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Abstract: Using a short-term interest rate as the monetary policy instrument can be
problematic near its zero bound constraint. An alternative strategy is to use a long-term
interest rate as the policy instrument. We find when Taylor-type policy rules are used to
set the long rate in a standard New Keynesian model, indeterminacy—that is, multiple
rational expectations equilibria—may often result. However, a policy rule with a long rate
policy instrument that responds in a “forward-looking” fashion to inflation expectations
can avoid the problem of indeterminacy.
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[Fed Chairman] Greenspan assured the congressional Joint Economic Commit-

tee that even with the Fed’s key economic policy lever, the federal funds rate,

at a 41-year low of 1.25 percent, the central bank has other resources to influ-

ence interest rates to jump-start economic growth. He said that in addition to

pushing the funds rate, the interest that banks charge each other on overnight

loans, closer to zero, the Fed can simply begin buying longer-term Treasury

securities to drive longer-term interest rates lower.

—Associated Press Newswires, May 21, 2003

1 Introduction

Over the past decade, inflation rates in many countries have fallen to levels not much

above zero. This long-sought return to price stability should provide significant benefits

in terms of enhanced economic efficiency and performance; however, as noted early on

by Summers (1991), low inflation rates may also make it harder for central banks to

achieve their macroeconomic stabilization goals. Specifically, as inflation has declined,

short-term nominal interest rates, which are the usual instrument of monetary policy,

also have fallen and have closed in on, or even run up against, their lower bound of zero,

likely limiting the extent to which real interest rates can be lowered. This constraint

may diminish the ability of a central bank to stimulate the economy and offset adverse

macroeconomic shocks through the usual policy transmission mechanism of lower real

rates. (See Reifschneider and Williams 2000 and Clouse et al. 2003.)

This long-standing theoretical concern about the so-called liquidity trap has been given

a visceral immediacy by the example of Japan, which spent more than a decade mired in

economic stagnation and deflation. In trying to stimulate the Japanese economy, the Bank

of Japan came up against the zero bound when it lowered its policy rate (the overnight

call rate) to zero in February 1999, and further policy stimulus via lower short rates was

clearly impossible. Japan’s predicament generated much discussion about the nature of

the zero bound constraint and its importance in hindering macroeconomic stabilization.

In response, many researchers have proposed using a variety of alternative monetary policy

strategies and policy instruments other than the short rate—such as the monetary base,

a long-term interest rate, or the exchange rate—to provide increased stimulus in such a

situation (notably, Krugman 1998, Meltzer 2001, Svensson 2001, and McCallum 2002).
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These alternative monetary policy proposals have also been discussed for the U.S.

economy. As illustrated by the press coverage of Chairman Greenspan’s testimony above,

faced with sluggish real growth in 2003 and inflation and short-term interest rates at

historic lows, the Federal Reserve also studied various strategies to stimulate the economy

if short rates fell to their lower bound (e.g., Bernanke and Reinhart 2004). A common

thread in these alternative policy strategies to stimulate the economy is their reliance

on influencing the public’s expectations of future policy actions—often by committing

to a clear target path for some future economic variable, such as the short-term policy

rate, the price level, or the currency exchange rate.1 The forward-looking nature of these

alternative policy proposals is perhaps most transparent for the case in which the long-

term bond rate is directly used as the policy instrument. A long rate appears to be the

natural substitute for the short rate as the instrument of monetary policy, because a long

rate is closely related to the expected path of future short rates. Therefore, consistent

with Chairman Greenspan’s views, after the short rate is pushed to zero, an obvious next

step for monetary stimulus is to push interest rates of progressively longer maturities to

zero as well. That is, the first line of defense at the zero bound appears to be flattening

the entire yield curve.

Despite being the obvious alternative to a short rate policy instrument, there has

been remarkably little analysis of the properties of a long rate policy rule.2 In Sections

2 and 3, we illustrate how minor the step is in moving from a short rate to a long rate

policy instrument—at least on a formal modeling level. Section 2 analyzes the standard

formulation of a New Keynesian macroeconomic model coupled with a Taylor-type rule

for setting the short-term interest rate as the monetary policy instrument, and in Section

3, the one small modification made is that the rate on a longer-maturity bond becomes

the policy instrument. However “obvious” it may seem to shift from using a short rate to

a long rate as the monetary policy instrument, we find that doing so raises the important

issue of indeterminacy. Indeterminacy arises because many possible future paths for the

short rate may be consistent with a given setting of the long rate. Thus, using the long

rate as a monetary policy instrument increases the likelihood of indeterminacy even for

1See, for example, Reifschneider and Williams (2000), Svensson (2001), McCallum (2002), and Eg-
gertsson and Woodford (2003a, 2003b).

2Kulish (2004), which is contemporaneous but independent to our own analysis, is an interesting
exception.
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policy rules that appear prima facie to be reasonable. One solution to the potential inde-

terminacy is for the central back to have a clear signaling and communications strategy

about the intended path for the short rate that is associated with the long rate monetary

policy rule. An important complementary factor is the stability of the rational expec-

tations equilibrium (REE) under learning, which indicates whether atomistic economic

agents could coordinate expectations on a candidate REE (Evans and Honkapohja 2001).

Clearly, if an equilibrium is stable under learning, such learning could help reinforce a

central bank’s communication strategy. In addition, in the case of multiple equilibria,

stability under learning can be used as an equilibrium selection criterion.

Section 4 extends the analysis to explore an alternative specification of the monetary

policy rule that follows McCallum’s recommendation that the determinants of an opera-

tional policy must be observable by the policymaker in real time. We find that policies

that respond to observable lagged data are also subject to the problem of indeterminacy

and that this problem is even more profound owing to the possibility of multiple minimum

state variable (MSV) solutions.

Given the risk of indeterminacy with standard rule formulations, section 5 examines

an alternative specification of the long rate policy rule that yields a determinate outcome.

Specifically, we show that “forward-looking” versions of a policy rule that uses the bond

rate as the policy instrument entirely overcome the problems of indeterminacy that plague

rules responding only to contemporaneous or lagged variables. Our finding that properly

specified forecast-based long rate policies guarantee a determinate REE while backward-

looking variants do not stands in stark contrast to the literature on short rate policy

instruments, where the opposite conclusion is often found to be true (e.g., Bernanke and

Woodford 1997).

