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1.  Introduction

Macroeconomists, financial economists, and market participants all have attempted to build good

models of the yield curve, yet the resulting models are very different in form and fit.  In part, these

differences reflect the particular modeling demands of various researchers and their different motives for

modeling the yield curve (e.g., interest rate forecasting or simulation, bond or option pricing, or market

surveillance).  Still, an unusually large gap is apparent between the yield curve models developed by

macroeconomists, which focus on the role of expectations of inflation and future real economic activity in

the determination of yields, and the models employed by financial economists, which eschew any explicit

role for such determinants.  This paper takes a step toward bridging this gap by formulating and

estimating a yield curve model that integrates macroeconomic and financial factors.

Many other recent papers have also modeled the yield curve, and they can be usefully categorized

by the extent and nature of the linkages permitted between financial and macroeconomic variables.  Many

yield curve models simply ignore macroeconomic linkages.  Foremost among these are the popular factor

models that dominate the finance literature – especially those that impose a no-arbitrage restriction.  For

example, Knez, Litterman, and Scheinkman (1994), Duffie and Kan (1996), and Dai and Singleton (2000)

all consider models in which a handful of unobserved factors explain the entire set of yields.  These

factors are often given labels such as “level,” “slope,” and “curvature,” but they are not linked explicitly

to macroeconomic variables.

Our analysis also uses a latent factor model of the yield curve, but we also explicitly incorporate

macroeconomic factors.  In this regard, our work is more closely related to Ang and Piazzesi (2003),

Hördahl, Tristani, and Vestin (2002), and Wu (2002), who explicitly incorporate macro determinants into

multi-factor yield curve models.  However, those papers only consider a unidirectional macro linkage,

because output and inflation are assumed to be determined independently of the shape of the yield curve,

but not vice versa.  This same assumption is made in the vector autoregression (VAR) analysis of Evans

and Marshall (1998, 2001) where neither contemporaneous nor lagged bond yields enter the equations

driving the economy.  In contrast to this assumption of a one-way macro-to-yields link, the opposite view

is taken in another large literature typified by Estrella and Hardouvelis (1991) and Estrella and Mishkin

(1998), which assumes a yields-to-macro link and focuses only on the unidirectional predictive power of

the yield curve for the economy.  The two assumptions of these literatures – one-way yields-to-macro or

macro-to-yields links – are testable hypotheses that are special cases of our model and are examined

below.  Indeed, we are particularly interested in analyzing the potential bidirectional feedback from the

yield curve to the economy and back again.  Some of the work closest to our own allows a feedback from

an implicit inflation target derived from the yield curve to help determine the dynamics of the

macroeconomy, such as Kozicki and Tinsley (2001), Dewachter and Lyrio (2002), and Rudebusch and
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Wu (2003).  In our analysis, we allow for a more complete set of interactions in a general dynamic, latent

factor framework.

Our basic framework for the yield curve is a latent factor model, although not the usual no-

arbitrage factor representation typically used in the finance literature.  Such no-arbitrage factor models

often appear to fit the cross-section of yields at a particular point in time, but they do less well in

describing the dynamics of the yield curve over time (e.g., Duffee, 2002; Brousseau, 2002).  Such a

dynamic fit is crucial to our goal of relating the evolution of the yield curve over time to movements in

macroeconomic variables.  To capture yield curve dynamics, we use a three-factor term structure model

based on the classic contribution of Nelson and Siegel (1987), interpreted as a model of level, slope, and

curvature, as in Diebold and Li (2002).  This model has the substantial flexibility required to match the

changing shape of the yield curve, yet it is parsimonious and easy to estimate.  We do not explicitly

enforce the no-arbitrage restriction.  However, to the extent that it is approximately satisfied in the data –

as is likely for the U.S. Treasury bill and bond obligations that we study – it will also likely be

approximately satisfied in our estimates, as our model is quite flexible and gave a very good fit to the

data.  Of course, there may be a loss of efficiency in not imposing the restriction of no arbitrage if it is

valid, but this must be weighed against the possibility of misspecification if transitory arbitrage

opportunities are not eliminated immediately.

In section 2, we describe and estimate a basic “yields-only” version of our model – that is, a

model of just the yield curve without macroeconomic variables.  To estimate this model, we introduce a

unified state space modeling approach that lets us simultaneously fit the yield curve at each point in time

and estimate the underlying dynamics of the factors.  This one-step approach improves upon the two-step

estimation procedure of Diebold and Li (2002) and provides a unified framework in which to examine the

yield curve and the macroeconomy.

In section 3, we incorporate macroeconomic variables and estimate a “yields-macro” model.  To

complement the nonstructural nature of our yield curve representation, we also use a simple nonstructural

VAR representation of the macroeconomy.  The focus of our examination is the nature of the linkages

between the factors driving the yield curve and macroeconomic fundamentals.

In section 4, we relate our framework to the expectations hypothesis, which has been studied

intensively in macroeconomics.  The expectation hypotheses of the term structure is a special case of our

model that receives only limited support.

We offer concluding remarks in section 5.

2.  A Yield Curve Model Without Macro Factors



1 As described in documentation from the Bank for International Settlements (1999), many
central banks have adopted the Nelson-Siegel yield curve (or some slight variant) for fitting bond yields.

2 Our Nelson-Siegel yield curve (1) corresponds to equation (2) of Nelson Siegel (1987).  Their
notation differs from ours in a potentially confusing way:  they use m for maturity and  for the
constant .

3 More precisely, Diebold and Li show that  corresponds to the negative of slope as
traditionally defined (“long minus short yields”).  For ease of discussion, we prefer simply to call , and
hence , “slope,” so we define slope as “short minus long.”
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In this section, we introduce a factor model of the yield curve without macroeconomic variables,

which is useful for two key reasons.  First, methodologically, such a model proves to be a convenient

vehicle for introducing the state-space framework that we use throughout the paper.  Second, and

substantively, the estimated yields-only model serves as a useful benchmark to which we subsequently

compare our full model that incorporates macroeconomic variables.

