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1See Scherer (1999), Chapters 2-4, for a discussion of the history of economic thought
relating to technological change (particularly that which is embodied in machinery) and long-run
productivity growth.

2In The Communist Manifesto, Marx argued that technological advances in machinery are
a distinguishing feature of the “bourgeois” or capitalist system: “The bourgeoisie cannot exist
without constantly revolutionizing the instruments of production, and thereby the relations of
production, and with them the whole relations of society” (Marx and Engels, 1848).

3Unless otherwise indicated, capital will hereafter refer to productive capital.

4It should be noted that the general production-side approach and the estimation of
embodied technological change for aggregate U.S. manufacturing was a collaborative effort with
Plutarchos Sakellaris (see Sakellaris and Wilson (2001)) and was also presented in Chapter 2 of
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1. Introduction

The hypothesis that much of technological progress is embodied in new capital goods, and
therefore investment in new capital is necessary to foster productivity growth, is an old one --
tracing its roots at least as far back as Smith’s Wealth of Nations, which attributed its source to
the division of labor: “The invention of all those machines by which labour is so much facilitated
and abridged, seems to have been originally owing to the division of labour” (Smith, 1776, p.9).1 
The basic hypothesis was refined and extended over time by Karl Marx, Joseph Schumpeter, and
Robert Solow, among others.2  Yet, obtaining independent measures of the rate(s) at which
embodied (or “investment-specific”) technological change has progressed has long eluded us. 
Absent knowledge of this rate, it is impossible to correctly measure the productive capacity of the
economy’s capital stock.  The concept of the productive capacity of capital, or simply productive
capital for short, is the theoretically correct (in terms of Neoclassical production theory) concept
of capital to be used in production and productivity analyses.  The productive capital stock,
combined with information on the degree to which capital is being utilized, tells us the flow of
capital services used in the production process.  The flow of capital services to production is one
of the main determinants of labor productivity.  Thus, modeling long-run labor productivity
growth relies on good measures of productive capital (as well as utilization rates).  And, of
course, modeling long-run productivity growth is a, if not the, key element to any forecasting
model.

Yet surprisingly little research has focused on the measurement of capital and the
implications of mismeasurement for modeling productivity.3  The situation appears to be
changing, however.  Thanks in part to the rapid advances in equipment technology which have
exacerbated and exposed the shortcomings of the current ways of measuring capital, researchers
interested in productivity analysis and forecasting can no longer ignore these shortcomings in their
empirical work.

The thesis work of Wilson (2001a) attempts to satisfy the need for a quantitative idea of
the contribution these technological advances in equipment have on productive capital and
productivity (and more importantly, on their growth rates)..  In that work, I first develop a
production-side approach to estimating equipment-embodied technological change.4  The method



my dissertation.  Chapter 3 of my dissertation extended these empirical results to the industry-
level and presented a separate method of deriving rates of embodied technological change for
non-manufacturing industries.  Chapter 3 formed the basis for Wilson (2001b).
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estimates embodied technological change for U.S. manufacturing industries directly from
observed production, input, and investment decisions at the plant level using the Longitudinal
Research Database at the U.S. Census Bureau.  Specifically, I estimate a gross-output production
function in which the equipment capital input is a parameterized stream of all past investments net
of physical depreciation.  The vintage weights in this stream, or perpetual inventory, imply an
estimable rate of embodied technological change.  

The empirical results are shown in the top panel of Table 1.  The estimates of embodied
technological change generally clustered around 5-10%.  15 of the 24 industries had positive
estimates with 9 being significant.  Of the 9 negative estimates, 5 were significant.  These
estimates seem quite reasonable in their ordering, but the presence of negative estimates (which
are at best counter-intuitive and at worst nonsensical) and of unrealistically high estimates for
producers of Computers and Communications Equipment as well as the relative imprecision of the
estimates leaves some skepticism regarding the usefulness of these estimates.

Evaluating the reasonableness of the estimated rates of embodied technological change
and deriving analogous rates for nonmanufacturing industries, for which longitudinal plant-level
data is not currently available, was the motivation for Wilson (2001b).  In that study, I construct
an index capturing the extent of research and development directed at the various capital goods
that constitute a given industry’s capital stock.  Specifically, I combine (and adjust) data from the
National Science Foundation and the Commerce Department to construct a weighted average of
the R&D done on the equipment capital that an industry purchases for 62 industries that span the
U.S. private economy. This industry-level index of capital-embodied R&D is shown to have a
large, positive correlation with the manufacturing estimates of embodied technological change.

The estimated relationship in manufacturing between embodied technological change and
the index of embodied R&D, along with the index values for nonmanufacturing industries, is used
to impute nonmanufacturing rates of embodied technological change.  These rates are shown in
the bottom panel of Table 1.  They range from 0 to 11%.  It should be noted that the estimated
coefficients in the imputation regression have large standard errors, thus the imputed rates have
correspondingly large standard errors associated with them.  Nonetheless, the magnitudes and the
cross-sectoral ranking of these rates of embodied technological change are quite reasonable.  For
instance, the lowest imputed rates of embodied technological change are found in mining
industries which, not surprisingly, invest mainly in mining equipment which has historically
experienced very little R&D.  The highest rate is in Communications Services which invests
mainly in R&D-intensive equipment such as telecommunication equipment and computers.

In the current paper, I use the results of the above research to analyze the effect on the
IDLIFT model of replacing the former labor productivity equations, which contain no influence
from investment, with Neoclassical-type equations, estimated using correctly measured productive
capital stocks.  Section 2 briefly describes the structure, particularly of the labor productivity
equations, of the IDLIFT input-output simulation and forecasting model which is maintained by



5INFORUM stands for Interindustry Forecasting at the University of Maryland.  It is a
non-profit research center founded by Clopper Almon in 1967 which provides industry-level and
macroeconomic forecasting and policy analysis.  Douglas Meade has been largely responsible for
the development of IDLIFT.

6In the context of the capital, the terms quality and embodied technological change
should be thought of as synonymous.

7The “ID” in IDLIFT stands for Interdyme, the C++ framework developed at Inforum for
building interindustry dynamic macroeconomic models (LIFT was built using Fortran).
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the INFORUM research center.5  In this section, I also discuss the shortcomings of the current
labor productivity equations that motivated the proposed changes suggested in this paper.  Then,
armed with a full set of industry-level estimates of capital-embodied technological change
spanning the economy from the aforementioned research, I construct quality-adjusted6 equipment
capital stocks in Section 3.  The estimation of several alternative sets of productivity equations
utilizing the constructed capital stocks is described in Section 4.  Section 5 discusses the choice of
which set of productivity equations to use in the new model and the incorporation of these
equations into the programming framework of IDLIFT.  In Section 6, Base forecasts are
generated for both the current version of the model and the new, rival version.  Two alternative
scenarios, or “shocks,” are then introduced to each model and the deviations from base are
analyzed.  Section 7 concludes.

2.  Brief Overview of the IDLIFT model

A.  The structure of IDLIFT
Since its founding in 1967 by Clopper Almon, Inforum has been building, and encouraging

others to build, regression-based structural macroeconomic models based on input-output
relationships between industries.  The Inforum modeling philosophy differs from that of other
large-scale macro models primarily in the input-output structure underlying the model.

Inforum’s main model of the U.S. economy is IDLIFT, which is presently in the process of
replacing its predecessor, LIFT (Long-term Interindustry Forecasting Tool).7  In this section, I
will discuss the general structure of the IDLIFT model as it currently stands.  For a discussion of
how IDLIFT differs from the LIFT model and planned future changes to the model (aside from
those proposed in this paper), see Meade (1999).

The IDLIFT model forecasts output, employment, prices, exports, imports and
interindustry flows for 97 commodity sectors; personal consumption expenditures (PCE) for 92
categories; equipment investment by 55 industries, construction spending for 19 categories; and
the components of value-added for 51 industries.  In addition, the model provides a full
accounting of the macroeconomy.  Macroeconomic variables such as the personal savings rate or
the 3-month Treasury bill rate are estimated econometrically.  Others are determined according to
national accounting identities and still others are given to the model exogenously.

The overall structure of the model is based on the national accounting system embodied in



8In the model, government spending is actually decomposed into 5 components such as
state and local spending, defense spending, etc.  The macro-level of these components are
generally exogenous to the model; the exogenous macro values are shared-out to the 97 sector
level using the sectors’ shares of that component of government spending from the most recent
year of available data.

9For such a discussion, see Meade (1999).
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the U.S. national income and product accounts (NIPA).  There is a real side and a price side.  On
the real side, each component of final demand (i.e., the usual C+I+G+X-M) is modeled at the
various levels of disaggregation mentioned above using structural behavioral equations.  The
disaggregate, sectoral equations have been estimated individually (as is the case with the labor
productivity equations) or as a system (such as a demand system for consumption equations)
using mainly industry-level time series data.  Bridge matrices convert each of these final demand
components from their particular level of disaggregation to the 97-sector commodity level. 
Sectoral (gross) output is then determined according to the fundamental input-output equation:

,        (1)q Aq f= +
where q is a 97×1 vector of output, A is the intermediate coefficient matrix (also called the input-
output matrix or the requirements matrix), and f is the vector of final demand:

       (2)
f H c H eq H s

i x m g

c eq s

97 1 97 92 92 1 97 55 55 1 97 19 19 1
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= + +
+ + − + .

The subscripts indicate the dimension of each matrix or vector.  Here c denotes the consumption
vector, eq denotes equipment investment by purchaser, s structures investment (construction) by
type of structure, i inventory change, x exports, m imports, and g government spending.8  Hj is the
bridge matrix for component j.  All of the variables in equations (1) and (2) should rightly have
time subscripts as well, including the A and H matrices which vary according to trends in the
across-the-row totals.  A detailed discussion of the equations or systems that forecast the
components of the final demand vector is beyond the scope of this paper.9

Given the forecasted vector of output (q*), employment (number of jobs) by sector is
computed as:
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where R is hours worked.  An asterisk indicates that a variable is forecasted by the model.  For
instance, R is not a variable in the model per se (it is determined by identity once [R/n]* and n* are
forecasted), but the average hours per job (R/n) and labor productivity (q/R) are.  Employment
forecasts, together with forecasts of the labor force, determine the unemployment rate, a key
variable in the model.  Aside from being extremely interesting in its own right, the unemployment
rate affects many macroeconomic and industry equations on both the real and the income side of
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the model.  By extension, then, it is evident that labor productivity is a key driver of the model
(both through its effect on the model’s unemployment rate and through its own direct presence in
many model equations).