Finally, as noted in Section 6, although our analysis focuses only on the long rate, our

results appear relevant for other proposals for avoiding deflation that involve shaping the

path of expectations about the future.
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2 Analysis of a Short Rate Policy Instrument

This section introduces the basic framework for our analysis, which includes a stylized

New Keynesian model. This section also examines the conditions for determinacy and

learnability under the standard assumption that the monetary policy instrument is the

short-term nominal interest rate. These results provide a benchmark for comparison in

the next section, which investigates the effects of using a long rate policy instrument.

2.1 Conditions for Determinacy

We consider the canonical forward-looking IS-AS model (e.g., Walsh 2003 or Woodford

2003):

yt = −β(it − Etπt+1) + Etyt+1 + et, (1)

πt = Etπt+1 + αyt + ut, (2)

where yt denotes the output gap (the percent deviation of output from its natural rate),

πt is the inflation rate, it is the short-term interest rate, and α, β > 0. For convenience,

we assume that the discount rate that would normally appear in the equation describing

inflation is unity, and that the natural rate of interest is zero. The innovations et and ut

are assumed to be white noise.3

We start by assuming that monetary policy is implemented through a Taylor-type

policy rule that takes the form4

it = γπt. (3)

We implicitly assume that the target inflation rate is zero. Substituting the policy rule

into the IS equation, we can rewrite the system:
(

1 βγ
−α 1

)(
yt

πt

)
=

(
1 β
0 1

)(
Etyt+1

Etπt+1

)
+

(
et

ut

)
, (4)

or, with the appropriate identifications,

Hxt = FEtxt+1 + εt,

3In preliminary work, we have obtained broadly similar results to those below in hybrid models that
have output and inflation dynamics with both forward- and backward-looking elements.

4The inclusion of an output gap response in the policy rule would change little but would make getting
analytical results more difficult.
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where xt ≡ (yt, πt)
′ and εt ≡ (et, ut)

′.

A linear model is said to be determinate under a specific policy rule if a unique non-

explosive REE exists, indeterminate if multiple REE exist, and explosive if no such REE

exist (see Evans and McGough 2003 for details). In the analysis of determinacy, it is useful

to define the forecast error vector, ξt = xt − Et−1xt. Taking advantage of the fact that

the matrix F is invertible and after some substitutions, we obtain a dynamic equation

describing the system in terms of fundamentals and forecast errors:

xt = F−1Hxt−1 − F−1εt−1 + ξt.

Stacking x and ε, we have:
(

xt

εt

)
=

(
F−1H −F−1

0 0

)(
xt−1

εt−1

)
+

(
ξt

εt

)
. (5)

Let A denote the leading matrix on the right-hand side of this equation.

We now analyze the properties of this system. This model has two free variables

and will thus be determinate provided that the two eigenvalues of F−1H are of modulus

greater than one. The condition for determinacy in this model with the specified short

rate monetary policy rule is a version of the so-called Taylor principle, according to which

the nominal rate must be increased more than one-for-one in response to an increase in

the inflation rate, as stated in the following proposition.

Proposition 1 The model is determinate if γ > 1 and indeterminate otherwise.

Refer to the Appendix for proofs of all propositions.

In the determinate case, the equilibrium may be computed by decoupling the dynamics

of the system along the eigenspaces by diagonalizing A = SΛS−1 and defining zt ≡ S−1xt.

Let Sij ≡ (S−1)ij and

Sij
k ≡

(
Sij Sij+1

Skj Skj+1

)
.

Then, rewriting equation (5) yields:

zt =




λ1 0 0
0 λ2 0
0 0 0


 zt−1 + S−1

(
ξt

εt

)
, (6)
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where the λi are the eigenvalues, which are labeled here and subsequently in descending

order according to modulus; i.e., |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Choosing ξt to assure that

zit = 0 for i = 1, 2 yields a unique REE of the form

xt = − (
S11

2

)−1
S13

2 εt. (7)

Note that in this model with the specified policy rule, the REE is a white noise process.

2.2 Stability under Learning

We use expectational stability as our criterion for judging whether agents may be able

to coordinate on specific equilibria. This is because, for a wide range of models and

solutions, E-stability has been shown to govern the local stability of rational expectations

equilibria under least squares learning. In many cases this correspondence can be proved,

and in cases where this cannot be formally demonstrated the “E-stability principle” has

been validated through simulations. Before giving details, we provide an overview of

E-stability; for further reading see Evans and Honkapohja, 2001.

The model at hand may be written in reduced form as follows:

xt = H−1FE∗
t xt+1 + H−1εt. (8)

We now write E∗
t xt+1 to indicate that we no longer impose rational expectations, and at

issue is how agents form their time t expectations E∗
t . Backing away from the benchmark

that agents are fully rational, we assume that agents believe the endogenous variable xt

depends linearly on a constant, lagged endogenous variables, current exogenous shocks,

and possibly exogenous sunspots. Combining these regressors into the vector Xt, we

postulate a perceived law of motion (PLM) xt = Θ′Xt. Agents then use this perceived

law of motion to form their expectations of xt+1.

Under real-time learning agents estimate Θ using an algorithm such as recursive least

squares and these estimates are updated over time. Given a particular value for Θ the

corresponding expectations E∗
t xt+1 can be computed, the expectations can be substituted

in the reduced form equation above, and the true data generating process, or actual law

of motion (ALM), thus determined. If the perceived law of motion is well specified then
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the actual law of motion will have the same form: xt = T (Θ)′Xt. In particular, the ALM

will depend linearly on the same variables as did the PLM. Thus a map, known as the

T-map, is constructed, taking the perceived parameters to the implied parameters. A

fixed point of this map defines a rational expectations equilibrium.

Once the T-map is obtained, stability under learning can be addressed as follows.

Let the equilibrium be characterized by the fixed point Θ∗, and consider the differential

equation
dΘ

dτ
= T (Θ)−Θ. (9)

Notice that Θ∗ is a rest point of this ordinary differential equation. The equilibrium

corresponding to the fixed point is said to be E-stable if it is a locally asymptotically stable

fixed point of (9). The E-stability principle tells us that E-stable equilibria are locally

learnable for Least Squares and closely related algorithms. That is, if Θt is the time t

estimate of the coefficient vector Θ, and if Θt is updated over time using recursive least

squares, then Θ∗ is a possible convergence point, i.e. locally Θt → Θ∗ if and only if Θ∗ is

E-stable. The intuition behind this principle is that a reasonable learning algorithm, such

as least squares, gradually adjusts estimates Θt in the direction of the actual parameters

T (Θt) that are generating the data. For an E-stable fixed point Θ∗ such a procedure

would then be expected to converge locally.

