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Local projections for applied economics ⋆

Òscar Jordà†

July 2023

Abstract

The dynamic causal effect of an intervention on an outcome is of paramount interest
to applied macro- and micro-economics research. However, this question has been
generally approached differently by the two literatures. In making the transition from
traditional time series methods to applied microeconometrics, local projections can
serve as a natural bridge. Local projections can translate the familiar language of vector
autoregressions (VARs) and impulse responses into the language of potential outcomes
and treatment effects. There are gains to be made by both literatures from greater
integration of well established methods in each. This review shows how to make these
connections and points to potential areas of further research.
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1. Introduction

Impulse response functions estimated with vector autoregressions (VARs) are a standard
statistic used to investigate dynamic macroeconomic relationships. Though many associate
impulse responses with Sims (1980), there are references in economics already in Frisch
(1933). Of course, before their arrival to economics, impulse responses could trace their
origin to the field of signal processing. A. W. Phillips (of the Phillips curve fame), built
a hydromechanical analog computer in 1949 (know as the Monetary National Income
Analogue Computer or MONIAC) to illustrate the inner workings of Keynesian and
Robertsonian economics. The effects of monetary policy were modulated by the flow of
water through a system of pipes and valves representing different sectors of the economy,
which activated a pen that drew an impulse response on a roll of graphing paper.

Traditionally, estimation of impulse responses has been viewed as a time series exercise
that requires characterizing the entire dynamic system under consideration in order to
study how policy interventions propagate over time, just as Phillip’s MONIAC did. VARs
were just a convenient and useful empirical approximation to such a dynamic system. Local
projections (Jordà, 2005) shifted this system perspective to one where the impulse response
could be directly estimated with univariate methods, and without reference to other parts
of the system.

Local projections (LPs) compare two conditional means of a future outcome given
today’s available information, one of which is subject to an intervention while the other
is not. Immediately, one can think of this situation as comparing two forecasts under
different circumstances, or as comparing the conditional mean of treated versus control
subpopulations. Further, because forecasts and impulse responses are tightly linked, it
quickly becomes apparent that traditional time series concepts and policy evaluation ideas
stemming from the Rubin Causal Model (Rubin, 1974) must be tightly connected as well.
One area can benefit from the time series tradition of modeling dynamic relationships, as
much as the other area can benefit from a rich tradition in the identification of causal effects.
Though seemingly obvious, the connection took some time to sprout (see e.g. Angrist &
Kuersteiner, 2011; Angrist, Jordà & Kuersteiner, 2018), just as it took some time to make the
connection between direct forecasts (see, e.g. Cox, 1961; Klein, 1968) and impulse responses
(Jordà, 2005).

The flexibility of LPs, which helps establish this macro-micro nexus, is at the same time
a potential weakness. Because LPs are a univariate semi-parametric approach, they cannot
compete in mean-squared error terms with the specification of a traditional structural
multivariate time series model (see, e.g. Plagborg-Møller & Wolf, 2021; Li, Plagborg-Møller
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& Wolf, 2022), even though in population, they estimate the same response in many settings
(again, see Plagborg-Møller & Wolf, 2021). This should come as no surprise. The more
restrictions one can place in describing the data, the more efficient the estimates, the smaller
the mean squared forecast errors, and the broader the scope to experiment with policy
variations within the model. Moreover, since many models of the macroeconomy have
solutions (or approximate solutions) that consist of a system of linear difference/differential
equations, it is natural to impose the same structure on the data to extract estimates of the
deep parameters of the model. LPs are not universally preferable and one must recognize
those situations where alternative methods have an edge.

However, by the same token, neither are traditional multivariate time series models
universally preferable. For example, the consistency of an impulse response estimator
depends on the truncation lag used to specify the infinite order approximation (see, e.g.
Kuersteiner, 2005; Jordà, Singh & Taylor, 2020; Plagborg-Møller & Wolf, 2021). This issue of
potential misspecification is easily resolved using LPs (see, e.g. Jordà, Singh & Taylor, 2020).
Moreover, the natural efficiency losses of a less restrictive model, such as LPs, can often be
significantly reduced, as several authors have shown (see, e.g. Lusompa, 2021; Barnichon
& Brownlees, 2019; Li et al., 2022; Montiel Olea & Plagborg-Møller, 2021). Moreover, in
infinite order settings, Xu (2023) shows that LPs are semiparametrically efficient if the order
is allowed to grow with the sample. Importantly, just because a theoretical model of the
economy is written in linear form, it does not mean that a structural linear multivariate
model will describe the data correctly. More recently, the desire to stratify the responses
according to some economic condition (see, e.g. Auerbach & Gorodnichenko, 2012; Jordà &
Taylor, 2016; Tenreyro & Thwaites, 2016; Ramey & Zubairy, 2018), is trivially met using LPs,
but it is much harder to meet using VARs. In general, nonlinearities can be investigated
more easily in univariate rather than multivariate models.

The trade-off between VARs and LPs evokes that between least-squares (OLS) and
instrumental variables (IV) estimation. IV estimates are always less efficient (often times,
wildly so), yet much of the profession prefers them to OLS estimates, almost regardless
of the efficiency loss. The premium is on bias over efficiency, not on minimizing mean-
squared error loss.1 LPs by themselves do not resolve the issue of identification. However,
researchers may prefer using LPs over VARs in settings where getting the dynamic response
correctly is at a premium. More generally, efficiency losses in LPs can be greatly contained
relative to the substantial bias improvements at medium- to long-horizons, specially with
persistent data.

1Though admittedly, this is a trade-off worth revisiting.
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These issues become more pronounced as researchers tackle panel data and generally
richer data sets. Moreover, the natural stratification resulting from the policy evaluation
paradigm and the Kitagawa-Oaxaca-Blinder decomposition (Kitagawa, 1955; Oaxaca, 1973;
Blinder, 1973), does not fit traditional structural time series models well, whereas it is
naturally accommodated using LPs (see Cloyne, Jordà & Taylor, 2023). Going the other way,
policy evaluation of interventions that have effects over time, or interventions administered
over time, with perhaps different doses each time, could greatly benefit from the lessons
learned over the past 40 years of applied macroeconomic research.

Extensions to panel data applications look like a specially fruitful area for LPs. In
recent research, Dube, Girardi, Jordà & Taylor (2023) show that in difference-in-differences
(DiD) settings with absorbing but heterogeneous treatments, LPs can greatly simplify the
analysis and can even accommodate repeated treatments, thereby encompassing several
of the methods recently proposed in the literature to tackle specific situations. Similar
recent developments, such as regression discontinuity designs, probably deserve further
exploration with LPs.

This review focuses on the applied macro-micro nexus through the method of local
projections. The goal is not to provide an encyclopedic review of the local projections
literature, but rather highlight recent developments and avenues for research. The more
points of commonality between these two venerable literatures, the more opportunities
there are to advance each field through cross-pollination. The review therefore spends the
first few sections going over basic estimation and inferential procedures for LPs, and then
dedicates the second half to showcase LP applications that take advantage of widely used
policy evaluation methods.

2. A brief introduction to local projections

Let me begin by briefly discussing the intuition behind local projections with a simple
example. Suppose wt refers to a vector of stationary random variables observed over
t = 1, . . . , T periods. I assume stationarity for simplicity although it is not necessary more
generally.2 Further assume that wt = (w1t, . . . , wjt, . . . , wkt)

′ for j = 1, . . . , k follows a simple
VAR(1)3:

(wt − µ) = A(wt−1 − µ) + ϵt; ϵt ∼ D(0, Ω). (1)

2I am purposefully vague in the statement of many conditions to make the article more accessible. Formal
statements can be found in the references provided.

