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Abstract

This paper takes the parameters in central bank loss functions as fundamental preferences
to be estimated from the data.  It is these preferences (along with target values) that
define the policy regime in operation and that potentially change with senior central bank
appointments.  Optimizing central banks apply policy rules whose feedback coefficients
are functions of its preferences.  Consequently, under some conditions, it is possible to
back out estimates of the preference parameters from estimated policy reaction functions.
This paper establishes conditions under which a policy regime can be identified and
illustrates these conditions using a number of popular models.
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1) Introduction

Modern analyses of central bank behavior begin with a policy objective function and

construct policy rules by optimizing the objective function subject to a system of

constraints.  Descriptions of actual central bank behavior can also be obtained by

estimating policy reaction functions directly.  For the United States, Clarida, Gali, and

Gertler (1998), Fuhrer (1997), and Judd and Rudebusch (1998) have all estimated

reaction functions for the Federal Reserve.  Taylor (1993) also developed a rule

describing Federal Reserve policy decisions, popularly known as the Taylor rule.  Clearly

these estimated policy reaction functions and those developed through optimization are

not unrelated.  Optimal policy rules set the policy instrument as a linear function of the

state vector.  The feedback coefficients in these optimal rules are nonlinear functions of

the parameters in the model constraining the optimization, as well as the parameters in

the policy objective function.  In principle it is these nonlinear parameter combinations

that applied studies estimate.

A better understanding of monetary policy decisions can be had if the monetary

authority’s preferences can be disentangled and extracted from estimated policy rules.

With these preferences in hand we would know which variables enter the policy objective

function; which aspects of the economy the central bank is concerned about; and how

senior central bank appointments affect the policy regime in operation.  Because they

relate directly to the policy regime in place, policy preferences, not estimated policy

rules, are more informative of the objectives and incentives underpinning policy

decisions.

Given a plausible economic model, and provided the estimated policy rule is the outcome

of a constrained optimization process, it should be possible to find objective function

parameters such that the optimal rule closely resembles the estimated rule.  Of course, if

these implied policy objective function parameters are to be informative it is important

that the model constraining central bank behavior realistically capture the relationships at
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work in the economy.  The objective of this paper is to present conditions under which a

policy regime in operation can be uncovered from the data.1

One of the most common objective functions employed in the monetary policy rules

literature defines loss in terms of a linear combination of the unconditional variances of a

vector of economic variables.2  To formalize this, let zt be a vector of economic variables,

including the policy instrument(s).3  We assume that zt is weakly stationary with

unconditional mean vector z*
t.  Each element in zt has its counterpart in z*

t.  Without loss

of generality z*
t is taken to equal the null vector.4  Further, it is assumed that policy

makers target the unconditional mean of zt, and therefore that z*
t is also the target vector.

With this notation every variable in zt has a nominal target value.  Of course, for many of

these variables zero weight may be applied to their deviations from target in the objective

function.

Denote the unconditional variance-covariance matrix of zt by Ω.  Let W be a symmetric,

positive semi-definite, matrix of policy weights; Ω and W share the same dimensions.

The infinite horizon policy objective function is: Loss[0,∞] = tr[WΩ], where ‘tr’ is the

trace operator.  In many applications W is a diagonal matrix.  Given this objective

function, a policy regime is defined by the matrix of policy weights (preferences), W, and

the vector of targets, z*
t.  It is the elements in this W matrix that we seek to identify.

The structure of the paper is as follows.  Section 2 develops the general economic

structure within which subsequent analysis takes place.  Using this general economic

                                               
1  Soderlind (1999) estimates the parameters in an objective function using a model of the
United States.  He does not consider identification however.
2  See, for example, Ball (1999), Svensson (1999), Svensson (1998), Fair and Howrey
(1996), Rudebusch and Svensson (1998), Clarida, Gali, and Gertler (1999), Fuhrer
(1997), and Bharucha and Kent (1998), among others.
3  Throughout this paper we use bolded capitals for matrices, bolded lowercase for
vectors, and lowercase for scalars.
4  Normalizing z*

t to equal zero is without loss of generality when policy decisions are
constrained by a system of linear equality constraints.  This normalization is not
appropriate if some of the constraints are inequality constraints, such as a constraint
preventing the nominal interest rate from going negative.
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framework section 3 systematically examines the conditions under which policy

preferences can be identified.  To illustrate how the identification conditions are applied

in practice section 4 considers several popular models and examines whether their

structure permits identification of the policy regime.  Section 5 concludes.

