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depending on risk aversion and other parameter values. Under some plausible calibra-
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1 Introduction

Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) con-
cluded that U.S. stock market volatility appeared excessive when compared to the present-
value of ex post realized dividends discounted at a constant rate, implying risk-neutral in-
vestors. A number of econometric problems with the empirical studies were later raised (e.g.,
Kleidon 1986, Marsh and Merton 1986), but it turned out that correcting these problems did
not eliminate the appearance of excess volatility.1

Other studies around this time (e.g., Grossman and Shiller 1981, LeRoy and LaCivita
1981) recognized that allowing for risk aversion when discounting the stream of ex post realized
dividends could increase volatility relative to the risk-neutral case. However, the hypothetical
stock price series computed in this way was still only linked to a single information assumption,
i.e., perfect foresight on the part of investors about the path of future dividends.
In this paper, we employ a standard Lucas-type asset pricing model with power utility

and exponentially-growing dividends to derive theoretical volatility measures in a setting that
allows for varying degrees of investor information about the dividend process. We examine
four different information sets labeled Gt, Ht, Jt, and I∗t that contain progressively increasing
amounts of information, i.e., Gt ⊆ Ht ⊆ Jt ⊆ I∗t .Under setGt, the investor can observe current
and past dividend realizations but observations of trend dividend growth are contaminated
with noise. This imperfect information setup is similar to one considered by Veronesi (2000).2

Set Ht provides more information than set Gt by allowing investors to directly observe trend
growth and thereby identify the noise shocks. Set Jt goes a step further by allowing investors to
have one-period foresight about dividends and the trend growth rate. This setup captures the
possibility that investors may have some auxiliary information that allows them to accurately
forecast dividends and trend growth over the near-term. Information set Jt connects to
recent research on business cycles that focuses on “news shocks”as an important quantitative
source of economic fluctuations. In these models, news shocks provide agents with auxiliary
information about future technology innovations.3 Finally, set I∗t provides the maximum
amount of investor information, corresponding to perfect knowledge about the entire stream
of past and future dividends and trend growth rates. While this information assumption is
obviously extreme, it provides a useful benchmark and helps connect our results to the earlier
literature on stock market volatility mentioned above.
We demonstrate that the assumed degree of investor information can have significant

1For summaries of this extensive literature, see West (1988a), Gilles and LeRoy (1991), Shiller (2003), and
LeRoy (2010).

2We employ a standard unobserved-component time series model for dividend growth. Veronesi (2000)
considers a Markov switching process where investors receive a noisy signal about the drift parameter for
dividends which can take on different values.

3See, for example, Barsky and Sims (2011).
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qualitative and quantitative impacts on the volatility of equity market variables in the model.
The volatility of the price-dividend ratio increases monotonically with investor information
but the relationship between investor information and equity return volatility can be non-
monotonic, depending on risk aversion and other parameter values. Put differently, providing
investors with more information about the dividend process can either increase or decrease
the volatility of the equity return. There also can be a non-monotonic relationship between
investor information and the volatility of the excess return on equity, i.e., the equity premium.
The intuition for the complex relationship between investor information and return volatil-

ity is linked to the discounting mechanism. Two crucial elements are the persistence of trend
dividend growth and the investor’s discount factor (which depends on the coeffi cient or relative
risk aversion). Both elements affect the degree to which future dividend innovations influence
the perfect foresight price via discounting from the future to the present. When dividends
are suffi ciently persistent and the investor’s discount factor is suffi ciently close to unity, the
discounting weights applied to successive future dividend innovations decay gradually. Since
log returns are nearly the same as log price-changes, computation of the log return under
information set I∗t tends to “difference out”the future dividend innovations, thus shrinking
the magnitude of the perfect foresight return variance relative to the other information sets.
In contrast, when dividend growth is less persistent and/or the investor’s discount factor is
much less than unity, the discounting weights applied to successive future dividend innova-
tions decay rapidly. Consequently, these terms do not tend to difference out which serves to
magnify the perfect foresight return variance relative to the other information sets. Similar
logic applies when comparing return volatility under information set Jt (one-period foresight)
to return volatility under information sets Gt or Ht.
The log return variance in our model is the analog to the arithmetic price-change variance

examined by West (1988b) and Engel (2005) in risk-neutral settings with arithmetically-
growing dividends. They show that the arithmetic price-change variance is a monotonically
decreasing function of investors’ information about future dividends. In contrast, we show
that when investors are risk averse, the analogs to the West-Engel results do not go through;
log return variance (or log price-change variance) is not a monotonic decreasing function of
investors’information about future dividends.4 Our results have implications for the behavior
of other asset prices, such as exchange rates. For example, Engel (2013, p. 11) states “...the
variance of changes in the asset price falls with more information...[N]ews can account for
a high variance in the real exchange rate, but not for a high variance in the change in the
real exchange rate.”Our results demonstrate that the variance of log returns (or log price-
changes) can rise with more information, thereby allowing new shocks to help account for the
high variance of exchange rate changes or other asset price changes.

4On page 41, West (1988b) acknowledges that his result “may not extend immediately if logarithms or
logarithmic differences are required to induce stationarity [of the dividend process].”
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As part of our quantitative analysis, we compare model-predicted volatilities to the corre-
sponding values in long-run U.S. stock market data. Using plausible calibrations for the noisy
dividend process and the coeffi cient of relative risk aversion, we show that some specifications
of the model can match the standard deviations of the log price dividend ratio, the log equity
return, and the log excess return on equity in the data. For the baseline calibration, model-
predicted volatility for the log price-dividend ratio can match the data only when investors
are endowed with at least some knowledge about future dividends, i.e., information sets Jt
or I∗t . The perfect foresight case requires a coeffi cient of relative risk aversion around 4 to
match the data volatility. However, in Section 5 of the paper, we show that the model under
information set Gt (least information) can match the data volatility with a risk aversion co-
effi cient around 5 if we allow for a highly-persistent trend growth process combined a more
volatile noise shock (while still matching the moments of U.S. consumption growth). Overall,
our results shows that in the absence of concrete knowledge about investors’information (e.g.,
whether investors have some news about future dividends or how much noise contaminates
the dividend process), it becomes more diffi cult to conclude that the observed volatility in the
data is excessive.
The remainder of the paper is organized as follows. Section 2 describes the model and the

information setup. Section 3 examines how investor information influences the volatility of
the price-dividend ratio. Section 4 extends the analysis to consider return volatility. Section
5 examines how the amount of noise in the dividend process affects volatility when trend
dividend growth is unobservable. Section 6 concludes. An appendix provides the details for
all derivations.

2 Model

We examine the effect of investor information in a standard Lucas (1978)-type asset pricing
model with risk averse investors and exponentially-growing dividends. The representative
investor can purchase equity shares to transfer wealth from one period to another. Each share
pays an exogenous stream of stochastic dividends in perpetuity. The investor’s problem is to
maximize

E0

{ ∞∑
t=0

β t
c1−αt − 1

1− α |I0

}
, (1)

subject to the budget constraint

ct + ptst = (pt + dt) st−1, ct, st > 0, (2)

where ct is the investor’s consumption in period t, α is the coeffi cient of relative risk aversion
and st is the number of shares held in period t. We use the notation Et (· | It) to represent
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the mathematical expectation operator, conditional on the investor’s information set It, to be
described more completely below.
The first-order condition that governs the investor’s share holdings is

pt = Et

{
β

(
ct+1
ct

)−α
(pt+1 + dt+1) |It

}
. (3)

The first-order condition can be iterated forward to substitute out pt+j for j = 1, 2, ... Ap-
plying the law of iterated expectations and imposing a transversality condition that excludes
bubble solutions yields the following expression for the equilibrium equity price:

pt = Et

{ ∞∑
j=1

Mt, t+j dt+j|It

}
, (4)

where Mt,t+j ≡ β j (ct+j/ct)
−α is the stochastic discount factor.

Equity shares are assumed to exist in unit net supply. Market clearing therefore implies
ct = dt for all t such that the equity share represents a claim to consumption.

2.1 Dividends and Investor Information

The growth rate of dividends xt ≡ log (dt/dt−1) = log (ct/ct−1) is governed by a standard
unobserved-component time series model:

xt = τx,t + vt vt ∼ NID
(
0, σ2v

)
, (5)

τx,t = ρτx,t−1 + (1− ρ)µ+ εt, |ρ| < 1, εt ∼ NID
(
0, σ2ε

)
, (6)

where τx,t is the unobserved trend component of dividend growth and vt is a noise shock that
is normally and independently distributed (NID) with mean zero and variance σ2v. The trend
component evolves as an AR(1) process with mean µ, persistence parameter ρ, and innovation
variance σ2ε. The values of µ, ρ, σ

2
v, and σ

2
ε are assumed known to the investor.

5 The precision
of investor information about trend growth can be summarized by the signal-to-noise ratio
σε/σv.

6 When σε/σv →∞, the noise shock becomes insignificant and we can write xt = τx,t.

When σε/σv → 0, the trend component becomes insignificant and xt is NID.