3I will use boldface to indicate vectors, and capital letters for matrices.
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It is well-known that the response of wjt+h due to a shock of size δi in ϵt is simply:

Rij(h) = E[wjt+h|ϵt = δi; wt−1]− E[wjt+h|ϵt = 0; wt−1] = Ah
[j,.]δi,

for h = 0, 1, . . . , H and where Ah
[j,.] denotes the jth row of the matrix A raised to the hth

power. Here δi refers to the size of the shock for each component of ϵt chosen by the
experimenter to reflect an identified experiment to the ith variable in wt. Since the residuals
ϵt are usually correlated with one another, δi can be seen as the linear combination that
recovers the underlying structural residuals for the ith variable. I set aside different ways to
achieve identification (i.e., finding the right δi) to later sections. Finally, I use the notation
Rij(h) to denote the response from a shock in variable i to variable j, h periods after the
initial intervention or shock.

Though this may seem like a restrictive example, note that the state-space representation
of a VAR with p lags (a VAR(p)), and the approximate representation of other interesting
stochastic processes, have a VAR(1) representation. The more general case is derived in
Jordà (2005). Further, for cointegrated systems see Chong, Jordà & Taylor (2012), which
shows how to decompose an impulse response in terms of the dynamics due to long-run
equilibria and due to short-run dynamics separatedly. Jordà (2005) and Plagborg-Møller
& Wolf (2021) formally establish the asymptotic equivalency of LPs and VARs under a
variety of identification assumptions and Stock & Watson (2018); Plagborg-Møller & Wolf
(2021) present the conditions under which instrumental variables and LPs can be used to
identify non-invertible4 systems. Importantly, it is not necessary to assume that the data
are generated by a VAR, it simply helps with the intuition.

As long as the model in Equation 1 accurately represents the data generating process
(DGP), a consistent estimate of the coefficient matrix A is all that is needed to calculate the
impulse response at any horizon.

The LP approach instead uses recursive substitution,5 yielding:

(wt+h − µ) = Ah+1(wt−1 − µ) + Ahϵt + . . . + A0ϵt+h,

with A0 = I. The previous expression suggests that a regression of wjt+h on wt−1 such as:

wjt+h = cjh + β jh+1wt−1 + vjt+h; vt+h = Bhϵt + . . . + B0ϵt+h; (2)

4Loosely speaking, a non-invertible system is one where the structural residuals cannot be recovered from
the reduced-form residuals.

5Note that recursive substitution does not require stationarity.
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for h = 0, 1, . . . , H gives us an estimate of the impulse response since

Rij(h) = E[wjt+h|ϵt = δi; wt−1]− E[wjt+h|ϵt = 0; wt−1] = β jhδi,

which will be equal to Ah
[j,.]δi as long as the DGP coincides with that in Equation 1. Note

that Bh = Ah in this simple example.
As discussed in Jordà (2005), estimates based on Equation 2 have several advantages,

some of which are worth highlighting. First, Equation 2 can be estimated equation by
equation, which makes estimation of nonlinearities and stratification simpler, examples
of which are discussed in later sections; second, Equation 2 is a direct estimate of the
impulse response so that standard errors do not require the delta method or simulation-
based methods (though they require adjusting for the serial correlation in the residuals or
lag-augmentation, as we shall see); and third, it is less sensitive to misspecification since
each impulse response coefficient is estimated using a different regression. One can broadly
think of local projections as a semiparametric approach to estimating impulse responses.

Moreover, when instruments are available, estimation of Equation 2 can be done with the
method of instrumental variables (see, e.g. Jordà & Taylor, 2016; Ramey & Zubairy, 2018). I
postpone a more detailed discussion of instrumental variables (IV) estimation to Section 5,
where I discuss how to estimate local projections generically using the generalized method
of moments of GMM; and Section 7, where I provide formal conditions for IV estimation.
Here though, there exist parallels with the literature on proxy VARs, where instruments
are used to identify structural shocks from reduced-form shocks (see, e.g., Stock & Watson,
2012; Mertens & Ravn, 2013).

3. Transformations and multipliers

Macroeconomics data often exhibit trending behavior. Think of GDP, or the price level
over time, for example. Such trends can often be well described by a unit root—in time
series parlance, they are I(1) or integrated of order one. If the data are log-transformed,
the first difference can be interpreted as the approximate percentage change in the variable
(for example, the growth rate of GDP or the rate of inflation). To fix ideas, let yt denote
the log of an I(1) variable, let the first-difference be denoted as ∆yt = yt − yt−1, and let the
long difference be denoted as ∆hyt+h = yt+h − yt−1. The latter measures the approximate
percentage change in the outcome, from t − 1 to h periods in the future. In addition and
for later use, let st denote a (randomly assigned) intervention of interest (to make things
simple).
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LPs can be estimated on the long-differences (∆hyt+h), or the first-differences (∆yt+h)
in response to an intervention st.6 However, the interpretation of the impulse response is
different in each case. LPs on ∆hyt+h measure the overall percentage change in the outcome
since intervention. Notice that ∆hyt+h = yt+h − yt+h−1 + yt+h−1 + . . . − yt + yt − yt−1 =

∆yt+h + . . .+∆yt. Adjusting the notation to indicate that s is the intervention that affects the
outcome y however transformed, this means that the LP on the long-difference measures the
cumulative of the per-period percentage changes, that is Rsy(h) = Rs∆hy(h) = ∑h

j=0 Rs∆y(j).
A related statistic of interest is the multiplier. An early reference to the multiplier can be

found in Keynes (1936). The Keynesian (fiscal) multiplier compares two dynamic responses.
The fiscal impetus in the first year where a fiscal package is passed has effects on output
that are felt over subsequent years. From this perspective, the multiplier might seem quite
large. However, fiscal packages are usually implemented over years, so that the overall
effect of the fiscal package is best evaluated as the ratio of the overall gains in output
relative to the overall fiscal expenditures over the duration of the package.

Therefore, the multiplier can be calculated as the sum of the cumulative changes in
GDP due to the fiscal package over the cumulative sum of changes in the deficit due
to the fiscal package. It is clear that the multiplier will be of interest in any setting in
which an intervention is administered over several periods (call it a treatment plan) and
one is interested in evaluating the overall effect of the treatment plan and not just the first
intervention.

Consider a stripped down model to fix ideas. Suppose yt = γst + uy
t and that st =

ρst−1 + us
t with E(uy

t , us
r) = 0 for any value of r. In this simple model the treatment variable

st is randomly assigned, though treatments are serially correlated. It is easy to see that
Rsy(h) = γρh and Rss(h) = ρh. Define the multiplier as:

mh =
∑h

j=0 Rsy(j)

∑h
j=0 Rss(j)

=
γ ∑h

j=0 ρj

∑h
j=0 ρj

= γ. (3)

In economics terms, the overall effect of the treatment plan on the outcome happens to be
the same as the effect on impact, though in more general settings this will not generally
be the case. It is also useful to notice that since the effect on impact is γ and there are no
internal propagation dynamics, the multiplier is simply the sum of the treatments over
time, scaled by their per-period impact γ.

6They can also be estimated on the levels, yt+h. However, this is not generally recommended even though
the response on the levels and the long-differences coincide when yt−1 in included in the RHS. The reason is
that when yt+h is I(1), omitting yt−1 (as sometimes happens) can lead to invalid estimates and /or inference.

7



The LP estimator for Rsy(h) can be obtained from yt+h = βhst + vy
t+h and hence a

direct estimate of ∑h
j=0 Rsy(j) can be obtained from the modified local projection Yt+h =

θ
y
hst + ν

y
t+h where Yt+h ≡ yt+h + . . . + yt. Clearly θ

y
h = β

y
0 + . . . + β

y
h = γ(1 + ρ + . . . + ρh).