2) A General Macroeconomic Setting

Consider the following macroeconomic specification:

tt31t21t1t0 vxAyAyAyA +++= +−− 1tE , vt ~ iid[0, Σ] (1)

where yt is an n×1 vector of economic variables, xt a p×1 vector of policy instruments, vt

an n×1 vector of stochastic innovations, and Et-1 is the mathematical expectations

operator conditional upon information set It-1, where It = {yt, xt, It-1}.  Matrices A0, A1,

A2, and A3 contain structural parameters with dimensions conformable with yt and xt as

needed.  An alternative specification would have the expectations in (1) formed using

period t rather than period t-1 information.  More will be said about this alternative

specification later, particularly in section 4.  Specification (1) is more general than may

first appear.  Models with complicated lag and lead structures can be manipulated into

this form (Binder and Pesaran, 1995).  Variables that are predetermined and time changes

in policy instruments can be included in yt.

Assumption one: The instrument vector, xt, is set as a linear function of the state vector,

yt-1.

Policy therefore follows the rule:

1tt \x −= , (2)
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where the p×n matrix Ψ contains the policy feedback coefficients.  Where necessary, lags

of the instrument vector enter into this rule through yt-1.  It is desirable to allow some

elements of Ψ to equal zero or be otherwise restricted, thereby accommodating simple

rules.  Let the unrestricted elements of Ψ be represented by the (b×1) vector ϕ .

Defining zt = [yt
T xt

T]T and combining (1) and (2) produces the system:

t1t21t1t0 uzBzBzB ++= +−− 1tE . ut ~ iid[0, Ξ] (3)

Clearly zt has dimensions (n+p)×1, and hence Ω and W are (n+p)×(n+p) matrices.  The

central bank’s behavior is formalized as follows:

Assumption two: The monetary authority operates under the regime: W, z*
t = 0 ∀  t, and

selects the unique ϕ  ∈  Q ⊂  ℜ b, that minimizes Loss[0,∞] = tr[WΩ], subject to

(3).

3) Identifying the Policy Preference Matrix

This section is central to the paper.  It provides necessary and sufficient conditions for

identification of the policy preference matrix W.  Before turning to the details of these

identification conditions, which are presented in a sequence of propositions, it is useful to

underline from the outset what is known and what is to be determined.

Substituting (2) into (1) gives:

t1t21t31t0 vyAyAAyA +++= +−− 1tE)( . (4)

The solution to (4) takes the form (see McCallum, 1983, or Uhlig, 1999):
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t21t1t vyy += − , (5)

where Π2 = A0
-1 and Π1 satisfies:

2
123110 AAAA ++= . (6)

It is assumed that the reduced form parameters, Π1, and the feedback coefficients in the

policy rule, Ψ, are known.

Identification problems arise on several levels: first because the system is simultaneous;

second because rational expectations terms are present; and third because the system is

subject to control.  As a consequence the identification strategy proposed below is a

recursive one.  At its most simplistic the identification problem is one of imposing

enough structure on the system so that estimates of the structural parameters can be

backed out from the reduced form.5

For ease of exposition, define:

AAC 31 +=
def

.

This C matrix is a commingling of the parameters applied to the state vector in equation

(4).  Now, variance-covariance matrix restrictions aside, (6) implies:

[ ] [ ][ ] [ ]0HIACA

1

1

20 ==















−−

def

2

, (7)

where, in matrix form

                                               
5  Identification of simultaneous systems is analyzed thoroughly in Fisher (1966).
Pesaran (1988) examines identification in rational expectations models.
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[ ] [ ] [ ][ ]A
I

AAC 31

def

=







= . (8)

3.1) Step One

The first step in the recursive identification strategy involves identifying H in equation

(7).  Necessary and sufficient conditions for identifying H are summarized in:

Proposition one: Let the parameters in the i’th row of H, hi (1×3n), be subject to ‘ri’

linear inhomogeneous restrictions, hiRi = ri, where Ri has dimensions (3n×ri),

then a necessary condition for identifying H is ri ≥ 2n, ∀  i ∈  [1,…,n].  A

sufficient condition for identifying H is rank[Γ Ri] = 3n, ∀  i ∈  [1,…,n].