On the income/price side of the model, prices at the 97-sector level are determined
according to equations modeling the markups over unit intermediate and labor costs.  Given this
forecasted price row vector p (1×97), value added by commodity sector is calculated as a residual
using the dual of the fundamental input-output equation:

.        (4)p pA v= +
The components of value added (corporate profits, inventory valuation adjustment, capital

consumption adjustment, net interest income, rental income, indirect taxes, government subsidies,
and the big one:  labor compensation) are each modeled separately.  The forecasted values of the
capital income components (everything except labor compensation) are then scaled to be
consistent with equation (4) and the markup forecasts.  Hourly labor compensation is modeled as
a function of the growth in M2/GNP, the growth in labor productivity, and a supply shock (it is
then multiplied by the forecast of the labor hours requirement, R, from the real side).  So we can
see that labor productivity has an important influence on the income side of the model as well.

B.  The Problem and the Need for Change
With its considerable influence on labor compensation on the income side and employment

and the savings rate on the real side, it should be evident by now that labor productivity is one of
the most important variables in the IDLIFT model (as well as virtually any other large-scale
structural macro model).  Currently, the IDLIFT model’s labor productivity equations are
determined essentially by time trends and the difference between industry output and its previous
peak, and does not contain any factor inputs as explanatory variables:

       (5)ln( / )q l t t qup qdowni i i i i i i= + + + +β β β β β0 1 1 2 2 3 4

where: t1 = a linear time trend starting in the first year of data;
t2 = a second time trend, starting in 1972;
qupt = dqt, when dqt > 0, 0 otherwise;
qdownt = -dqt, when dqt < 0, 0 otherwise;
dqt = ln(qt) - ln(qpeakt-1);
qpeakt = qt, if qt > qpeakt-1(1-spill), otherwise = qpeakt-1(1-spill);
spill = depreciation rate of capacity;
and i indexes the 55 industries/sectors.

Inforum has long had difficulty building into its models a sensible relationship between
investment and labor productivity.  Given that labor productivity is the key driver of the long-run
output growth behavior of the model, the lack of an influence from investment or capital stock is
lamentable.  Virtually any neoclassical-based growth model attributes a substantial share of output
growth to the growth of capital.  Its omission from Inforum models, IDLIFT in particular, is due
neither to a disbelief in neoclassical production theory nor to a lack of effort.  

Many valiant attempts have been made over the years to develop and estimate productivity
equations based on firm optimization behavior that incorporate the effects of changes in capital
stock.  These attempts have generally been foiled by one of two problems.  First, in industry-level
time-series regressions (with which the IDLIFT equations are typically estimated), the capital
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coefficient is often found to be either negative or positive but very close to zero (particularly in
service sectors).  Second, because the investment equations in IDLIFT have always been of a
flexible accelerator-type nature (i.e. driven largely by current and lagged changes in output), the
introduction of investment (via capital stock) into the productivity equations provided a seed for
the explosion of output in the model’s forecast.  Any exogenous positive shock to the model
caused output to grow, which caused investment to grow, which caused labor productivity to
grow, which caused output to grow (mainly through productivity’s increasing of the wage rate
which lowers the savings rate which thus spurs consumption, the largest component of final
demand),...ad infinitum.  The model has lacked a supply constraint (such as a nonconvex
adjustment cost in the investment equations) to put the brakes on investment and stabilize output. 

For these reasons, IDLIFT’s labor productivity equations (as well as those of other Inforum-
type models) have heretofore remained essentially a series of time trends.  Inforum’s discontent
with this situation has been around since its inception, as demonstrated here by the words of
Almon (1969) describing an early version of IDLIFT’s predecessor, LIFT:

Until recently, our model has used exogenous projections of labor productivity which were based on
simple extrapolations of past trend.  This practice left an awkward hole in the middle of the model.  For
on the one hand, the endogenous generation of investment by industry was one of the distinguishing
features of the model; and on the other hand, the growth in labor productivity essentially determines the
overall growth projection given by the model.  Even the most casual observation suggests that capital
investment has something to do with the increase in labor productivity.  Therefore, the absence of any
connection between the two in the model struck people as a clear indication of ineptitude, or at least
indolence on our part.

The truth is that it is easier to recognize that there must be some connection than to measure the
connection.  We have made a number of false starts on the problem. ...  At length, we gave up the
production approach to labor productivity -- although we retain it for capital investment -- because we
couldn’t make it work as well as the simple time trend equation. (Italics added).
The above statement was quoted in Meade (1999) who went on to say: “Thirty years have

passed since this remark, and we are no closer to a labor productivity equation that incorporates
capital, research and development or any other significant influence we believe should be
working.”

The maintained hypothesis has been that one of the key problems with finding a successful
Neoclassical equation has been mismeasurement of capital due to unobserved changes in
embodied technology.  It is well-known that classical measurement error causes an attenuation
bias on the coefficient associated with the mismeasured independent variable.  In fact, the problem
is even worse.  The measurement error in equipment capital that is caused by ignoring embodied
technological change is not random; it is systematically related to the intertemporal investment
distribution.  The error will be greater the more an industry’s capital is comprised of recent
vintages.  Recent investment will be positively correlated with other factor inputs such as labor. 
This will lead to an upward bias in the estimated labor elasticity.  Furthermore, if constant returns
to scale are imposed, this positive bias in labor elasticity implies a lower capital elasticity (in a
value-added production function).

Thus, in order to correct this measurement problem, in the next section I construct quality-
adjusted capital stocks using the estimated rates of embodied technological change in Table 1.  In
Section 4, I estimate various labor productivity equations, some of which attempt to avoid the
measurement error either by using the quality-adjusted capital stocks or by including the stock of
embodied R&D along with unadjusted capital stock as an independent variable.



10See Gort and Wall (1998) or Hulten and Wykoff (1981) for discussions of the distinction
between economic and physical depreciation.
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3.  Constructing Quality-Adjusted Capital Stocks

As I stated above, quality-adjusted capital stocks are needed in order to properly estimate
labor productivity equations that are of a Neoclassically based specification.  In addition, for a
structural model that forecasts labor productivity based partially on forecasted capital, a capital
stock formula must be built into the model such that capital can be updated in each future period
using the model’s forecast of investment.  The capital stocks I construct in this paper are defined
according to the usual perpetual inventory formula that aggregates current and past vintages of
investment into a current real capital stock according to some weighting scheme (i.e., a
distributed lag):

       (6)
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where K is the capital stock (either equipment or structures), I is nominal investment, p is the
price deflator, ( is the rate of embodied technological change, and Dt,t-s captures physical
depreciation (i.e., wear and tear).  Dt,t-s gives the fraction of vintage t-s capital still in production
in year t.  In most capital stock data constructs, the quality (technology) change component is
generally considered to be included in either the measure of depreciation (making it economic
depreciation rather than physical depreciation) or the price deflator.10  Unfortunately, most data
sources of investment price deflators and economic depreciation do not adequately adjust for
quality change in equipment.  Thus, it is important to decompose the vintage weights in equation
(6) into the three separate components of physical depreciation, quality change, and price change.

Using the definition of capital in equation (6), I construct separate industry-level capital
stocks for structures and equipment.  For structures, I assume that technological change is
negligible and thus ( = 0.  For equipment, the rates of embodied technological change come from
Table 1.  As for the price deflator, Hornstein and Krusell (1996) show that if embodied
technological change is measured independently, one should deflate investment by a consumption
deflator.  I measure physical depreciation in structures as the inverse of the weighted average of
the service lives of the structures assets owned by the industry.  The weights are the industry’s
shares of capital in each asset type constructed from the capital flows tables supplied by the U.S.
Bureau of Economic Analysis (BEA).

The Board of Governors of the Federal Reserve (FRB) and the U.S. Bureau of Labor
Statistics (BLS) construct capital stocks using a methodology for capturing physical depreciation
based on stochastic service lives and a nongeometric, “beta-decay” function.  In Sakellaris and



11Actually, drop(0) is set equal to 0.989, the value of the average physical depreciation
schedule at age 0.  This value is slightly less than one due to the fact that the FRB allows for some
wear-out in the first year of a capital good’s life.
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Wilson (2001), we back out the implied industry-level physical depreciation patterns, Dt,t-s, for
equipment from the FRB capital stocks.  However, the fact that the equipment stocks will need to
be forecasted introduces a complication into how they must be constructed.  The physical
depreciation schedules constructed in Sakellaris and Wilson (2001) are functions of both year and
age.  In order to “forecast” physical depreciation for future years, one must make some
assumption regarding how Dt,t-s will vary over t in the future.

What is needed is a time-invariant physical depreciation pattern to apply to the forecasted
investment flows.  One would also like this pattern to match as closely as possible the FRB
physical depreciation schedules since these schedules were used in estimating ( with the plant-
level data.  Thus, I use the average (over years and industries) age profile from those schedules.

The average profile is shown in Figure 1 by the line labeled “Actual.”  It has a reverse-S
shape.  What I needed was a function with a minimal number of parameters that could mimic this
reverse-S shape.  I found such a function in the “cascading buckets” concept which is frequently
utilized by users of the G regression software package (the package used to estimate the time-
series labor productivity equations in Section 4).  A cascading buckets system is a combination of
several “bucket” functions.  A single bucket is created by the use of the @cum function in G.  The
statement, kt = @cum(kt, it, z), defines the variable kt by the following equations:

k0 = 0 ;      kt = (1 - z)Akt-1 + it    æ t > 0        (7)
The reverse-S shape can be obtained by a “cascading” of two or buckets, i.e. by having the
outflow of the first bucket (here, zAkt-1) be the inflow (here, it) into the next bucket, then the
outflow of the second bucket be the inflow into a third bucket, and so on....  The final function is
the sum of these buckets.  

In fact, even more variety of shape can be obtained by letting the inflow into the lower (i.e.
second, third, ...) bucket “splatter out” or “miss” some of the lower bucket so that only (z-,)Akt-1

actually flows into it (and ,Akt-1 is lost).  Allowing some “splatter” turns out to be quite necessary
for fitting the average physical depreciation schedule because without the splatter there would be
no decrease in efficiency over the first N-1 years, where N is the number of buckets (i.e. without
splatter, nothings falls out of the bucket system until there is no longer a lower bucket to catch the
last bucket’s outflow).  A decrease in efficiency beginning in the first year is a property of the age-
efficiency schedule I am trying to fit.

Using the following three-bucket system, I was able to very closely replicate the age profile
implied by the average physical depreciation schedule shown in Figure 2-2:

b1 = @cum(b1, drop, A)
b2 = @cum(b2, b1[1]*B, C)
b3 = @cum(b3, b2[1]*A, C)

where drop is a variable that is one at age 0 and zero thereafter and the notation [1] indicates a
lag of 1 period.11  Allowing B < A results in some of the outflow from b1 to splatter out or miss
b2 allowing for efficiency loss immediately after the first year.  I performed a grid search to find
the parameters A,B, and C which resulted in the lowest sum of squared errors (SSE).  The values
A=.14, B=.129, and C=.3 led to a SSE < 0.001.  Figure 1 shows the fitted values from this



12General-to-specific modeling is also known as the LSE methodology.  For references to
this literature, see Hendry (1997), Hendry (1995), Hendry and Clements (1996), Hoover and
Perez (1999), Ericsson and Marquez (1998), and Cook and Hendry (1993).  For a critique of
general-to-specific modeling, see Faust and Whiteman (1997).