2.1 A Factor Model Representation

The factor model approach expresses a potentially large set of yields of various maturities as a

function of just a small set of unobserved factors.  Denote the set of yields as , where J denotes

maturity.  Among practitioners and especially central banks,1 a very popular representation of the cross-

section of yields at any point in time is the Nelson and Siegel (1987) curve:

(1)

where  are parameters.2  Moreover, as shown by Diebold and Li (2002), the Nelson-

Siegel representation can be interpreted in a dynamic fashion as a latent factor model in which , ,

and  are time-varying level, slope, and curvature factors and the terms that multiply these factors are

factor loadings.3  Thus, we write

(2)

where Lt, St, and Ct are the time-varying , , and .  We illustrate this interpretation with our

empirical estimates below.

If the dynamic movements of Lt, St, and Ct follow a vector autoregressive process of first order,



4 As is well-known, ARMA state vector dynamics of any order may be readily accommodated in
state-space form.  We maintain the VAR(1) assumption only for transparency and parsimony.
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then the model immediately forms a state-space system.4  The transition equation, which governs the

dynamics of the state vector, is

 (3)

.  The measurement equation, which relates a set of N yields to the three unobservable

factors, is

(4)

.  In an obvious vector/matrix notation, we write this state-space system as

 

(5)

. (6)

For linear least squares optimality of the Kalman filter, we require that the white noise transition and

measurement disturbances be orthogonal to each other and to the initial state: 

(7)
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(8)

(9)

In much of our analysis, we assume that the H matrix is diagonal and the Q matrix is non-diagonal.  The

assumption of a diagonal H matrix, which implies that the deviations of yields of various maturities from

the yield curve are uncorrelated, is quite standard.  For example, in estimating the no-arbitrage term

structure models, i.i.d. “measurement error” is typically added to the observed yields.  This assumption is

also required for computational tractability given the large number of observed yields used.  The

assumption of an unrestricted Q matrix, which is potentially non-diagonal, allows the shocks to the three

term structure factors to be correlated.

In general, state-space representations provide a powerful framework for analysis and estimation

of dynamic models.  The recognition that the Nelson-Siegel form is easily put in state-space form is

particularly useful because application of the Kalman filter then delivers maximum-likelihood estimates

and optimal filtered and smoothed estimates of the underlying factors.  In addition, the one-step Kalman

filter approach of this paper is preferable to the two-step Diebold-Li approach, because the simultaneous

estimation of all parameters produces correct inference via standard theory.  The two-step procedure, in

contrast, suffers from the fact that the parameter estimation and signal extraction uncertainty associated

with the first step is not acknowledged in the second step.  Finally, the state-space representation paves

the way for possible future extensions, such as allowance for heteroskedasticty, missing data, and heavy-

tailed measurement errors, although we do not pursue those extensions in the present paper.

At this point, it is also perhaps useful to explicitly contrast our approach with others that have

been used in the literature.  A completely general (linear) model of yields would be an unrestricted VAR

estimated for a set of yields.  One potential drawback to such a representation is that the results may

depend on the particular set of yields chosen.  A factor representation, as above, can aggregate

information from a large set of yields.  One straightforward factor model is a VAR estimated with the

principal components formed from a large set of yields.  (See Evans and Marshall 1998, 2001for VAR

term structure analyses.)  Such an approach restricts the factors to be orthogonal to each other but does

not restrict the factor loadings at all.  In contrast, our model allows correlated factors but restricts the

factor loadings through limitations on the set of admissible yield curves.  For example, the Nelson-Siegel

form guarantees positive forward rates at all horizons and a discount factor that approaches zero as

maturity increases.  Such economically-motivated restrictions likely aid in the analysis of yield curve



5 Accumulated experience – as well as formal Bayes/Stein theory – leads naturally to the
celebrated parsimony or shrinkage principle as a strategy for avoiding data mining and in-sample
overfitting.  This is  the broad insight that imposition of sensible restrictions, which must of course
degrade in-sample fit, is often a crucial ingredient for the production of useful models for analysis and
forecasting.

6 For details of Kalman filtering and related issues such as initialization of the filter, see Harvey
(1981) or Durbin and Koopman (2001).
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dynamics.5  Alternative restrictions could also be imposed.  The most popular alternative is the no-

arbitrage restriction, which enforces the consistency of the evolution of the yield curve over time with the

absence of arbitrage opportunities.  However, there is mixed evidence on the extent to which these

restrictions enhance inference.  (Compare, for example, Ang and Piazzesi, 2003 and Duffee, 2002.)

2.2 Yields-Only Model Estimation

We examine U.S. Treasury yields with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72,

84, 96, 108 and 120 months.  The yields are derived from bid/ask average price quotes, from January

1972 through December 2000, using the unsmoothed Fama-Bliss (1987) approach, as described in

Diebold and Li (2002).  They are measured as of the beginning of each month; this timing convention is

immaterial for the yields-only model but will be more important when macro variables are introduced.

As discussed above, the yields-only model forms a state-space system, with a VAR(1) transition

equation summarizing the dynamics of the vector of latent state variables, and a linear measurement

equation relating the observed yields to the state vector.  Several parameters must be estimated.  The

(3x3) transition matrix A contains 9 free parameters, the (3x1) mean state vector  contains 3 free

parameters, and the measurement matrix  contains 1 free parameter, .  Moreover, the transition and

disturbance covariance matrix Q contains 6 free parameters (one disturbance variance for each of the

three latent level, slope and curvature factors and three covariance terms), and the measurement

disturbance covariance matrix H contains seventeen free parameters (one disturbance variance for each of

the seventeen yields).  All told, then, 36 parameters must be estimated by numerical optimization – a

challenging, but not insurmountable, numerical task.

For a given parameter configuration, we use the Kalman filter to compute optimal yield

predictions and the corresponding prediction errors, after which we proceed to evaluate the Gaussian

likelihood function of the yields-only model using the prediction-error decomposition of the likelihood. 

We initialize the Kalman filter using the unconditional mean (zero) and unconditional covariance matrix

of the state vector.6  We maximize the likelihood by iterating the Marquart and Berndt-Hall-Hall-

Hausman algorithms, using numerical derivatives, optimal stepsize, and a convergence criterion of 



7 Recall that we define slope as short minus long, so that a negative mean slope means that yields
tend to increase as maturity lengthens.

8 Not surprisingly, when we estimate the model with the restriction that the Q matrix is diagonal,
the point estimates and standard errors of the elements of the A matrix are little changed from Table 1.  