One can similarly construct St+h = θs
hst + νs

t+h and therefore obtain mh = θ
y
h/θs

h. However,
one can go one step further by noting that if an instrument zt is available such that
E(zt, uj

t) = 0 for j = y, s, then:cov(Yt+h, zt) = θ
y
hcov(st, zt)

cov(St+h, zt) = θs
hcov(st, zt)

=⇒ mh =
θ

y
h

θs
h
=

cov(Yt+h, zt)

cov(St+h, zt)
,

which can be directly estimated from the auxiliary LPIV (LP estimated with instrumental
variables):

Yt+h = mhSt+h + νt+h, (4)

estimated using zt as an instrumental variable. This is the approach proposed in Ramey
(2016). The advantage of using this direct approach is that standard errors can be directly
obtained from the regression output. Note that estimating this local projection by OLS
would not generate valid estimates even if St+h were completely assigned at random. In
general, of course, we would include a vector of controls xt in the previous expression
and use more than one instrument if additional instruments are available. Ramey (2016)
provides a more complete discussion.

4. Inference

As Equation 2 shows, the residuals of a local projection generally have a moving average
structure. Because they are dated t to t + h, they do not affect the consistency of the local
projection estimate, β̂ jh. However, the residual serial correlation affects the construction of
standard errors.

A semi-parametric solution offered by Jordà (2005) was to use a Newey-West het-
eroscedasticity and autocorrelation consistent (HAC) estimator. Though simple to use,
several, more efficient alternatives have been proposed in the literature that are worth
reviewing. Perhaps one of the more elegant solutions has been proposed by Montiel Olea &
Plagborg-Møller (2021) and consists of adding an additional lag to the LP. Lag-augmentation
is known to improve inference in autoregressive models (see Toda & Yamamoto, 1995;
Dolado & Lütkepohl, 1996; Inoue & Kilian, 2020). A simple univariate example helps
illustrate the main idea behind lag augmentation, though the method is shown to work
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with a generic VAR(p) data generating process.
Thus, suppose the data are generated by a simple AR(1) model such as wt = awt−1 + ϵt.

For convenience, we may assume that wt is strictly stationary with |a| < 1 and ϵt ∼ D(0, σ2).
Consider estimating the local projection wt+h = βhwt + vt+h. Plugging in the AR(1) into
the local projection results in the expression wt+h = βhϵt + γhwt−1 + vt+h.

Clearly ϵt is not directly observable. However, we can use the Frisch-Waugh-Lovell
logic to obtain βh by regressing (wt+h − γhwt−1) on (wt − awt−1). The estimator from this
auxiliary two step regression is such that:

β̂h = βh +
∑T−h

t=1 vt+hϵt

∑T−h
t=1 ϵ2

t
→ σ̂2(β̂h) =

∑T−h
t=1 v̂2

t+hϵ̂2
t

(∑T−h
t=1 ϵ̂2

t )
2

The reason this approach works is that under the assumptions made on ϵt, the term vt+hϵt

is serially uncorrelated even if vt+h itself is serially correlated. This feature comes from the
assumption that ϵt is strictly stationary with E(ϵt|{ϵs}s ̸=t).7 As a result, a simple way to
obtain correct inference for the local projection is to add an additional lag as a regressor
and then select a heteroscedasticty robust estimator to compute the standard errors—there
is no longer a need to correct for serial correlation.8 In the same paper, Montiel Olea &
Plagborg-Møller (2021) propose a parametric wild bootstrap procedure where data are
simulated from a VAR and then local projections are fitted to the simulated data to construct
percentile t-confidence intervals.

A second option is to use a parametric specification of the residual covariance matrix.
For example, Lusompa (2021) provides a simple FGLS9 procedure that takes advantage
of previous local projection stages to correct the hth stage residuals. Specifically, the idea
is to estimate the first local projection (i.e., for h = 0) as usual and collect for use in
subsequent stages, the residuals {ϵ̂t} and the estimate of the impulse response coefficient,
say β̂0. For h = 1 construct the left-hand side variable ỹt+1 = yt+1 − β̂0ϵ̂t and obtain β̂1

from the local projection based on ỹt+1. For h = 2, construct the left-hand side variable
as ỹt+2 = yt+2 − (β̂0ϵ̂t+1 + β̂1ϵ̂t). Similar adjustments to the left-hand side variable are
applied with subsequent horizons.

Lusompa (2021) shows that it is not necessary for the DGP to be a VAR for this procedure
to correct for residual serial correlation (as long as the data are strictly stationary). Monte

7In practical settings, it will be important to ensure that enough lags are included to ensure that this
condition is met.

8For example, in STATA, one would simply use the command regress f‘h’.w w l(1/‘p’).w,

vce(robust), where ‘h’ is a local that controls the impulse response horizon and ‘p’ is a local for the
lag length. Other heteroscedasticity robust alternatives provided in STATA, such as vce(hc2) and vce(hc3),
may be preferred.

9Feasible Generalized Least Squares.
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Carlo evidence in his paper shows that FGLS generates considerable gains in efficiency,
specially when the data are highly persistent. Moreover, Lusompa (2021) also provides
a bootstrap version using the score wild bootstrap (see Kline & Santos, 2012) and a
version for structural multi-step inference. Below I set-up the GMM version of the local
projection estimator, which will make the underpinnings of this procedure perhaps easier
to understand.

Recent work by Xu (2023) shows that in settings where the true lag order is unknown
and possibly infinite, LPs are semiparametrically efficient as long as controlled lags are
allowed to grow with the sample size. This means that the efficiency loss relative to VARs
diminishes the more lags one includes, and it effectively vanishes in the limit. The paper
then proposes two robust methods of inference.

Yet a fourth option consists on shrinking the variation of the local projection coefficients.
By adding some mild constraints, one can make considerable efficiency improvements yet
retain much of the flexibility of local projections. A VAR does this automatically, with LPs
this can be done in a variety of ways (see, e.g. Barnichon & Brownlees, 2019; Barnichon &
Matthes, 2018; Miranda-Agrippino & Ricco, 2021).

As an illustration, panel (a) of Figure 1 compares the error bands computed with
Newey-West versus lag augmentation using simulated data. Panel (b) fits a Gaussian Basis
Function instead (such as the one proposed in Barnichon & Matthes, 2018), and shows
error bands constructed using a direct GMM estimation with Newey-West robust standard
errors. Panel (a) shows that, for this example, Newey-West or lag augmentation generate
very similar (nearly indistinguishable) bands, as the theory predicts. Panel (b) shows that
smoothing the LP responses can generate considerable reductions in uncertainty.

Several bootstrap methods have been proposed in the literature. The basic idea is as
follows. First, estimate a VAR and generate bootstrap replicates of the data with it. Second,
estimate LPs on these bootstrap replicates. The bootstrap sample of LPs can be used to
construct inference. The procedure can be paired with a Wild bootstrap to correct for
potential heteroscedasticity. The reader should consult Montiel-Olea & Plagborg-Møller
(2019); Montiel Olea & Plagborg-Møller (2021) for a detailed presentation of the procedures.

5. Joint estimation with GMM

A useful way to think about estimation of local projections is by using the generalized
method of moments (or GMM), which then naturally accommodates IV estimation. Let yt+h

be an outcome variable observed at time t + h; let st be a treatment/intervention/policy
variable whose effect on the outcome at some point in the future we are interested in
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Figure 1: Comparing error bands
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Panel (a): Newey-West vs. Lag Augmenation
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Panel (b): Gaussian Basis Function vs. Lag Augmentation

Notes: Local projection of the response of x to y in the system:(
yt
xt

)
=

(
0.7 0.2
0.2 0.7

)
+

(
uyt + 0.8uxt

uxt

)
; uyt, uxt ∼ N(0, 1).

