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Abstract

This paper considers variance bounds for stock price changes in a general setting
that allows for ex-dividend stock prices, risk averse investors, and exponentially-growing
dividends. I show that providing investors with more information about future divi-
dends can either increase or decrease the variance of stock price changes, depending on
key parameters, namely, those governing the properties of dividends and the stochastic
discount factor. This finding contrasts with the results of Engel (2005) who shows that
news about future dividends will always decrease the variance of stock price changes in
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1 Introduction

In theory, the price of a stock represents the market’s consensus forecast of the discounted

sum of future dividends that will accrue to the owner. If dividends are stationary, the theory

says that the variance of observed stock prices (the forecast) should be lower than the variance

of discounted realized dividends (the object being forecasted). Shiller (1981) and LeRoy and

Porter (1981) argued that this rationality principle appears to be violated in the case of U.S.

stock prices.

West (1988) extended the analysis to allow for nonstationary dividends. He showed that

the variance of unexpected changes in the stock price will decline if risk neutral investors are

given more information about future dividends. This is because rational investors will use

any new information to improve the precision of their dividend forecasts, thereby reducing

the variance of the forecast errors.1

Engel (2005) extends the analysis of West (1988) to consider the variance of actual changes

in the stock price, i.e., ∆pt ≡ pt − pt−1, as opposed to unexpected changes. Engel’s analysis
allows the level of real dividends to evolve as an arithmetic random walk or a stationary

stochastic process. Assuming that stock prices are “cum-dividend,”he shows that the variance

of ∆pt will decline if risk neutral investors are given more information about future dividends.

In particular, he proves analytically that V ar (∆pt) ≥ V ar (∆p∗t ) , where p
∗
t is the stock price

computed using perfect foresight about future dividends. Also assuming risk neutral investors,

LeRoy (1984) had previously demonstrated the result V ar (∆pt) > V ar (∆p∗t ) in a calibrated

model where stock prices are “ex-dividend.” LeRoy’s analysis assumes that dividends are

stationary but highly persistent.2 The perfect foresight case is the same benchmark used by

Shiller (1981) to argue that theory predicts the opposite variance ordering when it comes to

the price level, i.e., V ar (pt) ≤ V ar (p∗t ) .

The foregoing results have been interpreted to imply that news about future cash flows

must decrease the volatility of asset price changes. For example, Engel (2014, p. 464) states

“...the variance of changes in the asset price falls with more information...[N]ews can account

for a high variance in the real exchange rate, but not for a high variance in the change in the

real exchange rate.”

1However, on page 41, West (1988) includes the caveat that his result “may not extend immediately if
logarithms or logarithmic differences are required to induce stationarity [of the dividend process].”

2The result in LeRoy (1984) is further discussed by Gilles and LeRoy (1991), p. 771.
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This paper expands the modeling framework of Engel (2005) to consider the more-standard

setup of “ex-dividend”stock prices, risk averse investors, and exponentially-growing dividends.

I consider three different information sets labeled It, Iot , and I
∗
t that contain progressively

increasing amounts of information, i.e., It ⊆ Iot ⊆ I∗t . Under set It, the investor can observe

current and past dividend realizations and thereby identify the law of motion for dividends.

Set Iot , denoted by the superscript “o,” allows investors to have one-period foresight about

dividends. This setup captures the possibility that investors may have some news that allows

them to accurately forecast dividends over the near-term.3 Finally, set I∗t , denoted by the

superscript “∗,” provides the maximum amount of investor information, corresponding to

perfect knowledge about the entire stream of past and future dividends. I use the symbols pt,

pot , and p
∗
t to represent the equilibrium prices under the three information sets.

I show that providing investors with more information about future dividends can either

increase or decrease the variance of stock price changes. In particular, I show that the direction

of the price-change variance inequality can be reversed, depending on the values assigned to

some key parameters of the model. These include a dividend persistence parameter ρ, the

investor’s subjective time discount factor β, and the coeffi cient of relative risk aversion α.