9 As an additional check of model adequacy, we also tried four-factor and five-factor extended
models, as in Björk and Christensen (1999).  The extensions provided negligible improvement in model
fit.  These results are consistent with Dahlquist and Svensson (1994) who compare the Nelson and Siegel
model with a more complex functional form and also find no improvement to using the latter.
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for the change in the norm of the parameter vector from one iteration to the next.  We impose non-

negativity on all estimated variances by estimating log variances; then we convert to variances by

exponentiating and compute asymptotic standard errors using the delta method.  We obtain startup

parameter values by using the Diebold-Li two-step method to obtain the initial transition equation matrix,

initializing all variances at 1.0, and initializing  at the value given in Diebold and Li (2002).

In the first panel of Table 1 we present estimation results for the yields-only model.  The estimate

of the A matrix indicates highly persistent own dynamics of , , and , with estimated own-lag

coefficients of .99, .94 and .84, respectively.  Cross-factor dynamics appear unimportant, with the

exception of a minor but statistically significant effect of  on .  The estimates also indicate that

persistence decreases (as measured by the diagonal elements of A), and transition shock volatility

increases (as measured by the diagonal elements of Q), as we move from  to  to .  The remaining

estimates appear sensible; the mean level is approximately 8 percent, the mean slope is approximately -

1.5 percent, and the mean curvature is insignificantly different from 0.7  In the second and third panel of

Table 1 we report the estimated Q matrix and two tests of its diagonality.  There is only one individually-

significant covariance term, and the off-diagonal elements of the matrix (tested jointly as a group) are

only marginally significant.8  Finally, the estimated  of .077 implies that the loading on the curvature

factor is maximized at a maturity of 23.3 months.

The yields-only model fits the yield curve remarkably well.  The first two columns of Table 2

contain the estimated means and standard deviations of the measurement equation residuals, expressed in

basis points, for each of the seventeen maturities that we consider.  The mean error is negligible at all

maturities (with the possible exception of 3 months), and in the crucial middle range of maturities from 6

to 60 months, the average standard deviation is just 8.7 basis points.  The average standard deviation

increases at very short and very long maturities but nevertheless remains quite small.9

We use the Kalman smoother to obtain optimal extractions of the latent level, slope and curvature

factors.  In Figure 1, we plot these three estimated factors together for comparative assessment, and in



10 In each case, the latent factor extractions are based on full-sample parameter estimates.

11 More precisely, the correlation between Hodrick-Prescott “cycles” (deviations from trends) in
 and  is 0.55, and the correlation between Hodrick-Prescott “trends” in  and  is -0.07.
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Figures 2, 3, and 4 we plot the respective factors in isolation of each other, but together with various

empirical proxies and potentially related macroeconomic variables.10

The level factor displays very high persistence in Figure 1and is of course positive –  in the

neighborhood of 8 percent.  In contrast, the slope and curvature are less persistent and assume both

positive and negative values.  The unconditional variances of the slope and curvature factors are roughly

equal but are composed differently:  slope has higher persistence and lower shock variance, whereas

curvature has lower persistence and higher shock variance.  Interestingly, slope and curvature appear

related at business cycle frequencies.  The simple correlation is 0.25, but the correlation at business cycle

frequencies is 0.55 and at very low frequencies is -0.07.11

In Figure 2 we show the estimated level and two closely-linked comparison series:  a common

empirical proxy for level (namely, an average of short-, medium- and long-term yields,

), and a measure of inflation (the 12-month percent change in the price deflator

( ) for personal consumption expenditures, namely, ).  The high .80 correlation

between  and  supports our interpretation of  as a level factor.  The

correlation between  and actual inflation, which is .43, is consistent with a link between the level of the

yield curve and inflationary expectations, as suggested by the Fisher equation.  This link is a common

theme in the recent macro-finance literature, including Kozicki and Tinsley (2001), Dewachter and Lyrio

(2002), Hördahl, Tristani, and Vestin (2002), and Rudebusch and Wu (2003).

In Figure 3 we show the estimated slope and two comparison series, to which the slope factor is

closely linked:  a standard empirical slope proxy ( ), and an indicator of macroeconomic

activity (demeaned capacity utilization).  The high .98 correlation between  and  lends

credibility to our interpretation of  as a slope factor.  The correlation between  and capacity

utilization, which is .39, suggests that yield curve slope, like yield curve level, is intimately connected to

the cyclical dynamics of the economy.

Finally, in Figure 4 we show the estimated curvature together with a standard empirical curvature

proxy, , to which  is closely linked with a correlation of .96, which again lends

credibility to our interpretation of  as a curvature factor.  Unfortunately, as shown in our combined

yields-macro model in the next section, we know of no reliable macroeconomic links to .

3.  A Yield Curve Model With Macro Factors



12 The variable INFL is the 12-month percent change in the price deflator for personal
consumption expenditures, and FFR is the monthly average funds rate.

13 See, for example, Rudebusch and Svensson (1999) and Kozicki and Tinsley (2001).

14 7 is now Nx6, but the three rightmost columns contain only zeros, so that the yields still load
only on the yield curve factors.  This form is consistent with the view that only three factors are needed to
distill the information in the yield curve.
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Given the ability of the level, slope, and curvature factors to provide a good representation of the

yield curve, it is of interest to relate them to macroeconomic variables.  This can be done readily in an

expanded version of the above state-space framework.  In the next five subsections, we analyze the

dynamic interactions between the macroeconomy and the yield curve, and we assess their importance.

3.1 The Yields-Macro Model:  Specification and Estimation

We wish to characterize the relationships among  and the macroeconomy.  Our

measures of the economy include three key variables:  manufacturing capacity utilization ( ), the

federal funds rate ( ), and annual price inflation ( ).12  These three variables represent,

respectively, the level of real economic activity relative to potential, the monetary policy instrument, and

the inflation rate, which are widely considered to be the minimum set of fundamentals needed to capture

basic macroeconomic dynamics.13

A straightforward extension of the yields-only model adds the three macroeconomic variables to

the set of state variables and replaces equations (5)-(7) with

( )

( )

, ( )

where  and the dimensions of A,  and Q are increased as

appropriate.14  This system forms our yields-macro model, to which we will compare our earlier yields-



15 We have maintained a first-order VAR structure for simplicity and tractability.  However,
based on some limited exploration of second-order models, it appears that our results are robust to this
assumption as well.

16 As discussed below, we also examined the robustness of our results to alternative identification
strategies. In particular, we obtained similar results for a model with a diagonal Q matrix, which is neutral
with respect to ordering of the variables.  We also obtained similar results using end-of-period yield data
and ordering the variables as , , ,   .   