Panel(a) compares error bands computed by Newey-West (6 lags) and lag augmentation. Panel (b) compares
the error bands from panel (a) to a fitted Gaussian Basis Function estimated by GMM with Newey-West
robust standard errors. See text.

characterizing. Let xt refer to a 1 × k vector of exogenous and pre-determined variables
that include lags of the outcome and the treatment variable. Let zt denote a 1 × l vector of
instruments for st, which naturally include xt. When no instruments are available, then
zt = xt, as one would have in a situation where identification is achieved by conditioning
on a rich set of right-hand side variables via regression control.

Then, the hth local projection in a linear model satisfies the moment condition:

E[g(wt; βh)] = E[(yt+h − βhst)zt] = 0; for h = 0, 1, . . . , H

Stacking the left-hand side variables into the (H+ 1)× 1 vector Yt(H) = (yt, yt+1, . . . , yt+H)
′,

the (H + 1)× 1 vector of impulse response coefficients β = (β0, β1, . . . , βH)
′ can be esti-
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mated as the solution to the GMM objective function:

max
β

(
1

T − H

T−H

∑
t=1

g(wt; β)

)′

Wt

(
1

T − H

T−H

∑
t=1

g(wt; β)

)

max
β

(
1

T − H

T−H

∑
t=1

(Yt(H)− βst)zt

)′

Wt

(
1

T − H

T−H

∑
t=1

(Yt(H)− βst)zt

)
, (5)

where, in the overidentified case, it is common to use the Newey-West version of the optimal
weighting matrix Wt:

Ŵt = Γ̂0 +
q

∑
v=1

[
1 − v

q + 1

] (
Γ̂v + Γ̂′

v
)

Γ̂v =
1

T − H

T−H

∑
t=v+1

g(wt; β̂)g(wt−v; β̂)′,

but one could take advantage of the known structure of the residual correlation in a local
projection using, for example, the continuously updated estimator of Hansen, Heaton
& Yaron (1996). Importantly, under standard regularity assumptions, estimation with
Equation 5 delivers an estimate of the covariance matrix for β, say Σβ, which will turn out
to have important uses to conduct simultaneous inference, as I will show next. Panel (b) of
Figure 1 combines the GMM expressions just presented and assumes that the coefficients
of the impulse response (the β in the previous expression) can be well aproximated by a
Gaussian Basis Function (which only depends on 3 parameters) as in Barnichon & Matthes
(2018).

Of course, we do not need to be limited by linearity and later I explore some natural
nonlinear extensions, but then care must be observed in interpreting the local projection. A
simplified example illustrates how this should be done in a nonlinear setting:

yt+h = αh + βhst + γhs2
t + ϵt+h,

then note that the impulse response is no longer unique: it will depend on the values of the
benchmark (say, st = s0) and the treatment (say, st = s1 = s0 + δ). That is:

R(h)[s0, δ] = (βhs1 + γhs2
1)− (βhs0 + γhs2

0) = βhδ + γhδ2 + γhs0δ︸ ︷︷ ︸
nonlinear terms

In this and in many alternative nonlinear specifications (some that I discuss below), local
projections remain linear in parameters so that the GMM objective function can be easily
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set up and estimated.

6. Joint inference and significance bands

Impulse response plots typically include error bands around the response estimates to
provide a measure of estimation uncertainty. However, they are often misused to make
inferential statements about the shape of the impulse response. This is problematic because
impulse response coefficients are correlated with one another, as Jordà (2009) pointed out.
The problem is like when one uses individual t-ratios instead of a χ2- or F-tests to do a joint
hypothesis test in linear regression with correlated regressors. This section tackles these
issues by building on the inferential methods presented earlier and building appropriate
simultaneous inference bands. Ultimately we want to display error bands that allow us to
produce valid inferential statements under a variety of scenarios.

6.1. Simultaneous inference

Asymptotically and quite generally, we may assume that a vector of impulse responses
estimates β = (β0, β1, . . . , βH)

′ is such that β̂ → N (β, Σβ). The joint null hypothesis
H0 : β = 0 could be tested with the traditional Wald statistic based on the Mahalanobis
distance (Mahalonobis, 1936), which turns out to be the sum of the square of the t-ratios
when standardizing β by Σβ. This Wald statistic will have an asymptotic χ2 distribution
with critical value d(H, α). Jordà (2009) then proposed constructing the individual critical
values for the confidence interval of each βh by using Scheffé’s S-method (see Scheffé, 1953),
which in this example turns out to be

√
d(H, α)/H. That is, Scheffé’s S-method leads to

more conservative error bands, but which have the correct coverage for any hypothesis test
of the impulse response that can be expressed in linear form (such as joint significance).

However, Montiel-Olea & Plagborg-Møller (2019) provide a more elegant solution. The
idea is to provide bounds that can accommodate a variety of hypotheses of interest while
providing the desired nominal coverage, say with at least probability 1 − α. The idea is to
construct an interval for each element in the response vector such that, in the worst case
scenario, the null hypothesis of the element that is farthest from the estimate will still have
desired nominal coverage 1 − α. This is called the sup-t procedure and Montiel-Olea &
Plagborg-Møller (2019) show that it provides tighter bounds than the Scheffé S-method.

Here is how it works. Suppose as before that the estimates of an impulse response of
interest are such that β̂ → N (β, Σβ). This asymptotic argument can be justified under a
variety of rather general assumptions that apply to most situations observed in practice.
Hence define the auxiliary vector η = (η1, . . . , ηH)

′ ∼ N (0, Σβ) with σh = Σ[h,h]. The idea
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is to find the smallest critical value c such that for the collection of intervals around the
response estimates:

P

(
H⋂

h=1

[
βh ∈ β̂h ± c σ̂h

])
→ P

(
max

h
|σh ηh| ≤ c

)
.

Alas, there are no tabulated values for the distribution of the maximum element of a
normally distributed vector (the right-hand side of the previous expression) so that critical
values have to be constructed via Monte Carlo simulation as:

c = q1−α(Σ) ≡ q1−α

(
max

h
|σ−1

h ηh|
)

.

Based on this principle, Montiel-Olea & Plagborg-Møller (2019) in addition provide boot-
strap and Bayesian methods. The main advantage of constructing error bands in this
manner is that inference on a subset of impulse response coefficients (e.g. are coefficients
for horizons 3 to 6 different from zero?), will be correct. Of course, this comes at the cost of
more conservative bands.

6.2. Significance

In many applications, it is common to see an impulse response with error bands that
straddle the zero line. Many authors therefore conclude that the response is not significant
even though in many of these situations the response is uniformly positive (or negative).
An example is provided in Figure 2. The figure shows the response of 100 times the log
consumer price index (CPI) in the U.S. to a Romer & Romer (2004) shock over the sample:
1969:Q1–2007:Q4. The specification includes 4 lags of CPI inflation, real GDP growth, the
federal funds rate, and the Romer and Romer shock itself.