Proof:

The row vector hi is subject to the following linear inhomogeneous restrictions:

[ ][ ] [ ]iii rRh = . (9)

Combining (7) with (9) produces:

[ ][ ] [ ]iii r0Rh = .

The dimensions of hi, Γ, and Ri are 1×3n, 3n×n, and 3n×ri respectively.  Accordingly, hi

contains 3n parameters jointly subject to n+ri restrictions.  The restrictions in (9) include

the normalization restriction arising when a dependent variable is chosen.  Consequently,

identifying hi necessarily requires ri ≥ 2n.  For these linear inhomogeneous restrictions to

be sufficient requires [Γ Ri] to be such that rank[Γ Ri] = 3n (see Fisher, 1966).

❚
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Proposition one is very intuitive.  In a standard simultaneous equations system without

rational expectations identifying an equation requires at least as many restrictions be

imposed as there are endogenous variables (ri ≥ n).  With the rational expectations term

present each equation has an additional ‘n’ parameters to identify, but the number of

reduced form parameters available is unchanged.  It directly follows that ‘n’ additional

restrictions must be imposed to achieve identification.

3.2) Step Two

While proposition one provides conditions under which H is identified, and identification

of H implies identification of C, it does not separately identify A1 and A3.  This leads to:

Proposition two: Let the i’th row of A, ai (1×(n+p)), be subject to ‘qi’ linear

inhomogeneous restrictions, aiQi = qi, where Qi has dimensions ((n+p)×qi), then a

necessary condition for identifying A is qi ≥ p, ∀  i ∈  [1,…,n].  A sufficient

condition for identifying A is that rank[Λ Qi] = n+p, ∀  i ∈  [1,…,n].

Proof:

From equation (8):

[ ][ ] [ ]CA = . (10)

Assume further that ai is subject to ‘qi’ restrictions of the form:

[ ][ ] [ ]iii qQa = . (11)

Combining (10) and (11) gives:

[ ][ ] [ ]iiii qCQa = .
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The dimensions of ai, Λ, and Qi are 1×(n+p), (n+p)×n, and (n+p)×qi respectively.

Therefore ai contains n+p parameters that are collectively subject to n+qi linear

restrictions. Consequently, a necessary condition for identification is qi ≥ p.  A sufficient

condition for identification of ai is rank[Λ Qi] = n+p.

❚

In terms of the recursive identification strategy the role of proposition two is to

disentangle the elements in A3 from those in A1.  The elements in these two matrices are

mingled because monetary policy is set conditional upon the state vector.  In words

propositions two states that a necessary condition for identification is that a restriction on

the elements in A1 and A3 be imposed for each control variable in the system.  Clearly if

an equation contains all state variables and an instrument is set as a linear function of all

of the state variables, then the coefficient in A3 associated with that instrument in that

equation cannot be identified.

3.3) Step Three

Thus far in the identification strategy information contained in the policy feedback matrix

Ψ has not been used.  As long as the rank conditions of proposition one and two hold,

then information in the reduced form coefficients, Π1 is sufficient to identify all the

coefficients in the structural model.  In this final identification step we introduce Ψ.  If Ψ

is determined optimally, then its elements will be nonlinear functions of the structural

parameters (A0, A1, A2, and A3), and also W.  Provided the structural parameters are

identified a crucial ingredient in Ψ is known.  This third and final step establishes

necessary and sufficient conditions under which knowledge of Ψ and the structural

parameters can be used to identify W.  These conditions are summarized in:

Proposition three: Let the column vector w = vech(W) be subject to ‘s’ linear

inhomogeneous restrictions, STw = s, then a necessary condition for global
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identification of W is: b
pnpn

s −+++≥
2

)1)((
.  A sufficient condition for

global identification of W is: rank[J(w**)T S]T = k = [(n+p)(n+p+1)/2], ∀  w** ∈  P

⊂  ℜ k
+, P convex, where J(w**) is the Jacobian of the transform f: P → Q defined

below.

Proof:

In its most general form W is a square, symmetric, matrix containing (n+p)2 parameters.

Symmetry reduces the number of independent parameters in W to [(n+p)(n+p+1)]/2.  In

what follows let k = [(n+p)(n+p+1)/2].

