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Abstract

New Keynesian macroeconomic models have generally emphasized that expecta-

tions of future output are a key factor in determining current output. The theoretical

motivation for such forward-looking behavior relies on a straightforward generaliza-

tion of the well-known Euler equation for consumption. In this paper, we use maxi-

mum likelihood and generalized method of moments (GMM) methods to explore the

empirical importance of output expectations. We find little evidence that rational

expectations of future output help determine current output, especially after taking

into account the small-sample bias in GMM.
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1. Introduction

A central question in macroeconomic modeling is the extent to which private agents’ behavior

should be modeled as “forward-looking.” Standard theory implies that agents place a substantial

weight on expected future income and returns in determining their consumption and investment,

and on expected future prices in setting current prices. However, the weight on the future that

seems consistent with both the aggregate time series data and theoretical models has been the

subject of much debate. This issue is perhaps most salient in estimates of the “New Keynesian”

(or “new synthesis” or “optimizing IS-LM”) model, which has been a very popular framework for

macroeconomic analysis recently.1 In its simplest form, the New Keynesian model is composed of

an output equation, which generalizes the consumption Euler equation to the whole economy, and

an inflation equation, which resembles an expectations-augmented Phillips curve. The inflation

equation has been the subject of much empirical investigation, which, again, has focused on

the key issue of the relative importance of expected future inflation versus past inflation in

determining current prices.2

In contrast, estimates of the New Keynesian output equation have been extremely rare,

and there are no comprehensive empirical assessments of the relative importance of past versus

future output for the determination of current output. Rotemberg and Woodford (1999) are

among the first to estimate a very simple output Euler equation in which there is no weight

on past inflation. However, Fuhrer (2000) and Estrella and Fuhrer (2002) show that this Euler

equation, which is based on the simplest model of optimizing household behavior, provides a

remarkably poor fit to the time series data on aggregate output. Fuhrer (2000) obtains much

better empirical results by enhancing the model of consumer behavior with a habit formation

process that adds significant inertial output dynamics. Unfortunately, as noted in Rudebusch

(2002), it is not easy to infer from Fuhrer’s (2000) model the exact weight on expected future

output in a single equation for overall aggregate demand, and there are essentially no other

available estimates with quarterly data.3

This gap in the literature is quite serious. New Keynesian models are often used for monetary

1For example, Svensson (1999), Clarida, Gali, and Gertler (1999), McCallum and Nelson (1999), and Rotem-

berg and Woodford (1999).
2For a survey and an analysis of these results, see Rudebusch (2002) and Rudd and Whelan (2003).
3Direct estimates are obtained in Smets (2000) using GMM with synthetic data for the euro-area at an annual

frequency. For the U.S., also see Dennis (2003).
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policy analysis to give recommendations regarding optimal monetary policy. To have confidence

in these recommendations, it is important that the link between the short-term policy interest

rate and aggregate demand be modeled correctly in the output equation. Accordingly, this paper

provides empirical estimates from quarterly U.S. data of an Euler equation for aggregate output

with a particular focus on the relative weight on future and lagged output.

The next section describes our empirical specification. It is a hybrid equation used by many

authors to allow for both expectational and inertial dynamics. In order to ensure robustness,

we examine several variants of the basic equation that include alternative definitions of the

output gap, the real interest rate, and the information set used in forming expectations. Section

3 provides the resulting empirical estimates using maximum likelihood (ML) and generalized

method of moments (GMM) procedures. Across all specifications, our ML estimates indicate a

significant inertial element for output determination with the weight on future output always less

than 0.5 and quite often insignificantly different from zero. The GMM estimates also indicate

that output exhibits a significant inertial component across all specifications; however, they

differ from the ML estimates by suggesting a significant forward-looking element as well.

The somewhat disparate nature of our results echoes earlier research on the New Keynesian

inflation equation, where GMM estimates also suggested more “forward-looking” behavior than

ML estimates (for example, Gali and Gertler 1999 and Fuhrer 1997). We examine this apparent

dependence of the results on the estimation methodology in Section 4 with a Monte Carlo

simulation experiment to determine the extent to which the ML and GMM estimators may

exhibit small-sample bias. The experiment finds that the GMM estimator biases the coefficient

on future output toward 0.5. That is, GMM overestimates the weight on future output when

it is in fact low (below 0.5) and underestimates the weight when it is high. The ML estimator,

in contrast, is unbiased. These results provide strong evidence for viewing the GMM estimates

with some suspicion.

2. The Output Euler Equation

Much of the appeal of the New Keynesian model lies in its dynamic general equilibrium foun-

dations, as derived from a neoclassical model augmented to include temporary nominal price
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rigidities.4 In the simplest case, output is determined by the intertemporal Euler equation:

yt = Etyt+1 − σ(it − Etπt+1) + ηt, (1)

where yt is the output gap (detrended output), Etyt+1 is the expectation formed at time t of

future output at time t + 1 , it is the one-period nominal interest rate, Etπt+1 is the expectation

of future inflation, and ηt represents an aggregate demand shock. Of course, this equation is valid

only in an economy without capital, durable goods investment, foreign trade, or a government. In

this case, output equals consumption (which is the economy’s aggregate resource constraint), and

the path of output reflects optimal consumption choices. With the appropriate functional form

for the underlying utility function, the parameter σ can then be interpreted as the intertemporal

elasticity of substitution.

However, as a number of authors have demonstrated (e.g., Cogley and Nason 1995 and

Estrella and Fuhrer 2002), simple descriptions of output such as (1) have a difficult time matching

key dynamic features of the aggregate data. As a result, “hybrid” models that generalize (1)

have been developed (e.g., Fuhrer 2000, McCallum and Nelson 1999, Rudebusch 2002, Svensson

1999, and Dennis 2003). In this spirit, our empirical investigation considers an expanded output

Euler equation of the form,

yt = α0 + α1yt−1 + α2yt−2 + µEt−τyt+1 − βEt−τ [
1

κ
Σκ−1
j=0 (it+j+m − πt+j+m+1)] + ηt, (2)

which generalizes the simple Euler equation in four ways: the addition of two lags of output, the

flexible timing of when expectations are formed (with the parameter τ controlling the timing),

the possible influence of lagged real rates (for example, the time t−1 real rate will matter when
m = −1), and the use of (potentially) longer-term interest rates with the parameter κ setting

the duration of the ex ante real rate. Note that equation (2) nests the simple Euler equation

(1) when α1 = α2 = τ = m = 0 and µ = κ = 1.