17 The own-lag coefficient of  rounds to 1.00 but actually is just less than one, and stationarity
is assured since the largest eigenvalue of the A matrix is 0.98.
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only model.15  Our baseline yields-macro model continues to assume a non-diagonal Q matrix and a

diagonal H matrix.  Producing impulse responses from this model requires an identification of the

covariances given by the off-diagonal elements of the Q matrix.  Following common practice, we do this

by assuming a particular recursive causal ordering of the variables; namely, we order the variables  

, , , .  We order the term structure factors prior to the macro variables because they are

dated at the beginning of each month.16 

In the first panel of Table 3 we display the estimates of the parameters of the yields-macro model,

which contains the crucial macro and term structure interactions.17  Individually, many of the off-diagonal

elements appear insignificant; however, as we discuss below, key blocks of coefficients appear jointly

significant.  The estimated Q matrix is provided in the second panel of Table 3.  Several of the off-

diagonal covariances appear significant individually.  The Wald and Likelihood Ratio tests reported in the

third panel clearly reject the diagonality of the Q matrix.

The time series of estimates of the level, slope, and curvature factors in the yields-macro model

are very similar to those obtained in the yields-only model.  Thus, as shown in the third and fourth

columns of Table 2, the means and standard deviations of the measurement errors associated with the

yields-macro model are essentially identical to those of the yields-only model.  In particular, the mean

errors are again negligible, and in the important 6- to 60-month maturity range, the average standard

deviation is just 8.6 basis points.

3.2 Macroeconomic and Yield Curve Impulse Response Functions

We examine the dynamics of the complete yields-macro system by via impulse response

functions, which we show in Figure 5, along with ninety percent confidence intervals.  We will consider

four groups of impulse responses in turn:  macro responses to macro shocks, macro responses to yield

curve shocks, yield curve responses to macro shocks, and yield curve responses to yield curve shocks.

The responses of the macro variables to macro shocks match the typical impulse responses



18 The interpretation of the persistence of FFR – the policy rate manipulated by the Fed – is open
to some debate.  However, Rudebusch (2002) argues that it does not indicate “interest rate smoothing” or
“monetary policy inertia”; instead, it reflects serially correlated unobserved factors to which the Fed
responds.

19 There is a marginally-significant initial upward response of inflation to the funds rate – a so-
called “price puzzle” – which is typical in small VARs of this kind.

20 An ex post  does not appear to be appropriate, as a positive shock to inflation does
not boost economic activity (see Rudebusch and Svensson, 1999).
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produced in small estimated macro models of the kind commonly used in monetary policy analysis (e.g.,

Rudebusch and Svensson, 1999).  The macro variables all show significant persistence.18  In addition, an

increase in the funds rate depresses capacity utilization over the next few years, similar to the aggregate

demand response in Rudebusch and Svensson (1999).  The funds rate, in turn, rises with capacity

utilization and – albeit with only marginal significance – with inflation in a fashion broadly consistent

with an estimated Federal Reserve monetary policy reaction function.  Finally, inflation exhibits a clear

aggregate supply response to increased capacity utilization and, over time, declines in response to a funds

rate increase.19

The yield curve components add some interesting elements to the macro responses.  The macro

variables have negligible responses to shocks in the curvature factor.  In contrast, an increase in the slope

factor is followed by an almost one-to-one response in the funds rate.  That is, there is a close connection

between the slope factor and the instrument of monetary policy.  However, there are two interpretations of

such a connection.  On the one hand, the Fed may be reacting to yields (which are measured at the

beginning of the month) in setting the funds rate.  On the other hand, given the institutional frictions of

monetary policy decision-making (e.g., the 6-week spacing between policy meetings and the requirement

for committee approval), it is likely that yields are reacting to macroeconomic information in anticipation

of Fed actions.  That is, to the extent the Fed has established a predictable policy reaction function to

macroeconomic information, movements in bond markets may often appear to predate those of the Fed.

Finally, an increase in the level factor raises capacity utilization, the funds rate, and inflation. 

Recall from Figure 2 the close connection between inflation and the level factor.  The macro responses

exhibited in Figure 5 are consistent with the above interpretation of the level factor as the bond market’s

perception of long-run inflation.  Under this interpretation, an increase in the level factor – that is, an

increase in future perceived inflation – lowers the ex ante real interest rate when measured as ,

which is followed by a near-term economic boom.20  However, during our sample, the Fed has apparently

accommodated only a small portion of the expected rise in inflation.  The nominal funds rate rises



21 Gurkaynak, Sack, and Swanson (2003) and Rudebusch and Wu (2003) discuss such a
mechanism.  

22 Overall then, in important respects, this analysis improves on the usual monetary VAR, which
contains a flawed specification of monetary policy (Rudebusch, 1998).  In particular, the use of level,
slope, and the funds rate allows a much more subtle and flexible description of policy.  
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significantly in response to the level shock, damping utilization, and limiting the rise in inflation to only

about 40% of the initial shock to the level.

Now consider the response of the yield curve to the macro variables.  While the curvature factor

shows very little response, the slope factor responds directly to positive shocks in all three macro

variables.  For example, an increase in the funds rate almost immediately pushes up the slope factor so the

yield curve is less positively sloped (or more negatively sloped).  Positive shocks to utilization, and to a

lesser extent inflation, also induce similar though more delayed movements in the tilt.  These reactions are

consistent with a monetary policy response that raises the short end of the term structure in response to

positive output and inflation surprises.  However, shocks to the macro variables also affect the level of the

term structure.  In particular, surprises to actual inflation appear to give a long-run boost to the level

factor.  Such a reaction is consistent with long-inflation expectations not being firmly anchored, so a

surprise increase in inflation (or even in real activity) feeds through to an expectation of higher future

inflation, which raises the level factor.21  A positive shock to the funds rate is also followed by a small

temporary jump in the level factor.  In principle, a surprise increase in the monetary policy rate could

have two quite different effects on inflation expectations.  On the one hand, if the central bank has a large

degree of credibility and transparency, then a tightening could indicate a lower inflation target and a

likely lowering of the level factor.  Alternatively, a surprise tightening could indicate that the central back

is worried about overheating and inflationary pressures in the economy – news that would boost future

inflation expectations and the level factor.  Evidently, over our sample, the later effect has dominated.