The impulse response displayed in Figure 2 is typical of many applications. It shows
a time profile that, is zero for about one-year and is negative over the remaining 4-years.
The point-wise error bands (shown at 95% confidence level) straddle the zero line thus
leading many researchers to conclude that the impulse response is not significant. However,
as the figure shows, a joint test of the null that all the response coefficients is zero can
be easily rejected (with a p-value of 8.07e-28). To make the point clearer, Figure 2 also
displays two dashed lines. These are calculated by inverting the statistic of the null that
all impulse response coefficients are zero. That is, I display approximate 95% significance
bands constructed as ±σ̂h

√
d(H, α)/H since under the null the coefficient estimates are

approximately uncorrelated. Note that in the figure, for the about first 2-years, the impulse

14



Figure 2: Response of Inflation to a Romer and Romer monetary shock
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p-value of joint significance test:     8.07e-28

Notes: Local projection of the cumulative change of the consumer price index (CPI) on four lags of CPI
inflation, four lags of real GDP growth, and four lags of the federal funds rate. The intervention is a Romer &
Romer (2004) shock. Sample: 1969Q1-2007Q4. Shaded area: two standard deviation pointwise confidence
bands using heteroscedasticity robust standard errors. Dashed lines computed by inverting the F-statistic
around zero using Scheffé’s method. See text.

response is largely within these significance bands, but clearly strays outside thereafter,
thus confirming the result of the p-value (8.07e-28) reported for the joint test of significance.

Economically, the impulse response displayed shows that the CPI inflation is about 2

percentage points lower after 5-years or a decline of CPI inflation of about 0.4% on average
over the 5-years—a non-negligible effect in economic terms even if individual response
coefficients are imprecisely estimated.

What explains this disparity? As explained earlier, impulse response coefficients are
highly correlated. Like regressions with near-collinearity, individual t-statistics are not
significant, but a joint test of significance overwhelmingly rejects the null. A good practice
is therefore to report the joint test, which more closely corresponds to the scientific test of
the hypothesis that the intervention has no effect on the outcome.
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7. Identification

In a typical local projection of the form:

yt+h = αh + βhst + γhxt + vt+h; h = 0, 1, . . . , H

with xt containing exogenous and pre-determined variables, OLS estimates will be consis-
tent as long as variation in st is exogenous given xt. For example, the Cholesky identification
assumption common in the VAR literature amounts to including the contemporaneous
values of the system variables causally ordered first in xt. However, since the goal is to
ensure that variation in st is as good as if it were exogenous, it seems that the safest route
in general would be to include all available information to ensure orthogonality of st,
regardless of the position of st in the causal order.

Similarly, identification with other methods common in the VAR literature (such as
long-run identification restrictions, or sign-based identification, for example) can be easily
incorporated as shown in Plagborg-Møller & Wolf (2021). I refer the reader to their paper
for more details.

As previewed in the introduction, one of the strong points of the policy evaluation
literature is the emphasis on causation and hence on providing additional ways to approach
identification. Expanding the idea behind regression control, I discuss in Section 8 inverse
propensity score weighting, where control for xt is allowed to be semi-parametric (see, e.g.
Hirano, Imbens & Ridder, 2003; Angrist, Jordà & Kuersteiner, 2018; Jordà & Taylor, 2016)
based on ideas first discussed in Horvitz & Thompson (1952).

However, perhaps the more typical approach to identification in regression is the use
of instrumental variables, which can control for endogeneity. I have sprinkled references
to identification with instrumental variables at several points in the previous sections, in
particular when discussing how to estimate local projections using GMM in Section 5. That
said, it is useful to state formal conditions for when this approach is appropriate.

Specifically, denote the vector of instruments zt for the intervention variable st. Further
denote zP

t = zt − P(zt|xt) and similarly sP
t = st − P(st|xt) where P(w|v) means the

projection of w onto v. The first condition is that the instruments must be relevant, that is:

• Relevance: E(sP
t , zP′

t ) ̸= 0.

Next, we need the instruments to be exogenous. The exogeneity condition in a local
projections setting is slightly different than usual due to the dynamic structure of the
problem. It can be stated as:

• Lead-lag exogeneity: E(vt+h, zP′
t ) = 0 for all h.
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Stock & Watson (2018) and Plagborg-Møller & Wolf (2021) discuss these conditions in
greater detail and provide more formal statements though the main thrust of what is needed
for IV estimation is summarized by the relevance and lead-lag exogenenity conditions just
presented. Just like one can show the equivalence between VAR and LP responses, one can
also show the equivalence of SVAR-IV and LPIV (see, e.g. Mertens & Montiel-Olea, 2018).

I conclude this section with a brief statement about an advantage of local projections
over VARs highlighted by these authors. It consists on noting that, although invertibility is
necessary for proxy-VARs (as VARs identified using instrumental variables are typically
referred to), this condition is not required for local projections. Invertibility essentially
means that the structural residuals can be recovered from the reduced form residuals. The
condition usually fails when the span of the reduced-form residuals is smaller than the
span of the structural shocks, for example, as is common of models with news about future
shocks.

8. The dynamic and static effects of a policy intervention

In order to draw a closer link to the policy evaluation literature, I draw from variations of
a simple model involving an outcome and a binary intervention or treatment. Suppose
that y is an outcome variable of interest and s is a latent variable that determines pol-
icy/treatment/intervention according to I(st) = It ∈ {0, 1}. I leave the rule implicit in It

undefined for the moment, though a simple example would be It = I(st > c) for some c, as
is common when estimating a logit or probit model. In some settings, I take s to be directly
observable. In such cases, clearly s ̸= 0 can be directly interpreted as the dose given to a
treated unit. Further, suppose that:yt = βIt + ρyyyt−1 + uy

t

st = ρsyyt−1 + ρssst−1 + us
t

; ut ∼ D

((
0
0

)
;

(
σy 0
0 σs

))
. (6)

This expression has several useful features. First, it is written in structural form. The
residuals uy

t and us
t are orthogonal to each other (explaining the switch from the ϵt to the ut

notation). Second, the outcome variable and the policy variable allow for possible internal
propagation dynamics. Third, interventions can be thought of as randomly assigned when
ρsy = 0. When ρsy ̸= 0, interventions are endogenously determined by previous outcome
values. Several interesting cases can be studied using this simple model.

1. No serial correlation. If ρij = 0 for i, j = s, y, there are no internal propagation
dynamics. A sample of t = 1, . . . , T observations behaves like a cross section. Hence, the
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effect of an intervention is β on impact, and zero thereafter. This effect can be estimated as
we would in a cross-section, that is, by taking the following difference in sample means:

RIy(0) =
1
T1

T

∑
t=1

yt It −
1
T0

T

∑
t=1

yt(1 − It); T1 =
T

∑
t=1

It; T = T0 + T1; It ∈ {0, 1}. (7)

Of course, this could be simply estimated with the local projection consisting of regressing
yt on It. The estimate of the constant term would be the mean for the untreated units and
the coefficient on It would be the effect of the intervention, β. It is easy to recognize from
these two expressions the parallels with how one would estimate the treatment effect in a
randomized controlled trial (RCT).

Using the potential outcomes notation, one would conjecture that the observed data
come from a mixture distribution of two unobserved latent variables, yt(1) for observations
in the “treated” subpopulation, and yt(0) for the “control” subpopulation. Specifically,
the observed data are yt = yt(1)It + yt(0)(1 − It). Since yt(j) for j = 0, 1 are not directly
observable for each element of the sample, a quantity of interest is usually the average
treatment effect, defined as τ(0) = E[yt(1)− yt(0)], which under random assignment can
be directly estimated with Equation 7.