5Given a long time series of observations of xt, the investor can infer the values of µ, ρ, σ2v, and σ
2
ε from

the unconditional moments of the time series.
6Here we will refer to σε/σv as the signal-to-noise ratio. The same term is also often applied to the ratio

of the two variances, i.e., σ2ε/σ
2
v.
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We define the following refinements of the generalized investor information set It, where
each set contains progressively increasing amounts of information about the dividend process:

Gt ≡ {dt, dt−1, dt−2, ...} , (7)

Ht ≡ {dt, τx,t, dt−1, τx,t−1, dt−2, τx,t−2, ...} , (8)

Jt ≡ {dt+1, τx,t+1, dt, τx,t, dt−1, τx,t−1, dt−2, τx,t−2, ...} , (9)

I∗t ≡ {...dt+2, τx,t+2, dt+1, τx,t+1, dt, τx,t, dt−1, τx,t−1, dt−2, τx,t−2, ...} , (10)

such that Gt ⊆ Ht ⊆ Jt ⊆ I∗t . Set Gt contains the least amount of investor information
among the four sets; the investor can observe current and past dividend realizations but trend
dividend growth cannot be observed directly due to the presence of noise. Set I∗t provides
the maximum amount of investor information, corresponding to perfect knowledge about the
entire stream of past and future dividends and trend growth rates. In between these two, set
Ht provides more information than set Gt by allowing investors to directly observe current and
past trend growth rates. These observations allow the investor to identify the noise shocks in
equation (5). Set Jt = Ht ∪ {dt+1, τx,t+1} goes a step further by allowing investors to have
one-period foresight regarding dividends and trend growth at time t + 1. Along the lines of
LeRoy and Parke (1992), set Jt entertains the possibility that investors receive some news
that allows them to forecast these variables over the near-term without error.
Throughout the paper, we adopt the notation of using unmarked variables (such as pt) to

denote variables computed using the generalized information set It and superscripts “G,”“H,”
“J,”or “∗”to denote variables computed using information sets Gt, Ht, Jt, or I∗t , respectively.
Starting from equation (4), the perfect foresight (or ex post rational) equity price is given

by

p∗t =
∞∑
j=1

Mt, t+j dt+j, (11)

which implies the following relationship pt = Et(p
∗
t |It).

3 Volatility of the Price-Dividend Ratio

In a setting with exponentially-growing dividends, the equilibrium stock price will trend up-
ward, such that variance measures conditional on some initial date will increase with time.
Here we correct for trend by working with the price-dividend ratio and the rate of return
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which are stationary variables in the model.7

The price-dividend ratios implied by the various information sets are defined by yGt ≡
pGt /dt, y

H
t ≡ pHt /dt, y

J
t ≡ pJt /dt, and y

∗
t ≡ p∗t/dt. By substituting the equilibrium condition

ct = dt into the first-order condition (3), the first-order conditions for the various information
sets can be written as

yGt = Et
{
β exp [(1− α)xt+1]

(
yGt+1 + 1

)
|Gt

}
, (12)

yHt = Et
{
β exp [(1− α)xt+1]

(
yHt+1 + 1

)
|Ht

}
, (13)

yJt = Et
[
β exp [(1− α)xt+1]

(
yJt+1 + 1

)
|Jt
]
, (14)

y∗t = β exp [(1− α)xt+1]
(
y∗t+1 + 1

)
, (15)

where we have dropped the expectation operator for information set I∗t .
For the generalized information set It, we have pt = Et(p

∗
t |It). The price-dividend ratios yGt ,

yHt , y
J
t , and y

∗
t all have the same denominator dt which is known at time t under all information

sets. Given that sets (7) through (10) contain progressively increasing amounts of information
about dividends, we can write yGt = Et(y

∗
t+1|Gt), y

H
t = Et(y

∗
t+1|Ht), and yJt = Et(y

∗
t+1|Jt). We

therefore have
V ar

(
yGt
)
≤ V ar

(
yHt
)
≤ V ar

(
yJt
)
≤ V ar (y∗t ) , (16)

which recovers the basic form of the variance bound originally derived by LeRoy and Porter
(1981), but now extended to allow for risk aversion and exponentially-growing dividends. We
now proceed to solve for the equilibrium price-dividend ratio under each information set.

3.1 Unobserved Trend: Information Set Gt

Our solution for the equilibrium price-dividend ratio employs an analytical perturbation
method.8 We solve the first-order condition (12) subject to the dividend growth process
(5) and (6). There are two state variables: observed dividend growth xt ≡ log (dt/dt−1) and

7The early literature on stock market volatility often assumed that dividends and stock prices were sta-
tionary, either in levels or logarithms. West (1988a, p. 641) summarizes the various assumptions made in the
earlier literature.

8Lansing (2010) demonstrates the accuracy of this solution method for the level of the price-dividend ratio
in the noiseless case (σv = 0) . Here we focus on the variance of the price-dividend ratio and variance of the
equity return. Variance measures are not affected by constant terms in the perturbation solutions, which can
be an important source of approximation error when the point of approximation is the deterministic steady
state (Collard and Juillard 2001). As in Lansing (2010), the point of approximation for our solution method
is the ergodic mean, not the deterministic steady state, which helps to improve accuracy.
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the lagged Kalman filter estimate of trend growth xt−1 ≡ Et−1 (τx,t|Gt−1) . The investor’s
estimate of trend growth evolves according to the following Kalman filter updating equation:

Et (τx,t+1|Gt)︸ ︷︷ ︸
≡xt

= ρ [λxt + (1− λ) xt−1] + (1− ρ)µ, (17)

λ =
(σε/σv)

2 − (1− ρ2) +
√

(σε/σv)
4 + 2 (σε/σv)

2 (1 + ρ2) + (1− ρ2)2

2 + (σε/σv)
2 − (1− ρ2) +

√
(σε/σv)

4 + 2 (σε/σv)
2 (1 + ρ2) + (1− ρ2)2

, (18)

where λ ∈ [0, 1] is the converged Kalman gain parameter.9 As σε/σv → 0, we have λ = 0

such that xt is simply the unconditional mean of past dividend growth rates, as given by µ.
As σε/σv →∞, we have λ = 1, such that xt = ρ xt + (1− ρ)µ.

We make the standard assumption that the investor’s first-order condition (12) is not
altered by the existence of the filtering problem.10 To solve for the equilibrium price-dividend
ratio, it is convenient to define the following nonlinear change of variables:

zGt ≡ β exp [(1− α)xt]
(
yGt + 1

)
, (19)

where zGt represents a composite variable that depends on both the growth rate of dividends
xt and the price-dividend ratio yGt . The first-order condition (12) becomes

yGt = Et(z
G
t+1|Gt), (20)

implying that yGt is simply the investor’s forecast of the composite variable z
G
t+1, conditioned

on information set Gt. Combining (19) and (20), the composite variable zGt is seen to be
governed by the following equilibrium condition:

zGt = β exp [(1− α)xt]
[
Et(z

G
t+1|Gt) + 1

]
, (21)

which shows that the value of zGt in period t depends on the investor’s conditional forecast
of that same variable. The following proposition presents an approximate analytical solution
for the composite variable zGt .

Proposition 1. An approximate analytical solution for the equilibrium value of the composite
variable zGt under information set Gt is given by

zGt = g0 exp [g1 (xt − µ) + g2 (xt−1 − µ)] ,

9For details regarding the Kalman filter, see Harvey (1993). The solution to the filtering problem employed
here follows Gourinchas and Tornell (2004) and Gilchrist and Saito (2008).
10See, for example, Cogley and Sargent (2008).
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where g0, g1, and g2 solve

g0 =
β exp [(1− α)µ]

1− β exp
[
(1− α)µ+ 1

2
(g1)

2 (σ2ε + σ2v)
] ,

g1 =
(1− α)

{
1− (1− λ) ρβ exp

[
(1− α)µ+ 1

2
(g1)

2 (σ2ε + σ2v)
]}

1− ρβ exp
[
(1− α)µ+ 1

2
(g1)

2 (σ2ε + σ2v)
] ,

g2 =
(1− α) (1− λ) ρβ exp

[
(1− α)µ+ 1

2
(g1)

2 (σ2ε + σ2v)
]

1− ρβ exp
[
(1− α)µ+ 1

2
(g1)

2 (σ2ε + σ2v)
] ,

with λ given by equation (18), provided that β exp
[
(1− α)µ+ 1

2
(g1)

2 (σ2ε + σ2v)
]
< 1.

Proof : See Appendix A.1.

Two values of g1 satisfy the nonlinear equation in Proposition 1. The inequality restriction
selects the value of g1 with lower magnitude to ensure that g0 = exp

{
E
[
log
(
zGt
)]}

is positive.
Given the solution for the composite variable zGt , we can recover the price-dividend ratio y

G
t

as follows:

yGt = Et(z
G
t+1|Gt) = Et {g0 exp [g1 (xt+1 − µ) + g2 (xt − µ)] |Gt} ,

= g0 exp
[
(g1 + g2) (xt − µ) + 1

2
(g1)

2 (σ2ε + σ2v
)]
, (22)

where we have used Et(xt+1|Gt) = Et(τx,t+1|Gt) ≡ xt. The above solution yields the following
unconditional variance of the log price-dividend ratio:

V ar
[
log
(
yGt
)]

= (g1 + g2)
2 V ar (xt) , (23)

where the expression for V ar (xt) is shown in Appendix A.2. Given V ar
[
log
(
yGt
)]
, it is

straightforward to derive an expression for V ar
(
yGt
)
.11

From equation (23), we can see how different levels of risk aversion affect the variance of
log
(
yGt
)
. In the special case of logarithmic utility, we have α = 1 such that g1 = g2 = 0. In

this case, fluctuations in dividend growth do not affect log
(
yGt
)
, which is therefore constant.

