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1) Introduction

One of the more exciting developments in optimal policymaking is the “timelessly

optimal” policy concept that Woodford (1999) introduced to the literature.  Prior to

Woodford (1999) optimal pre-commitment policies were solved using the methods first

outlined in Kydland and Prescott (1980) and developed more fully in Currie and Levine

(1993).  The problem associated with these earlier techniques is that they come with an

“initial period problem.”  More precisely, they imply that policymakers behave very

differently in the initial period than in subsequent periods.  If the behavior in the initial

period were repeated in later periods then the policy strategy would no longer be optimal.

Thus Currie and Levine’s (1993) treatment of pre-commitment cannot be formulated as a

recursive optimization problem.

Woodford’s (1999) innovation was to consider the optimization problem from a “timeless

perspective,” an innovation directed at eliminating this initial period problem.  The

timeless perspective argues that a policymaker optimizing today should not exploit the

initial state of the economy, but rather implement the policy that it would have chosen to

implement today if it had been optimizing from a time period far in the past.  As we shall

see, while the timeless perspective overcomes the initial period problem, it does so at a

cost.  There is a continuum of solutions, each of which fully satisfies the requirements to

be timelessly optimal; that is, the timeless perspective lends itself to indeterminacy.

Alongside this literature on the timeless perspective, other authors (such as King and

Wolman, 1999, Khan et al, 2000, and Amato and Laubach, 2001) depart from Currie and

Levine (1993) in that they assume that the economy is in steady state in the period prior

to some initial optimization.  With this assumption these authors rule out any exploitation

of the initial state vector.  However, as we show below, assuming the economy is in

steady state in the initial period does not generally lead to a timelessly optimal policy

because the initial period is still treated differently than subsequent periods.
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In this paper we use a simple business cycle model to illustrate Woodford’s (1999)

timeless perspective, as described in Svensson and Woodford (1999).  We compare

timelessly optimal policies with the Currie and Levine (1993) solution and draw out the

nature of the indeterminacy.  We also motivate and describe a solution procedure that

constructs optimal pre-commitment rule in the case where the policymaker does not

observe, and therefore cannot exploit, the initial state of the economy.

This paper is structured as follows.  In the following Section we describe the simple

business cycle model that we use to illustrate the ideas in the paper.  Section 3 describes

the optimal pre-commitment solution, as developed in Currie and Levine (1985, 1993).

In Section 4 we turn to Woodford’s (1999) timeless perspective.  We show that there is a

continuum of solutions that are all timelessly optimal and we relate this indeterminacy to

the problem of assigning value to past commitments.  In Section 5 we motivate an

alternative optimal policy in which the policymaker must choose its decision rule without

knowing the past history of the state vector.  We relate this solution to Svensson and

Woodford (1999), to Currie and Levine (1993), and to King and Wolman (1999).

Section 6 concludes.

2) A Simple Business Cycle Model

To ensure that our analysis is as transparent as possible we employ a very simple

business cycle model.  Firms operate in a monopolistically competitive environment.

They employ labor for production and choose the price of their good subject to a

downward sloping demand curve and a real cost of adjusting their price level.  An

aggregator, takes the firms’ outputs and bundles them into a single consumption good

that it sells to households in a perfectly competitive market.  Households choose their

level of consumption, holdings of real money balances, and stock of bonds to take into

the next period, subject to their budget constraint.  Further, households make a labor-

leisure choice.  The government chooses the level of the nominal interest rate, supplies

households with whatever level of nominal money balances they demand, and remits any
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seignorage revenues to households through lump sum transfers.  As shown in Walsh

(2001), when log-linearized about its deterministic steady state, this business cycle model

can be represented as

ttttttt gEicEc +−−−= ++ )(
1

11 ρπ
σ

(1)

ttttt ucE ++−+= + αππβππ )( *
1

* . (2)

In equations (1) and (2), ct is consumption, πt is inflation, it is the nominal interest rate, gt

is a demand shock, and ut is a cost push shock.  Turning to the parameters, ρ is the rate of

time preference, β is the discount factor, σ is the inter-temporal elasticity of substitution,

and α indexes firms’ price markup over marginal costs.  π* is the steady-state inflation

rate whose value is determined by the interaction of the government’s interest rate rule

with equations (1) and (2).  The shocks, gt and ut are independent zero mean finite

variance processes.