Finally, consider the block of own-dynamics of the term structure factors.  The three factors

exhibit significant persistence.  Most off-diagonal responses are insignificant; however, a surprise

increase in the level factor, which we interpret as higher inflation expectations, is associated with

loosening of policy as measured by the slope factor and a lowering of the short end of the term structure

relative to the long end.22

3.3 Macroeconomic and Yield Curve Variance Decompositions

Variance decompositions provide a popular metric for analyzing macro and yield curve

interactions.  Table 4 provides variance decompositions of the 1-month, 12-month, and 60-month yields



23 This result is consistent with the tilt of the yield curve being driven by counter-cyclical
monetary policy, as in Rudebusch and Wu (2003).
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at forecast horizons of 1, 12, and 60 months.  Decompositions are provided for both the yields-only and

the yields-macro models.  At a 1-month horizon, very little of the variation in rates is driven by the macro

factors (8, 4, and 2 percent for the 1-month, 12-month, and 60-month yield, respectively).  This suggests a

large amount of short-term idiosyncratic variation in the yield curve that is unrelated to macroeconomic

fundamentals.  However, at longer horizons, the macro factors quickly become more influential, and at a

60-month horizon, they account for about 40 percent of the variation in rates.  This contribution is similar

to the results in Ang and Piazzesi’s (2003) macro model.  A comparison of yields-only and yields-macro

decompositions shows that the variance accounted for by the slope factor falls notably with the addition

of the macro variables.  That is, movements in yields that had been attributed to shocks to slope are now

traced to shocks to output, inflation, and monetary policy.23  In contrast, the variance contributions from

level and curvature are little changed on balance.

Table 5 examines the variance decompositions for the macroeconomic variables based on the

joint yields-macro model and a “macro-only” model, which is a simple first-order VAR for CU, FFR,

INFL.  In the yields-macro model, the term structure factors account for very little of the variation in

capacity utilization or inflation.  Yield curve factors do predict a substantial fraction of movements in the

funds rate, but as noted above, this may reflect the adjustment of bond markets to new information before

the Fed can react.

Taken together, the variance decompositions suggest that the effects of the yield curve on the

macro variables are less important than the effects of the macro variables on the yield curve.  To interpret

this result correctly, it is important to note that an interest rate – the federal funds rate – is also included

among the macro variables.  That is, we are asking what would the yield curve add to a standard small

macro model, such as the Rudebusch-Svensson (1999) model.  We are not arguing that interest rates do

not matter, but that, for our specification and sample, the funds rate is perhaps, to a rough approximation,

a sufficient statistic for interest rate effects in macro dynamics, which is a conclusion consistent with Ang,

Piazzesi, and Wei (2003). 

3.4 Formal Tests of Macro and Yield Curve Interactions

The coefficient matrix A and the covariance matrix Q shown in Table 3 are crucial for assessing

interactions between macroeconomic variables and the term.  We begin by partitioning the 6x6 A matrix

into four 3x3 blocks, as
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(12)

and similarly for the 6x6 Q matrix,

(13)

where the superscript T denotes transpose.  We attribute all the covariance given by the block  to the

effect of yield curve variables on the macro variables, as the latter come before the former in the recursive

ordering we employ.  As such, there are two links from yields to the macroeconomy in our setup:  the

contemporaneous link given by , and the effects of lagged yields on the macroeconomy embodied in

.  Conversely, links from the macroeconomy to yields are embodied in .

We report in Table 6 the results of likelihood ratio and Wald tests of several key restrictions on

the A and Q matrices.  Both tests overwhelmingly reject the “no interaction” hypothesis of

.  Interestingly, less severe restrictions allowing for unidirectional but not bidirectional

links are similarly rejected.  In particular, we reject both the hypothesis of “no macro to yields” link

( ) and the hypothesis of “no yields to macro” link ( ).  We conclude that there is clear

statistical evidence in favor of a bidirectional link between the macroeconomy and the yield curve.

3.5 Robustness to an Alternative Identification Strategy

Our results above are based on a recursive ordering of the variables.  In this section we estimate a

version of the macro-yields model with a diagonal Q matrix.  Imposition of the diagonality constraint

allows us to sidestep issues of structural identification and highlight macro-finance linkages, without

being tied to particular orderings or other identification schemes, which have been so contentious in the

so-called “structural” VAR literature.  In Table 7, we provide estimates of A and the diagonal elements of

Q, which are very close to those reported in Table 3.  Next we repeat the linkage tests and report the

results in Table 8.  Because we now maintain the assumption of diagonal Q throughout, the hypotheses

tested correspond to restrictions only on the A matrix.  Interestingly, we find considerably less evidence in

favor of a yields to macro link than in the “non-diagonal Q” case reported in Table 6: the Wald test

statistic of the null hypothesis of no yields to macro link has a p-value of 0.19.

We also compute the impulse responses for this version of the model.  In Figure 6 we show both

point and interval estimates of the impulse responses from the earlier-reported non-diagonal Q version of

the yields-macro model, along with the point estimates of the impulse responses from the diagonal Q

version for comparison.  With only one or two exceptions out of 36 impulse response functions (the

responses of capacity utilization and funds rate to a shock in slope), the differences are negligible.  The
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same is of course also true for the variance decompositions, which we show for the diagonal Q model in

Table 9, and which are close to those reported earlier for the non-diagonal Q version, with the possible

exception of the significantly lower contribution of yield curve variables to the variation in the funds rate. 

This result is in line with the weak yield-to-macro linkage already documented for this version of the

model.

4.  Examining The Expectations Hypothesis

It is useful to contrast our representation of the yield curve with others that have appeared in the

literature.  Here we relate our yield curve modeling approach to the traditional macroeconomic approach

based on the expectations hypothesis.

The expectations hypothesis of the term structure states that movements in long rates are due to

movements in expected future short rates.  Any term or risk premia are assumed to be constant through

time.  In terms of our notation above, which pertains to the pure discount bond yields in our data set, the

theoretical bond yield consistent with the expectations hypothesis is

(14)

where c is a term premium that may vary with the maturity  but assumed to be constant through time.

The expectations hypothesis has long been a key building block in macroeconomics both in

casual inference and formal modeling (see, for example, Fuhrer and Moore, 1995, or Rudebusch, 1995). 