This is because the income and substitution effects of a shock to dividend growth are exactly
offsetting with log utility. When α < 1, an increase in α shrinks the magnitude of g1 and
g2 which moves the variance of log

(
yGt
)
toward zero. This happens because fluctuations in

11Given the unconditional mean E
[
log
(
yGt
)]

= log (g0) + (g1)
2 (
σ2ε + σ

2
v

)
/2 and the expression for

V ar
[
log
(
yGt
)]
from equation (23), the unconditional variance of yGt can be computed by making use

of the following relationships for the mean and variance of the log-normal distribution: E
(
yGt
)
=

exp
{
E
[
log
(
yGt
)]
+ 1

2V ar
[
log
(
yGt
)]}

and V ar
(
yGt
)
= E

(
yGt
)2 {

exp
(
V ar

[
log
(
yGt
)])
− 1
}
.
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dividend growth are increasingly offset by fluctuations in their marginal utility; the closer α
is to unity, the greater is the offset. When α > 1, an increase in α raises the magnitude of g1
and g2, thereby increasing the variance of log

(
yGt
)
. Consequently, the variance of log

(
yGt
)
is

a V-shaped function of α, centered at α = 1.

3.2 Observed Trend: Information Set Ht

Under set Ht, investors can separately observe trend growth τx,t and the noise shock vt which
now become the two state variables. The following proposition presents an approximate
analytical solution for the composite variable zHt ≡ β exp [(1− α)xt]

(
yHt + 1

)
.

Proposition 2. An approximate analytical solution for the equilibrium value of the composite
variable zHt under information set Ht is given by

zHt = h0 exp [h1 (τx,t − µ) + h2vt] ,

where h0, h1, and h2 solve

h0 =
β exp [(1− α)µ]

1− β exp
[
(1− α)µ+ 1

2
(h1)

2 σ2ε + 1
2

(h2)σ2v
] ,

h1 =
1− α

1− ρβ exp
[
(1− α)µ+ 1

2
(h1)

2 σ2ε + 1
2

(h2)σ2v
] ,

h2 = 1− α,

provided that β exp
[
(1− α)µ+ 1

2
(h1)

2 σ2ε + 1
2

(h2)σ
2
v

]
< 1.

Proof : See Appendix B.1.

Given the above solution, we can recover yHt and compute V ar
[
log
(
yHt
)]
. The results

are:

yHt = Et(z
H
t+1|Ht) = h0 exp

[
h1ρ (τx,t − µ) + 1

2
(h1)

2 σ2ε + 1
2

(h2)
2 σ2v
]
, (24)

V ar
[
log
(
yHt
)]

= (h1ρ)2 V ar (τx,t) , (25)

where V ar (τx,t) = σ2ε/ (1− ρ2) from equation (5). Notice that the variance of the noise shock
σ2v can influence the variance of log

(
yHt
)
only via the solution coeffi cient h1. When either

α = 1 (log utility) or ρ = 0 (trend growth is NID), we have h1 = 0 and the price-dividend
ratio yHt is constant. Similarly, Proposition 1 shows that α = 1 yields g1 = g2 = 0 while ρ = 0

yields g1 + g2 = 0. Hence, yGt is also constant in these two special cases.
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3.3 One-Period Foresight: Information Set Jt

In the preceding subsection we assumed that investors have no auxiliary information or news
that would help to predict future dividends. An example of such auxiliary information might
be company-provided guidance about future financial performance that is typically dissemi-
nated to investors via quarterly conference calls. To capture this idea, we consider an envi-
ronment where investors can see dividends and trend growth one period ahead without error,
as in LeRoy and Parke (1992).
As shown in Appendix C.1, the expanded information set Jt implies the following rela-

tionships:

pJt = Mt,t+1

(
dt+1 + pHt+1

)
, (26)

yJt = β exp [(1− α) xt+1]
(
yHt+1 + 1

)
,

= zHt+1 = h0 exp [h1 (τx,t+1 − µ) + h2vt+1] , (27)

where pJt and y
J
t are the price and price-dividend ratio under information set Jt. The assump-

tion of one-period foresight implies that Mt, t+1, dt+1, and xt+1 are all known to investors at
time t. However, going forward from time t+1, the investor will be faced with information set
Ht+1 where Mt+1, t+2, dt+2, and xt+2 are not known. Hence, pHt+1 and y

H
t+1 are the equilibrium

variables that prevail at time t + 1. In equation (27), we have employed the definition of
zHt+1 and the solution in Proposition 2. From equations (24) and (27), it follows directly that
yHt = Et(y

J
t |Ht), which in turn implies V ar

(
yHt
)
≤ V ar

(
yJt
)
.

Equation (27) implies the following unconditional variance:

V ar
[
log
(
yJt
)]

= (h1)
2 V ar (τx,t) + (h2)

2 σ2v. (28)

Comparing the above expression to V ar
[
log
(
yHt
)]
from equation (25) confirms the ordering

V ar
[
log
(
yHt
)]
≤ V ar

[
log
(
yJt
)]
since |ρ| < 1. Unlike the preceding information sets, the

value of yJt is not constant when ρ = 0 but instead continues to move in response to the
anticipated values of trend growth τx,t+1 and the noise shock vt+1.

3.4 Perfect Foresight: Information Set I∗t
The assumption of perfect foresight represents an upper bound on the investor’s information
about the dividend process. While this information assumption is obviously extreme, it pro-
vides a useful benchmark for the analysis of stock market volatility, going back to the original
contributions of Shiller (1981) and LeRoy and Porter (1981).
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The perfect foresight price-dividend ratio y∗t is governed by equation (15), which is a
nonlinear law of motion. As shown in Appendix D.1, we can approximate equation (15) using
the following log-linear law of motion:

log (y∗t )−E [log (y∗t )] = (1−α) (xt+1 − µ)+β exp [(1− α)µ]
{

log
(
y∗t+1

)
− E [log (y∗t )]

}
. (29)

We use the log-linear law of motion (29) to derive the following unconditional variance
(Appendix D.2):

V ar [log (y∗t )] =
(1− α)2{

1− β2 exp [2(1− α)µ]
} {1 + ρβ exp [(1− α)µ]

1− ρβ exp [(1− α)µ]
V ar (τx,t) + σ2v

}
, (30)

which is considerably more complicated than either V ar
[
log
(
yHt
)]
from equation (23) or

V ar
[
log
(
yJt
)]
from equation (28). Similar to the case of set Jt, the above expression implies

V ar [log (y∗t )] = 0 when α = 1 but V ar [log (y∗t )] > 0 when ρ = 0. When ρ = 0, we have the
following result: 0 = V ar

[
log(yGt )

]
= V ar

[
log(yHt )

]
≤ V ar[log(yJt )] ≤ V ar[log y∗t )].

3.5 Model Calibration

We now turn to a quantitative analysis of the model’s predictions for the volatility of the
log price-dividend ratio. There are six parameter values to be chosen: four pertain to the
dividend process (µ, ρ, σε, and σv) and two pertain to the investor’s preferences (α and β).
Given that an equity share in our model represents a consumption claim, we calibrate

the process for xt in equations (5) and (6) using U.S. data on real per capita aggregate
consumption (services and nondurable goods) from 1930 to 2012.12 Given a target value for
the signal-to-noise ratio σε/σv, we choose values for µ, ρ, σε, and σv to match the mean,
autocorrelation, and standard deviation of U.S. consumption growth, as summarized in Table
1.13

Table 1: Calibrated Parameter Values

Parameter
Baseline
σε/σv = 2

Higher Noise
σε/σv = 0.775 Target

µ 0.0186 0.0186 E (xt) = 1.86%
ρ 0.583 0.800 Corr (xt, xt−1) = 0.50
σε 0.0162 0.0102 Std Dev (xt) = 2.16%
σv 0.0081 0.0132 σε/σv = 2 or 0.775

Note: Target moments based on U.S. real per capita consumption growth, 1930 to 2012.

12Data on nominal consumption expenditures for services and nondurable goods are from the Bureau of
Economic Analysis, NIPA Table 2.3.5, lines 8 and 13. The corresponding price indices are from Table 2.3.4,
lines 8 and 13. Population data are from Table 2.1, line 40.
13The moment formulas implied by equations equations (5) are (6) are shown in Appendix A.2
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We initially consider two values for the target signal-to-noise ratio: a baseline value of
σε/σv = 2 and an alternative “higher noise”value of σε/σv = 0.775. The higher noise calibra-
tion requires a higher value for the trend growth persistence parameter (ρ = 0.8) in order to
match the autocorrelation of U.S. consumption growth. From equation (18), the value of the
Kalman gain parameter is λ = 0.810 for the baseline calibration and λ = 0.819 for the higher
noise calibration. Later, in Section 5, we will examine the sensitivity of our results to a much
wider range of values for the target signal-to-noise ratio.
Table 2 compares the moments in the data versus those in the model for the two values of

σε/σv. The baseline calibration with σε/σv = 2 does better at matching Corr (xt, xt−2) and
Corr (∆xt,∆xt−1) in the data.

Table 2. Moments of Consumption Growth: Data versus Model

Statistic
U.S. Data
1930 to 2012

Baseline
σε/σv = 2

Higher Noise
σε/σv = 0.775

Mean (xt) 0.0186 0.0186 0.0186
Std Dev (xt) 0.0216 0.0216 0.0216
Std Dev (∆xt) 0.0211 0.0215 0.0215
Corr (xt, xt−1) 0.50 0.50 0.50
Corr (xt, xt−2) 0.19 0.29 0.40
Corr (∆xt,∆xt−1) −0.21 −0.29 −0.40
Note: Data source is Bureau of Economic Analysis, NIPA tables 2.1, 2.3.4, and 2.3.5.