2.1) Policy Objectives

Equation (1) is a necessary condition arising from the households’ constrained

optimization problem.  It is derived from an additively separable constant elasticity of

substitution utility function.  Woodford (2000) derives conditions under which the

following objective function can correctly be employed as a second order approximation

to the representative agent’s utility function.

∑
∞

=
−−+−+−=∞

0

222
0 ])ˆ()ˆ()ˆ[(),0(

t
ttt

t iccELoss ρπνωππβ (3)

In equation (3), π̂ and ĉ  ( ĉ  > 0) are the target values for inflation and consumption that

are chosen by the government.  The parameters ω, ν ≥ 0, are in principle determined by

the preference and technology parameters characterizing the model.  However, in

applications these policy preference parameters are more usually interpreted as
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parameters that determine the type of the central banker appointed by the government.

The government specifies the target values for consumption and inflation, but delegates

the job of achieving these targets to an instrument independent central banker.  Because

of monopolistic competition output in deterministic steady state will be less than the

perfectly competitive level.  The parameter ĉ  can be thought of as reflecting this lost

output.  Under the time-consistent policy ĉ  > 0 leads to an inflation bias (see Clarida et

al. 1999), effectively because the central banker has been directed to alter the real side of

the economy in a model that is super-neutral.

3) The Optimal Pre-commitment Rule

Let the period at which optimization is taking place be period s.  Construct the

Lagrangian

∑
∞

=

− −−+−+−=
st

ttt
st

s iccEL 222 )ˆ()ˆ()ˆ[( ρπνωππβ
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111
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++
−− σπσρσλ
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tttttt uEc −−−−−− +πβπβαπλ .

Minimizing the Lagrangian with respect to 1
tλ , 2

tλ , ct, πt, and it, the first-order conditions

for optimality are
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along with the initial conditions 02
1

1
1 == −− ss λλ  (see Currie and Levine, 1993).  The

nature of the policy strategy is to exploit initial conditions in the first period, but to

promise never to do so in the future.  The current value of promises not to exploit the

initial state are given by 1
1−sλ  and 2

1−sλ .  It is the very fact that policymakers “optimally”

exploit initial conditions, making 02
1

1
1 == −− ss λλ  part of the optimal policy program,

which provides the initial conditions necessary to close the system.

Because the system has been log-linearized around its deterministic steady state, it is a

simple matter to extract from equations (4) – (8) the deterministic steady state of the

system and thereby illustrate the relationship between the deterministic steady-state

values and the targeted values.  Working through the system it is clear that 0* =c , (from

equation (8)), and ρπ += **i  (from equation (7)).  Then, combining equation (4) with

equation (6) gives ππ ˆ* =  and 0*1 =λ .  Finally, equation (5) implies 
α
ωλ ĉ*2 = .  We will

use these steady-state values in what follows.

Before leaving this Section it is useful to outline from an implementation point of view

the nature of the equilibrium just described.  It is envisaged that optimization takes place

only once, in period s (making period s special).  Subsequent to period s the

policymaker’s hands are tied (the policymaker has pre-committed).  The solution to the

optimization problem provides a state contingent rule that describes how the instrument is

to be set in every possible state of the world.  Moreover, the feedback parameters in this

state contingent rule are explicit functions of the parameters in the model and objective

function.  Therefore, if a change to one or more parameters occurs, the policy rule

automatically reflects this change; there is no need for re-optimization to take place.
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4) The “Timeless Perspective” and “Timelessly” Optimal Pre-commitment Rules1

In the solution described above the initial values for the two Lagrange multipliers are

driven to zero as a consequence of optimal policy behavior.  Policymakers exploit the

fact that when they set their instrument in the first period, agents have already formed

their expectations and the policymaker is unconstrained by past commitments.  While

they exploit expectations in the first period, this exploitation comes with promises never

to do so again.  Woodford (1999), among others, finds the nature of this optimal policy

program troublesome, for if policymakers exploit expectations in the first period what is

to stop them from doing so at some point in the future.  However, if optimizing the

objective function is not the criteria used to determine the initial values for these

Lagrange multipliers, then how are the policymaker’s actions to be constrained in the first

period?  Or, equivalently, how are 1
1−sλ  and 2

1−sλ  to be determined?