2. Serial correlation in the outcome. Next, suppose that ρyy = ρ ̸= 0, but ρsy = ρss = 0.
In that case RIy = (β, βρ, . . . , βρh, . . .)′. That is, the intervention β is propagated by
the internal dynamics of the outcome, but the assignment of the intervention It is still
random. In principle, we can use the same difference in means as in the previous expression.
However, to improve the efficiency of the estimator, we would want to take advantage of
regressing the outcome on yt−1 first since, in general:

yt+h = ρhβIt + ρh+1yt−1 + vt+h

vt+h = uy
t+h + ρuy

t+h−1 + . . . + ρhuy
t +

βIt+h + ρβIt+h−1 + . . . + ρh−1βIt+1︸ ︷︷ ︸
future interventions

,

which is just the local projection of yt+h on It and yt−1. The residuals contain terms
associated with future interventions or shocks. Under our assumptions, these are as if
randomly assigned so they do not cause an inconsistency with the local projection estimate
of ρhβ. However, if the It+h are observable (and under the maintained assumptions for this
example), nothing prevents one from including them as regressors (by construction they
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are uncorrelated with the uy
t+j for any j) so that the local projection that one would estimate

becomes:

yt+h = a0 It+h + a1 It+h−1 + . . . + ah It + chyt−1 + νt+h; νt+h ∼ MA(h),

with aj = ρjβ for j = 0, . . . , h and ch = ρh+1 and where I use the short-hand notation MA(h)
to indicate that the residuals have a moving-average structure of order h. In this case, we
can therefore estimate the impulse response with a single local projection set for the desired
length, that is R̂Iy = (â0, . . . , âh)

′.
How would one approach estimating the average treatment effect in similar fash-

ion to Equation 7? Note that for this example, one would be interested in τ(h) =

E[yt+h(1) − yt+h(0)|Λt+h] where Λt+h = It+h, . . . , It+1; yt−1 and based on our example,
yt−1 is a summary statistic for the effects of previous interventions. Conditioning on future
treatments isolates the effect of the current treatment. Thus, let yt+h|Λ denote the value
of yt+h conditional on Λt+h (say from a regression of yt+h on Λt+h), then an alternative
estimate of the impulse response is:

RIy(h) =
1

N1

N

∑
t=1

yt+h|Λ It −
1

N0

N

∑
t=1

yt+h|Λ(1 − It) = βρh; N = T − h, N1 =
N

∑
t=1

It,

and N = N0 + N1. In a moment, the usefulness of this derivation will become apparent.

3. Serially correlated interventions Suppose that ρss = ρ ̸= 0 but ρyy = ρsy = 0. In
this case interventions are serially correlated, but still randomly assigned. When a unit
receives an intervention, it is likely that it will receive interventions in the next few periods
since It+h = I(ρhst + us

t+h + ρus
t+h−1 + . . . + ρh−1us

t). Interventions are still as if they were
randomly assigned, however the usual local projection in this case would include past
values of the intervention as a right hand side variable. That is:

yt+h = βh It + ρh It−1 + vt+h; vt+h ∼ MA(h); R̂Iy(h) = β̂h.

In light of the previous example, it is natural to ask why would one not be also including
future values of the intervention as regressors as is done in the definition of Λt+h. Recent
papers from the difference-in-differences literature argue that local projections estimate the
wrong object for this reason (see e.g. De Chaisemartin & D’Haultfoeuille, 2022). However,
this is just a confusion about the object of interest. In a typical impulse response, the effect of
the intervention accommodates the possibility that future interventions will be subsequently
administered with some probability, as is the case when st is serially correlated. That is, the
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usual “macroeconomics” response answers the question, if there is an intervention at time
t, what is the likely effect on the outcome, recognizing that the intervention itself generates
subsequent interventions. This is the effect we most likely see in the data. However,
conditioning on future interventions is also valid but answers a different question, that of
the effect of a one-off intervention.

De Chaisemartin & D’Haultfoeuille (2022) and others are interested in the effect of
the intervention in isolation of any subsequent potential intervention. This is an equally
legitimate question to ask. And here once again, we can make a connection to a literature
in applied macroeconomics that studies the fiscal multiplier (see, e.g. Mountford & Uhlig,
2009; Ramey, 2016; Ramey & Zubairy, 2018) as I will show.

That said, a key observation is worth noting. In panel data settings where treatment
effects may be heterogenous across units, the difference between these two approaches
matters. In a traditional time series setting, an implicit yet critical assumption is that the
effect of subsequent treatments is homogenous, that is, the specific time that treatment is
administered does not alter the treatment effect, all else equal. In the burgeoning literature
on difference-in-differences (DiD) estimation (see Roth, Sant’Anna, Bilinski & Poe, 2022,
for an overview), it is becoming standard to assume that treatment is heterogenous. I will
return to this issue below.

By the same token, an issue often overlooked in the DiD literature is the role of
expectations. That is, in a setting where agents expect interventions to follow after the
initial (and possibly randomly assigned) intervention, their behavior will take into account
such an eventuality. Thus, conditioning on past information and on future treatments will
not completely account for the effect of expectations except in situations where agents are
completely backward looking, for example. It seems safer to instead adopt the standard
macroeconomic practice of reporting the impulse response without removing the effect of
future interventions and instead focus on measuring multiplier effects as discussed earlier.

Summarizing, when interventions are serially correlated, an intervention today will
likely be followed by subsequent interventions. The traditional impulse response measures
the effect on the outcome of the entire intervention plan, that is, the intervention implemented
today and the set of subsequent interventions expected to follow due to serial correlation.
This is the effect we are likely to see in the data. Thus a practitioner may well be interested
in calculating a multiplier consisting of the sum total of the effect of the intervention plan
on the outcome over some horizon, divided by the sum total of the interventions over that
same horizon, as is done in the calculation of mh as is done in section 3.

The policy evaluation literature tends to simply focus on the effect of the initial in-
tervention by sterilizing the effect of subsequent interventions. In our example, this is
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equivalent to the multiplier (though in richer settings this will not be exactly the same).
Note that the impulse response can also be thought of as the interaction of the one-time
intervention effect scaled by the serial correlation pattern in the intervention plan. In
practice, the role of expectations is often ignored, which can make sterilization based on
future interventions insufficient, and the estimates therefore invalid—it is a trivial violation
of the no anticipation assumption common in DiD studies.

4. Endogenous assignment This final example will allow us to briefly discuss inverse
propensity score (IPW) estimators based on some conditional ignorability assumption (to
be stated momentarily), often found in applied microeconomics research. Suppose that the
coefficient on yt−1 in the equation for st is non-zero, that is, ρsy = ρ ̸= 0. For simplicity
assume that ρyy = ρss = 0.

In the general case where the parameters of Equation 6 are unrestricted, the impulse
response can be calculated several ways. First notice that if ρsy ̸= 0 then assignment is no
longer random. It is determined by past values of the outcome. However, owing to the
structure of the problem, assignment is as if it were random if one linearly controls for yt−1.
Hence, the response RIy(h) can be calculated with a typical local projection of yt+h on It,
and yt−1. Alternatively, one can first regress yt+h on yt−1 and then use the residuals from
this regression, call them, yt+h|t−1 to compute the difference in means:

R(h) =
1

N1

N

∑
t=1

yt+h|t−1 It +
1

N0

N

∑
t=1

yt+h|t−1(1 − It),

where N, N0 and N1 have been defined before.
Yet a third alternative is to use inverse propensity score weighting. In situations where

the experimenter is willing to assume that, conditional on observables, assignment is as
good as if it were random, they may not be willing to assume that the relationship is linear.
What is the experimenter to do? Here I follow two recent macroeconomic applications,
Jordà & Taylor (2016) and Angrist et al. (2018).