Following Engel (2005), I initially consider an economy where the representative investor

is risk neutral (α = 0) and dividends follow an arithmetic AR(1) process that allows for a

unit root as a special case. When observed stock prices are cum-dividend, I recover a variance

ordering consistent with Engel’s theoretical propositions, namely, V ar (∆pt) ≥ V ar (∆pot ) ≥
V ar (∆p∗t ) . However when observed stock prices are ex-dividend, I show that V ar (∆pt) can be

greater or less than V ar (∆p∗t ), depending on the values of ρ and β. The two variance statistics

are exactly equal when the parameters satisfy the condition ρ (1 + β) = 1. For a typical model

calibration where dividends are a close to a random walk and the discount factor is close to

unity, we have ρ (1 + β) > 1 which in turn yields V ar (∆pt) > V ar (∆p∗t ) , thus confirming

the numerical results obtained by LeRoy (1984). LeRoy’s model calibration satisfies the

condition ρ (1 + β) > 1. Engel’s cum-dividend model can be interpreted as imposing the

parameter restriction ρβ ' 1 such that the condition ρ (1 + β) > 1 is once again satisfied.

However, if dividends are less persistent or the future is more heavily discounted such that

ρ (1 + β) < 1, then the variance inequality will be reversed, yielding V ar (∆pt) < V ar (∆p∗t ).

Similarly, I show that variance ordering for ∆pt and ∆pot can be reversed if stock prices are

3Information set Iot connects to recent research on business cycles that focuses on “news shocks” as an
important quantitative source of economic fluctuations. See, for example, Barsky and Sims (2011).
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ex dividend and ρ < 1.

The explanation for the variance ordering reversals is linked to the discounting mechanism.

The parameters ρ and β both affect the degree to which future dividend innovations influence

the perfect foresight price p∗t via discounting from the future to the present. The future

dividend innovations have no effect on pt because the expected value of future innovations

is zero. When dividends are highly persistent and the investor’s discount factor is close to

unity such that ρ (1 + β) > 1, the discounting weights applied to successive future dividend

innovations decay gradually. By taking the first-difference of the p∗t series, the terms involving

future dividend innovations tend to cancel out, thus shrinking the magnitude of V ar (∆p∗t )

relative to V ar (∆pt) . In contrast, when ρ (1 + β) < 1, the discounting weights applied to

successive future innovations decay rapidly, so these terms do not tend to difference out,

resulting in a higher value for V ar (∆p∗t ) relative to V ar (∆pt) . Similar logic applies to the

relationship between between V ar (∆pot ) and V ar (∆pt) .

In the model with risk aversion and exponentially-growing dividends, I specify the growth

rate dividends as an ARMA(1, 1) process. Within this framework, I derive approximate

analytical expressions for the variance of the log price-change under the three information

sets, i.e., V ar [∆ log (pt)] , V ar [∆ log (pot )] , and V ar [∆ log (p∗t )] . When α = 1, representing

logarithmic utility, all three variance statistics are equal. When α < 1, the variance of log

price-changes declines with more information, analogous to the risk-neutral results obtained by

Engel (2005) and LeRoy (1984). When the α > 1, the variance of log price-changes can either

increase or decrease with more information. Specifically, the variance ordering is changed

such that V ar [∆ log (pt)] < V ar [∆ log (p∗t )] < V ar [∆ log (pot )] . Furthermore, this ordering is

sensitive to the parameters of the ARMA (1, 1) process. For an alternative calibration that

implies more persistence in dividend growth, the variance ordering undergoes a further change

for α & 3.9 such that V ar [∆ log (p∗t )] < V ar [∆ log (pt)] < V ar [∆ log (pot )] .

When the investor’s utility function is logarithmic, the income and substitution effects

of future dividend growth innovations exactly cancel such that the price-dividend ratio is

constant regardless of the information set. In this case, any variation in the log-price change

must be driven solely by variation in dividend growth, which is the same across information

sets. The sensitivity of the variance ordering to changes in the risk aversion coeffi cient is again

linked to the discounting mechanism. When α < 1, the stochastic discount factors applied to

successive future dividend growth innovations decay gradually. By taking the log-difference
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of the perfect foresight price series, the terms involving future innovations tend to cancel

out, thus shrinking the magnitude of V ar [∆ log (p∗t )] . When α > 1, the stochastic discount

factors applied to successive future innovations decay rapidly, so these terms do not tend to

difference out, resulting in a higher value for V ar [∆ log (p∗t )] . The decay rate of the terms

involving future innovations is similarly influenced by the parameters of the ARMA(1, 1)

process for dividend growth.