The above discussion has implicitly assumed a rest point Θ∗ that is locally isolated.

In this case it is locally asymptotically stable under (9) provided all eigenvalues of the

Jacobian of T at Θ∗ have real parts less than one, and it is unstable if the Jacobian

has at least one eigenvalue with real part greater than one. Because we are studying

sunspot equilibria, the set of rest points of (9) may have unbounded continua as connected

components. Along these components the T -map will always be neutrally stable, and thus

will have at least one eigenvalue equal to unity.5 In this case we say a sunspot equilibrium

is E-stable if the Jacobian of the T -map has eigenvalues with real part less than one, apart

from unit eigenvalues arising from the equilibrium connected components.

We now turn to the specifics of stability analysis in our model. To make forecasts,

agents are assumed to estimate a PLM of the form xt = a + bεt. The implied T-map is

5The number of unit eigenvalues will be equal to the dimension of these components.
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given by

a −→ H−1Fa

b −→ H−1 = − (
S11

2

)−1
S13

2 .

Convergence in b obtains trivially, and convergence in a obtains provided the real parts

of the eigenvalues of H−1F are less than one, which, in this particular model, obtains if

the policy yields a determinate REE, as stated in the following proposition.

Proposition 2 If γ > 1, then the unique REE is E-stable.

This proposition is a simple consequence of the determinacy of the model depending on

the eigenvalues of (H−1F )
−1

.

2.3 Long-term Bond Rates

In preparation of the analysis of monetary policy rules that use a longer-maturity interest

rate as the policy instrument, we now introduce multi-period bond rates to the model.

Following Shiller (1979), let the n-period bond rate (for 1 < n < ∞) be given by:

in, t =

(
n−1∑
j=0

δj

)−1

Et

n−1∑
j=0

δjit+j + Ψn,t, (10)

where the parameter 0 < δ ≤ 1 is a constant that is unity for discount (zero coupon)

bonds, but less than unity for coupon bonds (and equal to the inverse of the gross discount

rate), and Ψn,t is a term or risk premium.6

Assuming that the value of γ in the monetary policy rule (3) yields a unique stable

equilibrium, we can substitute future expected short-term interest rates into equation

(9), yielding the reduced-form equation for the n-period bond rate. From above, we know

that expected inflation in future periods is zero, and, thus, so are expected short rates.

Therefore, the reduced form equation describing rates on longer-maturity bonds is given

by:

in, t = Gn(γ)πt ≡
(

n−1∑
j=0

δj

)−1

γ πt + Ψn,t. (11)

6Rudebusch and Wu (2004) discuss theoretical and empirical aspects of this equation and the time-
varying term premium from a modern asset pricing perspective.
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3 Analysis of a Long Rate Policy Instrument

Section 2 provided a canonical analysis of a short rate policy rule in a New Keynesian

model. The only nonstandard element was the addition of a long rate that was extraneous

to the system. We now analyze, after providing some introductory motivation, the deter-

minacy and stability properties of that same model—except with the long rate specified

as the monetary policy instrument.

3.1 Motivation for a Long Rate Policy Instrument

When reduced to simplest terms, two critical features of the framework in Section 2 make

it amenable to monetary policy analysis: first, the central bank can control the short-term

interest rate; second, movements in the short rate affect economic output and inflation.

Similarly, the use of a long rate as the monetary policy instrument raises two fundamental

questions: (1) Can the monetary authority control the long rate? (2) Do movements in

the long rate affect the economy? Here, as a precursor to our formal analysis, we provide

some discussion of these issues.

Regarding central bank control of the long rate, it is useful to consider the decompo-

sition of the long rate into expected future short rates and the term premium, as given

in equation (9). The central bank can clearly control the current short rate and therefore

also the short rate at each point in time in the future. Whether this control of the ac-

tual path of future short rates translates into control of the expected path of future short

rates, and hence the long rate, depends on the extent to which the public understands

and believes that the central bank will deliver on future promised actions. As stressed by

Bernanke and Reinhart (2004), clear communication of the central bank’s commitment

to a future interest rate path is a crucial element in obtaining this understanding.7 In

addition, the credibility of such a commitment can likely be enhanced by taking action in

several ways. For example, the central bank can engage in open market sales or purchases

of long bonds directly or take positions in options and futures markets that indicate a

7Bernanke, Reinhart, and Sack (2004) provide empirical evidence of the efficacy of central bank com-
munication in shaping expectations of the future path of the funds rate. Specifically, the statements issued
after meetings of the Federal Open Market Committee appear to have important effects on interest rate
futures.
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certain path of future short rates. Such actions can provide a signal that causes private

agents to expect a particular short rate policy path (e.g., Clouse et al. 2003).

Many researchers have also pointed to the term premium, Ψn,t, as a second channel

through which a central bank may be able to alter the long bond rate (e.g., Goodfriend

2000, Clouse et al. 2003). In particular, as noted by Bernanke and Reinhart (2004),

altering the composition of the central bank’s balance sheet—shifting, say, from holding

shorter to longer maturity debt—may induce portfolio rebalancing effects as investors view

the changing relative supplies of assets as imperfect substitutes. The degree to which such

effects could be usefully exploited is difficult to ascertain and somewhat speculative, and

we do not rely on them in this analysis.8

Given central bank control of the long rate, we now turn to the question of whether

changes in the long rate affect the economy, and here the decomposition in equation (9)

again is useful. First, consider a change in the long rate arising from a change in the

expected path of future short rates. The effect of this change on aggregate demand can

be seen by iterating equation (1) forward n periods to obtain

yt = −βEt

n−1∑
j=0

(it+j − πt+1+j) + Etyt+n + et. (12)

That is, the intertemporal substitution in equation (1) implies that the path of expected

future short rates matters for aggregate demand, and, according to the theory of asset

pricing, equation (9), that path is embedded in long rates. Therefore, there is a direct

link between the long rate and aggregate demand through short rate expectations.