However, various manifestations of the failure of the expectations hypothesis have been documented at

least since Macaulay (1938).  Campbell and Shiller (1991) and Fuhrer (1996) provide recent evidence on

the failure of the expectations hypothesis, and we use their methodology to examine it in the context of

our model.  Specifically, we compare the theoretical bond yields, , constructed via (14) under the

assumption that the expectations hypothesis holds, with the actual bond yields .  We construct the

expected future 1-month yields by iterating forward the estimated yields-macro model using equation (5')

and the measurement equation (6') for , and then we compute the theoretical bond yields at each

point in time using equation (14).

In Figure 7, we show for six maturities (m = 3, 12, 24, 36, 60, 120) the theoretical yields implied

by the expectations hypothesis, together with the actual yields.  As in Fuhrer (1996), throughout our

sample there are large deviations between the theoretical and actual yields, especially at longer



24 Not surprisingly, a formal statistical test along the lines of Krippner (2002) rejects the
restrictions placed by the expectations hypothesis on the yields-macro model.
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maturities.24  Nevertheless, the actual and theoretical rates move together most of the time.  Over the

entire sample, for example, the correlation between the actual 10-year and 1-month yield spread, 

, and the theoretical spread, , is .60.  Furthermore, during certain periods

the actual and theoretical rates move very closely together.  This partial success of the expectations

hypothesis is consistent with Fuhrer (1996) and Kozicki and Tinsley (2001), who argue that much of the

apparent failure of the expectations hypothesis reflects the assumption of a constant Fed reaction function

– and in particular a constant inflation target – over the entire sample.  Indeed, the expectations

hypothesis fits much better during the second half of the sample, when inflation expectations were likely

better anchored.

5.  Summary and Conclusions

We have specified and estimated a yield curve model that incorporates both yield factors (level,

slope, and curvature) and macroeconomic variables (real activity, inflation, and the stance of monetary

policy).  The model’s convenient state-space representation facilitates estimation, the extraction of latent

yield-curve factors, and testing of hypotheses regarding dynamic interactions between the macroeconomy

and the yield curve.  Interestingly, we find strong evidence of macroeconomic effects on the future yield

curve and somewhat weaker evidence of yield curve effects on future macroeconomic developments. 

Hence, although bi-directional causality is likely present, effects in the tradition of Ang and Piazzesi

(2003) seem relatively more important than those in the tradition of Estrella and Hardouvelis (1991),

Estrella and Mishkin (1998), and Stock and Watson (2000).  Of course, market yields do contain

important predictive information about the Fed’s policy rate.  We also relate our yield curve modeling

approach to a traditional macroeconomic approach based on the expectations hypothesis.  The results

indicate that the expectations hypothesis may hold reasonably well during certain periods, but that it does

not hold across the entire sample.  

From a finance perspective, our analysis is unusual in that we do not impose no-arbitrage

restrictions.  However, such an a priori restriction may in fact be violated in the data due to illiquidity in

thinly-traded regions of the yield curve, so imposing it may be undesirable.  Also, if the no-arbitrage

restriction does indeed hold for the data, then it will at least approximately be captured by our fitted yield

curves, because they are flexible approximations to the data.  Nevertheless, in future work, we hope to

derive the no-arbitrage condition in our framework and explore whether its imposition is helpful for

forecasting, as suggested by Ang and Piazzesi (2003).
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Appendix

Calculation of Impulse Response Functions and Variance Decompositions

In this appendix, we describe the computation of the impulse response functions (IRFs) and

variance decompositions (VDs) for our models.  All models in the paper can be written in VAR(1) form,

(A1)

where  is an  vector of endogenous variables,  is the constant vector and  is the  transition

matrix.  The residuals  follow

   (A2)

where  is a (potentially non-diagonal) variance-covariance matrix.  In order to find the IRFs and VDs,

we must write the VAR(1) in moving average (MA) form.  Letting  denote the  identity matrix,

the unconditional mean of  is , and we can write the system as 

(A3)

Assuming that  satisfies the conditions for covariance stationarity, we can write the MA representation

of the VAR as 

(A4)

where and  for 

A.1.  Impulse-Response Functions

We define the IRF of the system as the responses of the endogenous variables to one unit shocks

in the residuals.  One would often see responses to a “one standard deviation” shock instead of the “one

unit” shock that we use.  Because all the variables we use in our analysis are in percentage terms we find

it more instructive to report results from one percentage point shocks to the residuals. 

A.1.1 Diagonal 

The response of  to a one unit shock to  is

(A5)

where  is the (i,j) element of the corresponding matrix.  To compute the asymptotic standard errors

of the IRFs, we follow Lütkepohl (1990).  Let  and .  Suppose that

(A6)

Then the asymptotic distribution of the IRFs can be derived using

(A7)

where 
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(A8)

A.1.2 Non-Diagonal 

When  is non-diagonal, we cannot compute the IRFs using the original residuals, .  We use a

Cholesky decomposition to obtain a lower-triangular matrix  that satisfies  to define . 

The transformed residuals have an identity covariance matrix, . 

The response of  to a one unit shock to  is

(A9)

where  is the jth column of  and  is the (j, j) element of the original variance covariance matrix. 

To compute the asymptotic standard errors of the IRFs, assume that (A6) holds where now

.  Denote by  a matrix whose (i, j)th element is the response of the ith variable in period t

to a one standard deviation shock to the jth variable in period t-k; that is, the jth column of  is given by

. Then the asymptotic distribution of   can be derived using

(A10)

where 

(A11)

(A12)

(A13)

 is a matrix such that ,  is a matrix such that , and 

is as defined in (A8). 

A.2.  Variance Decompositions

The contribution of the jth variable to the mean squared error (MSE) of the s-period-ahead

forecast, under the assumption of diagonal  is 

(A14)

while for the non-diagonal case it is

(A15)

The MSE is given by 

(A16)

where both MSE and  are  matrices.  We define the VD at horizon s as the fraction of MSE of

the ith variable due to shocks to the jth variable:

(A17)

where  and  denote the (i,i) elements of the respective matrices. 