All of these generalizations of the basic Euler equation may be quite important. First, it is

widely agreed that some adjustment process must be added to the model in order to match the

inertial responses of output that are apparent in the data. As a practical matter, of course, the

assumption that all output is consumed ignores sectors that are widely thought to be important

sources of business cycle dynamics. However, even when applied to the time series data on
4For general derivations and discussion, see Koenig (1993), Woodford (1996), Goodfriend and King (1997),

Walsh (1998), Clarida, Gali, and Gertler (1999), and Svensson (1999).
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just aggregate consumption spending for nondurable goods and services (which is about 60

percent of total output), Fuhrer (2000) finds that the simple Euler equation requires significant

modification to fit the data. Specifically, he augments the model of consumer behavior to include

a habit formation process, in which consumers’ utility depends partly on current consumption

relative to past consumption. This process builds in an inertial response necessary to match the

consumption data. The remainder of output other than nondurable and services consumption

appears to exhibit an even greater inertial response, and various theoretical approaches have

been considered in the literature. An Euler equation for investment is derived and discussed in

Oliner, Rudebusch, and Sichel (1995, 1996), where it is shown that the inertial response from

including adjustment costs and time-to-build lags is necessary to help match the data. Casares

and McCallum (2000) come to a broadly similar conclusion. In order to capture such inertia in

a parsimonious way, we add two lags of output to the canonical equation.

A second generalization in equation (2) allows for lags in the information set used to form

expectations. In the standard theory, as in (1), time t expectations are used because consumption

decisions at time t are determined by contemporaneous output and real interest rate expectations

(the case when τ = 0). However, with quarterly data, the possibility of a lag of a few months

in gathering and processing information implies that expectations formed at time t− 1 (τ = 1)
may be a more appropriate specification.5 These timing delays may affect the estimated relative

weights on expected and lagged output, perhaps boosting the importance of forward-looking

behavior, so we provide estimates with τ = 0 and τ = 1.

Finally, our hybrid output equation allows for a flexible definition of the relevant interest

rate for output. The simple Euler equation (1) assumes that the 1-quarter interest rate affects

the economy by inducing intertemporal substitution in consumption. Much evidence, however,

suggests that purchases of durable goods, such as housing and capital, are the most interest-rate

sensitive elements of aggregate demand and that long-term interest rates play a key role in this

sensitivity. Varying κ in (2) controls the duration of the interest rate. In addition, varying m

allows for some decision lag. Both of these factors are contained in more traditional specifications

of aggregate demand such as the one in Fuhrer and Moore (1995), which is also nested in (2)

when µ = 0, κ = 40, τ = 0, and m = −1.
5 Such expectational timing lags have been common in New Keynesian inflation equations (see Rudebusch 2002

and Mankiw and Reis 2001). Also, in their output equation, Rotemberg and Woodford (1999) go even further
and assume a two-quarter delay (τ = 2), an option we do not consider.
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For our investigation, the duration of the interest rate is particularly important because there

can be a close relationship between the importance of forward-looking output expectations and

the term of the interest rate. To see the connection, iterate equation (1) forward to obtain the

“solved-forward” version of the Euler equation

yt = −σEt−τ [Σ∞j=0 (it+j − πt+1+j)] + ηt, (3)

in which output depends only on the expected sum of future short-term real interest rates, which

may approximate a long-term real rate.

3. Evidence on the Importance of Expectations

3.1. Data and Estimation Methodology

The data employed are quarterly from 1966Q1 to 2000Q4.6 The interest rate, it, is the quarterly

average of the overnight federal funds rate, expressed in units of percent per year. Inflation is the

annualized log change in the price index. Denoting the GDP chain-weighted price index by Pt,

inflation is defined as πt = 400(lnPt−lnPt−1). The output gap, yt, is 100 times the log difference

between real GDP and a measure of potential output. Given the uncertainty surrounding the

proper detrending of output, we use a variety of measures of potential output in order to ensure

the robustness of the results.7 The results presented below consider five different definitions of

potential output: (1) the Hodrick-Prescott (HP) filter of log real GDP; (2) a one-sided band

pass (BP) filter of log real GDP; (3) a segmented deterministic linear trend for log real GDP,

with a breakpoint in the first quarter of 1974; (4) a deterministic quadratic trend for log real

GDP; and (5) the Congressional Budget Office’s (CBO) official estimate of potential output.8

6The beginning of the estimation period is dictated by the behavior of monetary policy. Only after 1965 did

the federal funds rate, the interest rate in our study, exceed the discount rate and hence act as the primary

instrument of monetary policy. Because the output Euler equation hinges on the interaction between output and

interest rates, this consideration is important.
7Although each of these detrending methods has been used by many researchers, it is worth noting that each

represents a rather imperfect attempt to overcome our inability to jointly model the determinants of long-run and

business cycle behavior
8The HP filter is perhaps the most widely used, but it is essentially a two-sided moving average that may blur

inference about the relative importance of past and future. The BP filter is the one-sided “random walk” filter

described in Christiano and Fitzgerald (2003).
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We estimate the output Euler equation using maximum likelihood (ML) and GMM proce-

dures, which are described in detail in the appendix. In brief, the ML estimation is conducted by

solving for the expectations of output, inflation, and the funds rate that are consistent with the

rational expectations solution of the structural output Euler equation (2) and two unrestricted

vector autoregressive (VAR) equations for inflation and the funds rate, which represent the dy-

namics of the rest of the economy in a general, agnostic fashion.9 Then, the likelihood of the

solved model can be computed for any set of parameters under the assumption that the innova-

tions in the model are joint normally distributed with mean zero. Finally, a sequential quadratic

programming algorithm is used to find the set of parameters that maximize the value of the like-

lihood function. Asymptotic standard errors are computed using the Berndt-Hall-Hall-Hausman

(BHHH) method.

The alternative method of estimation is GMM, which essentially instruments for the expec-

tational terms without imposing any of the model structure. The GMM estimation is straight-

forward because equation (2) is linear in variables and parameters. The only issue of interest is

obtaining a good instrument set, and we present results for two basic instrument sets. The first

comprises four lags of the funds rate, inflation, and the output gap. The second attempts to

construct plausibly exogenous instruments, and includes four lags of real defense expenditures,

relative oil prices, and the political party of the sitting President of the United States. We also

consider alternative timing of these instrument sets as described below.