The model of intertemporal substitution, however, also raises the question as to

whether movements in the long rate induced by changes in the term premium will af-

fect output. Clearly, in the simple analytical framework above, shifts in Ψn,t would not

affect demand. However, in a more elaborate model that recognizes the adjustment costs

and partial irreversibility of purchases of certain durable goods, such as residential struc-

tures and capital, a change in Ψn,t may well feed through to the relevant cost of credit

8A determined Fed was able to set yields on long-term U.S. Treasury securities from 1942 to 1951 by
standing ready to buy and sell them at a given price. More recently, Bernanke, Reinhart, and Sack (2004)
examine particular episodes of news about the relative supply of Treasury securities, and they conclude
that large purchases of long bonds probably would affect long yields through changes in term premiums.
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that private borrowers face.9 Still, this second channel has not been tightly formulated in

the literature, and we do not employ it.

In summary, long rate rules appear to have at least the basic prerequisites to be

successful in the sense that the central bank appears to have sufficient control over the

long rate in order to implement these rules and that manipulation of the long rate appears

to provide some measure of control over the economy. The most well-established channel

for this two-step linkage of control, and notably the one championed by Reifschneider

and Williams (2000) and Eggertsson and Woodford (2003a, 2003b), involves managing

expectations of the future path of short rates. In contrast, the cause and effect of changes

in term premiums are much less understood. In our analysis then, we focus exclusively

on the short rate expectational channel for the operation of a long rate policy rule, and

we defer issues related to the term premium to future work.

3.2 Conditions for Determinacy

We now explore the properties of long rate rules more formally. We assume that monetary

policy is described by a modified version of the Taylor rule in which a particular maturity

m-period long bond rate is determined by the current inflation rate:

im, t = θmπt. (13)

We assume that other bond rates for n = 2, ..., N (n 6= m) and the short-term interest

rate are all determined implicitly by the expectations theory of the term structure given

by (9) with Ψn,t = 0. Also, as discussed in the next subsection, we abstract from the zero

bound.

We start by focusing on the 2-period bond rate as the policy rate, which is a simple

case that allows us to obtain analytical results; later, we examine longer-maturity policy

rates numerically. From the rational expectations hypothesis and after substituting in for

the policy rule, we have the equation for the short-term interest rate:

it = θ2(1 + δ) πt − δEt it+1. (14)

9For a discussion incorporating investment into the Euler equation, see Casares and McCallum (2000).
For empirical evidence on this issue, see Fuhrer and Rudebusch (2004).
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This equation indicates the central change in the model when the long rate is used as the

policy instrument: the short rate depends explicitly on expectations of future short rates.

Although the 2-period bond rate is set by the central bank as a function of the current

inflation rate, no restriction pins down the current short rate; in fact, a continuum of

paths for the short rate are consistent with the 2-period bond rate policy, and thus this

model may be determinate or indeterminate depending on the eigenvalues of the system.

Finally, we now close the model given by equations (1) and (2) with the long rate

policy rule, which increases the dimension of the reduced form. We have



1 0 β
−α 1 0
0 θ2 − 1

1+δ







yt

πt

it


 =




1 β 0
0 1 0
0 0 δ

1+δ







Etyt+1

Etπt+1

Etit+1


 +




1 0
0 1
0 0




(
et

ut

)
,

or, via the appropriate identifications,

Hxt = FEtxt+1 + Jεt. (15)

To analyze determinacy, write ξt as the three-dimensional forecast error (the model

has three free variables), and use (15) to write
(

xt

εt

)
=

(
F−1H −F−1J

0 0

) (
xt−1

εt−1

)
+

(
ξt

εt

)
. (16)

This model is determinate provided the three eigenvalues of F−1H are outside the unit

circle.

We say a model exhibits “order M indeterminacy” if there are at least M free variables

and if M of the relevant eigenvalues are inside the unit circle so that there are M degrees

of expectational freedom (see Evans and McGough 2003 for details). For the forward-

looking IS-AS model, in the cases of determinacy or indeterminacy, there is a unique MSV

solution10 that may be obtained as follows: choose the forecast errors ξt so that zit = 0

for i = 1, 2, 3. Then we may write

xt =




S11 S12 S13

S21 S22 S23

S31 S32 S33



−1 


S14 S15

S24 S25

S34 S35


 εt. (17)

10Following Evans and Honkapohja (2001), we define an MSV solution as one “. . . which depends
linearly on a set of variables, and such that there does not exist a solution which depends linearly on a
smaller set of variables.” McCallum (1983, 1999a) introduced the notion of an MSV solution. McCallum
(2002) has also advocated an additional selection criterion for an MSV solution that is closely connected
to E-stability.
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It is straightforward to show that this REE yields the same stochastic processes for y, π,

and i as does the model when closed with the short rate policy it = γπt, provided the

short model is determinate.11

Note that because the characteristic polynomial is a cubic, one can take advantage of

the formulas for the roots of a cubic equation to analyze the conditions for determinacy.

Thus, for the case of a 2-period bond rate, we have the following analytical result.

Proposition 3 The model is determinate if θ2 > 1 and is indeterminate otherwise.

This proposition holds regardless of the values of the model parameters, α, β, and δ.

Proposition 3 implies that certain determinate REE that can be obtained when the

policy instrument is the 1-period rate cannot be obtained using the stipulated 2-period

rate policy rule. In particular, the REE associated with values of 1 < γ ≤ 1 + δ are not

obtainable as determinate outcomes from a 2-period bond rate policy rule of this form.

(In an REE, the condition that θ2 = γ
1+δ

holds, while determinacy for a 2-period bond

rate policy implies that θ2 = γ
1+δ

> 1.) Below, we examine the effectiveness of alternative

specifications of the bond rate policy rule at overcoming this shortcoming of bond rate

policies.

Given the prevalence of indeterminacy with long rate policy rules in the model, the

next question is whether there is a natural criterion for selecting some of the equilibria

over others. In particular, is the MSV equilibrium associated with the short rate policy

selected by such a criterion? We address these questions now by appealing to the principle

of the learnability of the equilibrium.

The analysis of stability under learning proceeds exactly as it did above, except now

the vector xt is three-dimensional. We suppress the details here. In the case of the

2-period bond rate, determinacy implies stability, as stated in the following proposition.

Proposition 4 If the model is determinate under the 2-period bond rate policy, then the

unique REE is stable under learning.