The solution to this problem that Woodford (1999) and Svensson and Woodford (1999)

arrive at is for policymakers to

“…adopt, not the pattern of behavior from now on that it would now be

optimal to choose, taking previous expectations as given, but rather the

pattern of behavior to which it would have wished to commit itself to at a

date far in the past, contingent upon the random events that have occurred

in the meantime.” (Woodford, 1999, pp293, italics in original)

“…select a policy rule for behavior in periods t ≥ s to which it would have

been optimal to commit oneself in a period far in the past.” (Svensson and

Woodford, 1999, pp17)

They term this approach the “timeless perspective.”  To illustrate the timeless perspective

to pre-commitment, consider the special case where ν = 0, which leads to 01 =tλ , ∀  t.

                                                       
1  Our description of the timeless perspective follows that presented in Svensson and Woodford
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Combining equations (4), (5), and (8), and using the result that ππ ˆ* =  we obtain the

second order equation

ttttt ucE +++=



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++ −+ ˆ1 2
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1
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2
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for which the solutions to the quadratic component are
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41
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22
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


++

= .

By inspection, one root is greater than one, the other less than one.  Denote the stable root

µs, then the process for 2
tλ  is given by

ttst u0
*22

1
*22 )( µλλµλλ +−=− − , ∀  t ≥ s (9)

where 
α
ωλ ĉ*2 =  is the steady-state value of 2

tλ  and 
12

0 1
−







++=

ω
αβµ .  In the

approach outlined in the previous Section, equation (9) comes with the initial condition

02
1 =−sλ , and this initial condition, together with the saddle-point property, implies that

the system has a unique stable solution.  But under the timeless perspective the

policymaker does not necessarily set policy in the initial period such that 02
1 =−sλ .

Without a unique initial value for 2
1−sλ , equations (4) – (8) have multiple solutions, with

these solutions indexed by 2
1−sλ .

Now imagine that at some earlier point in time, say period k, the policymaker solves for

the optimal pre-commitment rule, exploiting expectations and ignoring past commitments

                                                                                                                                                                    
(1999).
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at that time.  Then, employing the condition 02
1 =−kλ , the evolution of the system ∀  t ≥ k

is given by

( ) ∑
−

=
−

+− +−=
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jt

j
s
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st u

0
0

*212 1 µµλµλ (10)
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j
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*21ˆ µµλµµππ (11)

∑
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=
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j
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j
s
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st uc

0
0

*21 µµ
ω
αλµ

ω
α

. (12)

It is clear from equations (10) – (12) that the state of the system in period t depends

explicitly on the length of time that has passed since the period k optimization took place:

t-k.  Svensson and Woodford (1999) term the solution given in equations (10) – (12) the

“k-optimal” equilibrium2 to indicate that it describes the equilibrium that is optimal given

that initial conditions are exploited in period k.  If we now take the limit of equations (10)

– (12) as k → -∞, then we arrive at the stationary optimal equilibrium:

∑
∞

=
−+=

0
0

*22

j
jt

j
st uµµλλ (13)

∑
∞

=
−+=

0
0ˆ

j
jt

j
st uµµππ (14)

∑
∞

=
−=

0
0

j
jt

j
st uc µµ

ω
α

. (15)

Comparing equations (10) – (12) with equations (13) – (15), notice that in this limit the

intercepts in equations (10) – (12) tend to 
α
ωĉ

, π̂ , and 0, respectively.  In each case these

intercepts equal the steady-state value of the variable in question.  We are now in a

position to describe the conditions required for a policy rule to be timelessly optimal.  A

policy rule is timelessly optimal if provided it has been followed for a sufficient length of
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time, and provided agents expect the rule to be followed in the future, the system

converges to the stationary optimal equilibrium.  Alternatively, for a policy to be

timelessly optimal it must satisfy the following two criteria:

•  If the economy has arrived at its present state according to the stationary optimal

equilibrium, then the policy rule chosen today must ensure that it continues to evolve

according to the stationary optimal equilibrium.

•  If the economy has not arrived at its present state according to the stationary optimal

equilibrium, then the policy rule chosen today must ensure that the economy

converges asymptotically to the stationary optimal equilibrium.

With Currie and Levine’s (1993) solution optimization takes place only once, in period s,

and initial conditions are exploited at that time.  Consequently, 02
1 =−sλ , indicating that

when optimizing in period s the policymaker places no value on past commitments made

to households.  Under the timeless perspective the optimization problem is a recursive

one with re-optimizations occurring at every point in time.  This contrasts with the

previous Section in which optimization takes place only once.  Thus the problem for the

timeless perspective is to come up with a mechanism describing how a policymaker

optimizing today should value past commitments.  There is no unique way of valuing

these past commitments.  For a policymaker optimizing in period s possible valuation

rules that are all timelessly optimal include (staying with the case where ν = 0):

•  ∑
∞

=
−−− +=

0
10

*22
1

j
js

j
ss uµµλλ .