13Actually industries 6 (Construction) and 55 (Scrap and used equipment) are omitted due
to lack of data.
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cascading bucket versus the actual depreciation schedule.  Clearly, the fit is extremely close.  This
three-bucket system with the above parameter values became the Dt,t-s used in the definition of the
equipment capital stock given in equation (1).  Now, rather than drop going into the first bucket,
the actual equipment investment (adjusted for embodied technological change) flows in:

vi = (eqicu/pced)*(1 + ()t-t0

b1 = @cum(b1, vi, 0.14)
b2 = @cum(b2, b1[1]*0.129, 0.3)
b3 = @cum(b3, b2[1]*0.14, 0.3)
J = b1 + b2 + b3

where eqicu is equipment investment in current dollars, pced is the PCE deflator, vi is vintage
equipment investment adjusted for embodied technological change assumed to take place at the
rate (, and J is the resulting quality-adjusted equipment capital stock.

4.  Alternative Labor Productivity Equations

In this section, I perform a series of contests involving several alternative specifications for
labor productivity equations.  I begin with a set of general specifications and evaluate their
performance in terms of average fit (over all sectors) and the signs and magnitudes of the
coefficient estimates.  Based on this evaluation, this set of specifications was pared down to a
smaller set of candidate specifications.  A series of modifications is applied to each specification
which are then reestimated and their results evaluated.  The modifications are excluding materials
as a factor input, using an alternative method of adjusting for capacity utilization, and allowing for
disembodied technological change.  

This approach of estimating a number of specific equations that are special cases of a more
general model and choosing a single equation for forecasting based on economic and statistical
criteria, is similar to the general-to-specific modeling approach recommended by Hendry (2000).12

A.  Equations in Log-Levels and Including Materials
In this subsection, I estimate 11 different specifications of a labor productivity equation for

each of the 55 sectors in the IDLIFT investment sectoring scheme.13  The average (over sectors,
for each specification) adjusted R2, average estimated coefficients, and percent of coefficients that
are positive are shown in Figures 2 through 4.  With the exception of the current IDLIFT
specification, all of the specifications are derived from a standard Cobb-Douglas Neoclassical
production function:
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       (8)Q M L J Sit it it it it= θ β α η

Table 2 gives a guide to the notation used in this equation as well as the other equations in this
section.

Some specifications attempt to proxy for unobserved variation in capital utilization using the
energy-capital ratio as was done in Sakellaris and Wilson (2001).  The utilization rate of
equipment is assumed to be an increasing function of the energy-equipment ratio (likewise for the
utilization rate of structures).  It is assumed that in order to increase utilization by 1%, one must
increase the energy-equipment ratio by  J%.  The special case J = 4 means that there is no
variation in utilization; J = 1 means energy use is perfectly proportional to capital services; and  J
= 0 means an infinitesimal change in the energy-equipment ratio will fully adjust utilization to the
desired level.

The eleven specifications that I compare are as follows.  The letter preceding each will be
used hereafter as the specification’s label.

(A) Standard Neoclassical, Cobb-Douglas Production Function in logs:

q b m j s− = + − + + +� �0 1( )β θ α η

(B) Standard and adjusting to control for utilization using energy:
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and s in specification A above with log(UJJ) and log(USS).

(C) Standard with constant returns to scale (RTS) imposed:

q b m j s− = + − + − + −� � � �0 θ α η( ) ( ) ( )
This equation is derived by setting $ + 2 + " + 0 = 1.
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(E) Current IDLIFT equation:

R - q = b0 + a1*t + a2*t2 + a3*qup + a4*qdown

where qup and qdown are defined in equation (5).

(F) Same as A but with J not adjusted for embodied technological change (i.e., J is constructed
with (=0 for all sectors).
(G) Same as B but with J not adjusted for embodied technological change (i.e., J is constructed
with (=0 for all sectors).
(H) Same as C but with J not adjusted for embodied technological change (i.e., J is constructed
with (=0 for all sectors).
(N) Same as D but with J not adjusted for embodied technological change (i.e., J is constructed
with (=0 for all sectors).
(V) Same as H but also include the log of embodied R&D:

q b m j s r− = + − + − + − + −� � � � �0 θ α η σ( ) ( ) ( ) ( )

Here I assume that factor payments must be made to embodied technology just as they are for
traditional capital and any other internal factor of production (i.e., embodied R&D is not a public
good or externality), therefore constant RTS now means $ + 2 + " + 0 + F = 1.
(Z) Same as V but adjusting for utilization using energy
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It should be noted that in this equation the embodied R&D index, unlike the stocks of equipment
and structures, is assumed to have a constant rate of utilization.

Figures 2 through 4 summarize the results of estimating these 11 equations for all of the 55
sectors in IDLIFT (spanning the U.S. private economy).  Given that data mismeasurement is
generally considered to be more serious in nonmanufacturing industries and that the estimated
rates of embodied technological change used for constructing equipment stock in these industries
are imputed, I also look separately at the results just for nonmanufacturing sectors.14  In the
following discussion, I will generally focus on the results for all sectors, though I will point out
things that are substantially different in the nonmanufacturing subset.

Figure 2 shows the average adjusted-R2 over all sectors for regressions corresponding to
each specification above.  Figure 3 gives the average estimated factor elasticities for each
specification.  The percentage of estimated elasticities that are positive for each specification is
shown in Figure 4.  Several important findings are apparent from the figures.  First, I find that for
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the most part adjusting equipment capital for quality using the (’s from Table 1 substantially
improves the fit and sensibility (in terms of average value and positivity of estimated factor
elasticities) of the labor productivity equation in comparison to using an adjusted equipment
capital stock (Jt).  Second, despite some loss of fit, imposing constant RTS seems to greatly
improve the sensibility of the estimates.  The beneficial effects that imposing constant RTS has on
" and 0, in terms of increasing the percentage that are positive and raising their average values
closer to a priori expectations based on income shares, seem to easily outweigh the cost of a
slightly lowered fit.  Finally, including the index of embodied R&D along with non-quality-
adjusted Jt rather than just using a quality-adjusted Jt improves the average fit slightly but has a
substantial deleterious effect on the capital elasticities.  Furthermore, controlling for utilization
using the energy-capital ratio improves the fit and raises the estimated elasticities of structures,
but it reduces the elasticities of equipment.  

Based on these findings, it seems reasonable to drop from our consideration all but
specifications C, D, V, and Z.  That is, we can feel comfortable hereafter imposing constant RTS
and adjusting equipment capital by constructing the stock according to the (’s in Table 1 or by
including embodied R&D as an additional independent variable (although these embodied R&D
specifications do seem to yield less realistic estimates). Furthermore, adjusting for utilization
seems to be a slight improvement over not controlling for it in terms of fit, so I will retain
specification D for now despite its tendency to produce outlying unrealistic capital elasticities.

B.  Equations Omitting Intermediate Inputs
I next analyze how the regression results for these four specifications change if we remove

materials.  It is often the case in production function or productivity regressions that intermediate
inputs (materials) dominate the explanatory power of the independent variables and obscure the
effects of the other inputs.  This domination by materials appears to be the case in our regressions
as well.  Evidence of this domination is the very high average estimated materials elasticities and
enormous mexval statistics (marginal explanatory power, not shown) for the coefficient on
materials obtained in the regressions described above.  Furthermore, all but specification E (the
current IDLIFT equation, which does not include materials) have very high adjusted-R2's.  

Another problem with including materials in aggregate or industry-level production
regressions is that data on materials is often inadequately measured.  The measures on real
materials used in the above regressions are constructed by taking the column sum of a constant

dollar input-output flow matrix.  That is, real materials for industry j is wherem a qjt ijt jt
i

= ∑
aijt is element (i,j) in  the intermediate coefficient matrix (A in equation (1)).  The problem here is
that we do not observe the true input-output coefficients, aijt (at least in the U.S. data).  Or, more
accurately, we do “observe” aijt but only every 5 years as the BEA constructs input-output tables
on a quinquennial basis.  Coefficients for years in between are simply interpolated between
benchmark-year coefficients and are therefore essentially determined by qt.  Thus, shocks in qt,
which affect the dependent variable in a productivity regression and are part of the regression
disturbance term, are transmitted to the regressor (mt-Rt) causing an upward bias in the estimator



15In fact, exactly the same problem is true for our measures of real energy expenditures
which are also constructed via slow-moving input-output coefficients multiplied by industry
output.
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of its coefficient.15

Therefore, I re-ran the regressions corresponding to C, D, V, and Z omitting the 2(m-R) term. 
These new sans-materials specifications will hereafter be referred to as C’, D’, V’, and Z’).  The
omission of materials can be justified theoretically by assuming that materials and value added
have a Leontief relationship as is frequently done in the literature (e.g., Basu (1996) and Wilson
(2000)).  That is, Y = min[M, F(J,S,L)].  Assuming firms are optimizing, this implies dlog(Y) =
dlog(F(J,S,L)).  The F( ) function can be any of equations (1)-(11) after omitting the term 2(m-R).

Figures 5 through 7 summarize the results of these regressions (ignore for now the
specifications labeled D" and Z", these will be explained below).  As with the previous
regressions, I repeat the regressions for a nonmanufacturing subset to check for robustness. 
Except in the cases mentioned below, the nonmanufacturing subset yielded similar results to those
of the full sample.

As expected, the adjusted R2’s fall, though not by much, when materials are left out (see
Figure 5).  Again the fits are higher when capital utilization is adjusted for (compare Z’ to V’ and
D’ to C’).  The specifications that use the quality-adjusted equipment stocks (C’ and D’) yield
quite reasonable factor elasticities, particularly the specification which does not include the
energy-capital ratio (C').  Compared to D', the non-utilization adjusted specification (C') has a
somewhat lower percentage of 0’s that are positive but a much higher percentage of positive "’s. 
This result does not appear to be the case in nonmanufacturing though, where (D') dominates. 
When utilization is not adjusted for, there is also strong evidence that including embodied R&D
causes the coefficients on unadjusted equipment to turn negative, particularly in
nonmanufacturing.