11In the case of order one indeterminacy, sunspot solutions also exist.
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It is worth noting that it is not in genera the case that indeterminacy necessarily implies

instability. To see this, consider the case of order one indeterminacy. There is precisely

one eigenvalue of F−1H inside the unit circle, and so it must be real. This implies that

H−1F has exactly one eigenvalue of norm larger than one, and it is real. Thus the MSV

solution is unstable if this eigenvalue is larger than one and stable if this eigenvalue is

smaller than negative one. However, for the model at hand, we find numerically that when

indeterminacy is introduced, the MSV solution corresponding to the unique equilibrium

under the short rate policy is not stable under learning.

The same condition for determinacy applies when the policy instrument is the rate on a

bond whose term is three periods or longer. Although analytical results are not obtainable

in these cases, we find numerically that θm > 1 is the necessary and sufficient condition

for determinacy for values of m between 3 and 8. Again, this condition is invariant to the

other model parameters. In addition, as m increases, the set of obtainable determinate

REE shrinks. In particular, for an m-period bond rate policy, the determinate REE

associated with γ ≤ ∑m−1
j=0 δj are not obtainable.

3.3 Discussion

The above analysis shows that a central bank that follows a long rate policy rule of the

form im, t = θmπt may not be able to obtain a first-best outcome that is achievable through

a short rate rule of the form it = γπt. There are two issues to discuss in this regard.

First, as noted above, we have ignored the zero bound constraint on all nominal rates,

which may seem odd since this is a key motivation for using a long rate instrument in

the first place. However, our implicit view is that the steady state level of the nominal

rate (taking into account the equilibrium real rate and the inflation target) is sufficiently

high that the central bank can move out the yield curve far enough so that at some point

future expected short-term interest rates turn positive and the zero bound does not bind

on the long rate instrument. Still, ignoring the zero bound on the short rate under a long

rate policy rule also has an intimate connection with indeterminacy, because, in general,

the set of multiple equilibria will be smaller when the zero bound is enforced. Intuitively,

the zero bound constraint eliminates some of the possible paths of the short rate that
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might support a given long rate. For example, if the two-period rate is at zero, there is

only one possible expected path for the current and the next period’s short rate under the

constraint that the short rate cannot be negative. More generally, however, it will not be

the case that the choice of a long rate will imply zero short rates throughout the term of

the bond, and in such cases, the issue of multiplicity may arise.12

Second, the existence of multiple equilibria using a long rate instrument raises ques-

tions of whether the central bank can choose among them. As noted in Subsection 3.1,

if the central bank can signal a particular path for the short rate through its statements

or actions, it may be able to center expectations and obtain a particular equilibrium. Of

course, altering the public’s perception of how policy will be conducted once in a while in

an ad hoc fashion is likely to be difficult. That is, a central bank that typically follows a

short rate rule but switches to some type of signaling or communications strategy at the

zero bound may find some hard sledding in trying to convey its commitment credibly. A

long rate policy rule, which could be followed and communicated at all times and in all

situations, would seem to have some advantage over more occasional strategies.

4 Backward-Looking Policy Rules

The preceding section highlights the problem of indeterminacy in a standard New Key-

nesian model, where monetary policy is described by a rule in which the bond rate is

determined by the current inflation rate. However, as stressed by McCallum (1999b),

policymakers observe data with a lag that reflects the delays inherent in collecting and

compiling macroeconomic data. Thus, according to this view, the policies studied in

Sections 2 and 3 are not operational in practice. In this section, we analyze alternative

specifications of both the short rate rule and the long rate rule that satisfy McCallum’s

operational criterion, namely, that policy responds only to information available to the

policymaker at the time of the decision. In particular, we assume that the current-quarter

setting of policy is determined by the lagged inflation rate.

In addition to making the policy rule operational, this modification implies that lagged

12Taking account of the zero bound would require abandoning the linearity assumption that facilitates
our analysis. We leave a nonlinear analysis of the long policy instrument to future research.
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inflation is a state variable in the system, which has important implications for the deter-

minacy and stability characteristics of the model. As noted above, in the benchmark New

Keynesian model, the only state variables are the shocks; therefore, if policy responds

only to the contemporaneous inflation rate and if the shocks are iid, then inflation and

the output gap display no dynamics, and there exists a single MSV solution. However,

with the operational policy rule, the system is dynamic and, as a result, the nature of

indeterminacy potentially generated by long rate policies changes. In particular, such

policies can give rise to multiple MSV solutions, some or all of which may be unstable

under learning.

In the following, we abstract from the shocks to the two equations and concentrate on

the deterministic dynamics of the system, ignoring for the time being the possibility of

sunspot equilibria. This simplifies the analysis of the system and facilitates the study of

multiple MSV solutions. At the end of this section, we return to the issue of stochastic

disturbances and the possibility of sunspot equilibria.

For notational convenience, define ψ ≡ αβ. Assuming that the short rate is the policy

instrument, we may then write the system as:



1 0 βγ
−α 1 0
0 1 0







yt

πt

πt−1


 =




1 β 0
0 1 0
0 0 1







Etyt+1

Etπt+1

πt


 , (18)

or, with the appropriate identifications,

Hxt = FEtxt+1. (19)

Decoupling the dynamics along eigenspaces as before and imposing perfect foresight we

obtain the MSV solutions of the form
(

yt

πt

)
= Âπt−1.

Denote the reduced-form coefficient relating the n-period rate to the lagged inflation rate

by Gn. Then, the two-period rate is given by

i2,t = G2πt−1 =
γ

1 + δ
(1 + δÂ21)πt−1.

The properties of the model when the short rate is the policy instrument are summa-

rized by the following proposition:
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Proposition 5 Assume it = γπt−1 and 0 < ψ < 1. Then

1. For 0 < γ ≤ 1, the model is indeterminate.

2. For 1 < γ < 1 + 4
ψ
, the model is determinate.

3. For 1 + 4
ψ
≤ γ, the model is explosive.

The lower bound on γ necessary to achieve a determinate REE is the same as when the

short rate is determined by the current inflation rate. Note, however, that when policy

depends too strongly on lagged inflation, the model is explosive owing to “instrument

instability.”

To examine stability under learning, we write the reduced form model as

(
yt

πt

)
= A

(
Etyt+1

Etπt+1

)
+ B

(
yt−1

πt−1

)
.