The results presented here complement those of Lansing and LeRoy (2014) who, among

other things, show that the volatility of log equity returns is not generally a monotonic de-

creasing function of investors’information about future dividends. The behavior of log price-

changes is similar to the behavior of log returns, as can be demonstrated using the Campbell

and Shiller (1988) approximation of the equity return identity. This paper goes beyond Lans-

ing and LeRoy (2014) by considering the influence of cum-dividend versus ex-dividend stock

prices, allowing for a more-general dividend growth process, i.e., ARMA(1, 1) versus AR(1),

and reconciling the results about price-change variance with those of Engel (2005) and LeRoy

(1984).

2 Asset Pricing Model

Equity shares are priced using the frictionless pure exchange model of Lucas (1978). There

is a representative investor who can purchase shares to transfer wealth from one period to

another. Each share pays an exogenous stream of stochastic dividends in perpetuity. The

investor’s problem is to maximize

E0

∞∑
t=0

βt
[
c1−αt − 1

1− α |I0
]
, (1)

subject to the budget constraint

ct + ptst = (pt + dt) st−1, ct, st > 0 (2)

where ct is the investor’s consumption in period t , α is the coeffi cient of relative risk aversion

(the inverse of the intertemporal elasticity of substitution), st is the number of shares held in

period t, and dt is the dividend per share. I use the notation Et (· | It) to represent the mathe-
matical expectation operator, conditional on the investor’s information set It, to be described

more completely below. The symbol pt denotes the ex-dividend stock price conditional on the

investor’s information.
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The first-order condition that governs the investor’s share holdings is given by

pt = Et

[
β

(
ct+1
ct

)−α
(pt+1 + dt+1) |It

]
. (3)

The first-order condition can be iterated forward to substitute out pt+1+j for j = 0, 1, 2, ... Ap-

plying the law of iterated expectations and imposing a transversality condition that excludes

bubble solutions yields the following expression for the ex-dividend stock price

pt = Et

{ ∞∑
j=1

Mt, t+j dt+j|It

}
, (pt is ex-dividend), (4)

where Mt, t+j ≡ β j (ct+j/ct)
−α is the stochastic discount factor. Equity shares are assumed to

exist in unit net supply. Market clearing therefore implies st = 1 for all t. Substituting this

equilibrium condition into the budget constraint (2) yields, ct = dt for all t.

To consider the case of cum-dividend stock prices, the budget constraint (2) is rewritten

as follows

ct + (pt − dt) st = ptst−1, (5)

where pt now represents the cum-dividend price and pt−dt is the ex-dividend price. Proceeding
as before, the expression for the cum-dividend stock price is

pt = Et

{ ∞∑
j=0

Mt, t+j dt+j|It

}
, (pt is cum-dividend), (6)

where the only difference is that the infinite sum now starts at j = 0 rather than j = 1.

2.1 Investor Information

I define the following information sets, where each set contains progressively increasing amounts

of information about the dividend process:

It ≡ {dt, dt−1, dt−2, ...} , (7)

Iot ≡ {dt+1, dt, dt−1, dt−2, ...} , (8)

I∗t ≡ {...dt+2, dt+1, dt, dt−1, dt−2, ...} , (9)
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such that It ⊆ Iot ⊆ I∗t . Set It allows investors to observe current and past dividends and

thereby discover the underlying stochastic process that governs the evolution of dividends. Set

I∗t provides the maximum amount of investor information, corresponding to perfect knowledge

about the entire stream of past and future dividends. In between these two, set Iot = It ∪
dt+1 provides more information than set It by allowing investors to have one-period foresight

regarding dividends at time t+1. Along the lines of LeRoy and Parke (1992), set Iot entertains

the possibility that investors receive some news that allows them to forecast dividends over the

near-term without error. Given the above definitions, we can write pt = Et(p
o
t |It) = Et(p

∗
t |It).

3 Risk-Neutral Investor

Following Engel (2005) and LeRoy (1984), I initially consider an economy where the repre-

sentative investor is risk neutral (α = 0) . To keep things as simple as possible, I assume that

dividends follow an arithmetic AR(1) process that allows for a unit root as a special case. I

begin with the more-standard case of ex-dividend stock prices and then show how the results

are changed with cum-dividend stock prices.