Though not in the nonmanufacturing subset, the average estimated elasticities for
specification C' over all sectors are almost exactly as one would expect.  The generally accepted
estimates of labor and capital’s share in the economy’s output is 2/3 and 1/3, respectively, when
output is value added and 1/3 and 1/6 when output is gross output (with materials responsible for
the other ½).  The capital share is further broken down, generally, to be 2/3's equipment (which
includes embodied R&D) and 1/3 structures.  Thus, one would expect our estimates of the output
elasticities with respect to each input to be somewhat close to these values.  This means that when
materials are included, we would expect "(+F) . (1/6)*(2/3)=2/18 = 0.111, 0 . (1/6)*(1/3)=1/18
= 0.056, $ = 0.33 and 1 . 0.5.  When materials are excluded, we expect "(+F) . 2/9 = 0.222, 0
.1/9 = 0.111, and $ = 0.66.  According to the average estimates obtained thus far, these a priori
expectations are met more closely by the regressions which do not include materials.

Overall, as in the previous section where materials were included, specifications C' and D'
seem to outperform V' and Z' here.  However, before abandoning the idea of including embodied
R&D as a separate regressor, I will explore another method of adjusting for utilization applied to
both the embodied R&D specification (V') and the specification which uses quality-adjusted
equipment stock (C').

C.  Alternative Adjustment for Unobserved Variation in Capacity Utilization



16Almon (1998) cautions against the use of “umbrella” variables, which in econometric
parlance are simply endogenous variables, as explanatory variables.  The name comes from the
analogy to using “the number of people carrying umbrellas to explain rainfall.” (p. 97).
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Besides using the energy-capital ratio, another method that has been suggested to control for
unadjusted variation in factor utilization is what is actually used in the current IDLIFT equation. 
Industry-level variation in utilization is captured by including the terms qup and qdown which are
defined in equation (5).  The method first measures capacity with the previous peak level of
industry output less some “depreciation.”  The absolute value of the percentage difference
between current output and capacity is then included as a regressor, with positive and negative
differences treated asymmetrically.  The rationale behind this method is that when current output
is being stretched beyond the previous peak level, the economy will be pushing up against
capacity constraints, and when output is much below the previous peak, there is excess capacity
not being utilized.

There is the possibility, however, of reverse causation (i.e. simultaneity, or what Almon
(1998) refers to as the “umbrella effect”16) here since industry-level (log) output is part of both
the dependent variable and the regressors qup and qdown.  If there is any measurement error in
output, this may bias the coefficients on qup and qdown as well as artificially inflate the R2's.  This
possibility is explored using a mixed empirical-Monte Carlo technique in the next subsection.  For
now, as an alternative to specifications D and Z, I estimate two analogous equations that are
simply specifications C’ and V’ with qup and qdown as additional independent variables.  Call
these specifications D" and Z".

The results of these estimations are shown in Figures 5 through 7.  Compared to their
energy-intensity counterparts (D' and Z'), specifications D" and Z" have slightly lower fits but far
more reasonable capital elasticities.  Compared to their counterparts that do not adjust for
variation in utilization (C' and V'), these equations are quite similar in fit and in the capital
elasticities (with the exception of Z" which actually has even more reasonable capital elasticities
than V').

At this point, it seems reasonable to drop from our consideration the specifications which
attempt to adjust for unobserved variations in capital utilization using the energy-capital ratios
(specifications D' and Z') due to their propensity to yield nonsensical capital elasticities and to the
fact that including qup and qdown as explanatory variables seems to be a powerful alternative way
of adjusting for utilization.  I will also drop the specifications which include embodied R&D and
an unadjusted equipment stock as separate explanatory variables (specifications V' and Z").  The
rationale behind these specifications was that including embodied R&D separately may be
superior in nonmanufacturing industries to using the imputed rates of embodied technological
change to compute equipment capital.  However, these specifications seem to actually perform
much worse in the nonmanufacturing subset than they do overall.  Therefore, hereafter I will
consider only specifications C', D", and E.

D.  Allowing for Disembodied Technological Change
It is possible that there is some spurious positive correlations between labor productivity and

the factor inputs due to the fact that these variables are all trended upward.  In other words, the
above equations should probably also contain a Hicks-neutral productivity (or disembodied
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technology) term that is sure to be highly trended.  
The results of estimating equations C’ and D" with a single linear time trend added are as

follows.  The adjusted R2’’s for both of these specifications are now slightly better than that of the
current IDLIFT equation (specification E) at 0.866, 0.867 and 0.853 for specifications C', D", and
E, respectively.  The average estimated capital elasticities decrease somewhat due to the
introduction of the time trend though they are still reasonable.  For specification C', the average "
falls from 0.22 absent the time trend to 0.01 with it, while the average 0 rises from 0.15 to 0.17. 
Similarly, the percentage of "’s that are positive falls from 80% to 52% and the percentage of 0’s
that are positive rises from 52% to 63%.  For specification D", " falls from 0.22 to 0.08 on
average with the inclusion of the time trend and the average 0 remains at 0.18.  The positivity of
" falls from 80% to 59% and that of 0 drops from 61% to 57%.  The results are quite similar in
the nonmanufacturing subset.

From the results of this round of regressions, the most promising specification appears to be
D" with a time trend.  C' with a time trend also seems to be reasonable, though the average
equipment elasticity is probably too low and the equipment elasticity is somewhat less likely to be
positive under C' relative to D".  Compared to the former IDLIFT equation, these specifications
have as good a fit and obviously have far more economic appeal.  Most importantly, they capture
the productivity gains due to capital deepening (which, given how capital was constructed here,
includes embodied technological change).  Therefore, one of these two specifications, along with
the coefficients found from estimating them, are used for each of the 55 sectors and can now be
incorporated into the IDLIFT model.  For a particular industry, which specification is used is
chosen on a case-by-case basis, as described below, based on the criterion of best fit and most
realistic coefficients.  For the sake of clarity, let us explicitly write out specification C':

q ! R = c0 + c1t + "(j ! R) + 0(s ! R)        (9)
and specification D":

q ! R = c0 + c1t + "(j ! R) + 0(s ! R) + b0qup + b1qdown      (10)

E.  Determining Industry-Specific Labor Productivity Equations
In the previous subsection, I evaluated many possible specifications for a general empirical

model of labor productivity based on the criteria of average fit and the economic realism of the
coefficients.  The results of that evaluation have enabled us to now focus our attention on a small
number of specifications in determining the “best” one for each particular industry (rather than
simply the best on average).  Obviously, the specification that yields the best results on average
may not necessarily yield the best results for a particular industry.  The choice of specification
must be made on an industry-by-industry basis.

For each industry, I compare the results of estimating specifications C', D", and E.  For a
small number of industries, it was clear that the lagged values of the equipment and structures
stocks had more explanatory power (with reasonable coefficients) than the current values and,
thus, the lagged stocks were used instead.  The improved explanatory power afforded by using
lagged stocks can be explained by the industry having a time-to-build requirement greater than
one year and/or by the presence of substantial learning-by-doing effects.  For most industries,
even the best specification yielded one or more unrealistic coefficients.  For these industries it was



17The rationale behind these a priori values for capital elasticities is explained in
subsection B above.  The a priori values for the coefficients on qup and qdown were chosen
simply to be at the halfway point of their respective plausible ranges.
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necessary to “softly constrain” the coefficient estimates to lie inside a realistic range.  “Soft
constraining,” also known as “Theil’s mixed estimation” or “stochastic constraints,” is a Bayesian
regression technique that allows one to combine a priori theoretical beliefs on parameter values
with the values estimated using the data.  A soft constraint essentially adds artificial observations
(or a fraction of an observation) in which the constraint holds with certainty.  The a priori
expectation for parameter values and the number of artificial observation to add are chosen by the
econometrician.  I only imposed soft constraints if the unconstrained estimated coefficient was
outside the range of [0,0.4] for either capital elasticity (" and 0), [0,1] for the coefficient on qup,
and [0,-1] for the coefficient on qdown.  The theoretically-based, a priori expected parameter
values that I used as soft constraints were 0.18 for the elasticity of output with respect to the
equipment stock, 0.17 for the structures elasticity, 0.5 for the coefficient on qup, and -0.5 for the
coefficient on qdown.17

Table 3 shows the number of industries for which each of the four specifications was chosen
(second column) as well as the number, within each specification, that required soft constraining
(third column).  Recall that the regressors in specification C' are a constant, time trend, log of the
equipment-labor ratio, and the log of the structures-labor ratio.  Specification D" includes these
same regressors in addition to qup and qdown.  Specification E is the traditional (current) IDLIFT
labor productivity equation.  Let the specification which is equivalent to specification C' but with
lagged capital stocks be denoted specification X.

Specification D" was chosen in exactly one half of the industries.  Overall, all but five
industries required some type of soft constraint(s).  In nearly all cases, the soft constraints were
quite weak, amounting to only a fraction of an artificial observation.  Thus, the equation fits
suffered very little due to the use of soft constraints.

F.  Mixed Empirical-Monte Carlo Test for Bias
As mentioned above, the fact that qup and qdown are constructed using q which is also part

of the dependent variable for the above regressions, means that if there is measurement error in q,
the coefficients on qup and qdown will be biased.  This can be seen formally by assuming that
there is an i.i.d. measurement error in q:  qtrue = qmeasured + <, where < ~ N(0, 2.5×10-04).  This says
that the standard deviation in the measurement error of log output is assumed to be one half of
one percent, which should be as large as is realistically possible.  So our regression equation (10)
becomes:

     (11)
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Notice that < will be contained in the dependent variable as well as qup and qdown resulting in
spurious correlation between these two regressors and the dependent variable.  The bias on the



18I arbitrarily choose the “Printing and Publishing” industry for the historical data.  The
choice of industry should not affect the coefficient means (and therefore their biases) but may
affect the standard deviations since the sample variance of a variable helps determine the variance
of its coefficient (and, of course, the sample variance of a variable will be different across
industries).  To be sure, I repeated the procedure with a 2nd industry and obtained similar
estimated biases.
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estimator of b0 will be positive and that of b1 will be negative.
To evaluate the seriousness of this problem, I perform a mixed empirical-Monte Carlo estimation
procedure.  In this procedure, I specify the data generating process (DGP) for the true dependent
variable as:

     (12)
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where ,t ~ N(0, 4×10-06), so that the standard deviation of the i.i.d. shock to true productivity is
0.002.  The 0.01 and -0.01 assumed coefficients represent the true relationship between qup and
qdown and labor productivity, i.e. absent any spurious correlation due to the presence of
measurement error in q.  Using this DGP, I construct this “true” dependent variable, then regress
it on t, (j-R), (s-R), qupmeasured, and qdownmeasured each measured with actual historical time series.  I
repeat this procedure 2000 times and calculate the mean and standard deviation for each
coefficient.18  

The coefficient means and standard deviations are shown in Table 4.  The estimated biases
are all extremely close to zero.  Thus, even assuming a very large variance for the measurement
error in q, coefficient bias due to the presence of qup and qdown does not appear to be a problem.

5.  Incorporating the Alternative Estimated Equations into IDLIFT

The equations summarized in Table 3 are incorporated into IDLIFT through a series of new
C++ routines which take forecasted values of equipment investment, structures investment, and
output and generate values for productivity, hours, and employment, which then get fed back into
the model.