The perceived law of motion consistent with the MSV representations is given by

(
yt

πt

)
= a + b

(
yt−1

πt−1

)
,

which generates the following T-map:

a −→ A(I2 + b)a

b −→ Ab2 + B.

Recall that stability under learning requires that the real part of the eigenvalues of the

T-map’s derivative be less that one. The relevant Jacobians are given by

DTa = A(I2 + b)a

DTb = b′ ⊗ A + I2 ⊗ Ab.

Numerical results indicate that for 0 < γ ≤ 1, that is, if the model is indeterminate,

then all MSV representations are unstable under learning, and for 1 < γ < 4
ψ

+ 1, the

unique REE is stable under learning.13

13It can be shown analytically that the eigenvalues of the Jacobians depend on ψ, but not on α and β
independently. Interestingly, the MSV coefficient Â does depend on α and β independently.
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Figure 1: Sensitivity of Long-term Bond Rates to Inflation
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Assuming that monetary policy induces a determinate REE, the reduced-form rela-

tionship between the bond rate and the lagged inflation rate is uniquely determined;

however, the mapping back from a particular value of Gn to γ in general is not. Figure 1

plots the reduced-form coefficient of bond rates of various maturities on lagged inflation

implied by different values of γ. (For the purposes of this figure, we have assumed that

α = 1, β = 0.5, and δ = 1.) Each value of γ implies a unique value of Gn. But, for this

parameterization of the model, for even values of n, each value of Gn can be supported

by two real values of γ, while for odd values of n, each value of θ is supported by one real

value of γ. This nonuniqueness reflects the fact that Gn is a polynomial of degree n in

γ.14

The intuition for the finding that a single bond rate reduced-form relationship to

inflation can be consistent with more than one short rate policy rule is illustrated by

considering two short rate policy rules, one that reacts strongly to lagged inflation, say

with γ = 3.25, and one that responds relatively timidly, say with γ = 1.25. A short rate

policy that responds strongly to inflation implies that inflation will sharply overshoot its

target in the next period. In that case, the reduced-form response of the two-period bond

rate to inflation will be modest, reflecting the strong initial response and the reversal of

interest rates in the next period. A policy rule that responds less aggressively to inflation

will feature a smaller movement in interest rates this period and less of a reversal in the

14Note that in general there will also exist complex roots to this polynomial in γ, but these equilibria
will not be MSV solutions and thus will not be of the form it = γπt−1.
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following period, yielding the identical relationship between the bond rate and inflation

of about 0.32 in the left panel of Figure 1.

We now analyze policies in which the two-period rate is the policy instrument, deter-

mined by the lagged inflation rate:

i2,t = θ2πt−1.

For this rule to be consistent with the unique equilibrium implemented by a short rate

policy, we must have

θ2 =
γ

1 + δ
(1 + δÂ21).

Let χ = (1 + δ)θ2. The model may then be written




1 0 β 0
−α 1 0 0
0 −χφ 1 −χ
0 1 0 0







yt

πt

it
πt−1


 =




1 β 0 0
0 1 0 0
0 0 −δ 0
0 0 0 1







Etyt+1

Etπt+1

Etit+1

πt


 ,

or, with the appropriate identifications,

Hx̂t = FEtx̂t+1.

Whether the model is determinate depends on the eigenvalues of the matrix F−1H.

If the model is indeterminate, there may be multiple MSV solutions and each MSV

will be consistent with a distinct short rate policy rule. Order one indeterminacy implies

the existence of possibly two MSV solutions, while order two indeterminacy implies the

existence of possibly three MSV solutions, and so on15. We note that for calibrations

corresponding to Figures 2 and 3, all relevant eigenvalues are real, so that in case of

indeterminacy, multiple MSV solutions exist. Stability under learning is as above, and

we suppress the details. Analytical results regarding determinacy and stability are not

tractable; instead, we present numerical results in what follows.

Bond rate policies that respond to lagged inflation are prone to generating multiple

MSV solutions, where each MSV corresponds to a different set of coefficients describing the

reduced form of the solution. Figure 2 plots the determinacy and stability characteristics

of the equilibria resulting from a 2-period rate policy associated with combinations of ψ

15The number of MSV solutions will depend on the number of real eigenvalues.
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Figure 2: Determinacy and Stability for Two-period Bond Rate Policy
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and γ. In the lower right region, the parameter combinations yield a determinate REE that

is also stable under learning; the remaining regions are all characterized by indeterminacy.

For some parameter constellations yielding two MSV solutions and labeled “stable” in the

chart, only one MSV is stable under learning, and, thus, a stability criterion may be used to

select that MSV. However, in other regions, labeled “unstable,” stability cannot be applied

as a selection criterion because all MSVs are unstable. In such cases, one cannot determine

a priori which equilibrium would obtain without applying some additional restrictions on

the model.16 Importantly, these MSVs differ in the behavior of all endogenous variables

and thus have first-order effects on the welfare of the representative household.

The problem of multiple MSV solutions can be even more acute with longer maturity

policy instruments. Figure 3 shows the determinacy and stability characteristics of the

equilibria resulting from a three-period bond rate policy; for a wide range of values of γ

and ψ, the three-period bond rate policies yield indeterminacy and instability, and only

when policy is very responsive to lagged inflation does a unique stable REE obtain. For

a wide range of intuitively “reasonable” values of γ, there exist two MSV representations

that are both unstable under learning.

16Recall that, according to McCallum’s definition, there is always a unique MSV solution, and his MSV
solution corresponds to one of the two we consider.

20



Figure 3: Determinacy and Stability for Three-period Bond Rate Policy
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So far, we have abstracted from sunspot equilibria in this discussion. In fact, one can

show that the bond rate policies that respond to lagged inflation and that yield multiple

MSV solutions also allow sunspot equilibria of the type analyzed in the previous section.

A key finding in this section is that policies in which the bond rate is the policy

instrument not only can lead to sunspot equilibria, but also can generate multiple MSV

representations when lagged inflation is a state variable. It is worth emphasizing that this

conclusion also applies to a wide range of macro models that incorporate forms of inertia

in output and inflation, as studied in Woodford (2003). Thus, based on this analysis, such

policies appear to be problematic.