3.1 Ex-Dividend Stock Prices

When α = 0, the pricing equations can be written as follows

pt = Et
{
βdt+1 + β2dt+2 + β3dt+3 + ...|It

}
, (10)

pot = βdt+1 + Et
{
β2dt+2 + β3dt+3 + ...|Iot

}
,

= β (dt+1 + pt+1) , (11)

p∗t = βdt+1 + β2dt+2 + β3dt+3 + ...., (12)

where the assumption of one-period foresight for information set Iot implies that dt+1 is known

at time t. However, going forward from time t+ 1, the investor will be faced with information

set It+1 where dt+2 is not known. Hence, pt+1 is the equilibrium price that will prevail at time

t + 1. In the case of information set I∗t , all future dividends are known so the expectation

operator may be dropped.
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To facilitate analytical solutions for pt, and pot , and p
∗
t , I assume that dividends are governed

by the following AR(1) process

dt+1 = ρ dt + (1− ρ) d+ εt+1,
εt+j ∼ N (0, σ2ε) ,
|ρ| ≤ 1

, (13)

which allows for a unit root when ρ = 1.

Repeated substitution of equation (13) into equation (10) and then imposing Etεt+j = 0

for j = 1, 2, ... yields the following expression for pt:

pt = dt
{
βρ+ (βρ)2 + (βρ)3 + ...

}
+ d

{
β (1− ρ) + β2

(
1− ρ2

)
+ β3

(
1− ρ3

)
+ ...

}
,

= dt

[
βρ

1− βρ

]
+ d

[
β (1− ρ)

(1− β) (1− βρ)

]
, (14)

which shows that the equilibrium price-dividend ratio pt/dt is constant when ρ = 1 or d = 0.

Iterating the solution for pt ahead one period and then substituting into equation (11)

yields

pot = dt+1

[
β

1− βρ

]
+ d

[
β2 (1− ρ)

(1− β) (1− βρ)

]
. (15)

Repeated substitution of equation (13) into equation (12) yields the following expression

for the perfect foresight price

p∗t = dt

[
βρ

1− βρ

]
+ d

[
β (1− ρ)

(1− β) (1− βρ)

]
︸ ︷︷ ︸

pt

+
β

1− βρ

∞∑
j=1

β j−1εt+j, (16)

Since pt is the rational forecast of p∗t , Shiller (1981) argued that market effi ciency requires

V ar (pt) ≤ V ar (p∗t ) .Marsh and Merton (1986) and Kleidon (1986) later pointed out that nei-

ther variance will exist if dividends (and hence prices) are nonstationary. Shiller’s derivation

assumed that prices and dividends were rendered stationary by removing a common deter-

ministic time trend. However when ρ = 1, the trend in prices and dividends is stochastic,

so Shiller’s detrending procedure would not eliminate the unit root. To allow for the ρ = 1

case, we can take the first difference of the respective price series. Taking the first difference

of equations (14) through (16) yields the following relationships

ρ∆pot = ∆pt+1 (17)

∆p∗t = ∆pt −
[

β

1− βρ

]
εt +

[
β (1− β)

1− βρ

] [
εt+1 + βεt+2 + β2εt+3 + ...

]
. (18)
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Proposition 1. When the representative investor is risk neutral and dividends are governed

by the AR(1) process (13), then the variance of stock price changes will increase with investor

information when the following parameter conditions hold:

V ar (∆pt) < V ar (∆pot ) if |ρ| < 1,

V ar (∆pt) < V ar (∆p∗t ) if ρ (1 + β) < 1.

Proof : Taking the variance of both sides of equation (17) yields V ar (∆pt) = ρ2V ar (∆pot ) .

Taking the variance of both sides of equation (18) yields

V ar (∆p∗t ) = V ar (∆pt) +
β2σ2ε

(1− βρ)2
− 2β Cov (∆pt, εt)

(1− βρ)

+
β2 (1− β)2 σ2ε

(1− βρ)2
[
1 + β2 + β4 + β6 + ...

]
.