Given the parameter values from Table 1 and the expression for the price-dividend ra-
tio under set Gt, we choose the value of the subjective time discount factor β to achieve
E
[
log
(
yGt
)]

= 3.21, consistent with the sample mean of the log price-dividend ratio for the
S&P 500 stock index from 1871 to 2012. For example, when the coeffi cient of relative risk
aversion is α = 2, this procedure yields β = 0.978 for the baseline calibration and β = 0.977

for the higher noise calibration.14 The same value of β is used for all information sets. When-
ever α or the parameters of the dividend process are changed, the value of β is recalibrated to
maintain E

[
log
(
yGt
)]

= 3.21. When α exceeds a value slightly above 3, achieving the target
value E

[
log
(
yGt
)]

= 3.21 requires a β value greater than unity. Nevertheless, for all values of
α examined, the mean value of the stochastic discount factor E

[
β (ct+1/ct)

−α] remains below
unity.15

14Cochrane (1992) employs a similar calibration procedure. For a given discount factor β, he chooses the
risk aversion coeffi cient α to match the mean price-dividend ratio in the data.
15Kocherlakota (1990) shows that a well-defined competitive equilibrium with positive interest rates can

still exist in growth economies when β > 1.
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3.6 Quantitative Analysis

Figure 1 plots the model-implied standard deviations of the log price dividend ratio for each
of the four information sets over the range 0 ≤ α ≤ 10.16 Specifically, we plot the standard
deviations of log

(
yGt
)
(dotted line), log

(
yHt
)
(dashed line), log

(
yJt
)
(dash-dotted line), and

log (y∗t ) (solid line). The horizontal dashed line at the value 0.427 is the standard deviation of
the log-price dividend ratio in U.S. data from 1871 to 2012.17 The top panel shows the results
for the baseline calibration while the bottom panel shows the results for the higher noise
calibration. Both calibrations match the moments of U.S. consumption growth, as shown in
Table 2.

[Figure 1 about here]

Under all information sets, the model-implied standard deviation is a V-shaped function
centered at α = 1, corresponding to log utility. For any α 6= 1, the standard deviation of
log
(
yGt
)
is the lowest while the standard deviation of log (y∗t ) is the highest. Moving vertically

in the figure, volatility increases monotonically with investor information about the dividend
process, consistent with the theoretical inequality (16). The volatility results for sets Gt and
Ht are quantitatively similar under the baseline calibration, but exhibit more divergence under
the higher noise calibration. Recall that the noise shock is directly observable for set Ht but
not Gt.

For the baseline calibration (top panel of Figure 1), model-predicted volatility can match
the data volatility only when investors are endowed with at least some knowledge about future
dividends, i.e., information sets Jt or I∗t . For example, under perfect foresight I

∗
t the model

requires α ' 4.4 to match the volatility of the log price-dividend ratio in the data. This result
is reminiscent of Grossman and Shiller (1981) who employ an informal visual comparison to
conclude that a risk aversion coeffi cient around 4 is needed to make the perfect foresight stock
price computed from ex post realized dividends in the data look about as volatile as a plot of
the S&P 500 stock price index.
For the higher noise calibration (bottom panel of Figure 1), model-predicted volatility can

match the data volatility with α ≤ 10 under all four information sets. However, in the case of
sets Gt and Ht, the required level of risk aversion is near the limit of the plausible range. For
example, model-predicted volatility under set Gt (least information) can match the data when
α ' 9.5. Recall that the higher noise calibration employs a higher value for the trend growth
persistence parameter of ρ = 0.8 in order to match the autocorrelation of U.S. consumption
growth (Table 1). At the higher value of ρ, the trend growth process (6) is closer to a unit root
specification which serves to magnify the volatility of the model price-dividend ratio. Later,

16Mehra and Prescott (1985) argue that risk aversion coeffi cients that fall within this range are plausible.
17The standard deviation of the price dividend ratio in levels (as opposed to logarithms) is 14.2, with a

corresponding mean value of 27.3.
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in Section 5, we will examine the relationship between noise and model-predicted volatility in
more detail.
The early literature on tests for excess volatility in stock prices typically assumed that

investors were risk neutral, i.e., α = 0.18 At the far left of Figure 1, we see that both model
calibrations substantially underpredict the data volatility when α = 0. In other words, re-
stricting attention to a risk-neutral environment would lead one to conclude that observed
volatility in the data is excessive relative to what can be explained by a reasonably-calibrated
asset pricing model. However, if the analysis is expanded (as done here) to consider a richer
model that allows for risk aversion and a variety of different investor information sets, then
it becomes more diffi cult to conclude that the data volatility is excessive. This is particu-
larly true if one allows for investor information about future dividends. A finding of excess
volatility in the data relative to the model’s theoretical prediction requires: (1) knowledge of
the information set used by the investor to make conditional forecasts, (2) the value of the
representative investor’s risk aversion coeffi cient α, and (3) the amount of noise present in the
dividend process, as measured by the signal-to-noise ratio σε/σv.

4 Return Volatility

4.1 Equity Return

We now examine the relationship between investor information and the volatility of the log
equity return, i.e., log (Rt+1) where Rt+1 = (pt+1 + dt+1) /pt is the gross rate of return on
equity.19 Rewriting the gross return in terms of stationary variables for each information set
yields:

RG
t+1 = exp (xt+1)

(
yGt+1 + 1

yGt

)
= β−1 exp (αxt+1)

[
zGt+1

Et(zGt+1|Gt)

]
, (31)

RH
t+1 = exp (xt+1)

(
yHt+1 + 1

yHt

)
= β−1 exp (αxt+1)

[
zHt+1

Et(zHt+1|Ht)

]
, (32)

RJ
t+1 = exp (xt+1)

(
yJt+1 + 1

yJt

)
= β−1 exp (αxt+1)

[
zJt+1

Et(zJt+1|Jt)

]
, (33)

R∗t+1 = exp (xt+1)

(
y∗t+1 + 1

y∗t

)
= β−1 exp(αxt+1). (34)

18For an overview of this literature, see LeRoy (2010).
19Very similar results are obtained for the volatility of the log price-change, i.e., log (pt+1/pt). Over the

period 1871 to 2012, the correlation coeffi cient between log real price changes and log real equity returns in
U.S. annual data is 0.996. LeRoy (1984, p. 186) shows that the unconditional variance of price changes is
numerically very close to the conditional variance of prices in a model with stationary dividends.
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In the expression for RG
t+1, we have eliminated y

G
t using the equilibrium condition (20) and

eliminated yGt+1 + 1 using the definitional relationship

yGt+1 + 1 = zGt+1 β
−1 exp [−(1− α)xt+1] , (35)

which follows from equations (20) and (21) evaluated at time t + 1. The same procedure is
used in the expressions for RH

t+1 and R
J
t+1. In the expression for R

∗
t+1, we have substituted

in
(
y∗t+1 + 1

)
/y∗t = β−1 exp [−(1− α)xt+1] from the nonlinear law of motion (15). The terms

zIt+1/Et(z
I
t+1|It) for It = Gt, Ht or Jt., represent the investor’s proportional forecast errors

under the respective information sets. By definition, forecast errors are absent for information
set I∗t .
In the appendix, we show that the laws of motion for the log equity return are given by

log(RG
t+1)− E[log(RG

t+1)] = α (xt+1 − µ) + g1 [xt+1 − Et (τx,t+1|Gt)] , (36)

log(RH
t+1)− E[log(RH

t+1)] = α (τx,t+1 − µ) + h1εt+1 + vt+1, (37)

log(RJ
t+1)− E

[
log(RJ

t+1)
]

= (1− h1 + ρn1) (τx,t+1 − µ) + αvt+1 + n1εt+2 + n2vt+2,

(38)

log
(
R∗t+1

)
− E

[
log
(
R∗t+1

)]
= α (τx,t+1 − µ) + αvt+1, (39)

where Et (τx,t+1|Gt) ≡ xt is the Kalman filter estimate of trend growth from equation (17).
In equation (38), n1 ≡ h0h1/ (1 + h0) and n2 ≡ h0h2/ (1 + h0) are Taylor series coeffi cients.20

Notice that the laws of motion for the log return all exhibit the same basic structure, i.e., a
term related to dividend growth at time t+ 1 followed by terms involving a forecast error or
shock innovation.
Given the laws of motion for log returns, it is straightforward to compute the following

unconditional variances:

V ar[log(RG
t+1)] = (α + g1)

2 V ar (xt) + (g1)
2 V ar (xt)− 2g1 (g1 + α)Cov (xt, xt−1) ,

(40)

V ar[log(RH
t+1)] = α2 V ar (τx,t) + h1 (h1 + 2α) σ2ε + σ2v, (41)

V ar
[
log(RJ

t+1)
]

= (1− h1 + ρn1)
2 V ar (τx,t) + (n1)

2 σ2ε +
[
(n2)

2 + α2
]
σ2v, (42)

V ar
[
log
(
R∗t+1

)]
= α2 V ar (τx,t) + α2 σ2v, (43)

20As described in Appendix C.2, these Taylor series coeffi cients arise when the term log
(
zHt+2 + 1

)
is ap-

proximated as a linear function of τx,t+2 and vt+2. The accuracy is similar to that of approximating log
(
zHt
)

as a linear function of τx,t and vt in Proposition 2. See footnote 7 for additional remarks on the accuracy of
the log-linear approximations.
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where the details are contained in the appendix.

