &̄

32E8Δ

3A∗3&̄
=

1


3%!�

3&̄
3�̄!�

3�
+ 1


%!�

32�̄!�

3�3&̄
,

where
32�̄!�

3�3&̄
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#

# − 1
32E8Δ

3�3&̄
.
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Therefore,

32E8Δ

3�3&̄
=

1



#−1
#
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D Technical Details on Time Series Analysis

D.A Controlling for Serial Correlation in Hypothesis Testing on Sample Means

Above we compute sample means of various time series in adjacent subsamples and test the null hypothesis

that these estimated means are the same across subsamples. Because the time series for which we compute

the mean – both the raw time series for A∗ and the trailing-window correlations – are highly persistent, we

control for serial correlation to conduct valid inference. To this end, we construct the following C-statistic for

this null hypothesis:

C =
H̄2 − H̄1√

Var(H̄2 − H̄1)

which is the ratio of the difference in subsample means to the standard error of this difference, where H1 is the

first subsample with =1 observations and H2 is the second subsample with =2 observations, with H̄8 denoting

the sample mean of subsample 8.

Following Wilks (1997), we use a scaling factor approach to control for serial correlation in our setting.

Hence, we compute the variance of the difference in means as follows:

Var(H̄2 − H̄1) = '̂2
B2

2
=2
+ '̂1

B2
1
=1

with B2
8
denoting the sample variance of subsample 8. For each subsample 8, the scaling factor '8 given by

'8 = 1+2
∑=8−1
:=1 [1− :/=8]�: accounts for serial correlation �: at various lags :, and the modified scaling factor

'̂8 = '8 exp(2'8/=8) corrects for potential bias in estimating this scaling factor.
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Internet Appendix

A Robustness of Empirical Estimates

This section presents evidence that the conclusions of this paper do not rest on the usage of Spearman

correlations. While regular Pearson correlations are more strongly affected by outliers present in the data,

they do deliver consistent results. To make this point, we replicate each result using the standard correlation

measure. While the results for the correlation between uncertainty and inflation expectations contained both

measures in themain body of the paper, Figure 4 shows the analogous results for forward interest rates. Table

5 shows, analogously to Table 1, the estimates for the subsample split based on Pearson correlations. The

following two tables show robustness of the main regression specifications. The chart on the DKW measure

and the following table show that the robustness exercises are also robust to using Pearson correlations.

Figure 1: Five-year trailing-windowPearson correlation ofmonthly changes in the VIXwithmonthly changes
in the five-year ahead five-year forward Treasury constant maturity rate.
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Table 5: Differences in moments across subsamples

mean A∗ mean Pearson correlation
with ΔVIX

A∗CR A∗TIPS BEI BEI TFR TFR
frequency monthly monthly daily monthly daily monthly

Jul 2011 - Jul 2020 0.54 0.83 -0.29 -0.35 -0.33 -0.23
Jan 1999 - Jun 2011 1.47 2.88 -0.09 -0.08 -0.16 -0.08

difference -0.93∗∗∗ -2.05∗∗∗ -0.20∗∗∗ -0.27∗∗∗ -0.17∗∗∗ -0.15∗∗

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlations are the trailing-
window Pearson correlation of the change in the variable with the change in the VIX (here referred to as
ΔVIX). Pearson correlations are computed over one-year windows at the daily frequency and over five-year
windows at themonthly frequency. A∗CR denotes estimates of the natural rate fromChristensen andRudebusch
(2019), and A∗TIPS is the five-year ahead five-year forward zero-coupon TIPS rate computed fromGürkaynak et
al. (2010) used as a proxy for the natural rate. BEI is the five-year ahead five-year forward breakeven inflation
rate, while TFR is the five-year ahead five-year forward Treasury constant maturity yield.