Incorporating these new labor productivity equations into the IDLIFT model turned out to
far more complicated than it would seem at first.  The task at hand was to use the new labor
productivity equations to determine productivity and employment, at the 97-sector level of
aggregation, which can feed back into the model.  The model can then use the productivity and
employment forecasts to help calculate various other components of the model such as the
unemployment rate and hourly labor compensation.

The first complication was how to deal with having labor hours, which are calculated using
the productivity equations, on the right-hand side of the productivity equations.  There are at least
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three options for handling this problem.  The first is to algebraically rearrange each of the
specifications containing hours on the right-hand side so that output is on the right-hand side
instead of labor and then estimate the equations in this form.  For example, specification C’ can be
rearranged from:

q ! R = c0 + c1t + "(j ! R) + 0(s ! R)      (13)
to:
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I tried this approach and found that the capital elasticities implied by the estimated coefficients
were far less sensible than those estimated directly.  As in Section 2 above, one could impose soft
constraints to force the coefficients into a range that would imply reasonable capital elasticities. 
However, the constraints would have to be much stronger, i.e., the trade-off between a priori
expectations of parameter values and those estimated by the data would have to lean far more
towards the former.  Another option would be to program the equations into the model with
hours on the right-hand side, supply the model with starting values (a guess) for hours, let the
productivity equations calculate new values for hours, and then let the model iterate until it
converges.  The third option is to use the estimated equation coefficients found in Section 2
above, but use them in the algebraically rearranged forms of the specifications (such as equation
(14) above) which have output on the right-hand side.  This option requires no iterative procedure
since output has already been calculated earlier in the model and thus this is the option I used.

The next issue that needed to be dealt with was how to get forecasted values of structures
investment at the 55-industry level, the level of disaggregation at which the productivity equations
were estimated.  Previously, the IDLIFT model generated only equipment investment by 55
industry and structures investment by type.  The 25 types/categories of construction are listed in
Appendix A.  Rather than developing new structures investment equations by industry in IDLIFT,
similar to the existing equipment investment equations, I instead exploited the fact that there is
(approximately) a clear one-to-many mapping from some construction types to the industries that
purchase those types.  For instance, construction of “Farm buildings” (construction type 13) can
be clearly attributed to the “Agriculture, forestry, and fisheries” investment industry (industry 1). 
This assumption can be supplied exogenously to the model through what is known as a “fix.” 
Fixes are supplied by the model user and override or modify the equation results of endogenous
variables.  Thus, I fix structures investment in industry 1 to “follow” construction of farm
buildings, starting from the last year of historical data for structures investment by industry
(1997).  That is, structures investment in year t, St, is determined by equalizing St/S1997 to Ct/C1997

for all t>1997, where C is construction in the corresponding type.  Similarly, for cases where one
type is associated with many industries, such as “Industrial” construction which is attributable to
all of the manufacturing industries, I fix structures investment in each industry to follow the
model’s forecast for construction in that type.  Again, industry structures investment does not
equal the value of construction in that type; rather, it starts with the last historical data point and
then moves forward at the same ratio of forecast year value to last data value that is the case in
the forecasts of construction by type.  For two industries (which each have very little investment
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in structures anyway), no clear match could be made to a construction type and so structures
investment in those industries was assumed to simply follow aggregate nonresidential construction
from their last data point on.19

Now, with forecast values for structures and equipment investment by 55 industry, one can
calculate structures and quality-adjusted equipment capital stocks to be used in the productivity
equations.  This is done in the C++ routine, DANBKT.CPP, which is shown in Appendix B along
with the other new routines.  The routine takes in forecasted values of structures and equipment
investment along with the exogenously supplied rates of embodied technological change and
produces stocks.  The stocks of structures are calculated using the traditional perpetual inventory
method with depreciation rates computed as the reciprocal of the mean service life of structures in
that industry (provided by the BEA).  The quality-adjusted equipment capital stocks are
calculated using the estimated rates of embodied technological change and the cascading bucket
system, as described in Section 3.

The routine DANPROD.CPP then takes in these stocks along with the model’s forecasted
values of output by 55 industries (which are aggregated from the 97-sector level) and the
coefficient estimates for the productivity equations (including the estimate of D, the
autocorrelation coefficient) and calculates both productivity and hours for each industry.  Since
other stages of the model require productivity and hours at the 97-sector level, these had to be
disaggregated to that level.  To split 55-industry hours to the 97-sector level, I used a one-to
many mapping key.  The shares used to split one industry to many sectors were taken from the
97-by-1 hours vector forecasted by the old IDLIFT productivity equations.  Thus, the old
productivity equations were left operational in the model solely for the purpose of providing time-
varying shares for this disaggregation.  Productivity at the 97-sector level was then calculated by
simply dividing the output (already generated by the model at this level) by the 97-sector level
hours.  Employment at the 97-sector level was calculated by dividing hours by the model’s
forecasts of average annual hours per worker.  The disaggregation and the calculation of
productivity and employment can be seen in the routine REMPLOY.CPP in Appendix B.

6.  Forecast and Simulation Results

With these new, alternative routines incorporated into the model (along with the estimates
for the productivity equations), one can produce a base forecast that is stable, i.e. a forecast that
does not cause any variable to spiral out of control.  In addition, these new routines were
programmed into the model in such a way as to allow the model to calculate productivity, hours,
and employment using both the new set of equations and the old set of equations.  The model user
can specify which set of equations he or she would like to feed back into the model.  That is, the
user can have the model calculate productivity and hours using the new equations but have those
calculated values in no way affect the rest of the model, and the same for the old equations.  This
allows one to generate a base forecast for both the old model (i.e. the model set to have the



20The model using the new, alternative productivity equations will be referred to as the
“new” model in this section while the old/current/pre-existing IDLIFT model will be referred to as
the “old” model.

21For instance, NIPA data is available on aggregate equipment investment and residential
and nonresidential structures through 2000.
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current IDLIFT equations’ forecasts feed back into the model) and the new model (having the
new equations feed back into the model).20

Since what we are interested in is how the behavior of the two models differs in response to
changes in economic activity, such as variations in equipment investment, comparing the two base
forecasts to one another is of little interest.  What will be of interest to us in this section is
comparing and contrasting the responses of each model to some exogenous shock to the system. 
The behavior of each model in response to such an experiment is the only way to illuminate the
effect of changing the IDLIFT’s productivity equations.  Since the key difference between the two
models is the presence of a direct influence of capital stock on productivity in the new model, the
interesting shocks to investigate will naturally involve investment.

Moreover, given IDLIFT’s dependence on many exogenous, user-supplied assumptions
(“fixes”), one cannot fairly compare a forecast from the old model with one from the new model. 
The existing fixes, which either override or modify the endogenous forecasts produced by the
model’s equations, were specified in such a way as to produce the most sensible forecast using the
current model.  Alternatively, these fixes could be specified so as to optimize the sensibility of the
new model.  However, having each model have its own optimal fixes would confuse the
differences in the models’ results due to different productivity equations with those due to
different sets of fixes. Yet, many of these fixes must be given values for the model to run at all,
therefore turning off all fixes is not an option either.  Thus, I run both models using the fixes in
place for the most recent semi-annual Inforum forecast using IDLIFT (see Inforum (2001)).  One
important exception is the exclusion of all fixes on industry-level productivity, industry-level
employment, and the aggregate unemployment rate. Thus, again, comparison of the two models
must be between the models’ differences from their own base forecast to a simulation forecast in
which a shock was imposed, and not between the models’ base forecasts.

To produce base forecasts, I ran each model out to 2015.  1997 was the last year of historical
data for most of the industry-level variables in the model, yet much of the aggregate data is
available through 2000 (or at least through 1998 or 1999) and this data is imposed on the model
through fixes (with the exception of the unemployment rate as mentioned above).21  The new
functions generally result in lower labor productivity and thus higher hours and employment in the
base forecast.  This result is true even if the output of these functions is not fed back into the
model, but it is stronger when feedback does occur.  However, this difference in productivity
between the base forecasts is largely due to fixes that act to boost productivity in the current
model and thus is not very revealing.

For each model, I evaluate the response of the model to a shock in equipment investment. 
Specifically, with a set of fixes on equipment investment, I override the models’ forecasted



22In Ricardo’s later works, he developed the notion that the introduction of machinery can,
under certain circumstances such as the sudden introduction of a new type of machinery, have an
adverse effect on employment.  In his Notes to Malthus’s Principles, he states:

It might be possible to do almost all the work performed by men with
horses, would the substitution of horses in such case, even if attended with a
greater produce, be advantageous to the working classes, would it not on the
contrary very materially diminish the demand for labor?
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vectors of equipment investment with the investment vector from the base forecast plus 2%.  That
is, for each industry I multiply the equipment investment values from the base forecast by 1.02
and force the model to use these new values in all of the functions that make use of equipment
investment.  Because aggregate equipment investment is known (from NIPA data) through 2000,
I impose this fix for the years 2001 through 2015.

Figures 8 through 17 graph, for each model, the deviations over the forecast period of key
macro variables relative to each model’s base forecast.  In both models, real GDP rises by about a
quarter of a percent relative to the base in the first year in which the 2% higher equipment
investment is imposed.  From then on the models diverge substantially.  The old model falls to
near the base level in the second year, oscillates between 0.05% and 0.2% over base through
2008, then seems to settle at about 0.08% over base.  The new model also comes back down
closer to base in 2002 but then rises relative to base almost monotonically until the end of the
forecast where it stands at 0.31% over base.  This Solowian response of real GDP, i.e. higher and
less variable, to permanently higher equipment investment is what one would have expected and
hoped for from the new model.  The increase in labor productivity induced by higher investment
also reduces unit labor costs and this reduction lowers the GDP deflator.  The GDP deflator rises
in the old model in response to the demand stimulus of higher investment.  Because of this, the
deviation from base in nominal GDP is actually higher in the old model.  The different responses
of the price level also has an effect on the Treasury bill rate: the deviation from base is generally
lower and less volatile in the new model.  The lower interest rates in the new model cause, in part,
a smaller deviation in the savings rate.

In both models, the unemployment rate goes down relative to base due to the substantial
demand stimulus caused by the increase in investment.  However, the deviation is smaller on
average in the new model because its increase in labor productivity has an immediate negative
effect on employment.  This Ricardian (or Luddite) effect would have occurred in the old model
as well had labor productivity increased substantially, which it did not.22  This difference in labor
productivity deviations can be seen in Figure 17.  Labor productivity in the new model grows
steadily to almost 0.4% above its base level by the end of the forecast.  This is compared to the
old model in which productivity oscillates until it converges to about 0.04% over base.  In short,
in the new model, the long-run effect of investment on productivity is ten times what it was in the
old model.