4.2 Results for Special Cases

In the special case of log utility, we have α = 1 such that g1, h1, n1, and n2 are all zero. This
case yields

V ar
[
log(R∗t+1)

]︸ ︷︷ ︸
=V ar(xt)

= V ar
[
log(RJ

t+1)
]︸ ︷︷ ︸

=V ar(xt)

= V ar[log(RH
t+1)]︸ ︷︷ ︸

=V ar(xt)

= V ar[log(RG
t+1)]︸ ︷︷ ︸

=V ar(xt)

, (α = 1) , (44)

where V ar (xt) = V ar (τx,t) + σ2v. Since the price-dividend ratio is constant under log utility
regardless of the information set, return variance is driven solely by the variance of exogenous
dividend growth which is the same across information sets. From this case we know that when
α 6= 1, differences in return volatility across information sets must be driven by the variance
of the price-dividend ratio and its associated covariance with dividend growth.
LeRoy and Parke (1992) considered the special case of risk neutrality and NID dividend

growth. Imposing α = ρ = 0 in equations (40) through (43) yields

V ar
[
log(R∗t+1)

]︸ ︷︷ ︸
=0

≤ V ar
[
log(RJ

t+1)
]︸ ︷︷ ︸

=(n1)
2(σ2ε+σ2v)

≤ V ar[log(RH
t+1)]︸ ︷︷ ︸

=σ2ε+σ
2
v

= V ar[log(RG
t+1)]︸ ︷︷ ︸

=σ2ε+σ
2
v

, (α = ρ = 0) ,

(45)
where n1 = h0/ (1 + h0) < 1. For this special case, the variance under perfect foresight I∗t
represents a lower bound of zero. The variance under set Jt is less than or equal to the vari-
ance under sets Ht and Gt. These results are directly analogous to the variance bounds on
arithmetic price-changes (pt − pt−1) derived by West (1988b) and Engel (2005) under the as-
sumption of risk neutrality. They show that the variance of arithmetic price-changes declines
monotonically with more information about future dividends. Drawing on these results, Engel
(2013, p.11), states that “...the variance of changes in the asset price falls with more informa-
tion...”In our more realistic setting with risk aversion and exponentially growing dividends,
the analog to arithmetic price-changes is either log price-changes or log returns (which behave
similarly). Hence, it is straightforward to show that Engel’s statement does not hold in our
setting.
Consider the following counterexample to Engel’s statement when ρ = 0 but α 6= 0. This

case implies g1 = h1 = 1 − α and n1 = n2 = (1− α)h0/ (1 + h0) . Imposing these values in
equations (40) through (43) yields

V ar
[
log(R∗t+1)

]︸ ︷︷ ︸
=α2(σ2ε+σ2v)

≤ V ar
[
log(RJ

t+1)
]︸ ︷︷ ︸

= (α2+n21)(σ2ε+σ2v)

Q V ar[log(RH
t+1)]︸ ︷︷ ︸

=σ2ε+σ
2
v

= V ar[log(RG
t+1)]︸ ︷︷ ︸

=σ2ε+σ
2
v

, (ρ = 0) , (46)

where the direction of the second inequality now depends on the magnitude of α and n1.
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Starting from information set Ht, an increase in investor information (moving to set Jt) can
either increase or decrease the log return variance, depending on parameter values.21

Going back to equations (41) and (43), let us consider another special case without noise
shocks, such that σ2v = 0. Now the equality of V ar[log(RH

t+1)] and V ar
[
log(R∗t+1)

]
can occur

under two circumstances: when α = 1 and when h1 + 2α = 0. The critical value of α where
h1+2α = 0 defines a second crossing point where the size ordering between V ar[log(RH

t+1)] and
V ar

[
log(R∗t+1)

]
again reverses. Consequently, V ar

[
log(R∗t+1)

]
cannot be a lower bound be-

cause it may be greater than or less than V ar[log(RH
t+1)] depending on the value of α. The

second crossing point occurs at α ' 1/ (2ρβ − 1) .22 Positivity of α at the second crossing
point requires that the model parameters satisfy ρβ & 0.5.

The intuition for the ambiguous variance ordering for log returns is linked to the discount-
ing mechanism. The parameters ρ, β, and α all affect the degree to which future dividend
innovations influence the perfect foresight price p∗t via discounting from the future to the
present. When dividends are suffi ciently persistent and the investor’s discount factor is suf-
ficiently close to unity such that ρβ & 0.5, the discounting weights applied to successive
future dividend innovations decay more gradually. Since log returns are nearly the same as
log price-changes, computation of the log return tends to “difference out”the future dividend
innovations, thus shrinking the magnitude of V ar

[
log(R∗t+1)

]
relative to the other informa-

tion sets. In contrast, when ρβ . 0.5, the discounting weights applied to successive future
dividend innovations decay more rapidly, so these terms do not tend to difference out in the
log return computation, thus magnifying V ar

[
log(R∗t+1)

]
relative to the other information

sets.
The foregoing results demonstrate that the directional relationship between investor infor-

mation and the volatility of log returns (or log price-changes) depends on parameter values.

4.3 Excess Return on Equity

We now consider the volatility of the excess return on equity, i.e., the equity premium. In the
appendix, we show that the laws of motion for the log risk-free rate under each information

21Lansing (2014) shows that the analogous variance relationship involving log price changes (rather than
log returns) also depends on parameter values. Moreover, he shows that the arithmetic price-change variance
bounds derived by West (1988b) and Engel (2005) for the case of risk-neutrality and “cum-dividend”equity
prices do not generally extend to the standard case of ex-dividend prices.
22Solving for the value of α where h1 + 2α = 0 is accomplished using an approximate expression for the

solution coeffi cient h1 which is given by h1 ' (1− α) / (1− ρβ) . The approximate expression holds exactly
when α = 1 and remains reasonably accurate for α ≤ 10.
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set are given by

log(Rf,G
t+1)− E[log(Rf,G

t+1)] = α [Et (τx,t+1|Gt)− µ] , (47)

log(Rf,H
t+1)− E[log(Rf,H

t+1)] = αρ (τx,t − µ) , (48)

log(Rf,J
t+1)− E[log(Rf,J

t+1)] = α (τx,t+1 − µ) + αvt+1, (49)

log(Rf,∗
t+1)− E[log(Rf,∗

t+1)] = α (τx,t+1 − µ) + αvt+1, (50)

where Et (τx,t+1|Gt) ≡ xt is the investor’s forecast of unobservable trend dividend growth.
For information set Ht, the term ρτx,t is the investor’s forecast of observable trend dividend
growth. Under information sets Jt and I∗t , the investor can see dividend growth at time t+ 1

without error, so no forecast is necessary.
Subtracting the risk-free rate equations from the corresponding equity returns given by

equations (36) through (39) yields the following laws of motion for the log equity premium
under each information set:

epGt+1 = (α + g1) [xt+1 − Et (τx,t+1|Gt)] + 1
2

[
α2 − (g1)

2] (σ2ε + σ2v
)
, (51)

epHt+1 = (α + h1) εt+1 + vt+1 + 1
2

[
α2 − (h1)

2] σ2ε + 1
2

[
α2 − (h2)

2] σ2v, (52)

epJt+1 = [ρn1 + 1− (α + h1)] (τx,t+1 − µ) + n1 εt+2 + n1 vt+2

+ log
{

1 + β exp [(1− α)µ]
[
1− exp

(
1
2

(h1)
2 σ2ε + 1

2
(h2)

2 σ2v
)]}

, (53)

ep∗t+1 = 0, (54)

where epIt+1 ≡ log(RI
t+1/R

f,I
t+1) for It = Gt, Ht, Jt, and I∗t . The constant terms at the end of

each expression give the mean equity premium, as derived in the appendix.
Equation (54) shows that the equity premium is zero under perfect foresight. This is

because there is no additional risk to purchasing equity shares versus a one-period bond
when all future dividends and trend growth rates are known with certainty. The perfect
foresight case establishes a theoretical lower bound of zero on excess return volatility even
when investors are risk averse. However, equations (51), (52), and (53) imply that an increase
in information about dividends can either increase or decrease the volatility of excess returns,
depending on parameter values. Similar to the results for equity returns, the relationship
between the variance of the equity premium and investor information can be non-monotonic.
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In the special case when ρ = 0 but α 6= 0, we have g1 = h1 = 1 − α and n1 = n2 =

(1− α)h0/ (1 + h0) . Imposing these values in equations (51) through (54) and then computing
the unconditional variance in each case yields

V ar
(
ep∗t+1

)︸ ︷︷ ︸
=0

≤ V ar
(
epJt+1

)︸ ︷︷ ︸
=(n1)

2(σ2ε+σ
2
v)

Q V ar
(
epHt+1

)︸ ︷︷ ︸
=σ2ε+σ

2
v

= V ar
(
epGt+1

)
]︸ ︷︷ ︸

=σ2ε+σ
2
v

, (ρ = 0) , (55)

which is similar, but not identical, to the analogous special case (46) for return variance. It
is straightforward to show that (n1)

2 < 1 over the range 0 < α < 2 + 1/h0, whereas (n1)
2 > 1

whenever α > 2 + 1/h0. For lower levels of risk aversion, providing investors with information
about dt+1 and τx,t+1 (moving from information set Ht to Jt) reduces excess return variance
such that V ar

(
epJt+1

)
< V ar

(
epHt+1

)
. But for higher levels of risk aversion, providing the same

information increases excess return variance such that the variance inequality is reversed.