3.2. Output Euler Equation Estimation Results

Tables 1 and 2 present results for ML and GMM estimation, respectively. As indicated in the

four model specification columns, both tables consider many of the number of model variations

described above. These specifications differ in the output trend procedure (namely, the BP or HP

filter, a segmented linear trend, labeled “Seg.”, a quadratic trend, labeled “Quad.”, or using the

CBO’s potential output), the timing of expectations (τ), and the timing (m) and duration (κ)

9The VAR equations that “close” the system contain four lags, though results were robust to variation. The

VAR coefficients are estimated by OLS (separately for each definition of the output gap) and held fixed in

the ML estimation. The Euler equation estimates and standard errors were essentially unchanged in a full

system estimation in which the VAR parameters were jointly estimated with the Euler equation parameters.

Alternatively, Dennis (2003) obtains results consistent with ours by including with the output equation other

structural equations.

6



of the real interest rate. The remaining columns provide selected coefficient estimates, standard

errors, and p-values for certain hypothesis tests.10

In the ML estimates, the coefficients on the lagged output terms (α1 and α2) are highly

significant in economic and statistical terms for every specification. In economic terms, the

estimates of the sum α1 + α2, which vary from .53 to .99 in Table 1, all indicate substantial

persistence in output. In every case, the hypothesis that these coefficients are both zero can

be rejected with overwhelming confidence. Indeed, because these results are so uniform across

specifications (the p-values are zero to several decimal places in each case), they are not reported

in the table. The clear implication is that lags of output in this specification are absolutely

essential.

In contrast, the ML results on the importance of expectations are decidedly mixed. The

median ML µ estimate is 0.36, but the distribution of estimates is bimodal, with one cluster of

estimates at 0.0 and a second around 0.40. We examine likelihood ratio tests for the hypotheses

µ = 1 and µ = 0. The µ = 1 hypothesis can be rejected with overwhelming confidence in all

cases, so we do not include the results of that test in the table. In contrast, the hypothesis that

µ = 0 is rejected in less than half of the cases (15 of 33 cases at the 10 percent significance level

or better). Although there is not a perfect mapping, the standard errors for µ are generally

consistent with the LR tests, in that high estimates of µ with small standard errors generally

reject the test for µ = 0 . Still, a number of the standard errors imply an implausibly high

degree of precision for the key parameters that is not always reflected in the p-values for the LR

tests. We will explore this feature more fully in the Monte Carlo exercises below.11

However, it is important to note that many of the cases in which we obtain larger estimates

of µ entail imprecise or economically negligible estimates of the link between output and real

interest rates (the parameter β). Indeed, there is a clear negative relationship between the

estimated size of the expectational parameter µ and the size of the interest rate sensitivity

parameter β. For example, for the segmented trend case with κ = 4 and τ = m = 0, the

10For the estimates with κ = 40, we use an approximation to the 40-quarter ex ante real interest rate (as in

Fuhrer and Moore, 1995); namely, with D = 40: rt = D
1+DEtrt+1 + 1

1+D (it − Etπt+1).
11 In particular, some of the high µ estimates for the HP-filtered output gap appear many standard deviations

from 0, and yet the likelihood ratio test is not able to reject µ = 0. This may indicate that the standard errors

for µ, which assume a quadratic approximation to the likelihood surface, are not completely reliable for this case.

Alternatively, it may indicate mis-specification of the basic model.
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estimate of µ is 0.43 and significantly different from zero, but the hypothesis that β = 0 cannot

be rejected. Of course, when the interest rate channel is removed from this simple model, its

macroeconomic content for monetary policy is eviscerated. Even in cases with a large and

significant µ estimate and in which the hypothesis of β = 0 can be rejected, the size of β̂ is

so low as to raise questions about its economic significance. Specifically, a relatively small β̂

implies that the monetary “transmission” channel is very weak and that monetary policy would

have difficulty in controlling the economy.

The expectation viewpoint date assumption has no material effect on the estimates of µ or

β. Table 1 provides results for τ = 1 for the HP output gap definition, but omits the remaining

results for compactness.

Overall, the ML results suggest that the appropriate estimate of the forward-looking com-

ponent in this simple aggregate demand specification is quite small, and in many cases is not

significantly different from zero. Because the linchpin of the specification for monetary policy is

the economic significance of the real interest rate, the results also tend to favor a specification

in which the real rate appears with a lag (whether we use a one-period or a multi-period real

rate). In these cases, the dominant estimate of the forward-looking parameter is zero.

The GMM estimates in Table 2 provide an interesting contrast to the ML estimates. The

model specification is identical, although rather than explicitly denoting the value of τ , it is

implicit in the dating of the instrument set in column 2. For the τ = 0 case, we use the exogenous

instruments with lags of 0 to 4 quarters, and for the τ = 1 case, we use instruments with lags of

1 to 4 quarters. We also report the p-values for the J-statistic, which, with only two exceptions,

are never significant at conventional levels. Thus the instruments we have chosen, both lagged

“endogenous” variables and purportedly “exogenous” variables, generally appear valid. That is,

one cannot reject the orthogonality of the instruments with respect to the error term ηt.
12 The

GMM results are remarkably consistent across instrument sets, real rate definitions, the timing

of the real rate, and output gap proxies, so we do not present all permutations in Table 2.

As in the ML estimates, the coefficients on the lagged output terms (α1 and α2) are highly

significant in economic and statistical terms across all specifications. Although the sum of the

GMM estimates of α1 and α2, which is generally in the 0.45 to 0.55 range, is always lower

than for the ML estimates, lagged output remains essential in the specification. Conversely,

12Therefore, the instruments satisfy one of two necessary instrument conditions: orthogonality. As for the other

condition, we present results on instrument “relevance” below.
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the GMM estimates of µ are uniformly larger than the ML estimates, with the median GMM

estimate equal to 0.56. As expected, the less efficient GMM estimator finds uniformly larger

standard errors for both µ and β than the ML estimator.

Still, just as in Table 1, the high estimates of µ are accompanied by very low estimates of β.

In fact, the real interest rate coefficient estimates are not only economically minute but often of

the wrong sign. All in all, the GMM estimates are not encouraging for this simple specification.