•  ( )ccss ˆ1
2

1 −−= −− α
ωλ ;

•  ( )ccsss ˆˆ 21
2

1 −−−= −−− α
ωππλ ;

•  ( )ccssss ˆˆˆ 321
2

1 −−+−+−= −−−− α
ωππππλ ;

                                                                                                                                                                    
2  Actually, Svensson and Woodford (1999) term this “to-optimal” in their notation.
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•  11
2

1 ˆ −−− −= sss ppλ .3

To underscore that the problem the policymaker faces is to find a way of appropriately

tying its hands during successive re-optimizations, we have deliberately expressed each

prescription in terms of a setting for 2
1−sλ .  Each of these methods for valuing past

commitments, which is to be applied period by period, leads to a timelessly optimal

equilibrium because each of these valuation rules “…implies eventual convergence to the

stationary optimal equilibrium ... regardless of the initial conditions when the policy is

adopted.” (Svensson and Woodford, 1999 pp18, italics in original).  If the economy is

evolving according to the stationary optimal equilibrium, then each of these valuation

rules leads to identical valuations of past commitments.  But these rules will typically

provide different valuations if the economy has arrived at period s-1 along an out of

“stationary optimal equilibrium” path.

Of course, there are many ways of tying the policymaker’s hands in addition to the few

possibilities listed above.  Applications of the timeless perspective (such as Walsh, 2001

and McCallum and Nelson, 2000) typically assume that past commitments are valued

according to the second rule in the list above, but this is only one of many possible

assumptions.  Finally, notice that because past commitments are not valued optimally

when viewed from any given period, it is not necessarily the case that timelessly optimal

rules lead to better outcomes than the time-consistent rule.

5) Optimal Policy from Behind a Veil of Uncertainty

Assessing the benefit that accrues to having a pre-commitment mechanism simply

requires comparing the pre-commitment solution (Section 3) with the time-consistent

solution (see Dennis 2001).  In this Section we will develop an approach that allows us to

assess the benefit that accrues to being able to exploit the initial state of the economy.  As

                                                       
3  Here sp denotes the price level in period s and 1ˆ −sp ( π̂ˆˆ 21 += −− ss pp ) is the price level target.
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we will see, the solution we develop has much in common with that employed in King

and Wolman (1999), Khan et al., (2000), and Amato and Laubach (2001), although it is

not assumed that their approach is motivated on the following construct.

Consider a policymaker in the following hypothetical situation; the policymaker is behind

a veil of uncertainty.  While it knows the policy objective function, the policy constraints,

the ex ante distribution of the shocks and the current date, the policymaker does not know

the state of the economy.  From behind this veil the policymaker must construct and

implement its optimal policy.  After the policy has been in effect for one period the veil is

lifted and the state of the economy is revealed.  From then on the policymaker

implements the continuation policy, fully aware of, and accounting for, any shocks that

have occurred.  In the setting described, uncertainty about the state of the economy

affects how the policymaker sets policy in the first period.

The effect of the uncertainty is to force the policymaker to take a guess at what the state

of the economy is prior to the veil of uncertainty being removed.  This guess will have

welfare implications and the policymaker will take as its guess the state vector that

optimizes the objective function.  In what follows we will implement this procedure in

two stages.  In the first stage we construct the Euler equations for optimal policy; in the

second stage we evaluate the policy objective function - for a guess at the initial state

vector - and then optimize the objective function with respect to this guess.  This two-

stage solution procedure makes full use of the property that the parameters in the optimal

feedback rule are independent of the state vector.  Notice that, as with Section 3, the

nature of the solution is for the policymaker to optimize just once and for the state-

contingent rule developed at that time to be implemented from then on.  Thus the only

difference between this solution and that in Section 3 is how the policymaker values past

commitments in the initial period; the solution we develop is very unlikely to be

timelessly optimal and is not intended to be so.

From behind the veil of uncertainty the Lagrangian for the optimization problem is
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Relative to the Lagrangian in Section 3, we have replaced a conditional expectation with

an expectation operator that reflects the policymaker’s subjective probabilistic beliefs

about the state vector’s distribution.  Differentiating this Lagrangian with respect to tπ ,
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We denote the policymaker’s guesses of the two state variables g
s
1

1−λ  and g
s
2

1−λ .