An outcome of the policy optimization is a continuously differentiable function f: P → Q

relating the policy preferences to the coefficients in the policy rule:6

)f(w= . (12)

Recall that ϕ is a (b×1) vector containing the elements of Ψ that are unrestricted.  w is

also subject to ‘s’ linear inhomogeneous restrictions of the form:

swS =T . (13)

The policy objective function is only defined up to a scalar allowing one element of w to

be normalized upon.  This normalizing restriction is subsumed into (13).  Remaining

restrictions on w are most likely to take the form of exclusion restrictions, particularly on

the covariance elements of Ω.  The non-linearity of (12) complicates identification.  From

the mean value theorem there exists a w** between w* and w, each elements of P, such

that:

                                               
6 The structural parameters have been subsumed into the functional form.
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))(( wwwJ **** −+= , (14)

where J(w**) is an b×k Jacobian matrix.  Combining (13) and (14) allows the restrictions

on w to be represented as:








 +−
=








s

wwJ
w

S

wJ ****** )()(
T

. (15)

From (15) a sufficient condition for global identification of w is rank[J(w**)T S]T = k, ∀

w** ∈  P (see Rothenberg, 1971).  Notice, however, that ∀  n, p > 0, k > np ≥ b.  Therefore,

rank[J(w**)] is at most ‘b’, which implies that a necessary condition for global

identification is s ≥ k–b, or after substituting for k, b
2

1)pp)(n(n
s −+++≥ .

❚

The necessary condition of proposition three has a clear interpretation: the ‘b’

coefficients in ϕ  can be used to identify at most ‘b’ elements in W.  An interesting aspect

of proposition three is that the Jacobian matrix J(w**) itself need not have full rank for all

w** ∈  P.  A singularity in the Jacobian matrix means that there is no information in the

functional relationship between w and ϕ  to tie down one or more parameters in w.

However, provided this lack of information in J(w**) can be offset by additional outside

information in the form of additional columns in S identification is still possible.

3.4) In Addition…

Of course equation (2) implies that the relationship between the policy instruments and

the predetermined variables is a deterministic one.  Rarely would this be the case.  In

practice the information set used by agents to form their expectations, and that an

econometrician uses when estimating policy reaction functions, may only be a subset of

that available to the monetary authority when it sets policy.  This can arise if the

monetary authority uses a more recent information set than other agents.  Where this is
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the case deviations between the actual path of xt and that predicted by (2) are to be

expected.  These deviations are accommodated by adding a p×1 innovation vector et,

uncorrelated with vt and yt-1, to equation (2) giving:

t1tt e\x += − . (16)

Intuitively, adding this innovation vector facilitates identification of A1 and A3 because it

automatically imbues xt with volatility absent from yt-1.  The addition of the policy

innovation term leads to:

Proposition four: Given (1) and (16) A1 and A3 are identified provided the rank condition

of proposition one holds.

Proof:

Substituting (16) into (1) produces:

tt31t21t31t0 veAyAyAAyA ++++= +−− 1tE)( . (17)

Equation (16) is identified because it contains only predetermined variables and therefore

both Ψ and et are assumed to be known.  The rational expectations solution to (17) takes

the form:

t3t21t1t evyy ++= − , (18)

where Π2 = A0
-1, Π1 satisfies (6), and Π3 = A0

-1A3.  The reduced form parameter matrices

Π1 and Π3 are known and the solution to (17) asserts that once A0 is identified so too is

A3.  Proposition one presents a sufficient condition for A0 to be identified.

❚
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Finally, we may wonder how these identification conditions would be affected if the

expectations in (1) were formed using period t rather than period t-1 information.  It is

not difficult to show that provided variance-covariance matrix restrictions are not used

for identification, and provided the policy rule continues to depend only on yt-1 and does

not contain vt, propositions one - four remain unaffected.  The intuition behind this result

is that the solution for Π1 is unaltered by the change to period t information.  The solution

for Π2 does change, but it is not required for identification provided vt does not enter the

policy rule.

4) Some Examples

This section takes some popular models from the literature and examines whether they

satisfy the conditions necessary for identification of policy regimes.  The aims of this

section are twofold.  First the section aims to illustrate how propositions one, two, and

three are applied in practice.  Second, the section aims to investigate the suitability of

various models as vehicles for identifying policy regimes.