Let p̂t = p(It = 1|It) denote the propensity score where It refers to information
available up to t (or in the example, simply yt−1). Angrist et al. (2018) propose a conditional
independence, or selection on observables assumption so that: yt+h(i) ⊥ It|yt−1 for i = 0, 1
where yt+h(i) denote potential outcomes. The assumption basically says that, conditional
on yt−1, assignment to treatment is not influenced by the potential outcomes one may
experience. However, by properties of the propensity score, this assumption can be rewritten
as: yt+h(i) ⊥ It| p̂t. Using the results in Hirano et al. (2003), then Jordà & Taylor (2016) and
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Angrist et al. (2018) show that a doubly robust estimate of the impulse response is:

RIy(h) =
1

N1

N

∑
t=1

yt+h|t−1
It

p̂t
+

1
N0

N

∑
t=1

yt+h|t−1
(1 − It)

1 − p̂t
,

where N, N0 and N1 have been defined before. The doubly robust feature is reflected on
the fact that the notation yt+h|t−1 indicates a regression of the outcome on past information.
That is, one controls via regression and via the propensity score. In practice, there are
more efficient ways of estimating the model using doubly-robust, inverse propensity score
weighting. Importantly, standard errors should be adjusted for the first stage estimation
uncertainty in p̂t. Of course, this could be done with, for example, a paired bootstrap.

9. The Kitagawa decomposition

In the previous examples, treatment/intervention is conveniently assigned at random, a
situation rarely encountered in practice with observational data. With random assignment,
covariates provide tighter, more efficient estimates of the treatment effect, but otherwise,
whether they are included or not has no effect on bias. However, this view assumes that
the influence of the covariates on the outcome remains impervious to treatment. This is
implicitly assumed in a VAR. What if this assumption is wrong? What if the manner in
which a covariate interacts with the outcome depends on whether treatment is administered
or not?

In applied microeconomics, one can account for how covariates and treatment interact
using a decomposition first proposed by the sociologist Evelyn Kitagawa (Kitagawa, 1955)
and introduced to economics by Oaxaca (1973) and Blinder (1973). An extensive review of
this decomposition is provided in Fortin, Lemieux & Firpo (2011). I hence refer to this as the
Kitagawa decomposition. It turns out that the Kitagawa decomposition provides a natural
way for thinking about how to stratify local projections and even estimate time-varying
local projections while still using simple regression analysis. The results that I present next
are based on Cloyne, Jordà & Taylor (2023).

Let me start with a simple cross-sectional setting first, with as stripped down a notation
as possible. Without loss of generality, one can write y(j) = µj + vj for j = 0, 1, the
two potential outcomes (1 for treated, 0 for control), and where E(vj) = 0. Covariates
introduce heterogeneity. A simple way to model this heterogeneity is by assuming that
vj = (x− E(x))γj + ϵj, which ensures E(vj) = 0 by assuming that E(ϵj) = 0. Here x refers to
a vector of exogenous or predetermined variables, which could include lags of the outcome
and the treatment variables. Using the same notation as earlier, let I(st) = It ∈ {0, 1} denote
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the treatment indicator, which I will denote simply as I when the subscript is redundant to
understand the main ideas. Hence, the average treatment effect (under linearity) can be
written as:

E[y(1)|I = 1]− E[y(0)|I = 0] =E[E[y(1)|x, I = 1]− E[y(0)|x, I = 0]]

=E[µ1 + E[x − E(x)|I = 1]γ1 + E(ϵ1|I = 1)]

−E[µ0 + E[x − E(x)|I = 0]γ0 + E(ϵ1|I = 0)].

Note that E(ϵj|I = j) = 0 for j = 0, 1 by assumption. Further, by adding and subtracting
E[x − E(x)|I = 1]γ0, the previous expression can be rearranged into:

E[y(1)|I = 1]− E[y(0)|I = 0] =µ1 − µ0

+ E[x − E(x)|I = 1](γ1 − γ0)

+ (E[x − E(x)|I = 1]− E[x − E(x)|I = 0])γ0. (8)

Equation 8 hence decomposes the effect of treatment intro three components: (1) a direct
effect coming from the difference in unconditional means between treated and control
subpopulations; (2) an indirect effect due to differences in the manner the covariates affect
the outcome, which leads to the natural hypothesis, H0 : γ1 = γ0; and a composition effect
due to the fact that in small samples, random assignment is imperfect. A test of the balance
condition—if assignment is truly random, the means of the covariates should be the same
in the treated and control subpopulations—is therefore a test of the null H0 : µ1

x = µ0
x.

Based on these standard derivations, Cloyne et al. (2023) show that, under fairly general
assumptions, these three effects can be obtained from the augmented local projection:

yt+h = µh
0 + (xt − x)γh

0 + Itβ
h︸ ︷︷ ︸

usual LP

+ It(xt − x)θh︸ ︷︷ ︸
interaction

+vt+h, (9)

for h = 0, 1, . . . , H; t = h, . . . , T where vt+h is a residual term. Based on this linear regression
in the parameters, note that one can calculate the following three elements of the Kitagawa
decomposition as:

Direct effect: µ̂h
1 − µ̂h

0 = β̂h ,

Indirect effect: (x1 − x)(γ̂h
1 − γ̂h

0 ) = (x1 − x)θ̂h ,

Composition effect: (x1 − x0)γ̂
h
0 ,
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Cloyne et al. (2023) highlight several interesting features of this decomposition. First,
the local projection in Equation 9 is still linear in the parameters and therefore, very easy
to estimate. Second, as Fortin et al. (2011) highlight, the decomposition is non-causal,
unless the xt are identified (say using an instrument). As long as interventions are as if
randomly assigned with respect to the stratification, this should pose not problem.10 Third,
if the sample is balanced, then the composition effect will be approximately zero since
x0 ≈ x1 ≈ x, which provides an easy way to check for failure of identification. Fourth, on
average, the indirect effect will be close to zero in a balanced sample since, as we have just
seen, x1 ≈ x. However, the indirect effect can be quite large for individual values of xt,
which can easily deviate from x. Fifth, note that the interaction of the treatment with xt

means that for each value of xt we obtain a different impulse response. In other words, we
just made the impulse response time-varying as long as θh ̸= 0.

As an example, consider a highly stylized economy. Suppose yt refers to an economic
activity outcome (e.g. output growth); let xt refer to a monetary policy stance (say the
difference between the policy rate and the natural rate), which for simplicity I assume to
have mean zero; and let It ∈ {0, 1} if the government implements a fiscal consolidation
(It = 1) of size st. These variables are assumed to be generated by the following potential
outcomes model:

yt(0) = µ0 + γ0xt + uy
t if It = 0

yt(1) = µ1st + γ1stxt + uy
t if It = 1,

that is, if there is a fiscal consolidation, It = 1, the effect is scaled by the size of the
consolidation, st. Further assume that:

st = ρsst−1 + us
t

xt = ρxxt−1 + ux
t ,

so that the observed data are generated by:

yt = µ0 + γ0xt + Itst(β + θxt) + uy
t .

Both policy variables, xt, and It (and indeed st) are determined at random, which is not
how we expect an economy to operate, of course. In this setting, suppose that we are
interested in the impulse response to a fiscal consolidation of size st = 1 given that the

10Gonçalves, Herrera, Kilian & Pesavento (2022), following Cloyne et al. (2023), emphasize this point.
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monetary policy stance is xt:

Rsy(h) = βρh
s + θρh

xxt.

If the monetary stance is neutral (xt = 0), or if γ0 = γ1, then Rsy(h) = βρh
s , the usual

impulse response in a linear model. However, if the stance is not neutral (xt ̸= 0) and
γ0 ̸= γ1, then the term θρh

xxt will modulate the initial response to a fiscal consolidation. It
is easy to see that the local projection in Equation 9 would deliver direct estimates with
which to construct Rsy(h) for any value of xt.

Figure 3 provides an example of the type of analysis that the Kitagawa decomposition
allows. It is based on a simulation of the simple example we just discussed. Panel (a) of
the figure shows that, for each observation in the sample, xt will attain a different value,
which in turn will accentuate or attenuate the response. This is the most visible for the
response to st on impact (the solid, blue line). To reinforce this point, panel (b) shows the
response when xt = 0 in solid blue with 2 standard error confidence bands. The response
is purposely designed to be almost 0. However, note that depending on the value of the
2nd treatment variable, xt, the response can be greatly accentuated (nearly 2 on impact) or
greatly attenuated (nearly -2 instead).