Table 6: Regression of Pearson correlation between changes in VIX and BEI on the natural rate of interest

Dependent variable:
corr(ΔVIXC ,ΔBEIC)

A∗CR A∗TIPS

(1) (2) (3) (4) (5) (6)
A∗ 0.192∗∗∗ 0.313∗∗∗ 0.190∗∗∗ 0.092∗∗∗ 0.134∗∗∗ 0.091∗∗∗

(0.038) (0.078) (0.039) (0.018) (0.036) (0.019)

constant −0.356∗∗∗ −0.493∗∗∗ −0.362∗∗∗ −0.334∗∗∗ −0.432∗∗∗ −0.341∗∗∗
(0.045) (0.106) (0.042) (0.040) (0.098) (0.036)

Frequency daily monthly within daily monthly within
Sample Start Jan 1999 Jan 2004 Jan 1999 Jan 1999 Jan 2004 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,374 199 259 5,371 199 259
R2 0.072 0.483 0.120 0.078 0.463 0.132

Note: Newey-West (HAC) standard errors. ∗? < 0.10; ∗∗? < 0.05; ∗∗∗? < 0.01.
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Table 7: Regression of Pearson correlation between changes in VIX and TFR on the natural rate of interest

Dependent variable:
corr(ΔVIXC ,ΔTFRC)

A∗CR A∗TIPS

(1) (2) (3) (4) (5) (6)
A∗ 0.158∗∗∗ 0.129 0.167∗∗∗ 0.086∗∗∗ 0.035 0.090∗∗∗

(0.042) (0.107) (0.051) (0.020) (0.043) (0.024)

constant −0.396∗∗∗ −0.277 −0.417∗∗∗ −0.395∗∗∗ −0.218 −0.415∗∗∗
(0.051) (0.194) (0.058) (0.045) (0.175) (0.050)

Frequency daily monthly within daily monthly within
Sample Start Jan 1998 Jan 1998 Jan 1998 Jan 1999 Jan 1999 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,625 271 271 5,381 259 259
R2 0.049 0.119 0.087 0.066 0.043 0.117

Note: Newey-West (HAC) standard errors. ∗? < 0.10; ∗∗? < 0.05; ∗∗∗? < 0.01.

Figure 2: Pearson correlation between changes in the VIX and changes in the five-year, five-year forward
expected inflation rate, adjusted for risk premia and the liquidity premium using the estimates of D’Amico
et al. (2018): daily frequency, one-year trailing-window correlation.
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Table 8: Differences in moments across subsamples for Pearson correlations.

mean Pearson correlation
with ΔVIX

mean Pearson correlation
with ΔBEI

BEI BEI DKW SPF EFU EPU
frequency daily monthly monthly quarterly monthly monthly

Jul 2011 - Jul 2020 -0.29 -0.35 -0.31 -0.12 -0.24 -0.10
Jan 1999 - Jun 2011 -0.09 -0.08 -0.16 0.01 -0.14 -0.06

difference -0.20∗∗∗ -0.27∗∗∗ -0.15∗∗∗ -0.13∗ -0.10 -0.04

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlation is the trailing-
window correlation of the change in the variablewith the change in the breakeven inflation rate (here denoted
as ΔBEI) or the change in the VIX (here denoted as ΔVIX), as labeled. Correlations are computed over one-
year windows at the daily frequency and over five-year windows at the monthly and quarterly frequencies.
EFU is the one-year ahead estimate of economic financial uncertainty from Ludvigson et al. (2021), and EPU
is the economic policy uncertainty index of Baker et al. (2016). BEI is the five-year ahead five-year forward
breakeven inflation rate, and DKW is the five-year ahead five-year forward breakeven inflation rate from
D’Amico et al. (2018) which removes risk premia and liquidity premia from the Treasury-implied rate. SPF
is the median ten-year ahead CPI inflation rate from the Survey of Professional Forecasters conducted by the
Federal Reserve Bank of Philadelphia.
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A.A Realized volatility

Figure 3 shows the close connection between VIX and realized volatility during the sample period when both

measures are available.

Figure 3: Monthly time series of VIX and realized volatility [computed as the backward-looking moving
average over 30 days (21 trading days) of squared daily returns in the S&P 500 index]; both series computed
as monthly averages of daily values.
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