The deviations in labor productivity by industry for the new model are shown in Table 5
below, along with each industry’s estimated elasticity of output with respect to equipment capital
stock.  Listed in parentheses after each industry name is the label identifying the equation type



23Equipment investment here is not adjusted for embodied technological change.  Also,
note that though quality-adjusted equipment capital is shown for both models in Figure 29, it only
has an effect on the other variables (as well as its own future values through the investment
equations) in the new model.
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used for that industry.  As one would expect, the largest deviations can be found in industries
which have the largest elasticities of equipment stock.  The correlation between this elasticity and
the deviation in labor productivity is approximately zero in 2001 but rises to 0.96 by 2015.

Next I impose a one-time shock on each model of 10% higher equipment investment (relative
to that which is forecast by the model’s equations) in 2001.  Determination of equipment
investment returns to IDLIFT’s investment equations from 2002 on.  The shock is assumed to
take place in every industry.  Figures 18 through 29 show the deviations relative to the base for
the same macro variables as in the earlier figures as well as equipment investment (Figure 28) and
quality-adjusted equipment stock (Figure 29).23  Both models have an initial response of between
1.2 and 1.3 percent in real GDP.  After oscillating for several years, the old model returns nearly
to its base level.  The new model, however, quickly reaches a steady state at approximately three-
tenths of a percent above its base.  As with the previous experiment, the GDP deflator’s deviation
is lower in the new model than in the old model.  The GDP deflator converges to the base level
over time in the old model whereas it falls steadily relative to the base in the new model.  Interest
rates deviations move similarly in the two models though they are somewhat less volatile in the
new model.  The same is true for their savings and unemployment rates.  In both models,
unemployment initially drops dramatically in response to the shock, then jumps dramatically, and
finally begins to converge to its base level around 2005.  The new model has less of a drop and
subsequent jump because the positive demand stimulus of raising investment is partially offset by
the increase in productivity which has a negative effect on employment in the short-run (the
Ricardian effect), though this is dominated by the stimulus as can be seen in Figure 24.  

As expected, labor productivity in the old model, after oscillating for several periods, returns
to its base level by 2010 and stays there whereas productivity in the new model, after also
oscillating for a few years, is permanently above its base levels.  This permanent increase in
productivity in response to a temporary increase in investment is the key difference in the behavior
of the two models.  In the old model, a one-time jump in aggregate investment only affects labor
productivity by directly increasing every industry’s final demand, which directly increases their
output, which increases their qup which increases their labor productivity.  The next year, when
equipment investment comes back down, output will likely be below its previous peak making
qdown go up which will lower labor productivity.  This cycle will fade away over time returning
labor productivity to its base level.  In the new model, on the other hand, labor productivity in
every industry jumps initially because of both the jump in qup and the jump in the equipment
stock.  In the following year, productivity comes back down due to the jump in qdown in the
following period but this decline is offset somewhat by the still-present higher level of equipment
stock.  There is also a strong and long-lasting positive effect on equipment investment itself from
the initial shock.  This effect has two causes.  First, the 2001 jump in investment causes the
following year’s desired capital stock (constructed and used in the model’s investment equations)



24

to rise which increases the forecast of investment for that year which then increases desired capital
and investment for the next year, and so on.  Furthermore, the increase in final demand in 2001
raises the 2000-2001 change in output.  Distributed lags in the change in output are part of the
model’s investment equations.  Thus, the increased change in output in 2001 directly increases
investment for the following four years (there are four lags of output change in the investment
equations).

The continuing though depreciating presence of that extra 10% of equipment purchased in
2001, combined with the long-lasting increase in equipment investment due to the positive
feedback from the initial demand stimulus, keeps the quality-adjusted equipment stock about 2%
above its base level from 2005 through the end of the forecast (see Figure 29).  The physical
depreciation and obsolescence of the extra 10% of vintage-2001 equipment begins to dominate
any positive feedback remaining from the initial stimulus by 2009 and a very slow decline in the
equipment stock begins.  Shortly thereafter, labor productivity thus begins to decline very slowly.

The labor productivity deviations from the base forecast of the new model are shown for
each industry in Table 6 below, along with each industry’s estimated elasticity of output with
respect to equipment capital.  As was the case with the permanent shock, the largest deviations
are in industries with large elasticities of equipment stock.  The correlation between the estimated
elasticity and the deviation in productivity is -0.07 in 2001 but rises to 0.82 by 2015.

7.  Conclusion

The preceding experiments show that the introduction of the new labor productivity
equations into IDLIFT do have substantial effects on the general equilibrium behavior of the
model.  With the new equations operating, the macroeconomic variables of the model exhibit
behavior in response to changes in investment that is more in line with that predicted by the Solow
growth model.  Importantly, we do not see the model spiral out of control in terms of output or
prices when the new equations are introduced as was feared due to the lack of a supply constraint
in the investment equations.  In general, the macroeconomic situation of the economy is
permanently and substantially improved by an increase in equipment investment, even if it is only
a one-time shock, according to the new model.  In contrast, the macroeconomy of the IDLIFT
model without the new equations exhibits a smaller long-run benefit due to a permanent
investment increase and little or no long-run benefit from a temporary increase.  The permanent
and reasonable response of the new model to increases in investment is one of the main
contributions of this paper.  

This Neoclassical response in the new model was accomplished through the use of new labor
productivity equations that account for both traditional capital deepening (more units of capital
per worker) and embodied technological change (higher quality units per worker).  It is important
to note, however, that these new equations were not simply chosen ad hoc and forced into the
model but rather were shown to fit the historical data more closely that the preexisting IDLIFT
equations.
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Appendix A – Construction Categories

1. 1 unit residential structures 14. Mining exploration shafts & wells
2. 2 or more unit structures 15. Railroads
3. Mobile homes 16. Telephone & telegraph
4. Additions & alterations 17. Electric light & power
5. Hotels, motels, dormitories 18. Gas & petroleum pipes
6. Industrial  19. Other structures
7. Offices 20. Highways & streets
8. Stores, restaurants, garages  21. Military facilities
9. Religious 22. Conservation
10. Educational 23. Sewer systems
11. Hospital & institutional 24. Water supply facilities
12. Miscellaneous NR bldg. 25. Brokers’ commission
13. Farm buildings
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Appendix B

New C++ Routines for Calculating Capital Stocks, Productivity, and Hours

The core program of IDLIFT is model.cpp.  This program contains the main model loop
within which is the real-side loop and the price-side loop.  Within the real side loop is the
investment-output loop and within this loop productivity and employment are calculated. 
The schematic below shows the organization of model.cpp:

For t = godate until t= stopdate:
Model loop: load vectors and matrices, read fixes, initialize output and prices

Real-side loop:
Call to PCE function
Call to exports function
Investment-Output loop:

Call to equipment investment function
Call to construction function
Call to government spending function
Solve for output given results of above functions
Calls to productivity, hours, and employment functions (see

detail below)
Price/income-side loop:

Calls to functions calculating value added components
Solve for prices given results of value added functions

Calculate aggregate variables
End of model loop: t = t + 1 

Within the calls to the productivity, hours, and employment functions, I placed the new routines
(called UpdateKBuckets(), DanProductivity(), and ReviseEmploy() below) after calls to
the preexisting functions for productivity, average annual hours, and employment.  This
section of model.cpp is excerpted below (the new functions are in bold):
// (*****) Productivity and Employment :
if(t>=prd.LastData() ) {

update(out,Outlag);
Productivity(hrs, prd, Outlag, qpeak, Qpeaklag, eqi, caphat, Caphatlag,

pdm, iag56, ProductivityEquations, prdtrnd);
}

// (*****) Average Hours Worked function:
if(t>=yhr.LastData() ) {

AvgHours(yhr,Outlag,AverageHoursEquations);
othrsf();  // dom serv., govt. ent.
}

// Call Employ to calculate employment, and various identities:
p5 = pdm[5];
if(t>=emp.LastData() ) {

Employ(emp,hrs,prd,yhr,out);
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}
if(t>dprd.LastData() ) {

str.fix(t);
UpdateKBuckets(vi, vbk1_, vbk2_, vbk3_, qastk, vbk1lag,

vbk2lag, vbk3lag, eqicu, DanProductivityEquations,
str, strcap, Strcap, Qastk);

}
if(t>=dprd.LastData() ) {

DanProductivity(dhrs, dprd, qag, qagpeak, Qagpeaklag, qastk, Qastk,
strcap, Strcap, iag56, DanProductivityEquations, hrsag);
}

// By setting dhrs.LastData > last forecast year, we can get model
//  to compute dprd and dhrs BUT WITHOUT feeding them back into the
//  model.
if(t>=emp.LastData() && t>=dprd.LastData() && t>=dhrs.LastData() ) {

ReviseEmploy(emp, dhrs, hrs, yhr, prd, out, iag56);
}

The vectors calculated by the functions called in this section are: productivity by 97
sectors (prd), average annual hours by 97 sectors (yhr), employment by 97 sectors
(emp), productivity by 55 industries (dprd), structures capital by 55 industries (strcap),
quality-adjusted equipment capital by 55 industries (qastk), and hours by 55 industries
(dhrs).  A vector name followed by “.LastData()” returns the year which is the last year
for which there is historical data (this information is stored in a separate file).  When or if
the new routines feed back into the model can be controlled by setting the last data year. 
Setting the last data year to the first year of the model run will fully incorporate the new
routines into the model.  Setting the last data year to a year greater than the last year of
the forecast will allow the model to calculate dprd but will not allow this vector to affect
the rest of the model; rather, the rest of the model will use the old productivity, hours, and
employment vectors.
Thus, the old productivity and employment functions are called whether or not the new
vectors are feeding back into the model.  Besides making the turning on and off of the new
routines extremely simple, having the old functions always called provides a convenient
and time-varying vector, namely hrs, to be used as a “split vector” for disaggregating dhrs
(55×1) to the 97-sector level.
The first new function, UpdateKBuckets, takes in the equipment investment and structures
forecasts and calculates capital stocks.  Here is the code for this function:

// Apply Structures fixes here so as to exogenously supply str with values
str.fix(t);

// Private Structures Buckets:
arith("In UpdateKBuckets, before STR:",t);
for(i=1;i<=NEQI;i++) {

if(i>=55) continue;
   tempstr = str[i];
   lagstrcap = Strcap[1][i];
   tempsp = sp[i];

tempstrcap = (1.-sp[i])*Strcap[1][i] + str[i];
strcap[i] = (1.-sp[i])*Strcap[1][i] + str[i];
}
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// Private Equipment Buckets:
//arith("In UpdateKBuckets, before EQI:",t);
for(k=1;k<=NEQI;k++) {

if(k>=55) continue;
   tempapc = apc[t];
   tempeqicu = eqicu[k];
   tempgamma = P[k][7];
   temp = (eqicu[k]/apc[t])*exp((t-1987)*safelog(1.+P[k][7]));
   vi[k] =  (eqicu[k]/apc[t])*exp((t-1987)*safelog(1.+P[k][7]));
   vbk1_[k] = (1.-0.14)*vbk1lag[1][k] + vi[k];
   vbk2_[k] = (1.-0.3)*vbk2lag[1][k] + 0.129*vbk1lag[1][k];
   vbk3_[k] = (1.-0.3)*vbk3lag[1][k] + 0.3*vbk2lag[1][k];
   qastk[k] = vbk1_[k] + vbk2_[k] + vbk3_[k];