At this point, it is helpful to draw the connections to the multiplier calculation reported
earlier. Let’s focus on the fiscal experiment when the monetary stance is in neutral, i.e.,
xt = 0. In that case, Rsy(h) = βρh

s , and the multiplier mh is easily seen to be the same as that
calculated in section 3, that is mh = β. However, when xt ̸= 0, then Rsy(h) = βρh

s + θρh
xxt

and in this case the multiplier is:

mh(xt) =
∑h

j=0 Rsy(j)

∑h
j=0 Rss(j)

=
∑h

j=0 βρ
j
s + θρ

j
xxt

∑h
j=0 ρ

j
s

= β + θxt
(1 + ρx + ρ2

x + . . . + ρh
x)

(1 + ρs + ρ2
s + . . . + ρh

s )︸ ︷︷ ︸
Kh(xt)

.

In other words, the earlier equivalency between the multiplier and the average treatment
effect breaks down since now mh(xt) = β + Kh(xt), which is a function of xt.

10. Panel data local projections

The ability to estimate impulse responses with univariate regression greatly facilitates
their calculation in panel data settings. Given a sample of i = 1, . . . , n units observed over

25



Figure 3: Kitagawa decomposition of the impulse response

Panel (a): Variation of the response over time as a function of xt

-2
-1

0
1

2

2 4 6 8
Period

2nd Treat:   1 2nd Treat:  2
2nd Treat:  -1 2nd Treat: -2

Panel (b): Variation by value of secondary treatment xt

Notes: Both panels in the figure based on simulated data like in the example discussed in the text. Panel (a)
displays the variation of selected impulse response coefficients over time due to variation in xt. Panel (b)
shows how the impulse response varies depending on different values of xt.

t = 1, . . . , T periods, the local projection can be written as:

yi,t+h = αi + δt + βhsit + γhxit + vi,t+h,
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where αi are unit fixed effects and δt are time fixed effects. Because lags of the endogenous
variable are often included in xit, potential incidental parameter biases could arise in
short panels with a highly serially correlated endogenous variable (see, e.g. Álvarez &
Arellano, 2003). In such situations, an Arellano-Bond estimator or subsequent refinements
are recommended (see, e.g. Arellano & Bond, 1991; Arellano & Bover, 1995; Blundell &
Bond, 1998).

Panels, in principle, offer opportunities to take advantage of the cross-sectional and
time-series dimensions to adjust standard errors for serial correlation and potential het-
eroscedasticity. Intuitively, clustering by unit/group uses the cross-sectional dimension to
calculate autocovariances, thus adjusting for serial correlation non-parametrically and ad-
justing for clustering and heteroscedasticity. Clustering by time exploits the time-dimension
to construct residual-variance estimates that vary by unit, thus correcting for heteroscedas-
ticity non-parametrically.

However, the literature on clustered standard errors is rapidly evolving (see, e.g. Abadie,
Athey, Imbens & Wooldridge, 2023). For example, Petersen (2009) emphasizes using
clustering by unit rather than using Driscoll-Kraay standard errors (Driscoll & Kraay,
1998)—the panel version of a Newey-West standard error, which emphasizes large T, small
N asymptotics. Clustering by group relies on having a large number of groups so that
the asymptotic approximation works in favor of clustering over Driscoll-Kraay. That said,
Petersen (2009) finds the biases of Driscoll-Kraay to be relatively small in many situations.
For short T panels, it seems Monte Carlos evidence indicates that it is sufficient to use
time-fixed effects and one-way clustering.

Cameron, Gelbach & Miller (2008, 2011); Cameron & Miller (2015) emphasize that with
small numbers of clusters, cluster robust inference can be wildly incorrect (i.e. small N,
regardless of T asymptotics). In particular, simulation evidence in Cameron & Miller (2015)
shows that there can be significant distortions, leading them to recommend bootstrap-based
procedures (see also MacKinnon, Nielsen & Webb, 2022). Generally speaking, cluster-robust
standard errors (and two-way clustering in particular) are highly sensitive to having a
sufficient number of groups and time periods for the asymptotic theory to provide a good
approximation.

To my knowledge, there is no theoretical result yet justifying lag augmentation pro-
cedures similar to those discussed earlier as a possible alternative/complement, though
proving this result seems possible. As an example of an application of local projections in
panels, I now discuss recent work by Dube, Girardi, Jordà & Taylor (2023).
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10.1. Difference-in-differences with multiple treated groups and treatment

periods

It has been well documented (see, e.g. Callaway & Sant’Anna, 2021; De Chaisemartin &
d’Haultfoeuille, 2020; Sun & Abraham, 2021; Goodman-Bacon, 2021) that either in static
or distributed lag specifications where there are multiple treated groups and treatment
periods with heterogeneous treatment effects, the traditional two-way fixed effects (TWFE)
estimator can be severely biased. This is true even when parallel trends holds with staggered
treatment effects that are dynamic and possibly heterogeneous.

Previously treated units are invalid controls for currently treated units, which creates
problems in distributed lag specifications. However, this is easily handled with local
projections by using the clean control condition of Cengiz, Dube, Lindner & Zipperer (2019).
In particular, let Pt = 0 for any period before intervention and 1 thereafter; let Ai = 0
for an untreated unit, 1 if treated. Hence define Dit = Pt × Ai. In a simple setting with
no covariates, the difference-in-difference estimator of dynamic treatment effects can be
estimated with:

yi,t+h − yi,t−1 = δh
t + βh∆Dit + vi,t+h; h = 0, 1, . . . , H

by restricting the sample to observations that are either:

• treated: ∆Dit = 1, or

• clean control: ∆Di,t+k = 0 for k = −H, . . . , h.

The key advantage of local projections over distributed lag TWFE estimators is that
differencing is in the outcomes, not in treatments. Dube et al. (2023) show how the same
estimator can be obtained by defining a dummy variable that is 1 for unclean controls by
appropriately interacting this dummy variable with the regressors. I refer the reader to the
original paper for more details.

Simulation evidence shows that the local projections approach is easier to implement, it
is computationally much faster (which is important when using simulation-based inference,
such as the bootstrap), and it provides consistent estimates of the treatment effects. Thus,
this example shows that there are potentially many gains from incorporating local projec-
tions in other common situations in applied microeconomics where treatment effects may
have effects over more than one period. Examples may include regression discontinuity
designs, synthetic control, and so on.
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11. Conclusion

In this review, I have focused on presenting the basic tools of local projections estimation so
as to establish the nexus between applications in applied macro and applied microeconomics.
That said, of necessity there is a great deal that fell on the editing floor. Examples include
nonlinear applications of local projections such as to binary dependent data (see, e.g.
Ferrari Minesso, Lebastard & Le Mezo, 2022), and quantile regression (see, e.g. Jordà,
Kornejew, Schularick & Taylor, 2022); Bayesian estimation of local projections (see, e.g.
Tanaka, 2020; Miranda-Agrippino & Ricco, 2021); and smoothing and shrinkage methods
(see, e.g. Barnichon & Brownlees, 2019; Barnichon & Matthes, 2018), to name a few.

More importantly, I have argued that impulse responses and dynamic treatment effects
are close relatives to the point that local projections can offer a bridge between two literatures
that up to this point appear to have developed quite separately from one another: time
series analysis and methods in applied microeconomics research. The review showcases
several examples where these literatures intersect. The hope is that this review will spur
much more research at this intersection.
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Jordà Ò. 2005. Estimation and Inference of Impulse Responses by Local Projections. American
Economic Review 95(1):161–182
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