All models considered contain the variables: yt, πt, and it, representing the output gap,

inflation and the nominal interest rate respectively, and as a consequence the policy

objective function used throughout this section is taken to be:

]Var[i]�9DU>\(1]9DU>]Loss[0, ttt σ+−+=∞ .

Accordingly, the systems examined require that we identify just two policy preference

parameters.  As such, for each system S has four independent columns implying s = 4.

4.1) Example One

Consider the following system:
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t1t1tt1tt g]E>Lyy +−−= +−−β , (19)

t1t1tt u\ ++= −− , (20)

1t1tyt yi −− += . (21)

Equation (19) is a dynamic IS curve, (20) an accelerationist Phillips curve, and (21) the

policy reaction function.  The stochastic terms - gt and ut - are assumed to be finite

variance white noise processes.  Observe first that equations (20) and (21) are identified

in so much as for them the rank conditions of propositions one and two hold.  For

subsequent identification of other coefficients the coefficients in equations (20) and (21)

are assumed known.  Next note that with two feedback parameters in (21) and two

independent policy preference coefficients the necessary condition of proposition three is

satisfied.  It just remains to be seen whether propositions one and two hold when applied

to (19).

In terms of equation (4) an unconstrained representation of (19) takes the form:

t1t1t21t1t11t21t1t2t1 gEyEcycy +++++= +−+−−− . (22)

The system (19) – (21) has n = 2 and p = 1.  Therefore, the order condition of proposition

one requires that (19) place at least four restrictions (ri ≥ 2n) on the structure of (22).

Relative to (22), equation (19) imposes: η1 = 1; η2 = 0; ρ1 = 0; and ρ2 = c2/ϕπ.  Thus

proposition one’s order condition for identification is satisfied.

Proposition two requires the number of restrictions on the elements of A1 and A3

associated with the IS curve be greater than or equal to the number of policy instruments.

It is useful to rewrite (22) as:

tt1t1t21t1t11t21t1t2t1 gLEyEyy ++++++= +−+−−− . (23)

In light of (23), the restrictions on the IS curve’s structural parameters take the form:
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Provided πt-1 enters the policy reaction function non-trivially (ϕπ ≠ 0) the rank condition

of proposition two is satisfied.7  In this system the policy regime can be identified.

4.2) Example Two

The second example is adapted from McCallum (1997) and consists of the following

equations for the output gap and inflation:

t1t1tt1t1tt g]E>LyEy +−−= +−+−  (24)

tt1t1tt u\E ++= +− . (25)

To add some persistence both gt and ut are assumed to follow AR(1) processes:
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McCallum’s system is completed by the addition of the policy reaction function:

1tu1tgt ugi −− += . (26)

                                               
7  Notice that ϕy can equal zero, but not ϕπ, and the system is still identified.  Thus the
optimal simple inflation rule 1tti −= can still be examined.  A policy rule where the

interest rate responds only to the output gap might usually be expected to lead to nominal
indeterminacy.  In this model it produces an unidentified system.  Moreover, with only
one parameter in the policy rule the order condition for proposition three is not met so the
two policy preference parameters cannot be identified.
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Analogous to example one the policy reaction function (26) is identified and contains two

feedback coefficients.  With only two independent parameters in the policy objective

function proposition three’s order condition is meet.  Unfortunately neither (24) nor (25)

are identified.  In unrestricted form equation (25) has the form:

1t41t31t21t1t4t3t2t1 ugyugy −−−− ++++++=

t1t1t41t1t31t1t21t1t1 uuEgEyEE
−

+−+−+−+− +++++ . (27)

Comparing equation (25) with (27) the independent restrictions imposed on (27) are:

η1=1; η3=0; η4=0; λ1=0; λ2=0; λ3 = 0; ρ1=1; ρ2=0; ρ3=0; and ρ4=0.  These restrictions

number ten while the order condition of proposition one requires only eight restrictions.

In terms of this necessary condition equation (25) is over-identified.  Appearances are

deceiving, however.  For while equation (25) satisfies proposition one’s order condition it

fails the rank condition.  To see this, observe that the restrictions listed exclude πt-1, yt-1,

and gt-1 from the system.  At the same time the rational expectations solution to the

system expresses πt and yt in terms of just ut-1, also excluding8 πt-1 yt-1, and gt-1.  Thus

three of the columns in the [Γ Ri] matrix associated with (25) depend linearly on the

others and [Γ Ri] has rank = 11 < 12 (3n, where n = 4).  In a similar vein it can be shown

that equation (24) is also unidentified.