}

The quality-adjusted equipment capital stock (qastk) and structures capital stock (strcap)
vectors are then passed (along with the 55-level output vector (qag) and the coefficients
for the productivity equations, which are stored in a separate file) to the
“DanProductivity” function which calculates productivity and hours at the 55-industry
level.  The main section of code for this function is below:

t1 = t-1900;
if (t>=1972)
   t2 = t-1971;
else t2 = 0;
if (t>=1992)
   t3 = t-1991;
else t3 = 0;

n = P.neq;
/* For each number i, for each equation, gives us the number of sectors*/
for(i = 1; i <= n; i++){

j = P.sec(i);
which = P.type(i);
if(j==86)

Oliver=small;

// i is the equation #, j is the sector #
if(j<=0)

continue;
if(which>=’a’ && which <= ’f’) {

arith(" in Danprod before dq calculations, sector:",j);
Qup=Qdown=0.0;
curqag=qag[j];
peakqag=Qagpeak[0][j];
peaklag=Qagpeak[1][j];
if(curqag <= 0. || peaklag <= 0) {

cprintf("\r\n\r\nIn Danprod:Negative or zero output in sector
%d:" " curqag=%12.1f lagqagpeak=%12.1f\n\r",
j,qag[j],Qagpeak[1][j]);

trouble(NEGOUT);
dymetap();
continue;
}

else dq = safelog(curqag) - safelog(peaklag);
/* Difference of log of Output and Peak output  */
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arith(" in Danprod after dq, sector:",j);
if(dq<0)

Qdown=-1.0*dq;  //thats right, in my eqns qdown is always      
positive

else Qup=dq;
#ifdef DBG_PRD
#endif
}

if(which==’a’) {
stuff = 1/(1-P[i][2]-P[i][3]);
depend = stuff*( P[i][1] + P[i][2]*safelog(qastk[j])

+ P[i][3]*safelog(strcap[j])
+ P[i][6]*t1 - (P[i][2] + P[i][3])*safelog(curqag) );

      }
if(which==’b’) {

stuff = 1/(1-P[i][2]-P[i][3]);
depend = stuff*( P[i][1] + P[i][2]*safelog(qastk[j])

+ P[i][3]*safelog(strcap[j]) + P[i][4]*Qup + P[i][5]*Qdown
+ P[i][6]*t1 - (P[i][2] + P[i][3])*safelog(curqag) );

      }
if(which==’c’) {

stuff = 1/(1-P[i][2]-P[i][3]);
depend = stuff*( P[i][1] + P[i][2]*safelog(Qastk[1][j])

+ P[i][3]*safelog(Strcap[1][j])
- (P[i][2] + P[i][3])*safelog(curqag) );

      }
if(which==’d’) {

stuff = 1/(1-P[i][2]-P[i][3]);
depend = stuff*( P[i][1] + P[i][2]*safelog(Qastk[1][j])

+ P[i][3]*safelog(Strcap[1][j])
+ P[i][6]*t1 - (P[i][2] + P[i][3])*safelog(curqag) );

      }
if(which==’e’) {

depend = P[i][1] + P[i][3]*t2 + P[i][4]*Qup + P[i][5]*Qdown +
P[i][6]*t1;

      }
if(which==’f’) {

stuff = 1/(1-P[i][2]-P[i][3]);
depend = stuff*( P[i][1] + P[i][2]*safelog(qastk[j])

+ P[i][3]*safelog(strcap[j]) + P[i][4]*t3
+ P[i][6]*t1 - (P[i][2] + P[i][3])*safelog(curqag) );

      }

if(depend>=7 || depend<=0) {
cprintf("In Danprod, Sector %d  depend is CRAAAAAZY!: %12.1f\n",

j,depend);
//continue;
}

Calc = exp(depend);
Act = dprd[j];
RCalc = P.rhoadj(Calc,dprd[j],i);
dprd[j] = RCalc;
#ifdef DBG_PRD
fprintf(chk,"Calc = %9.2f Actual = %9.2f RCalc = %9.2f dhrs = %9.2f\n\n",

      Calc,Act,RCalc,dhrs[j]);
#endif
}
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dprd.fix(t);
// Calculate 55-industry hours (DHRS):
dhrs = ebediv(qag,dprd);
return(n);

Finally, the “ReviseEmploy” function simply disaggregates dhrs (55×1) to the 97-sector
level.  The 97×1 vector hrs, which is calculated using the old productivity equations,
provides the shares to be used to split out dhrs to the more disaggregate level when there
is a one-to-many mapping from the 55-industry level to the 97-sector level.  The resulting
97×1 vector is now called hrs (overwriting the former hrs vector) and 97-sector prd is
now recalculated as out (97×1) divided by hrs.  From this point on, ReviseEmploy takes
hrs and prd and calculates employment just as the old “Employ” function would have
with the old vectors and the rest of the model proceeds with these new vectors for hrs,
prd, and emp.



Table 1 continued on next page...

Table 1 - Estimates of Embodied Technological Change

Sector Rate (std. error)
Manufacturing

Food & Tobacco -0.056 (0.021)
Textiles and knitting 0.098 (0.030)
Apparel 0.004 (0.025)
Paper -0.064 (0.027)
Printing & publishing -0.053 (0.023)
Chemicals -0.004 (0.024)
Petroleum refining & Fuel Oil 0.017 (0.039)
Rubber & Plastic products 0.084 (0.026)
Shoes & leather -0.046 (0.052)
Lumber 0.007 (0.023)
Furniture -0.056 (0.028)
Stone, clay & glass 0.006 (0.026)
Primary metals 0.080 (0.029)
Metal products -0.005 (0.022)
Industrial Equipment, except computers & office equipment 0.031 (0.024)
Computers & other office equipment 2.927 (0.202)
Electrical equipment except communications and elec. components 0.049 (0.029)
Communication equipment 0.141 (0.044)
Electronic components 0.766 (0.059)
Motor vehicles & parts -0.064 (0.028)
Non-motor vehicle transportation equipment 0.098 (0.033)
Scientific Instruments -0.023 (0.034)
Other instruments 0.087 (0.039)
Miscellaneous manufacturing 0.029 (0.032)

Nonmanufacturing
Agriculture, forestry, and fisheries 0.009
Metal mining 0.027
Coal mining -0.006
Natural Gas and Crude Petroleum extraction 0.013
Non-metallic mining -0.001
Construction 0.026
Railroads 0.024
Air transport 0.109
Other transportation 0.058
Communication services 0.112
Electric utilities 0.056
Gas utilities, and water and sanitary services 0.033
Wholesale trade 0.066
Retail trade, and restaurant and bars 0.044
Finance and Insurance 0.065



Real Estate 0.065
Hotels, and personal and repair services (exc. auto) 0.061
Business services 0.078
Automobile services 0.063
Movies and amusement parks 0.037
Medical services 0.062
Education, social services, membership organizations 0.062



Table 2 - Notation Guide

Variable Abbreviation Elasticity of Output
with respect to

the variable

Real Output (log) Q (q) --

Real Materials, including Energy (log) M (m) 1

Labor Hours (log) L (R) $

Real Equipment Stock (log) J (j) "

Real Structures Stock (log) S (s) 0

Index of Equipment-Embodied R&D (log) R (r) F

Real Energy Expenditures (log) E (e) --

Elasticity of Energy:Capital Ratio w.r.t. Utilization J --



Table 3   Specification Choice

Specificati
on

Number of industries Number requiring soft constraints

C’ 19 18

D" 27 25

E 4 2

X 4 4

Total 54 49



Table 4   Mixed Empirical-Monte Carlo Results

Coefficient True value Mean Estimate Std. Deviation Estimated Bias

c0 2 1.99092 0.23680 -0.00908

c1 0.01 0.00968 0.00842 -0.00032

" 0.17 0.18120 0.28050 0.0112

0 0.16 0.15852 0.03292 -0.00148

b0 0.1 0.10118 0.35719 0.00118

b1 -0.1 -0.08530 0.37322 0.0147



Table 5 continued on next page...

Table 5 --  Deviations in Labor Productivity (Permanent Shock)

Percent Deviations from Base

Industry
Equipment
Elasticity     2001     2005     2010     2015

 1 Agriculture, forestry and fisheries (C’) 0.288 0.02 0.54 0.83 0.97
 2 Metal mining (X) 0.094 -0.30 -0.09 0.00 0.03
 3 Coal mining (C’) 0.295 -0.05 0.52 0.87 1.05
 4 Crude petroleum and natural gas (C’) 0.359 -0.04 0.69 1.05 1.21
 5 Non-metallic mining (D") 0.065 0.02 0.06 0.10 0.12
 6 Construction (D") 0.318 0.08 0.56 0.87 1.02
 7 Food and tobacco products (D") 0.206 0.06 0.32 0.48 0.57
 8 Textile mill products (D") 0.060 0.09 0.08 0.13 0.14
 9 Apparel and other textile products (D") 0.131 0.02 0.13 0.22 0.28
10 Paper and allied products (D") 0.133 0.09 0.11 0.21 0.27
11 Printing and publishing (D") 0.140 0.22 0.09 0.17 0.22
12 Chemicals (X) 0.239 -0.12 0.34 0.63 0.76
13 Plastics and synthetic materials (X) 0.207 -0.20 0.18 0.44 0.54
14 Petroleum refining (D") 0.025 0.03 0.01 0.03 0.05
15 Rubber and miscellaneous plastics (D") 0.081 0.31 0.08 0.13 0.14
16 Footwear and leather products (C’) 0.326 0.03 0.35 0.63 0.79
17 Lumber and wood products (C’) 0.054 -0.04 0.06 0.12 0.12
18 Furniture (D") 0.026 0.36 -0.04 -0.03 -0.02
19 Stone, clay and glass products (D") 0.058 0.05 0.06 0.11 0.14
20 Primary iron and steel (D") 0.095 0.16 0.09 0.15 0.16
21 Primary nonferrous metals mfg. (D") 0.055 0.17 0.06 0.09 0.10
22 Metal products (D") 0.064 0.15 0.05 0.09 0.11
23 Engines and turbines (C’) 0.123 -0.16 0.04 0.13 0.16
24 Agricultural, construction & mining mach.