4.4 Quantitative Analysis

Figures 2 and 3 show how the coeffi cient of relative risk aversion affects return volatility and
excess return volatility under each of the four informations sets. As in Figure 1, the standard
deviation of consumption growth is held constant across information sets to match the data.
In each figure, the top panel shows the results for the baseline calibration while the bottom
panel shows the results for the higher noise calibration. The horizontal dashed lines at 17.1%
(Figure 2) and 17.4% (Figure 3) show the corresponding standard deviations in U.S. data for
the period 1871 to 2012.23

Figure 2 shows that equity return volatility is U-shaped with respect to α for information
sets Gt, Ht, and Jt. In contrast, return volatility is linear in α under set I∗t . All four lines
intersect at α = 1, consistent with the theoretical result (44). When α < 1, the return
volatility is lowest under set I∗t and highest under set Gt. However, when α > 1, the size
ordering of the four return volatilities is different, with set Jt now exhibiting the highest
volatility. Moreover, under the higher noise calibration (lower panel), the volatility lines can
cross at two different values of α, implying reversals in the size ordering at the crossing point.
For example, return volatility under sets Ht and I∗t are equal at α = 1 and α = 2.4. The
second crossing point is close to the value α ' 1/ (2ρβ − 1) predicted earlier for the special
case when σ2v = 0.

[Figure 2 about here]

In Figure 3, excess return volatility is U-shaped for information set Ht but V-shaped for
information sets Gt and Jt. The V-shape implies a unique value of α that makes excess

23The U.S. real return data are from Robert Shiller’s website. The proxy for the risk free rate is the one-year
real interest rate.
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return volatility equal to zero. Under set Gt, for example, equation (51) shows that excess
return volatility is zero when the condition α = −g1 is satisfied, where g1 depends on α via
the expression in Proposition 1. Veronesi (2000) obtains a similar result in a model with
imperfect information about mean dividend growth. Specifically, he shows (Proposition 4, p.
819) that the conditional variance of excess returns on equity is a U-shaped function of the
risk aversion coeffi cient.

[Figure 3 about here]

Both Figures 2 and 3 show that model-predicted volatility for equity returns and excess
returns can match the data for α ≤ 10. As in Figure 1, concrete knowledge about investor
information and the values of α and σε/σv is needed before one can make a finding of excess
volatility in the data.

5 Signal-to-Noise Ratio and Risk Aversion

As the final part of our quantitative analysis, Figure 4 shows how the signal-to-noise ratio
σε/σv and the coeffi cient of relative risk aversion α affect the standard deviations of equity
market variables when trend dividend growth is unobservable (information set Gt). Going
from left to right in each panel, we increase σε/σv while holding V ar (xt) and Corr (xt, xt−1)

constant at the U.S. data values shown in Table 1. As σε/σv increases, the model requires a
higher value for the trend growth persistence parameter ρ to maintain Corr (xt, xt−1) = 0.50

as in the data.24 The top left panel plots the calibrated value of ρ as a function of σε/σv.

[Figure 4 about here]

As σε/σv → 0, the calibration procedure requires ρ→ 1. As trend growth comes more per-
sistent, the standard deviations of the equity market variables tend to be magnified. However,
an interesting feature is that the standard deviation of the equity return (lower left panel)
and the standard deviation of the excess return (lower right panel) are both hump-shaped
functions of σε/σv. As σε/σv starts increasing from around zero, the calibrated value of ρ
remains close to unity so that return volatility initially goes up. But as σε/σv continues to
increase, the calibrated value of ρ drops more rapidly, causing return volatility to go down.
When α = 5, the model can roughly match the standard deviations in the data when

σε/σv ' 0.36 and ρ ' 0.94. However, these same values imply Corr (xt, xt−2) = 0.47 and
Corr (∆xt, ∆xt−1) = −0.47 which compare less favorably to the corresponding U.S. data
correlations of 0.19 and −0.21, respectively. Still, given the range of uncertainty surrounding

24Using equation (A.13) in the appendix, the calibrated value of ρ is the positive root of the quadratic

equation aρ2 + bρ+ c = 0, where a = 0.50, b = (σε/σv)
2
, and c = −0.50

[
1 + (σε/σv)

2
]
.
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the persistence properties of U.S. consumption growth, our results show that a plausibly-
calibrated asset pricing model can roughly match the observed volatility of the equity market
data.25

6 Conclusion

This paper showed that providing investors with more information about the dividend process
will monotonically increase the volatility of the log price-dividend ratio. In contrast, provid-
ing investors with more information can either increase or decrease the volatility of the log
equity return (or log price-change). The directional impact of information on return volatility
depends crucially on parameter values that influence the investor’s discounting mechanism.
These include the coeffi cient of relative risk aversion and the persistence parameter for trend
dividend growth. Both parameters affect the degree to which future dividend innovations
tend to “difference out”when computing equity returns, excess returns, or log-price changes.
Studies by West (1988b) and Engel (2005) had previously established a monotonic, declin-

ing relationship between arithmetic price-change volatility and investor information, assuming
risk neutral investors. Our results show that their findings do not extend to a setting with
risk aversion and exponentially-growing dividends, except in some special cases. This result
is important because it means that news about future dividends can help account for the high
variance of asset price changes in the data.
A finding of excess volatility in the data relative to the model’s theoretical prediction

requires knowledge of at least three things: (1) the information set used by investors to make
conditional forecasts, including whether they have some news about future dividends, (2)
investors’level of risk aversion, and (3) the amount of noise present in the dividend process.
Without this knowledge, it becomes diffi cult to conclude that that the observed volatility in
the data is excessive.

25Otrok, Ravikumar, and Whiteman (2002) document the time-varying persistence properties of U.S. con-
sumption growth.
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Appendix

A Solution: Information Set Gt

A.1 Proof of Proposition 1

The conjectured solution in Proposition 1 implies that zGt is log-normally distributed. To
evaluate the conditional expectation that appears in the equilibrium condition (21), we make
use of the properties of the conditional log normal distribution. Specifically, we iterate the
conjectured law of motion for zGt ahead one period, take logarithms, and then compute the
conditional mean and the conditional variance as follows:

Et(z
G
t+1|Gt) = exp

{
Et
[
log
(
zGt+1

)
|Gt

]
+ 1

2
V art

[
log
(
zGt+1

)
|Gt

]}
, (A.1)

where

Et
[
log
(
zGt+1

)
|Gt

]
= g0 + Et [g1 (xt+1 − µ) |Gt] + g2 (xt − µ) ,

= g0 + (g1 + g2) (xt − µ) ,

= g0 + (g1 + g2) [ρλ (xt − µ) + ρ (1− λ) (xt−1 − µ)] , (A.2)

V art
[
log
(
zGt+1

)
|Gt

]
= V art (g1xt+1|Gt) ,

= V art {g1 [ρ τx,t + (1− ρ)µ+ εt+1 + vt+1] |Gt} ,
= (g1)

2 (σ2ε + σ2v
)
, (A.3)

where we employ the laws of motion for dividend growth (5) and (6). The investor’s forecast
for dividend growth is given by Et (xt+1|Gt) = Et (τx,t+1|Gt) ≡ xt, where xt evolves according
to Kalman filter updating equation (17). Substituting (A.2) and (A.3) into (A.1) yields an
expression for Et(zGt+1|Gt), which we then substitute into the right side of the equilibrium
condition (21). Taking logarithms of both sides of the resulting expression yields

log
(
zGt
)

= F (xt, xt−1) = log (β) + (1− α)xt + log {g0 exp [(g1 + g2) ρλ (xt − µ)

+ (g1 + g2) ρ (1− λ) (xt−1 − µ) + 1
2

(g1)
2 (σ2ε + σ2v

)]
+ 1
}

' log (g0) + g1 (xt − µ) + g2 (xt−1 − µ) , (A.4)
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where the Taylor-series coeffi cients g0, g1, and g2 are given by

log (g0) = F (µ, µ) = log (β) + (1− α)µ+ log
{
g0 exp

[
1
2

(g1)
2 (σ2ε + σ2v

)]
+ 1
}
,

(A.5)

g1 =
∂F

∂xt

∣∣∣∣
µ, µ

= 1− α +
g0 (g1 + g2) ρλ exp

[
1
2

(g1)
2 (σ2ε + σ2v)

]
g0 exp

[
1
2

(g1)
2 (σ2ε + σ2v)

]
+ 1

, (A.6)

g2 =
∂F

∂xt−1

∣∣∣∣
µ, µ

= 1− α +
g0 (g1 + g2) ρ (1− λ) exp

[
1
2

(g1)
2 (σ2ε + σ2v)

]
g0 exp

[
1
2

(g1)
2 (σ2ε + σ2v)

]
+ 1

. (A.7)

Solving (A.5) through (A.7) for g0, g1, and g2 yields the expressions shown in Proposition
1. Equation (A.6) reduces to the following nonlinear equation that determines g1:

g1 = 1− α + [g1 − (1− α) (1− λ)] ρβ exp
[
(1− α)µ+ 1

2

(
g21
) (
σ2ε + σ2v

)]
. (A.8)

There are two solutions, but only one satisfies the inequality condition in Proposition 1, which
is verified after solving for g1 using a nonlinear equation solver. �

A.2 Asset Pricing Moments

This section outlines the derivation of equations (23) and (40). Taking the unconditional
expectation of log

(
yGt
)
in equation (22) yields

E
[
log
(
yGt
)]