5 Forward-looking Long Rate Policy Rules

Given the prevalence of indeterminacy associated with long-rate policy rules that respond

to contemporaneous or lagged inflation, we now turn to alternative specifications of long

rate policies that are less susceptible to indeterminacy. We show that properly specified

forward-looking long rate policy rules are immune to the indeterminacy and instability

problems plaguing the long rate rules studied in the previous two sections. In this section,
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we focus on policies that respond to contemporaneous and expected future inflation.17

A basic problem with long rate policies that respond only to contemporaneous inflation

is that they rely on reduced-form behavior that may be violated in the economy. Consider,

for example a two-period bond rate policy (12) with coefficient θ2 = 1, corresponding, in

the absence of sunspots, to a short rate policy with γ = 2, assuming, for the moment,

that δ = 1. But, a sunspot that raises expected inflation and thereby current inflation by

one percentage point calls forth a one percentage point increase in the bond rate, which

supports the higher inflation rate. One solution to this problem is to impose θ2 > 1,

which assures a determinate stable REE. However, such a policy can only achieve a strict

subset of REE obtainable when the short rate is the policy instrument, where this subset

is the REE associated with values of γ > 2. Thus, long-rate policies may be inefficient if

the optimal choice of γ ∈ (1, 2).

A forward-looking long rate policy rule responds directly to sunspots and other forms

of “off-equilibrium” behavior that affect expectations and in so doing is able to deliver

the desired determinate and stable REE. Consider the two-period long rate policy rule of

the form:

i2,t =
θ2

1 + φ
(πt + φEtπt+1), 0 ≤ φ ≤ δ, (20)

where θ2 is the response coefficient to the weighted average of current and future inflation

rates. The case of φ = 0 was analyzed in Section 4. If φ = δ, then we say that the

“duration” of the inflation forecast appearing in the policy rule matches that of the bond.

Now, consider the same thought experiment of a sunspot affecting inflation expectations

described above, but assume φ = δ < 1. Note that under the assumption of φ = δ,

the short rate policy described by γ yields an equilibrium in which the long rate policy

equation holds exactly with θ2 = γ. So, under the long rate policy corresponding to

γ = 2, a one percentage point rise in inflation and inflation expectations raises the two-

period bond rate by two percentage points, which implies a rise in average real short-term

interest rates, which stabilizes the economy.

For the case of forward-looking policies that use the two-period bond rate as the policy

instrument, we obtain analytical results regarding determinacy.

17Preliminary results suggest that the findings for operational forward-looking rules are the same as
for the rules that we study here.
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Proposition 6 If φ ≤ δ < 1, the model is determinate if θ2 > 1 and is indeterminate

otherwise. If φ < δ = 1, the model is determinate if θ2 > 1 and is indeterminate otherwise.

If φ = δ = 1, the model is indeterminate. Finally, if the model is determinate then the

unique equilibrium is stable under learning.

These conditions are invariant to the values of the parameters α and β. We have also

considered forward-looking longer maturity long rate policies of the form:

im,t =
θm

(
∑m−1

j=0 φj)
Et

m−1∑
j=0

φj πt+j, 0 ≤ φ ≤ δ. (21)

Although we are not able to derive analytical results for the case of m > 2, based on

numerical investigation, we find the same results as in the case of m = 2.

An important implication of this proposition is that by setting φ equal to δ (assuming

δ < 1), any REE associated with a determinate short rate policy is obtainable using a

long-rate policy and the REE resulting from the long-rate policy is determinate. In the

case of δ = 1, any REE associated with a determinate short rate policy may be obtained

using a long rate policy by simply setting φ = 1
γ

and θ2 = 1+γ
2

. Our numerical results

indicate the same conclusion applies when longer-duration bonds are used as the policy

instrument.

As noted in the introduction, an important implication of these results is that in

order to assure determinacy, policy should be explicitly forward-looking when the policy

instrument is inherently forward-looking. This contrasts with the findings of Bernanke and

Woodford (1997) and Levin et al. (2003) that a forward-looking monetary policy using a

short-term interest rate instrument may well generate indeterminacy, unlike policies that

respond to current or lagged inflation.

6 Conclusion

One proposed solution to the zero bound problem is for the central bank to use a longer-

term bond rate as the policy instrument. In this paper, we show that such a policy can

easily lead to indeterminacy; furthermore, in some cases, more than one of the resulting
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multiple equilibria may be stable under learning. We show that the problem of indetermi-

nacy can be avoided if policy is explicitly forward-looking. Specifically, a forward-looking

policy rule in which the bond rate is determined by expected inflation over the matu-

rity of the bond produces a determinate and stable equilibrium. The bottom line of this

stylized analysis is that, although “moving out the yield curve” in response to the zero

bound involves more considerations than might be apparent at first, a careful central bank

conceivably could pursue an effective long rate policy.

Of course, lower future short nominal rates and lower current and future long nominal

rates could accomplish the goal of trying to reduce real interest rates enough in order to

stimulate the economy. However, higher expectations of future inflation can also lower real

interest rates, and there are many promising proposals to exploit this powerful lever on

the economy at the zero bound (e.g., Krugman 1998; Svensson 2001, 2003; and McCallum

2000, 2001).18 Our analysis appears to provide a cautionary note as well for these and

similar types of proposals that involve expectational policy instruments like the long rate.

In particular, trying to manipulate the average expected inflation rate over the next,

say, five years by means of an inflation target may not be sufficient, even if credible, to

determine a single outcome, because there may be many possible paths for expected prices

that are consistent with a long-run average inflation rate.

Still, our analysis of the manipulation of the long rate should not be construed as

suggesting that we think this is the only or even the most effective policy that could

be pursued at the zero bound when economic stimulus needs to be applied. But we do

believe that given the current central bank unanimity regarding the short rate as the

instrument of monetary policy, manipulation of the long rate is the most likely first step

in overcoming the zero bound—again, as suggested by Chairman Greenspan’s views in

the epigraph.

18In addition, direct effects on aggregate demand through the exchange rate and monetary base channels
may be exploited.
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Appendix

This appendix provides the proofs for propositions 3, 5, and 6; the proofs of Proposi-

tions 1 and 2 are found in Woodford (2003) and Evans and Honkapohja (2001), respec-

tively, and the proof of Proposition 4 is identical to that of Proposition 2.

The proofs of propositions 3, 5, and 6 require analyzing when the roots of a cubic

polynomial are of unit modulus. This analysis will be aided by the following lemma.