While the GMM estimates center on a considerably larger forward-looking component than the

ML estimates, the associated GMM real rate coefficients are not significantly different from zero.

The absence of any significant real rate effect casts serious doubt on whether the GMM estimator

is able to identify an “optimizing IS” or “aggregate demand” or “output Euler” equation.

In the following section, we examine the finite-sample properties of the GMM and ML

estimators using a simple Monte Carlo simulation exercise in order to reconcile Tables 1 and 2.

4. Investigating ML and GMM Estimators

In our empirical results, the GMM estimates of µ lie almost uniformly above the ML estimates.

There are two ways in which these estimates could be reconciled. First, one (or both) of the

estimators may be asymptotically inconsistent, which might cause divergent empirical results

even in small samples. Second, although consistent, one (or both) of the estimators may display

small sample biases that push the GMM estimates of µ above the ML ones.

One potential concern with the consistency of the ML estimates is that they rely on an

underlying assumption of the normality of the structural shocks. However, in many applications,

notably in finance, the distribution of conditional errors may exhibit fat tails or other departures

from normality. Thus, we considered a battery of normality tests for the maximum likelihood

residuals. Table 3 shows the results for a representative specification (namely, using the CBO

estimate of potential output with τ = m = 0 and κ = 1). Using the Lilliefors, Cramer-von

Mises, Watson, and Anderson-Darling tests, we fail to reject normality of the Euler equation

and inflation (VAR) equation residuals at conventional significance levels. The reduced-form

error for the funds rate (VAR) equation rejects, but sub-sample estimates reveal that this is due

solely to the period 1979-1982, during which the Federal Reserve switched to a nonborrowed

reserves operating procedure, allowing the federal funds rate to fluctuate dramatically. Before

and after this period, we cannot reject normality. Thus we feel reasonably confident that the
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normality assumption required for our ML estimator is plausible.

Of course, there may be other, more basic misspecifications in our model that could affect

the ML and GMM estimates in different ways and account for the different estimates of degree

of forward-lookingness. Indeed, Jondeau and Le Bihan (2003) argue that certain kinds of model

misspecification such as omitted dynamics could cause the ML estimator to overstate µ and

the GMM estimator to understate µ—even asymptotically (see Hall and Inoue 2003). However,

the direction and size of such biases depend on the exact nature of the model misspecification

hypothesized. Instead, in what follows, we focus on the small-sample behavior of the ML and

GMM estimators under the assumption that the model is correctly specified. We do this in large

part because the potential for small-sample bias in the GMM estimator has been documented in

many contexts (see, for example, Fuhrer, Moore, and Schuh 1995, West and Wilcox 1994, and

Stock, Wright, and Yogo 2002).

4.1. Baseline Monte Carlo results

In order to examine the finite-sample properties of both estimators, we design a simple Monte

Carlo experiment. We assume that a simplified version of equation 2 defines yt, given definitions

for it and πt:

yt = (1− µ)yt−1 + µEtyt+1 − β(it −Etπt+1) + εt. (4)

This equation is augmented by VAR equations for the nominal interest rate and inflation,

which use parameters and an error covariance matrix estimated from the data. We set β to 0.5

throughout, and examine estimates of both β and µ when µ takes the true values [0.1, 0.5, 0.9].

We use this data-generating process to compute 5000 replications of simulated data for var-

ious sample sizes, with shocks drawn from a multivariate normal distribution with a covariance

matrix as estimated from U.S. data, 1966-2000.13 We then estimate the equation above using

GMM, with three lags of y, i, and π as instruments. These comprise the complete set of valid

instruments (given the true model structure), and given the imposed iid structure of the error

terms, they should be exogenous.14 We then estimate the same model using ML, with the same

13The process is essentially the reverse of the ML estimation procedure outlined above. Given a sequence of

shocks and initial conditions for y, i, and π, we can generate sequences of realizations for these three variables

that are consistent with the shocks, the structure of the model, and the rational expectations assumption. Details

are provided in the appendix.
14This instrument set comprises the set of valid instruments in that, under the assumed data-generating process,
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VAR equations closing the model. The estimation methods for GMM and ML are as described

in the appendix.

Table 4 summarizes the results of the exercise. The top panel reports summary statistics

for estimates of µ. The true value, µT , is shown in the third column, followed by the mean of

the estimates, the median, and the cumulative density evaluated at the true value, F (µT ). As

a benchmark case, the distribution for a median unbiased estimator would (by definition) have

half its mass on either side of the true estimate, or F (µT ) = 0.5.

A few key results emerge in panel A. First, the ML estimates are always centered on the true

parameter value even with a sample size of only 125 observations. Second, the GMM estimates

exhibit a distinct finite-sample bias. At a sample size of 125, GMM overstates the true value

by about 0.2 when the true value is 0.1, and understates the true value by about 0.15 when the

true value is 0.9. That is, the GMM estimator biases the estimate towards 0.5 from either side

of 0.5.15 The bias is smaller for large samples; however, the median GMM parameter estimate

becomes as accurate as ML only when the sample size increases to 5000. Not surprisingly, the

median standard error for the GMM estimates of µ, shown in the final column of Table 4, is two

to three times larger than that for the ML estimates.

Panel B in Table 4 displays the corresponding estimates of β, the interest rate elasticity. In

all cases, the true value of β is 0.5. GMM generally provides a downwardly biased estimate of

β when the true value of µ is small. For example, for a sample of 125 and µ = 0.1, GMM biases

the estimate of β downward by about 0.2. The bias is small to nonexistent for larger values of µ,

and it disappears fairly rapidly as sample size is increased. Even for the sample size of 125, the

ML estimator provides accurate estimates of β regardless of the value of µ. Again, the standard

errors from the GMM estimator are roughly twice as large as the standard errors from the ML

estimator.

Overall, these results suggest that one should place considerably greater faith in the estimates

from the ML estimator, which appears to behave quite reliably in the relevant sample size and

every realization of the endogenous variables may be expressed as a specific linear combination of these lags of

the endogenous variables.
15A more general conclusion might be that GMM biases the estimate towards OLS. Because the output gap is

quite autocorrelated for all measures studied here, OLS might be expected to place roughly equal weight on last

quarter’s and next quarter’s output gap. Of course, in the case of highly correlated regressors, one might expect

the standard errors to be considerably larger as well, but this implication is not evident in our exercises.
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across a range of values of µ. The ML estimator exhibits no bias in the estimation of either

of the two critical parameters in the specification, whereas the GMM estimator provides biased

estimates of both.