= log (g0) + 1
2

(g1)
2 (σ2ε + σ2v

)
, (A.9)

log
(
yGt
)
− E

[
log
(
yGt
)]

= (g1 + g2) (xt − µ) , (A.10)

which in turn implies the variance expression (23). Equation (A.9) is used to calibrate the
value of β, as discussed in section 3.5.
Straightforward computations using the laws of motion (5), (6), and (17) yield

V ar (xt) = V ar (τx,t) + σ2v, (A.11)

V ar (τx,t) = σ2ε/
(
1− ρ2

)
, (A.12)

Corr (xt, xt−1) =
ρ (σε/σv)

2

(σε/σv)
2 + 1− ρ2

, (A.13)

Cov (xt, xt−1) =
ρ2λV ar (τx,t)

[1− ρ2 (1− λ)]
(A.14)

V ar (xt) =
ρ2λ2V ar (xt) + 2ρ2λ (1− λ)Cov (xt, xt−1)

1− ρ2 (1− λ)2
, (A.15)
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where λ is given by equation (18).
As described in the text, the equity return (31) implied by information set Gt can be

written as

RG
t+1 = β−1 exp (αxt+1)

[
zGt+1

Et(zt+1|Gt)

]
. (A.16)

Substituting inEt(zGt+1|Gt) from equation (A.1) through (A.3) and the solution for zGt+1 implied
by Proposition 1 and then taking the unconditional mean of log(RG

t+1) yields

E[log(RG
t+1)] = − log (β) + αµ − 1

2
(g1)

2 (σ2ε + σ2v
)
. (A.17)

We then have

log(RG
t+1)− E[log(RG

t+1)] = (α + g1) (xt+1 − µ)− g1ρλ (xt − µ)− g1ρ (1− λ) (xt−1 − µ) ,

= (α + g1) (xt+1 − µ)− g1 [Et (τx,t+1|Gt)− µ] ,

= α (xt+1 − µ) + g1 [xt+1 − Et (τx,t+1|Gt)] , (A.18)

where terms involving g2 cancel out and we make use of the Kalman filter updating equation
(17). Squaring both sides of equation (A.18) and then taking the unconditional mean yields
the expression for V ar

[
log(RG

t+1)
]
in equation (40).

The risk free rate is determined by the following first-order condition

Rf,G
t+1 =

1

Et
[
β (ct+1/ct)

−α |Gt

] =
1

Et

(
z f,Gt+1 |Gt

) , (A.19)

where we define z f,Gt+1 ≡ β exp (xt+1)
−α as the object to be forecasted. Again making use of

the properties of the conditional log normal distribution, we have

Et(z
f,G
t+1 |Gt) = exp

{
Et

[
log
(
z f,Gt+1

)
|Gt

]
+ 1

2
V art

[
log
(
z f,Gt+1

)
|Gt

]}
, (A.20)

where log(z f,Gt+1 ) = log β − αxt+1. Using this expression for log(z f,Gt+1 ), it is straightforward to
derive the following expressions for the conditional mean and the conditional variance

Et

[
log
(
z f,Gt+1

)
|Gt

]
= log β − αEt (τx,t+1|Gt) , (A.21)

V art

[
log
(
z f,Gt+1

)
|Gt

]
= α2

(
σ2ε + σ2v

)
. (A.22)

Substituting (A.21) and (A.22) into (A.20) yields an expression for Et(z
f,G
t+1 ), which is

substituted into the right side of the first-order condition (A.19). Taking logarithms of both
sides of (A.20) yields the law of motion for log(Rf,G

t+1), which implies the following expressions

E[log(Rf,G
t+1)] = − log (β) + αµ − 1

2
α2
(
σ2ε + σ2v

)
, (A.23)

log(Rf,G
t+1)− E[log(Rf,G

t+1)] = α [Et (τx,t+1|Gt)− µ] (A.24)

where Et (τx,t+1|Gt) ≡ xt is the Kalman filter estimate of trend growth from equation (17).
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B Solution: Information Set Ht

B.1 Proof of Proposition 2

Iterating ahead the conjectured law of motion for zHt and taking the conditional expectation
implied by the information set Ht yields

Et(z
H
t+1|Ht) = Et {h0 exp [h1ρ (τx,t − µ) + h1εt+1 + h2vt+1] |Ht} .

= h0 exp
[
h1ρ (τx,t − µ) + 1

2
(h1)

2 σ2ε + 1
2

(h2)
2 σ2v
]
. (B.1)

Substituting the above expression into the Ht version of the first-order condition (21) and
then taking logarithms yields

log
(
zHt
)

= F (τx,t, vt) , = log (β) + (1− α) (τx,t + vt)

+ log
{
h0 exp

[
h1ρ (τx,t − µ) + 1

2
(h1)

2 σ2ε + 1
2

(h2)
2 σ2v
]

+ 1
}

' log (h0) + h1 (τx,t − µ) + h2vt, (B.2)

where the Taylor-series coeffi cients h0, h1, and h2 are given by

log (h0) = F (µ, 0) = log (β) + (1− α)µ+ log
{
h0 exp

[
1
2

(h1)
2 σ2ε + 1

2
(h2)

2 σ2v
]

+ 1
}
(B.3)

h1 =
∂F

∂τx,t

∣∣∣∣
µ, 0

= 1− α +
h0h1ρ exp

[
1
2

(h1)
2 σ2ε + 1

2
(h2)

2 σ2v
]

h0 exp
[
1
2

(h1)
2 σ2ε + 1

2
(h2)

2 σ2v
]

+ 1
. (B.4)

h2 =
∂F

∂vt

∣∣∣∣
µ, 0

= 1− α (B.5)

Solving (B.3) through (B.5) for h0, h1, and h2 yields the expressions shown in Proposition
2. Equation (B.4) reduces to the following nonlinear equation that determines h1:

h1 = 1− α + h1ρβ exp
[
(1− α)µ+ 1

2

(
h21
)
σ2ε + 1

2
(1− α)2 σ2v

]
, (B.6)

where we have substituted h2 = 1 − α. There are two solutions, but only one satisfies the
inequality condition in Proposition 2, which is verified after solving for h1 using a nonlinear
equation solver. �

B.2 Asset Pricing Moments

This section briefly outlines the derivation of equations (25) and (41). Starting from equation
(24) and taking the unconditional expectation of log

(
yHt
)
yields

E
[
log
(
yHt
)]

= log (h0) + 1
2

(h1)
2 σ2ε + 1

2
(h2)

2 σ2v, (B.7)
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log
(
yHt
)
− E

[
log
(
yHt
)]

= h1ρ (τx,t − µ) , (B.8)

which in turn implies the variance expression (25).
To compute the equity return RH

t+1, we substitute Et(z
H
t+1|Ht) from equation (B.1) and

zHt+1 = h0 exp [h1 (τx,t+1 − µ) + h2vt+1] from Proposition 2 into equation (32). Taking loga-
rithms and then computing the moments yields

E[log(RH
t+1)] = − log (β) + αµ − 1

2
(h1)

2 σ2ε − 1
2

(h2)
2 σ2v. (B.9)

We then have

log(RH
t+1)− E[log(RH

t+1)] = α (xt+1 − µ) + h1 (τx,t+1 − µ) + h2vt+1 − h1ρ (τx,t − µ) ,

= α (xt+1 − µ) + h1εt+1 + h2vt+1,

= α (τx,t+1 − µ) + h1εt+1 + (α + h2)︸ ︷︷ ︸
=1

vt+1, (B.10)

where we substitute h2 = 1− α. Squaring both sides of equation (B.10) and then taking the
unconditional mean yields the expression for V ar

[
log(RH

t+1)
]
in equation (41).

The log risk free rate is determined by the following first-order condition

log(Rf,H
t+1) = − log

{
Et
[
β (ct+1/ct)

−α |Ht

]}
,

= − log {Et [β exp (−αxt+1) |Ht]} ,
= − log {Et [β exp (−α τx,t+1 − αvt+1) |Ht]}
= − log (β) + α [ρτx,t + (1− ρ)µ]− 1

2
α2 σ2ε − 1

2
α2 σ2v, (B.11)

where we have inserted the laws of motion for xt+1 and τx,t+1 from equations (5) and (6)
before taking the conditional expectation. Taking the unconditional mean of log(Rf,H

t+1) and
then subtracting the unconditional mean from equation (B.11) yields the following expressions

E[log(Rf,H
t+1)] = − log (β) + αµ − 1

2
α2 σ2ε − 1

2
α2 σ2v, (B.12)

log(Rf,G
t+1)− E[log(Rf,G

t+1)] = αρ (τx,t − µ) . (B.13)

C Solution: Information Set Jt = Ht ∪ {dt+1, τx,t+1}
C.1 Characterizing yJt
Imposing the equilibrium relationship ct = dt for all t in the first-order condition (3) yields

pJt = β

(
dt+1
dt

)−α
︸ ︷︷ ︸

Mt, t+1

(
dt+1 + pHt+1

)
, (C.1)
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where xt+1 and τx,t+1 are now known to the investor at time t. Together, these values allow
the investor to compute vt+1 = xt+1− τx,t+1. Going forward from time t+ 1, the investor will
be faced with information set Ht+1 where pHt+1 is the corresponding equilibrium price.
Dividing both sides of equation (C.1) by dt yields the following expression for yJt ≡ pJt /dt

yJt = β exp [(1− α) xt+1]
(
1 + yHt+1

)
,

= zHt+1, (C.2)

were the second equality follows directly from the definition of zHt . Given that y
J
t = zHt+1 from

equation (C.2) and yHt = Et(z
H
t+1|Ht) from equation (13), we then have yHt = Et(y

J
t |Ht) which

implies V ar
(
yHt
)
≤ V ar

(
yJt
)
.