To compute the VD of the yields, we combine the result above with the measurement equation

for the yields,
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(A18)

where  and  follow from equation (1).  The contribution of the jth variable to the MSE of the s-

period ahead forecast of the yield at maturity  is given by 

(A19)

       

where we assume that the factors  and  are the first three elements of the vector .  Similarly, the

MSE of the s-period ahead forecast of the yield at maturity  is given by 

(A20)

and the VD of the yield with maturity  is the MSE of the yield due to the jth variable at horizon s:

(A21)
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0.99 0.03 -0.02 8.02
(0.01) (0.01) (0.01) (1.67)

-0.03 0.94 0.04 -1.44
(0.02) (0.02) (0.03) (0.60)

0.03 0.02 0.84 -0.42
(0.03) (0.02) (0.03) (0.54)

0.09 -0.01 0.04
(0.01) (0.01) (0.02)

0.38 0.01
(0.03) (0.03)

0.80
(0.07)

Test Statistic P-Value
6.75 0.08
7.65 0.05

Likelihood Ratio
Wald
Note: Both test statistics are Chi-square with 3 
degrees of freedom.

Table 1
Yields-Only Model Parameter Estimates

Tests for Diagonality of Q  Matrix

Notes:  Bold entries denote parameter estimates 
significant at the 5 percent level.  Standard errors 
appear in parentheses.

Estimated Q  Matrix

Notes:  Each row presents coefficients from the transition equation 
for the respective state variable.  Bold entries denote parameter 
estimates significant at the 5 percent level.  Standard errors appear 
in parentheses.

µ

tL

tS

tC

1−tL 1−tS 1−tC

tL

tS

tC

tL tS tC



Mean Standard Deviation Mean Standard Deviation
3 -12.64 22.36 -12.53 22.21
6 -1.34 5.07 -1.26 4.84
9 0.49 8.11 0.54 8.15

12 1.31 9.87 1.33 9.88
15 3.71 8.71 3.72 8.76
18 3.59 7.29 3.58 7.31
21 3.23 6.51 3.22 6.47
24 -1.40 6.39 -1.42 6.35
30 -2.65 6.06 -2.68 6.08
36 -3.24 6.59 -3.27 6.61
48 -1.85 9.70 -1.87 9.73
60 -3.29 8.03 -3.29 8.01
72 1.97 9.14 1.99 9.11
84 0.69 10.37 0.72 10.38
96 3.49 9.04 3.53 9.16

108 4.19 13.64 4.25 13.74
120 -1.31 16.45 -1.25 16.57

Notes:  We report the means and standard deviations of the measurement errors, expressed in basis points, 
for yields of various maturities measured in months.

Table 2

Yields-Only Model Yields-Macro Model
Maturity

Summary Statistics for Measurement Errors of Yields



0.90 -0.06 -0.02 -0.01 0.08 0.01 7.56
(0.04) (0.04) (0.01) (0.01) (0.04) (0.01) (1.75)

-0.43 0.48 0.03 0.03 0.38 0.03 -1.53
(0.07) (0.07) (0.04) (0.02) (0.06) (0.03) (0.49)

0.14 0.12 0.84 0.01 -0.09 0.00 -0.49
(0.12) (0.12) (0.04) (0.02) (0.10) (0.04) (0.59)

0.07 -0.02 0.00 1.00 -0.07 -0.02 80.73
(0.08) (0.08) (0.04) (0.02) (0.07) (0.02) (0.79)

0.00 -0.09 0.01 0.05 0.99 0.05 6.53
(0.09) (0.09) (0.03) (0.03) (0.07) (0.04) (2.06)

-0.04 -0.04 -0.01 0.03 0.04 0.99 4.18
(0.04) (0.04) (0.01) (0.00) (0.03) (0.01) (1.13)

0.09 -0.02 0.05 0.04 0.03 0.01
(0.01) (0.02) (0.03) (0.02) (0.02) (0.00)

0.30 0.01 0.08 0.22 -0.01
(0.03) (0.04) (0.02) (0.03) (0.01)

0.81 0.04 0.17 0.00
(0.09) (0.04) (0.04) (0.01)

0.37 0.15 0.02
(0.03) (0.04) (0.01)

0.45 0.00
(0.03) (0.01)

0.05
(0.00)

0.00
Note: Both test statistics are Chi-square with 15 degrees of 
freedom.

Tests for Diagonality of Q  Matrix

Wald

Test Statistic
307.89
209.21

Table 3

Estimated Q  Matrix

P-Value

Yields-Macro Model Parameter Estimates

Notes:  Each row presents coefficients from the transition equation for the respective 
state variable.  Bold entries denote parameter estimates significant at the 5 percent 
level.  Standard errors appear in parentheses.

Likelihood Ratio 0.00

Notes: Bold entries denote parameter estimates significant at the 5 percent 
level.  Standard errors appear in parentheses.

µ1−tL 1−tS 1−tC

tL

tS

tC

1−tCU 1−tFFR 1−tINFL

tCU

tFFR

tINFL

tL

tS

tC

tCU

tFFR

tINFL

tCU tINFLtL tS tC tFFR



Horizon L S C CU FFR INFL

1 0.17 0.83 0.00 -- -- --
12 0.17 0.82 0.01 -- -- --
60 0.17 0.82 0.02 -- -- --

1 0.15 0.75 0.02 0.01 0.07 0.00
12 0.19 0.34 0.04 0.15 0.28 0.01
60 0.34 0.13 0.09 0.31 0.12 0.02

1 0.31 0.54 0.15 -- -- --
12 0.31 0.62 0.07 -- -- --
60 0.28 0.68 0.04 -- -- --

1 0.30 0.44 0.22 0.00 0.04 0.00
12 0.33 0.22 0.13 0.11 0.21 0.01
60 0.41 0.08 0.12 0.28 0.09 0.03

1 0.69 0.13 0.17 -- -- --
12 0.67 0.28 0.05 -- -- --
60 0.51 0.48 0.02 -- -- --

1 0.68 0.09 0.21 0.00 0.02 0.00
12 0.66 0.06 0.08 0.04 0.15 0.01
60 0.52 0.02 0.10 0.24 0.08 0.04

Yields-Macro 
Model

Variance Decompositions, Yields

Yields-Macro 
Model

Notes:  Each entry is the proportion of the forecast variance (at the specified forecast horizon) for 
a 1-, 12- or 60-month yield that is explained by the particular factor. 