(C’)
0.061 -0.18 -0.11 -0.07 -0.06

25 Metalworking machinery (E) N/A 0.56 0.00 0.00 0.01
26 Special industry machinery (E) N/A 0.15 0.01 0.00 0.02
27 General and miscellaneous industrial mach.

(C’)
0.062 -0.19 -0.07 -0.01 0.03

28 Computers and office equipment (C’) 0.125 -0.23 -0.04 0.04 0.08
29 Service industry machinery (D") 0.083 0.43 0.08 0.11 0.12
30 Electrical industrial equipment and app. (D") 0.088 0.40 0.03 0.08 0.10
31 Household appl., elec lighting & wiring (D") 0.306 0.29 0.48 0.72 0.81
32 Audio, video and comm. equipment (C’) 0.073 -0.17 -0.06 0.00 0.03
33 Electronic components (D") 0.215 0.01 0.32 0.45 0.49
34 Motor vehicles and equipment (C’) 0.086 -0.12 0.02 0.10 0.12
35 Aircraft and parts (C’) 0.195 0.00 0.25 0.37 0.40



36 Ships and other transportation equipment
(D")

0.074 -0.03 0.02 0.05 0.06

37 Instruments (C’) 0.158 -0.07 0.12 0.22 0.26
38 Miscellaneous manufacturing (D") 0.297 0.06 0.44 0.61 0.65
39 Railroad transportation (X ) 0.029 -0.08 -0.04 -0.02 -0.01
40 Air transportation (C’) 0.330 0.11 0.82 1.09 1.16
41 Trucking and other transport (C’) 0.094 -0.07 0.05 0.11 0.13
42 Communications services (C’) 0.183 -0.02 0.37 0.48 0.50
43 Electric utilities (C’) 0.349 0.08 0.66 0.93 1.02
44 Gas, water and sanitary services (C’) 0.095 -0.07 0.05 0.09 0.11
45 Wholesale trade (D") 0.089 0.10 -0.05 0.03 0.06
46 Retail trade, restaurants & bars (E) N/A 0.02 0.00 0.00 0.00
47 Finance and insurance (D") 0.036 0.04 0.02 0.01 0.03
48 Real estate and rental (E) N/A 0.04 0.00 0.00 0.00
49 Hotels, repairs except auto (D") 0.132 0.11 0.14 0.20 0.22
50 Business and professional services (D") 0.214 0.15 0.08 0.25 0.32
51 Automotive repair and services (D") 0.031 0.11 0.01 0.04 0.06
52 Movies and amusements (D") 0.161 0.14 0.23 0.31 0.34
53 Health services (C’) 0.348 0.17 0.71 0.92 0.98
54 Educational and social services and NPO (C’) 0.147 0.01 0.23 0.29 0.31



Table 6 continued on next page...

Table 6 -- Deviations in Labor Productivity (One-Time Shock)

Percent Deviations from Base

Industry
Equipment
Elasticity     2001     2005     2010     2015

 1 Agriculture, forestry and fisheries (C’) 0.288 0.32 0.74 0.97 0.96
 2 Metal mining (X) 0.094 -1.46 -0.02 0.06 0.08
 3 Coal mining (C’) 0.295 -0.15 1.07 1.49 1.63
 4 Crude petroleum and natural gas (C’) 0.359 0.04 1.11 1.47 1.56
 5 Non-metallic mining (D") 0.065 0.08 0.20 0.16 0.16
 6 Construction (D") 0.318 0.45 1.12 1.32 1.37
 7 Food and tobacco products (D") 0.206 0.32 0.42 0.51 0.54
 8 Textile mill products (D") 0.060 0.47 0.17 0.12 0.10
 9 Apparel and other textile products (D") 0.131 0.07 0.23 0.21 0.22
10 Paper and allied products (D") 0.133 0.42 0.17 0.22 0.22
11 Printing and publishing (D") 0.140 1.12 0.27 0.20 0.21
12 Chemicals (X) 0.239 -0.56 0.55 0.63 0.61
13 Plastics and synthetic materials (X) 0.207 -1.01 0.40 0.41 0.37
14 Petroleum refining (D") 0.025 0.12 0.02 0.02 0.04
15 Rubber and miscellaneous plastics (D") 0.081 1.03 0.18 0.14 0.13
16 Footwear and leather products (C’) 0.326 0.19 0.52 0.74 0.79
17 Lumber and wood products (C’) 0.054 -0.21 -0.02 0.14 0.13
18 Furniture (D") 0.026 1.83 0.16 -0.01 -0.01
19 Stone, clay and glass products (D") 0.058 0.25 0.15 0.12 0.11
20 Primary iron and steel (D") 0.095 0.79 0.20 0.17 0.16
21 Primary nonferrous metals mfg. (D") 0.055 0.86 0.23 0.12 0.09
22 Metal products (D") 0.064 0.78 0.16 0.11 0.11
23 Engines and turbines (C’) 0.123 -0.81 0.15 0.18 0.17
24 Agricultural, construction & mining mach. (C’) 0.061 -0.86 0.03 0.04 0.04
25 Metalworking machinery (E) 0.000 2.70 0.24 -0.02 0.00
26 Special industry machinery (E) 0.000 0.72 -0.05 0.00 0.00
27 General and miscellaneous industrial mach. (C’) 0.062 -0.94 0.03 0.04 0.06
28 Computers and office equipment (C’) 0.125 -1.13 0.21 0.20 0.17
29 Service industry machinery (D") 0.083 2.16 0.29 0.16 0.15
30 Electrical industrial equipment and app. (D") 0.088 1.94 0.15 0.14 0.14
31 Household appl., elec lighting & wiring (D") 0.306 1.30 0.87 0.80 0.77
32 Audio, video and communication equipment (C’) 0.073 -0.85 0.04 0.06 0.06
33 Electronic components (D") 0.215 0.02 0.43 0.38 0.35
34 Motor vehicles and equipment (C’) 0.086 -0.65 0.13 0.16 0.17
35 Aircraft and parts (C’) 0.195 -0.01 0.41 0.39 0.37
36 Ships and other transportation equipment (D") 0.074 -0.15 0.36 0.13 0.12
37 Instruments (C’) 0.158 -0.36 0.31 0.32 0.31
38 Miscellaneous manufacturing (D") 0.297 0.28 0.78 0.66 0.57
39 Railroad transportation (X) 0.029 -0.41 -0.03 -0.01 -0.01
40 Air transportation (C’) 0.330 0.51 1.13 1.07 0.95
41 Trucking and other transport (C’) 0.094 -0.36 0.07 0.10 0.08



42 Communications services (C’) 0.183 -0.08 0.48 0.48 0.42
43 Electric utilities (C’) 0.349 0.49 1.03 1.12 1.09
44 Gas, water and sanitary services (C’) 0.095 -0.28 0.08 0.15 0.15
45 Wholesale trade (D") 0.089 0.02 0.08 0.09 0.09
46 Retail trade, restaurants & bars (E) 0.000 0.10 0.02 0.00 0.00
47 Finance and insurance (D") 0.036 0.17 0.00 0.04 0.07
48 Real estate and rental (E) 0.000 0.20 0.00 0.00 0.00
49 Hotels, repairs except auto (D") 0.132 0.58 0.22 0.20 0.19
50 Business and professional services (D") 0.214 2.33 1.03 0.41 0.38
51 Automotive repair and services (D") 0.031 0.71 0.01 0.07 0.07
52 Movies and amusements (D") 0.161 0.76 0.38 0.34 0.33
53 Health services (C’) 0.348 0.93 0.92 0.96 0.87
54 Educational and social services and NPO (C’) 0.147 0.14 0.22 0.28 0.26



Figure 1, Gridsearch Results of Matching FRB Physical Depreciation Patterns
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Figure 2,   Average Adjusted R-squared
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Figure 3,   Average Elasticities
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Figure 4,   Percent of Elasticities that are Positive
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Figure 5,   Average Adjusted R-squared -- Specifications Not Including Materials
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Figure 6,   Average Elasticities -- Specifications Not Including Materials
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Figure 7,  Percent of Elasticities that are Positive -- Specifications Not Including Materials
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Figure 8, Real GDP
Percent Deviations from base -- 2% increase in equipment investment in all years
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Figure 9, Nominal GDP
Percent Deviations from base -- 2% increase in equipment investment in all years
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Figure 10, GDP Deflator
Percent Deviations from base -- 2% increase in equipment investment in all years
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Figure 11, Treasury Bill Rate
Level Deviations from base -- 2% increase in equipment investment in all years
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Figure 12, Savings Rate
Level Deviations from base -- 2% increase in equipment investment in all years
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Figure 13, Unemployment Rate
Level Deviations from base -- 2% increase in equipment investment in all years
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Figure 14, Total Private Employment
Percent Deviations from base -- 2% increase in equipment investment in all years
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Figure 15, Total Private Hours Worked
Percent Deviations from base -- 2% increase in equipment investment in all years
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Figure 16, Average Real Wage
Percent Deviations from base -- 2% increase in equipment investment in all years
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Figure 17, Labor Productivity
Percent Deviations from base -- 2% increase in equipment investment in all years
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Figure 18, Real GDP
Percent Deviations from base -- 10% increase in equipment investment in 2001
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Figure 19, Nominal GDP
Percent Deviations from base -- 10% increase in equipment investment in 2001
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Figure 20, GDP Deflator
Percent Deviations from base -- 10% increase in equipment investment in 2001
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Figure 21, Treasury Bill Rate
Level Deviations from base -- 10% increase in equipment investment in 2001
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Figure 22, Savings Rate
Percent Deviations from base -- 10% increase in equipment investment in 2001
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Figure 23, Unemployment Rate
Level Deviations from base -- 10% increase in equipment investment in 2001
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Figure 24, Total Private Employment
Percent Deviations from base -- 10% increase in equipment investment in 2001
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Figure 25, Total Private Hours Worked
Percent Deviations from base -- 10% increase in equipment investment in 2001

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

   
2000

   
2001

   
2002

   
2003

   
2004

   
2005

   
2006

   
2007

   
2008

   
2009

   
2010

   
2011

   
2012

   
2013

   
2014

   
2015

Old Model New Model



Figure 26, Average Real Wage
Percent Deviations from base -- 10% increase in equipment investment in 2001

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

   
2000

   
2001

   
2002

   
2003

   
2004

   
2005

   
2006

   
2007

   
2008

   
2009

   
2010

   
2011

   
2012

   
2013

   
2014

   
2015

Old Model New Model

Figure 27, Labor Productivity
Percent Deviations from base -- 10% increase in equipment investment in 2001
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Figure 28, Equipment Investment
Percent Deviations from base -- 10% increase in equipment 

investment in 2001
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Figure 29, Equipment Capital
Percent Deviations from base -- 10% increase in equipment 

investment in 2001
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