4.3) Example Three

Our final example comes from Clarida, Gali and Gertler (1999) and is of the same genre

to those just analyzed.  It differs, however, in that the persistence in the system is

endogenous, determined by lagged dependent variables, and not exogenous, driven by

autocorrelated shocks.  In fact the shocks gt and ut are assumed to be finite variance white

noise processes.

                                               
8  That all elements in Π1 associated with πt-1 and yt-1 equal zero is clear because these
two variables do not appear in the system’s structure and hence only enter the system’s
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t1t1tt1t1t1tt g]E>Ly�((1\y +−−−+= +−+−− (28)

tt1t1t1tt u\�((1 ++−+= +−− (29)

1t1tyt yi −− +=

Like the previous two examples the order condition of proposition three is satisfied

because the policy reaction function contains two feedback coefficients.  Now consider

equation (28).  In the structure of equation (4), at its most general, equation (28)

becomes:

t1t1t21t1t11t21t1t2t1 gEyEcycy +++++= +−+−−− .  (30)

Relative to (28) equation (30) imposes the four restrictions: η1 = 1; η2 = 0; c2 = -ρ2ϕπ;

and c1 = 1-ρ1-ρ2ϕy, which with n = 2 means that the order condition of proposition one is

met.  Provided neither β nor δ equal zero the rank condition is also satisfied.9  Moreover,

if ϕπ is non-zero the rank condition of proposition two is also satisfied implying that

equation (28) is identified.  If ϕπ does equal zero, then the order condition of proposition

three does not hold and the policy preference parameters cannot be identified.

Now consider the Phillips curve, equation (29).  The unrestricted Phillips curve is:

t1t1t21t1t11t21t1t1t2 uEyEcycy +++++= +−+−−− (31)

Relative to (31) equation (29) imposes the restrictions: η2 = 1; c1 = 0; c2 + ρ2 = 1; and ρ1

= 0.  These four restrictions satisfy proposition one’s necessary condition for

identification.  Like the IS curve (28), provided neither β nor δ equal zero the rank

                                                                                                                                           
state vector trivially.  That the elements associated with gt-1 also equal zero (or for one
equation µ1) is a consequence of the system being subject to control.
9  When β = 0, for example, yt-1 is not a state variable in the system and ϕy appropriately
equals zero.  Consequently, the column of Π1 associated with yt-1 equals zero, leading to
the rank condition of proposition one failing.
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condition of proposition one is also met.  As a consequence for this system the policy

regime is identifiable.

What these three examples illustrate is that provided we consider only the order condition

for identifying the policy preferences (proposition three) the major obstacle faced when

identifying W is that of identifying the structure of the economy.  Identifying the

economy’s structure is essential, however, because it constrains the optimization process

leading to the policy rule.

5) Conclusions

The aim of this paper was simple.  We wanted to lay the foundations for estimating

central bank policy preferences by establishing conditions under which these preference

parameters could be identified.  It was demonstrated that optimizing central banks apply

policy rules whose feedback coefficients are nonlinear functions of its policy preferences.

Before these policy preferences can be backed out from these feedback coefficients

several identification conditions need to hold.  As a consequence this paper proposes a

recursive identification strategy consisting of three steps.  The first two steps,

summarized in propositions one and two, identify the parameters in the structural model

constraining the central bank’s optimization.  Only once the structural model is identified

can enough structure be placed on the policy reaction function to disentangle the policy

preference coefficients.  Proposition three provides necessary and sufficient conditions

for the policy preference coefficients to be identified.

To illustrate how the conditions developed in propositions one, two and three are applied

in practice three examples were provided and their identification properties examined.

The identification conditions developed in this paper are important because only by

identifying and estimating the policy regime in operation can we tell what the objectives

of the monetary authority truly are.  In particular, this paper serves to emphasize that it is

not necessarily possible to say anything meaningful about a policy regime purely on the
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basis of an estimated policy rule.  Future work will seek to identify and estimate actual

policy regimes in operation, and to document how these policy regimes have changed

over time.
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