Table 4

Yields-Macro 
Model

1-Month Yield

12-Month Yield

60-Month Yield

Yields-Only 
Model

Yields-Only 
Model

Yields-Only 
Model



Horizon L S C CU FFR INFL

1 -- -- -- 1.00 0.00 0.00
12 -- -- -- 0.89 0.10 0.01
60 -- -- -- 0.61 0.27 0.12

1 0.05 0.06 0.00 0.89 0.00 0.00
12 0.10 0.03 0.02 0.73 0.12 0.01
60 0.12 0.05 0.05 0.50 0.18 0.10

1 -- -- -- 0.00 1.00 0.00
12 -- -- -- 0.04 0.95 0.01
60 -- -- -- 0.34 0.64 0.02

1 0.03 0.37 0.06 0.04 0.50 0.00
12 0.16 0.23 0.04 0.17 0.39 0.01
60 0.32 0.10 0.09 0.31 0.16 0.02

1 -- -- -- 0.00 0.00 1.00
12 -- -- -- 0.21 0.00 0.78
60 -- -- -- 0.53 0.26 0.21

1 0.02 0.00 0.00 0.04 0.00 0.94
12 0.04 0.00 0.03 0.29 0.01 0.63
60 0.09 0.05 0.12 0.44 0.11 0.20

Variance Decompositions, Macroeconomic Variables

Macro-Only 
Model

Yields-Macro 
Model

Yields-Macro 
Model

Notes:  Each entry is the proportion of the forecast variance (at the specified forecast horizon) for 
capacity utilization, funds rate and inflation that is explained by the particular factor. 

Table 5

Yields-Macro 
Model

CU

FFR

INFL

Macro-Only 
Model

Macro-Only 
Model



No Interaction No Macro to Yields No Yields to Macro
A2 = 0, A3 = 0 and Q2 = 0 A2 = 0 A3 = 0 and Q2 = 0

Number of Restrictions 27 9 18
Likelihood Ratio Statistic 362.11 107.13 258.66

(0.00) (0.00) (0.00)

Wald Statistic 452.41 93.78 345.76
(0.00) (0.00) (0.00)

Table 6
Tests of Macro-Yield Interactions

Notes:  p -values appear in parentheses. A2, A3  and Q2  refers to the relevant blocks of A  and Q  matrices as 
explained in the text. All test statistics in each column is a Chi-squared with the degrees of freedom equal to the 
number of restrictions.



0.89 -0.07 -0.02 -0.01 0.08 0.02 7.60 0.09
(0.03) (0.04) (0.02) (0.01) (0.03) (0.02) (1.13) (0.01)

-0.41 0.50 0.03 0.03 0.36 0.03 -1.48 0.30
(0.07) (0.07) (0.04) (0.01) (0.06) (0.03) (0.35) (0.03)

0.17 0.15 0.84 0.01 -0.12 0.00 -0.43 0.84
(0.12) (0.12) (0.04) (0.02) (0.10) (0.04) (0.61) (0.08)

0.09 0.00 0.00 1.00 -0.08 -0.02 80.72 0.37
(0.08) (0.08) (0.03) (0.01) (0.07) (0.02) (1.17) (0.03)

0.02 -0.06 0.02 0.05 0.97 0.05 6.61 0.42
(0.08) (0.09) (0.03) (0.02) (0.06) (0.05) (1.30) (0.03)

-0.04 -0.03 -0.01 0.03 0.04 0.99 4.28 0.05
(0.03) (0.03) (0.01) (0.00) (0.02) (0.01) (1.43) (0.00)

Notes:  Each row represents the transition equation for the respective state variable.  Bold entries 
denote parameter estimates significant at the 5 percent level.  Standard errors appear in 
parentheses.

Parameter Estimates, Yields-Macro Model, Diagonal Q
Table 7

µ1−tL 1−tS 1−tC

tL

tS

tC

1−tCU 1−tFFR 1−tINFL

tCU

tFFR

tINFL

iiQ



No Interaction No Macro to Yields No Yields to Macro
A2 = 0  and A3 = 0 A2 = 0 A3 = 0

LR 123.81 101.94 24.85
(0.00) (0.00) (0.00)

Wald 249.23 115.34 12.50
(0.00) (0.00) (0.19)

Table 8
Tests of Transition Matrix Restrictions, Diagonal Q

Notes:  p -values appear in parentheses.



Horizon L S C CU FFR INFL

1 0.23 0.62 0.00 0.00 0.14 0.00
12 0.11 0.16 0.00 0.09 0.63 0.01
60 0.23 0.08 0.07 0.35 0.24 0.03

1 0.33 0.37 0.22 0.00 0.08 0.00
12 0.23 0.11 0.10 0.07 0.49 0.01
60 0.29 0.07 0.11 0.31 0.18 0.04

1 0.67 0.06 0.23 0.00 0.03 0.00
12 0.54 0.05 0.08 0.01 0.31 0.01
60 0.37 0.07 0.11 0.25 0.15 0.06

1 0.00 0.00 0.00 1.00 0.00 0.00
12 0.03 0.00 0.00 0.78 0.17 0.00
60 0.05 0.01 0.02 0.55 0.28 0.08

1 0.00 0.00 0.00 0.00 1.00 0.00
12 0.04 0.01 0.00 0.10 0.83 0.01
60 0.20 0.04 0.07 0.34 0.33 0.02

1 0.00 0.00 0.00 0.00 0.01 0.98
12 0.00 0.03 0.04 0.20 0.03 0.70
60 0.03 0.02 0.08 0.48 0.19 0.20

Notes:  Each entry is the proportion of the forecast variance (at the specified forecast 
horizon) for a 1-, 12- or 60-month yield and capacity utilization, funds rate and inflation 
that is explained by the particular factor. 

Table 9

1-Month Yield

12-Month Yield

60-Month Yield

CU

FFR

INFL

Variance Decompositions, Yields-Macro Model, Diagonal Q
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Figure 1
Estimates of Level, Slope, and Curvature in Yields-Only Model
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Figure 2
Yields-Only Model Level Factor and Empirical Counterparts
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Figure 3
Yields-Only Model Slope Factor and Empirical Counterparts
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Figure 4
Yields-Only Model Curvature Factor and Empirical Counterpart
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Figure 5 
 Impulse Responses of the Yields-Macro Model
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Figure 6
Impulse Responses of Yields-Macro Model

Diagonal Q Point Model (Dashed), Non-Diagonal Q Model with Confidence Interval Estimates (Solid)
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Figure 7
Actual Yields and Yields Implied by the Expectations Hypothesis

Notes : The actual yields are shown as solid lines. The yields implied by the expectations
hypothesis are shown as dotted lines.
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