C.2 Asset Pricing Moments

This section outlines the derivation of equations (28) and (42). From equation (C.2) and the
law of motion for zHt+1, we have the following law of motion for y

J
t

yJt = zHt+1 = h0 exp [h1 (τx,t+1 − µ) + h2vt+1] , (C.3)

which implies E
[
log
(
yJt
)]

= log (h0) < E
[
log
(
yHt
)]
. Squaring both sides of equation (C.3)

and then taking the unconditional mean yields V ar
[
log
(
yJt
)]
, as shown in equation (28).

The equity return (33) under set Jt can be rewritten as

RJ
t+1 = exp (xt+1)

[
zHt+2 + 1

zHt+1

]
, (C.4)

where we have eliminated both yJt and y
J
t+1 using equation (C.2). The law of motion for z

H
t+1

is given by equation (C.3). An approximate law of motion for zHt+2 + 1 is given by

zHt+2 + 1 = n0 exp [n1 (τx,t+2 − µ) + n2vt+2] , (C.5)

where n0 = 1+h0, n1 = h0h1/ (1 + h0) , and n2 = h0h2/ (1 + h0) are Taylor-series coeffi cients.
Substituting equations (C.3) and (C.5) into (C.4) and then taking the unconditional mean

of log(RJ
t+1) yields

E
[
log(RJ

t+1)
]

= log (n0/h0) + µ,

= − log (β) + αµ

+ log
{

1 + β exp [(1− α)µ]
[
1− exp

(
1
2

(h1)
2 σ2ε + 1

2
(h2)

2 σ2v
)]}

.

(C.6)

We then have

log(RJ
t+1)− E

[
log(RJ

t+1)
]

= n1 (τx,t+2 − µ) + (1− h1) (τx,t+1 − µ) + n2vt+2 + (1− h2) vt+1,
= (1− h1 + ρn1) (τx,t+1 − µ) + n1 εt+2 + n2vt+2 + αvt+1, (C.7)

27



where we make the substitution τx,t+2 − µ = ρ (τx,t+1 − µ) + εt+1 from (6) and 1 − h2 = α

from Proposition 2. Squaring both sides of equation (C.7) and taking the unconditional mean
yields the expression for V ar

[
log(RJ

t+1)
]
shown in equation (42).

The log risk free rate is determined by the following first-order condition

log(Rf,J
t+1) = − log

{
Et
[
β (ct+1/ct)

−α |Jt
]}
,

= − log [β exp (−αxt+1)] ,
= − log (β) + ατx,t+1 + αvt+1, (C.8)

where we have inserted the law of motion for xt+1 from equation (5). Given that Jt =

Ht ∪ {dt+1, τx,t+1} , the investor has perfect knowledge of τx,t+1 and vt+1 at time t so we
may drop the conditional expectation. Taking the unconditional mean of log(Rf,J

t+1) and then
subtracting the unconditional mean from equation (C.8) yields the law of motion (49).

D Solution: Information Set I∗t
D.1 Log-linearized Law of Motion

Taking logarithms of the nonlinear law of motion (15) yields

log (y∗t ) = F
[
xt+1, log

(
y∗t+1

)]
= log (β) + (1− α) xt+1 + log

{
exp

[
log
(
y∗t+1

)]
+ 1
}
,

=

' log (b0) + b1 (xt+1 − µ) + b2
[
log
(
y∗t+1

)
− log (b0)

]
, (D.1)

where xt+1 = τx,t+1 + vt+1 from (5). The Taylor-series coeffi cients b0, b1, and b2 are given by

log (b0) = F [µ, log (b0)] = log (β) + (1− α)µ+ log [b0 + 1] , (D.2)

b1 =
∂F

∂xt+1

∣∣∣∣
µ, log(b0)

= 1− α, (D.3)

b2 =
∂F

∂ log
(
y∗t+1

)∣∣∣∣∣
µ, log(b0)

=
b0

b0 + 1
. (D.4)

Solving equation (D.2) for the unconditional mean b0 yields

b0 = exp {E [log (y∗t )]} =
β exp [(1− α)µ]

1− β exp [(1− α)µ]
, (D.5)

which can be substituted into equation (D.4) to obtain the following expression:

b2 = β exp [(1− α)µ] . (D.6)
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Subtracting log (b0) = E [log (y∗t )] from both sides of the approximate law of motion (D.1)
and then substituting for b1 and b2 yields equation (29).

D.2 Asset Pricing Moments

This section outlines the derivation of equations (30) and (43). Squaring both sides of equation
(29) and then taking the unconditional mean to obtain the variance yields

V ar [log (y∗t )] =
(1− α)2 V ar (xt) + 2 (1− α) β exp [(1− α)µ] Cov [log (y∗t ) , xt]

1− β2 exp [2 (1− α)µ]
.

(D.7)

The next step is to compute Cov [log (y∗t ) , xt] which appears in equation (D.7). Starting
from equation (29), we have

Cov [log (y∗t ) , xt] = (1− α) Cov (xt+1, xt)︸ ︷︷ ︸
=Cov(τx,t, τx,t−1)

+ β exp [(1− α)µ]Cov
[
log
(
y∗t+1

)
, xt
]
, (D.8)

Cov
[
log
(
y∗t+1

)
, xt
]

= (1− α) Cov (xt+2, xt)︸ ︷︷ ︸
= ρCov(τx,t, τx,t−1)

+β exp [(1− α)µ]Cov
[
log
(
y∗t+2

)
, xt
]
, (D.9)

and so on for Cov
[
log
(
y∗t+j

)
, xt
]
, j = 1, 2, 3, ... By repeated substitution to eliminate the

term Cov
[
log
(
y∗t+j

)
, xt
]
and then applying a transversality condition, we obtain the following

expression:

Cov [log (y∗t ) , xt] = (1− α)Cov (τx,t, τx,t−1)
∞∑
j=0

{ρβ exp [(1− α)µ]}j

=
(1− α)Cov (τx,t, τx,t−1)

1− ρβ exp [(1− α)µ]
=

(1− α) ρV ar (τx,t)

1− ρβ exp [(1− α)µ]
, (D.10)

where the infinite sum converges provided that ρβ exp [(1− α)µ] < 1. Substituting equation
(D.10) into equation (D.7) together with V ar (xt) from (A.11) and then simplifying yields
equation (30).
From equation (34), the perfect foresight return can be written as

R∗t+1 = β−1 exp (αxt+1) ,

= β−1 exp [α (τx,t+1 + vt+1)] , (D.11)
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where we have substituted in
(
y∗t+1 + 1

)
/y∗t = β−1 exp [−(1− α)xt+1] from the exact nonlinear

law of motion (15). Taking the unconditional expectation of log
(
R∗t+1

)
yields

E
[
log
(
R∗t+1

)]
= − log (β) + αµ. (D.12)

We then have
log
(
R∗t+1

)
− E

[
log
(
R∗t+1

)]
= α (τx,t+1 − µ) + αvt+1, (D.13)

which in turns implies the unconditional variance (43).
The log risk free rate is determined by the following perfect-foresight version of the first-

order condition

log(Rf,∗
t+1) = − log

[
β (ct+1/ct)

−α] ,
= − log [β exp (−αxt+1)] ,
= − log (β) + α (τx,t+1 + vt+1) , (D.14)

where we have inserted the law of motion for xt+1 from equation (5). Taking the unconditional
mean of log(Rf,∗

t+1) and then subtracting the unconditional mean from equation (D.14) yields
equation (50).
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Figure 1: Investor information and the volatility of the log price-dividend ratio. The volatility
of the log price-dividend ratio increases monotonically with investor information about the
dividend process. For the baseline calibration (top panel), model-predicted volatility can
match the data volatility only when investors are endowed with at least some knowledge
about future dividends, i.e., information sets Jt or I∗t . For the higher noise calibration (bottom
panel), model-predicted volatility can match the data volatility with α ≤ 10 under all four
information sets.
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Figure 2: Investor information and the volatility of the log equity return. Providing investors
with more information about the dividend process can either increase or decrease the volatility
of the log equity return. Moreover, under the higher noise calibration (bottom panel), the
volatility lines can cross at two different values of α, implying reversals in the variance ordering
at the crossing point. For both calibrations, model-predicted volatility can match the data
volatility with α ≤ 10 under all four information sets.
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Figure 3: Investor information and the volatility of the log excess return on equity. Providing
investors with more information about the dividend process can either increase or decrease
the volatility of the log excess return on equity. For the baseline calibration (top panel),
model-predicted volatility can match the data volatility with α ≤ 10 only under information
set Jt. For the higher noise calibration (bottom panel), model-predicted volatility can match
the data volatility under information sets Gt, Ht, and Jt.
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Figure 4: Effects of noise and risk aversion on volatility. For information set Gt (unobserved
trend growth), the figure shows the effect of changing the target signal-to-noise ratio σε/σv
while holding V ar (xt) and Corr (xt, xt−1) constant at the U.S. data values shown in Table
2. As σε/σv → 0, the calibration procedure requires ρ → 1. When α = 5, the model can
approximately match the standard deviations of asset pricing variables in the data when
σε/σv ' 0.36 and ρ ' 0.94.
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