For some guess at the state vector in the initial period 
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W , and exploiting the fact that the spectral radius of H is less

than one, (a condition that must hold if a stable solution exists), the objective function

evaluated along the optimal path starting from g
sz 1−  is:
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where PHHWP ’β+=  is positive semi-definite.  Equation (16) partitions the loss

function into four distinct terms.  The first term is the loss that occurs through incorrectly

guessing the state vector.  The second term reflects the loss arising because the state

vector differs from the target vector.  The third term captures the loss arising because the

target vector is incompatible with the non-stochastic steady state.  Finally, the fourth term

summarizes the loss generated because the system is continually hit by shocks.

The final step in the procedure is for the policymaker to choose its guess of the initial

state vector to maximize the expected loss function.  Differentiating equation (16) with

respect to g
sz 1−  gives

0)]([ 11
’ =− −− s

g
s zEzPHH . (17)

A sufficient condition for equation (17) to hold is *
11 )( zzEz s

g
s == −− .  When

0)]dim[ker( ’ >PHH  it is not necessary for *
1 zz g

s =−  to hold for equation (17) to be
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satisfied.  This case corresponds to the situation where some elements in the state vector

are redundant and can be eliminated from the solution.  Thus choosing *
1 zz g

s =−  is

without loss of generality.  For the model of this paper equation (17) yields the solution

01 =−
g
sc , ππ ˆ1 =−

g
s , πρ ˆ1 +=−

g
si , 

α
ωλ cg

s

ˆ2
1 =− , and 01

1 =−
g

sλ .

Alternatively, if the policymaker knows the state of the economy in period s-1, then the

unconditional expectation in equation (16) can be replaced with the conditional

expectation operator and then choosing the state vector optimally leads to: 11 −− = ss cc ,

11 −− = ss ππ , 11 −− = ss ii , 02
1 =−sλ , and 01

1 =−sλ , which is, of course, the Currie and Levine

(1993) solution.

Summarizing, if the policymaker knows the initial state of the economy, then we saw in

Section 3 that the welfare maximizing policy sets 02
1

1
1 == −− ss λλ .  In this Section we

have the result that if the policymaker does not know the initial state of the economy then

the policy that maximizes expected welfare sets 01
1 =−

g
sλ  and 

α
ωλ cg

s

ˆ
1 =− .  In other words,

when the initial state is unobserved, the best that the policymaker can do is to assume that

the economy is in steady state and set policy for the initial period accordingly.  Setting

the Lagrange multipliers equal to their steady state values was one of the approaches

taken in King and Wolman (1999) and Khan et al., (2000), but this approach is not

timelessly optimal unless the Lagrange multipliers are constant in the stationary optimal

equilibrium (cf. McCallum and Nelson, 2000, pp5-6).  If the above approach were

followed recursively, then in each period the Lagrange multipliers would be set equal to

their steady-state values.  Alternatively, if the initial period were treated in the same way

as subsequent periods, then the Lagrange multipliers in the initial period would be a

function of the history of the state vector.
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6) Conclusions

In this paper we have presented and discussed a recent development - the timeless

perspective - that has taken place in the optimal monetary policy rules literature.  We

used a simple business cycle model to illustrate the derivation and characteristics of

timelessly optimal pre-commitment policies, and compared these policies with the

“standard” pre-commitment solution.  An advantage of the timeless approach to pre-

commitment is that it transforms a one-shot optimization problem (the standard pre-

commitment solution) into a recursive problem with optimization occurring each period.

But because of their recursive formulation timelessly optimal pre-commitment policies

are indeterminate with different policies arising as a function of how the current

policymaker values past commitments.  We demonstrated this indeterminacy and

described the particular solution applications of the timeless perspective have tended to

focus on.

Finally, in Section 5 we introduced a construct that allows us to assess the benefits that

arise because the policymaker knows the initial state of the economy when optimizing.

This construct led to a solution in which the policymaker optimally assumes that the

economy is in its deterministic steady state in the initial period, mimicking the solution

examined in King and Wolman (1999), Khan et al., (2000) and Amato and Laubach

(2001).  We emphasize, however, that assuming that the lagrange multipliers equal their

deterministic steady state values in the initial period does not generally lead to a recursive

optimization problem, nor does it typically lead to a timelessly optimal solution (cf.

McCallum and Nelson, 2000, and Amato and Laubach, 2001).
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