4.2. Why Does GMM Fail?

It is of some interest to determine the source of the GMM estimator’s poor finite-sample perfor-

mance. The leading candidate for explaining the differences between GMM and ML estimators

is instrument relevance or “weak” instruments (see Nelson and Startz 1990a,b; Hall, Rudebusch

and Wilcox 1996; Fuhrer, Moore and Schuh 1995; Shea 1997; Staiger and Stock 1997; Stock,

Wright and Yogo 2002; Mavroeidis 2003; and Stock and Yogo 2003). A sizable literature has

documented the finite-sample problems that can arise if instruments do not explain sufficient

variation in the instrumented variables in the first-stage regressions. Less well known are possi-

ble problems that arise in dynamic models when the rational expectations restrictions that are

implied by the model are not imposed in constructing instruments. Our ML estimator imposes

these restrictions, and as we will show in the next sub-section, using the optimal instruments

implicitly computed by ML appears to solve the problem of weak instruments that arises with

the conventional GMM estimator.

Table 5 presents instrument relevance tests for a subset of the various model specifications

that we have considered. (Similar results were obtained for the other cases.) The first two

columns of results present simple F -statistics from first-stage regressions for expected output

and the real interest rate (denoted F -stat(y) and F -stat(ρ)), using the instrument sets indicated.

This simple test provides no evidence of weak instruments in these datasets. The F -statistics

are quite large—with a median value of about 36. In contrast, Staiger and Stock (1997) suggest

declaring instruments to be weak if the first-stage F -statistic is less than ten. This suggests that

the instruments capture a significant portion of the variation in the key endogenous variables.

However, strictly speaking, Staiger and Stock’s suggestion only applied to the case of a single

endogenous regressor because, as noted by Shea (1997) and Stock and Yogo (2003), the first-stage

F -statistic considers the explanatory power for each endogenous regressor in isolation from the

others. For valid inference in our model, we require a strong set of instruments for both expected

output and the real interest rate simultaneously, but the usual first-stage F -statistic does not

provide information on this joint condition.
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To incorporate information on this joint condition, the third and fourth columns of results in

Table 5 present the R2 statistics for regressions of the orthogonalized regressors on orthogonal-

ized instruments, the so-called “partial R2” recommended by Shea (1997). The R2(y) column

indicates the explanatory power of the instrument set for the output gap once the instruments

are orthogonalized relative to their contribution to explaining the real interest rate. Similarly,

the R2(ρ) column indicates the “partial” fit for the real interest rate. These statistics suggest

little or no evidence of an instrument relevance problem, as the median partial R2 value is 0.56.

Unfortunately, the partial R2 statistic, although intuitive, is relatively ad hoc and not well

grounded for formal statistical inference. Stock and Yogo (2003) develop a more rigorous alter-

native. They compute critical values for a test based on Donald and Cragg’s (1993) multivari-

ate version of the F -statistic. For tractability, they consider a very conservative test, namely,

whether the “poorest” or worst-behaved linear combination of the instruments provides sufficient

information about the included endogenous variables in the IV regression. The test reported in

the final column of Table 5 is the minimum eigenvalue of the generalized F -test, which Stock

and Yogo denote GT , where

GT = bΣ−1/20
V V Y ⊥0PZ⊥Y

⊥bΣ−1/2
V V /K2 (5)

and bΣV V = Y 0MZY/(T −K1 −K2) (6)

and Y is the Txn matrix of included endogenous variables, Z is the Tx(K1 + K2) matrix of

included and excluded exogenous variables
·
X
...Z

¸
, the ⊥ denotes orthogonalization with respect

to X, the TxK1 matrix of included exogenous variables, and the Pi and Mi matrices denote

projection and orthogonalization, respectively, with respect to variable i.

The Stock-Yogo test results in Table 5 provide an interesting contrast to the earlier results,

although it is worth noting that the selection of critical values is not straightforward. To assess

the null hypothesis that the instruments are weak, Stock and Yogo (2003) provide asymptotic

critical values that depend on n andK2 and on the maximum acceptable bias of the IV estimator

relative to OLS. If one is willing to accept a bias as high as 20 percent, then the appropriate

critical value is 6.2, and all but two of the cases in Table 5 would fail to reject the hypothesis

of weak instruments. If a bias of 10 percent is acceptable, then the critical value is 12.8, and in

only one case can we reject weak instruments.

13



The battery of tests that we employ provides mixed evidence on the strength of the instru-

ment set for this problem. Still, we suspect that the univariate F -statistics are unduly optimistic,

as they do not take into account the requirement that the instrument set simultaneously explain

both included endogenous variables. The partial R2 statistics should provide a better indication

of the relevance of the instrument set, and seem to provide evidence that the instruments are

adequate. However, no distribution theory is available for these statistics, so it is difficult to

know whether a partial R2 of 0.5 is large enough to avoid small-sample relevance problems. The

Stock-Yogo statistic addresses the problems of multiple included endogenous variables and dis-

tribution theory, but is likely a conservative test, as Stock and Yogo point out. Overall, we view

the set of results as unable to reject the hypothesis of weak instruments, although the evidence

is hardly compelling. In the next sub-section, we will employ ML-based techniques to develop

instruments that we know a priori to be strong, in order to more conclusively determine if weak

instruments account for the inability of GMM to center on the true parameter values in finite

samples.

4.3. Where to Find Strong Instruments

Recall that one may express a maximum likelihood estimator as an equivalent instrumental

variables estimator, for the appropriate choice of instruments. Here, our maximum likelihood

estimator is implicitly using “optimal” instruments for expected output and the real interest

rate. That is, the solution technique that is imbedded in the likelihood estimator computes

the solutions for expected output and the real rate that are consistent with the posited model

structure (and auxiliary VAR equations for inflation and the funds rate). One may write the

optimal instruments in this case as

Zo
t = BY t−1. (7)

where B is the matrix of reduced-form solution coefficients that constitute the unique, stable

solution to the rational expectations model and Y t−1 is the matrix of lags of all the variables in

the model cast in first-order form (see Anderson andMoore, 1985, and the appendix).16 GMM, in

contrast, simply forms linear projections of these variables on the instrument set. As the results

in Table 5 suggest, the potential instrument projections available in this specification, given

16We include auxiliary equations in the model that define Etyt+1 and it − Etπt+1, and then select the corre-

sponding rows of BY t−1to form the optimal instruments for these variables.
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the inclusion of the lagged output gap among the regressors, makes the remaining instruments

too weak to produce unbiased estimates of both µ and β. In imposing the full set of dynamic

constraints that are consistent with the rational expectations solution to the model, our ML

estimator evidently provides sufficiently strong instruments to properly center the distribution

of estimates on the true values.