Lemma If y and z are roots of the polynomial x3 − Ax2 + Bx− C, and if y = z̄ (where

z̄ is the conjugate of z), and if |z| = 1, then

A− C =
B − 1

C
.

Proof. Let zi, i = 1, 2, 3, be the roots of the polynomial. Expanding

(x− z1)(x− z2)(x− z3)

shows

A = z1 + z2 + z3 (22)

B = z1z2 + z1z3 + z2z3 (23)

C = z1z2z3. (24)

(We will use these equations repeatedly in the proofs of the propositions.) Without loss

of generality, assume z1 = y and z2 = z. Write z = a+bi. Then z1 +z2 = 2a and z1z2 = 1.

Then by (24), z3 = C, by (23), 2az3 = B − 1, and by (22), A = 2a + z3.

Proposition 3

Proof. To analyze determinacy, we consider the non-stochastic model, and eliminate

variables to write down a single dynamic equation in inflation. Letting ψ = αβ, we

obtain

δπt+3 + (1− δ(2 + ψ))πt+2 + (δ − (2 + ψ))πt+1 + (θ2ψ(1 + δ) + 1)πt = 0. (25)

The associated cubic, which we write in the form x3 − Ax2 + Bx − C = 0, has, for
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coefficients,

A = 2 + ψ − 1

δ

B = 1− 1

δ
(2 + ψ)

C = −1

δ
(θ2ψ(1 + δ) + 1).

The model is determinate if the roots of this polynomial are all outside the unit circle,

and indeterminate otherwise. To compute the regions in parameter space corresponding

to determinacy and indeterminacy, we analyze when the roots lie on the unit circle, and

then appeal to continuity.

Suppose the cubic has a complex root, z1 = a + bi, of unit modulus, and further

suppose the imaginary component, b, is non-zero. Then its complex conjugate is also a

root, and we assume it is given by z2. Let Â = θ2ψ(1 + δ). By (24), z3 = −1
δ
(Â + 1).

This, combined with (23), implies 2a = 2+ψ

Â+1
. By (22), 2a = 2+ψ + 1

δ
Â. Setting these two

equations equal to each other implies

2 + ψ = (1 + Â)(2 + ψ) +
1

δ
Â(Â + 1).

Dividing by 2 + ψ and simplifying results in Â < 0, which contradicts our assumptions

on the model’s parameters. We conclude that b = 0.

Now assume z1 = 1. Then by (22), z2 + z3 = 1 + ψ − 1
δ
. Combining this with (23)

implies z2z3 = −1
δ
(ψ(1 + δ) + 1), and (24) implies z2z3 = −1

δ
(Â + 1). Setting these last

two equations equal to each other yields θ2 = 1.

Finally, assume z1 = −1. Then by (22), z2 + z3 = 3 + ψ − 1
δ
, and combining this with

(23) yields

z2z3 = 4 +
1

δ
(ψ(δ − 1)− 3).

And, (24) gives z2z3 = 1
δ
(Â + 1). Combining these last two equations and solving for θ,

we have

θ2 =
4(δ − 1)− ψ(1− δ)

ψ(1 + δ)
,

which contradicts the assumption that θ2 > 0.

We have shown that if the roots of the polynomial cross the unit circle, then our

parameter restrictions imply that the crossing must occur at z = 1, and the associated
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value of θ2 must be one. By specifying a calibration of the model, and choosing θ2 < 1, we

find numerically that the model is indeterminate, and choosing θ2 > 1, we find the model

is determinate. The result then follows from the fact that the roots of the polynomial are

continuous functions of the parameters.

The proofs of propositions 5 and 6, below, are quite similar to that of Proposition 3

and thus our exposition will be more brief.

Proposition 5

Proof. Writing down the associated polynomial, equations (22) - (24) yield

2 + ψ = z1 + z2 + z3 (26)

1 = z1z2 + z1z3 + z2z3 (27)

−ψγ = z1z2z3. (28)

First assume z1 = a + bi has unit norm and b 6= 0. By (28), z3 = −ψγ < 0, so that by

(27), a = 0. Then by (26), z3 = 2 + ψ > 0, which contradicts z3 = −ψγ < 0. Thus b = 0.

Now suppose z1 = 1. Then by (26), z2 + z3 = 1 + ψ, which, when combined with (27),

yields z2z3 = −ψ. Also, (28) implies z2z3 = −ψγ. These last two equations combine to

yield γ = 1.

Finally, suppose z1 = −1. Then by (26), z2 + z3 = 3 + ψ, which, when combined with

(27), yields z2z3 = 4+ψ. Also, (28) implies z2z3 = ψγ. These last two equations combine

to yield γ = 1 + 4
ψ
.

Again, we may finish the proof by specifying a calibration, choosing values of γ within

the regions set off above, numerically computing roots, and then appealing to continuity.

Proposition 6

Proof. Let Â = θ2
1+δ
1+φ

. The parameters of the associated polynomial are given by
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A = 2 + ψ − 1

δ

B =
Âφ + δ − ψ − 2

δ

C = −1

δ
(Â + 1).

First assume z1 = a + bi has unit norm and b 6= 0. The software Mathematica may be

used with the Lemma to solve for Â: we find that Â = 0 or

Â = −(1 + δ(2 + φ + ψ)) < 0,

which contradicts the restrictions on our parameters.

Now assume z1 = 1. Then by (22), z2 + z3 = 1 + ψ − 1
δ
, and combining this with (23)

yields z2z3 = B − (1 + ψ − 1
δ
). And, (24) gives z2z3 = −1

δ
(Â + 1). Setting these last two

equations equal to each other yields θ2 = 1.

Now assume z1 = −1 and φ < 1. Then by (22), z2 + z3 = 3 + ψ − 1
δ
, and combining

this with (23) yields z2z3 = B + (3 + ψ − 1
δ
). And, (24) gives z2z3 = 1

δ
(Â + 1). Setting

these last two equations equal to each other, and using Mathematica to solve for θ2 yields

θ2 =
(1− δ)(1 + φ)(4 + ψ)

ψ(1 + δ)(φ− 1)
< 0,

which contradicts the restrictions on our parameters.

Finally, if φ = 1 and δ = 1, then there is a root of the polynomial equal to −1, as can

be shown using Mathematica.

Proceeding as in the proofs of propositions 3 and 5 completes the proof.
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