As confirmation of this hypothesis, the final three rows in each panel of Table 4 present the

results from another Monte Carlo exercise. In this exercise, the true model is as described in the

Monte Carlo exercises above. In each case, we use the solution for the model to form “optimal”

instruments in the sense defined above, and compute instrumental variable estimates using these

optimal instruments. As the results indicate, the bias that was present using the conventional

GMM methodology disappears completely. The distribution of estimates is properly centered

on the true value, even for sample size 125 (approximately the size of the data sample that we

employ above). Note that the efficiency of the estimates remains low relative to ML, as expected.

But here, one can improve the distribution of estimates in the Monte Carlo exercise by imposing

the uniqueness and stability constraints required for a rational expectations solution. Once this

is done, the dispersion of GMM estimates is almost ten times smaller than the distribution that

does not impose these constraints.

Thus, at least for these data sets and this model, GMM fails because it provides weak

instruments for the included endogenous variables yt and it −Etπt+1. This does not mean that

it is impossible to develop unbiased estimates for the parameters of interest, as the ML results

suggest throughout. Simple instrumental variables estimates that use the instruments from ML,

which embody the rational expectations constraints implied by the model, properly center on

the true value in finite samples of the size in our study.

5. Conclusion

The output Euler equation has become the mainstay of much macroeconomic research, and

especially of monetary policy research, over the past five years. The degree to which agents

appear to look forward in this specification is important because it has an important influence

on the dynamic responses of output to changes in the economic environment. In particular, the

speed and contour of the response to monetary policy actions can differ substantially depending

on the assumed degree of forward-looking behavior. Of course, such differences can, in principle,
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allow a researcher to distinguish between more and less forward-looking variants of the model.

This paper attempts to make just such a distinction. Overall, the findings of this paper

support a relatively modest weight on expected output, and a sizable and empirically robust

weight on lagged output. A corresponding conclusion finds that specifications with larger weight

on lagged output develop more significant estimates of the real rate effect.

These conclusions depend heavily on the estimates obtained from maximum likelihood. We

focus on these estimates because another key finding in this paper is that GMM estimates of

the degree of forward-looking behavior in this specification are biased in finite samples for this

specification. We explore the source of this bias, and find that it appears to lie in the inability

of GMM to provide sufficiently strong instruments. We show further that maximum likelihood,

by explicitly imposing all of the constraints implied by the model with rational expectations,

implicitly provides instruments that are sufficiently strong to properly center the parameter

distributions on the true values.

An alternative conclusion is that the popular but highly stylized New Keynesian specifica-

tion for aggregate output is simply so misspecified that it is difficult to draw any conclusions

about macro dynamics (see Mavroeidis 2003). In that regard, we wish to re-emphasize that our

conclusions about the extent of forward- and backward-looking behavior are restricted to the

simple but widely-used specification explored here.
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A. Appendix on Methodology

A.1. Maximum Likelihood Estimation

This procedure maximizes the concentrated log-likelihood function for equation (2), coupled

with reduced-form VAR equations for the federal funds rate and inflation (also see Estrella and

Fuhrer, 2003). The model that comprises equation (2) and the auxiliary VAR equations falls in

the class of linear rational expectations models that may be represented in the format

0X
i=−τ

Hixt+i +
θX

i=1

HiEt(xt+i) = �t , (A.1)

where τ and θ are positive integers, xt is a vector of variables, and the Hi are conformable

n-square coefficient matrices, where n is the number of endogenous variables in the model. The

coefficient matrices Hi are completely determined by a set of underlying structural parame-

ters Θ. The expectation operator Et(·) denotes mathematical expectation conditioned on the
process history through period t. The random shock �t is independently and identically distrib-

uted N(0,Ω). Note that the covariance matrix Ω is singular whenever equation (A.1) includes

identities. We use the AIM procedure of Anderson and Moore (1985) to solve out for expecta-

tions of the future in terms of expectations of the present and the past. These expectations are

then substituted into equation (A.1) to derive a representation of the model that we call the

observable structure,
0X

i=−τ
Sixt+i = �t . (A.2)

Having obtained the observable structure, it is relatively straightforward to compute the

value of the likelihood function given the data and parameter values. The likelihood is defined

as

L = T (log |J |− .5 log |Ω̂|), (A.3)

where T is the sample size, J is the Jacobian of transformation (which is time-invariant by

assumption), and Ω is the variance-covariance matrix of the structural residuals �t. Details on

the computation of the Jacobian may be found in Estrella and Fuhrer (2003). The residuals

for each time period t = 1, . . . , T are computed, and the residual covariance matrix is then

computed as

Ω = (1/T )��0. (A.4)
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Maximum likelihood estimation consists of finding the parameter values Θ, implicit in the

coefficient matrices Hi of equation (A.1), that maximize equation (A.3).

A.2. GMM Estimation

Equation (2) is linear in variables and parameters, and hence (the two-step) GMM estimation

is straightforward. Let Zt be a T × q matrix of eligible instrumental variables, with each of the

q instruments assumed orthogonal to ηt. Define Y to be the T × 1 vector containing the time
series values of the output gap y, and X to be the T ×4 matrix containing the time series values
for [yt−1, yt−2, yt+1, rt], where rt refers to any of the alternative definitions of the real interest

rate, the benchmark being it−πt+1. Defining the parameter vector γ = [α1, α2, µ, β], the GMM

estimator is bγn = (X 0
nZcWTZ

0Xn)
−1 X 0

nZcWTZ
0Yn, (A.5)

where cWT is a q×q consistent estimator of [
P∞

j=−∞E(ZtZ
0
t−jηtη

0
t−j)]

−1. We use the Newey-West

estimate of cWT with a lag length of 4.

A.3. Generating Monte Carlo Data

The model used to generate data for the Monte Carlo exercises comprises the simplified IS

equation (4), along with the estimated reduced-form VAR equations for inflation and the federal

funds rate that are used in the maximum likelihood estimation described in section 3.1. These

equations constitute a linear dynamic rational expectations model that can be cast in the form

of equation (A.1). We solve for the expectations as described above and solve for the model’s

observable structure as in equation (A.2). We assume that the structural shocks in equation

(A.2) are normally distributed with mean zero and covariance matrix as estimated on the U.S.

data in section 3.2. For each replication of data in the Monte Carlo, we draw a set of joint normal

iid shocks from this distribution for the three equations. The first τ (lagged) observations for

the output gap, inflation rate, and funds rate are initialized at their steady-state values, the

shocks are fed into equation (A.2), and the model is dynamically simulated. We discard the first

fifty observations from each replication to minimize the effect of initial conditions.
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Table 1
ML Estimates of Output Euler Equation

yt = α0 + α1yt−1 + α2yt−2 + µEt−τyt+1 − βEt−τ [ 1κΣ
κ−1
j=0 (it+j+m − πt+j+m+1)] + ηt

Model specification Coefficient estimates and standard errors LR test p-value
Trend τ κ m α1 + α2 µ SE(µ) β SE(β) µ = 0 β = 0

HP 0 1 0 0.53 0.44 0.04 0.002 0.004 0.67 0.62
HP 0 4 0 0.73 0.01 0.05 0.016 0.027 0.62 0.98
HP 0 40 0 0.74 0.00 0.05 0.038 0.090 0.98 0.59
HP 1 1 0 0.53 0.44 0.04 0.002 0.004 0.67 0.62
HP 1 4 0 0.61 0.27 0.04 0.008 0.013 0.63 0.91
HP 1 40 0 0.74 0.00 0.05 0.038 0.090 0.91 0.58
HP 0 1 -1 0.75 0.00 0.05 0.024 0.023 1.00 0.37
HP 0 4 -1 0.74 0.00 0.05 0.019 0.026 0.37 1.00
HP 0 40 -1 0.75 0.00 0.05 0.081 0.084 1.00 0.51

BP 0 1 0 0.63 0.37 0.00 0.001 0.001 0.03 0.01
BP 0 4 0 0.63 0.37 0.00 0.001 0.001 0.01 0.06
BP 0 40 0 0.63 0.37 0.01 0.005 0.002 0.06 0.01
BP 0 1 -1 0.91 0.00 0.03 0.013 0.006 1.00 0.08
BP 0 4 -1 0.64 0.36 0.01 0.001 0.000 0.08 0.10
BP 0 40 -1 0.89 0.00 0.03 0.097 0.030 0.10 0.01

Seg. 0 1 0 0.56 0.44 0.02 0.007 0.005 0.08 0.00
Seg. 0 4 0 0.57 0.43 0.03 0.010 0.006 0.00 0.20
Seg. 0 40 0 0.63 0.38 0.03 0.140 0.054 0.20 0.00
Seg. 0 1 -1 0.94 0.00 0.04 0.108 0.027 1.00 0.00
Seg. 0 4 -1 0.94 0.00 0.04 0.114 0.029 1.00 0.00
Seg. 0 40 -1 0.99 0.00 0.04 0.690 0.230 1.00 0.00

Quad. 0 1 0 0.55 0.45 0.02 0.005 0.003 0.00 0.00
Quad. 0 4 0 0.55 0.45 0.02 0.006 0.004 0.00 0.01
Quad. 0 40 0 0.58 0.41 0.03 0.071 0.031 0.01 0.00
Quad. 0 1 -1 0.92 0.00 0.04 0.101 0.027 1.00 0.00
Quad. 0 4 -1 0.55 0.45 0.02 0.005 0.003 0.00 0.01
Quad. 0 40 -1 0.91 0.00 0.04 0.554 0.133 1.00 0.00

CBO 0 1 0 0.54 0.46 0.01 0.005 0.002 0.00 0.00
CBO 0 4 0 0.54 0.46 0.02 0.006 0.003 0.00 0.00
CBO 0 40 0 0.56 0.44 0.03 0.050 0.030 0.00 0.00
CBO 0 1 -1 0.91 0.00 0.04 0.091 0.025 1.00 0.00
CBO 0 4 -1 0.54 0.46 0.02 0.005 0.002 0.00 0.00
CBO 0 40 -1 0.89 0.00 0.04 0.590 0.146 1.00 0.00

Note: The model specification columns provide the output trend procedure, the timing of
expectations, and the timing and duration of the real rate. The hypothesis test columns
report likelihood-ratio p-values for the given null hypothesis.
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Table 2
GMM Estimates of Output Euler Equation

yt = α0 + α1yt−1 + α2yt−2 + µEt−τyt+1 − βEt−τ [ 1κΣ
κ−1
j=0 (it+j+m − πt+j+m+1)] + ηt

Model specification Coefficient estimates and standard errors J-test
Trend Instruments κ m α1 + α2 µ SE(µ) β SE(β) p-value

HP y, i, π (1 - 4) 1 0 0.45 0.65 0.15 -0.003 0.025 0.66
HP y, i, π (1 - 4) 4 0 0.45 0.65 0.15 -0.006 0.024 0.68
HP y, i, π (1 - 4) 1 -1 0.44 0.67 0.15 -0.006 0.018 0.67
HP y, i, π (1 - 4) 4 -1 0.44 0.66 0.15 -0.005 0.025 0.67
HP exog. (1 - 4) 1 0 0.49 0.56 0.08 -0.017 0.024 0.45
HP exog. (1 - 4) 4 0 0.46 0.63 0.10 -0.018 0.027 0.37
HP exog. (1 - 4) 1 -1 0.49 0.57 0.08 -0.023 0.023 0.51
HP exog. (1 - 4) 4 -1 0.48 0.58 0.09 -0.019 0.025 0.46
HP exog. (0 - 4) 1 0 0.45 0.60 0.09 0.022 0.025 0.27
HP exog. (0 - 4) 4 0 0.46 0.61 0.10 0.010 0.027 0.25
HP exog. (0 - 4) 1 -1 0.45 0.62 0.09 0.018 0.023 0.26
HP exog. (0 - 4) 4 -1 0.47 0.58 0.09 0.016 0.025 0.25

BP y, i, π (1 - 4) 1 0 0.56 0.46 0.02 0.001 0.003 0.01
BP y, i, π (1 - 4) 4 0 0.55 0.47 0.02 0.000 0.003 0.01
BP exog. (1 - 4) 1 0 0.64 0.36 0.03 0.008 0.004 0.78
BP exog. (1 - 4) 4 0 0.64 0.36 0.04 0.007 0.004 0.77

Seg. y, i, π (1 - 4) 1 0 0.52 0.50 0.05 0.010 0.013 0.40
Seg. y, i, π (1 - 4) 4 0 0.53 0.48 0.05 0.008 0.016 0.48
Seg. exog. (0 - 4) 1 0 0.51 0.52 0.05 0.008 0.018 0.34
Seg. exog. (0 - 4) 4 0 0.48 0.55 0.05 0.014 0.018 0.28

Quad. y, i, π (1 - 4) 1 0 0.51 0.51 0.06 0.016 0.016 0.35
Quad. y, i, π (1 - 4) 4 0 0.53 0.49 0.05 0.013 0.020 0.43
Quad. exog. (0 - 4) 1 0 0.48 0.55 0.07 0.016 0.020 0.34
Quad. exog. (0 - 4) 4 0 0.44 0.59 0.07 0.024 0.020 0.32

CBO y, i, π (1 - 4) 1 0 0.51 0.51 0.06 0.013 0.014 0.38
CBO y, i, π (1 - 4) 4 0 0.52 0.49 0.05 0.010 0.017 0.46
CBO exog. (0 - 4) 1 0 0.49 0.54 0.06 0.013 0.019 0.36
CBO exog. (0 - 4) 4 0 0.46 0.58 0.06 0.019 0.019 0.31

Note: The model specification columns provide the output trend procedure, the timing
and duration of the real rate, and the instrument set–both the variables used and, in
parentheses, the number of lags.
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Table 3
Tests for Normality of Estimated Maximum Likelihood Residuals

(CBO output gap, baseline specification, real rate = it −Etπt+1)

Test p-value

Output Gap, 1966:Q1-2000:Q4
Lilliefors (D) > 0.1

Cramer-von Mises (W2) 0.2909
Watson (U2) 0.2827

Anderson-Darling (A2) 0.2073

Inflation, 1966:Q1-2000:Q4
Lilliefors (D) > 0.1

Cramer-von Mises (W2) 0.3800
Watson (U2) 0.3407

Anderson-Darling (A2) 0.3210

Funds rate, 1966:Q1-1979:Q3
Lilliefors (D) > 0.1

Cramer-von Mises (W2) 0.2894
Watson (U2) 0.2572

Anderson-Darling (A2) 0.1436

Funds rate, 1983:Q1-2000:Q4
Lilliefors (D) > 0.1

Cramer-von Mises (W2) 0.1888
Watson (U2) 0.2315

Anderson-Darling (A2) 0.1435
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Table 4
Properties of ML and GMM estimators

Panel A. Estimates of expectational parameter µ
Estimation Method Sample size µT Mean(bµ) Median(bµ) F(µT ) Median SE(bµ)

GMM 125 0.1 0.29 0.30 0.12 0.160
GMM 500 0.1 0.17 0.17 0.26 0.110
GMM 1000 0.1 0.14 0.14 0.31 0.080
GMM 5000 0.1 0.11 0.11 0.43 0.038
GMM 125 0.5 0.48 0.48 0.57 0.120
GMM 125 0.9 0.76 0.76 0.80 0.180
ML 125 0.1 0.13 0.11 0.48 0.089
ML 125 0.5 0.50 0.50 0.47 0.054
ML 125 0.9 0.90 0.90 0.48 0.050

Optimal Inst. GMM 125 0.1 0.07 0.12 0.47 0.250
Optimal Inst. GMM 125 0.5 0.51 0.50 0.48 0.140
Optimal Inst. GMM 125 0.9 0.91 0.89 0.51 0.220

Panel B. Estimates of interest rate sensitivity β

Estimation Method Sample size µT Mean(bβ) Median(bβ) F(βT ) Median SE(bβ)
GMM 125 0.1 0.30 0.3 0.84 0.180
GMM 125 0.5 0.49 0.49 0.52 0.180
GMM 125 0.9 0.50 0.48 0.55 0.200
GMM 500 0.1 0.44 0.43 0.73 0.120
GMM 1000 0.1 0.47 0.46 0.67 0.091
GMM 5000 0.1 0.50 0.49 0.57 0.043
ML 125 0.1 0.47 0.47 0.50 0.110
ML 125 0.5 0.52 0.51 0.46 0.098
ML 125 0.9 0.51 0.51 0.47 0.068

Optimal Inst. GMM 125 0.5 0.55 0.50 0.50 0.280
Optimal Inst. GMM 125 0.5 0.51 0.51 0.47 0.210
Optimal Inst. GMM 125 0.5 0.54 0.52 0.46 0.240

Note: The true data generating process has a µ = µT , which is displayed in the third
column, and a β = βT = 0.5 in all cases. F(xT ) is the empirical cdf of the x̂ estimates
evaluated at xT .
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Table 5
Instrument Relevance Tests

Model Specification First-stage F -statistics Partial R2 Stock-Yogo
Trend Instruments F -stat(y) F -stat(ρ) R2(y) R2(ρ) min(eig(GT ))

HP y, i, π (1 - 4) 7.0 36.8 0.10 0.88 1.4
HP exog. (1 - 4) 5.0 8.0 0.19 0.79 1.6

BP y, i, π (1 - 4) 140.7 31.6 0.55 0.88 15.0
BP exog. (1 - 4) 83.2 7.8 0.57 0.80 8.3

Seg. y, i, π (1 - 4) 100.0 37.2 0.26 0.78 1.9
Seg. exog. (1 - 4) 56.1 14.9 0.28 0.82 1.7

Quad. y, i, π (1 - 4) 77.4 34.6 0.29 0.79 2.7
Quad. exog. (1 - 4) 46.0 9.1 0.34 0.78 2.2

CBO y, i, π (1 - 4) 66.0 34.0 0.27 0.70 3.2
CBO exog. (1 - 4) 40.2 8.0 0.34 0.70 2.4

Note: The model specification columns provide the definition of the output trend and the
instrument set. Instruments are either a set of endogenous or exogenous variables with the
number of lags included in parentheses.
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