From equations (13) and (14), we have Cov (∆pt, εt) = βρ σ2ε/ (1− βρ) . The infinite sum

inside the square brackets of the above expression is equal to 1/
(
1− β2

)
. Inserting these

results into the variance expression and then simplifying yields the following result

V ar (∆p∗t ) = V ar (∆pt) +
2β2σ2ε

(1− βρ)2 (1 + β)
[1− ρ (1 + β)] ,

which shows that the direction of the variance inequality is governed by the sign of the term

[1− ρ (1 + β)] . �

Proposition 1 shows that when ρ (1 + β) > 1, we have V ar (∆pt) > V ar (∆p∗t ) which

is consistent with numerical results obtained by LeRoy (1984). LeRoy employed the values

ρ ∈ (0.8, 0.99) and β = 0.9, which satisfy the condition ρ (1 + β) > 1. However, when

ρ (1 + β) < 1, the variance inequality is reversed such that V ar (∆pt) < V ar (∆p∗t ) .

The intuition for the variance inequality reversal can be understood from equations (16)

and (18). When the parameters ρ and β are both close to unity, the discounting weights

applied to future dividend innovations in the solution for p∗t decay gradually, as shown by

equation (16). By taking the first-difference of the p∗t series to obtain ∆p∗t , the terms involving

future innovations tend to cancel each other out, as can be seen from equation (18), where
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these terms are multiplied by the coeffi cient β (1− β) / (1− βρ) . However, equation (18)

shows that the current dividend innovation εt continues to have a strong impact on ∆p∗t .

The negative covariance between ∆pt and the term involving εt serves to shrink the variance

of ∆p∗t relative to the variance of ∆pt. In contrast, the variance of future innovations εt+j,

j = 1, 2, ...serves to magnify the variance of ∆p∗t relative to the variance of ∆pt. The negative

influence of εt on the variance of ∆p∗t dominates the positive influence of εt+j, j = 1, 2, ...when

the discounting weights in the solution for p∗t decay suffi ciently gradually, as measured by the

condition ρ (1 + β) > 1.

3.2 Cum-Dividend Stock Prices

Unlike the more-standard setup where observed stock prices are viewed as ex-dividend, Engel

(2005) and West (1988) employ cum-dividend pricing equations where the stock price at time

t includes a guaranteed dividend. The cum-dividend versions of equations (10) through (12)

are:

pt = dt + Et
{
βdt+1 + β2dt+2 + β3dt+3 + ...|It

}
, (19)

pot = dt + βdt+1 + Et
{
β2dt+2 + β3dt+3 + ...|Iot

}
,

= dt + βpt+1, (20)

p∗t = dt + βdt+1 + β2dt+2 + β3dt+3 + ..., (21)

which differ in small but important ways from their ex-dividend counterparts. Starting from

the ex-dividend pricing equations (10) through (12), we can obtain the cum-dividend versions

by substituting in for dt+1 from (13) and then imposing ρβ ' 1. By effectively imposing

ρβ ' 1, the cum-dividend pricing equations ensure that the condition ρ (1 + β) > 1 from

Proposition 1 is satisfied.

Starting from the cum-dividend pricing equations (19) through (21) and then following

the same methodology as before, it is straightforward to derive the following relationships
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between the variance of stock price changes under the different information sets:

V ar (∆pot ) = V ar (∆pt) −
2β (1− β)σ2ε

(1− βρ)2
(22)

V ar (∆p∗t ) = V ar (∆pot ) −
2β3σ2ε

(1− βρ)2 (1 + β)
(23)

which implies V ar (∆pt) ≥ V ar (∆pot ) ≥ V ar (∆p∗t ) , in agreement with Propositions 1 and

2 in Engel (2005). Hence, the assumption of cum-dividend stock prices is crucial for Engel’s

results.

4 Risk Averse Investor and Growing Dividends

I now expand the modeling framework to consider risk aversion and exponentially growing

dividends. The growth rate of dividends xt ≡ log (dt/dt−1) is governed by the following ARMA

(1, 1) process

xt+1 = x+ ρ (xt − x) + εt+1 − φεt,
εt+j ∼ N (0, σ2ε) ,
|ρ| < 1,

(24)

where the special case of φ = 1 implies a deterministic trend in log dividends.4 With E (xt) =

x, equation (24) implies the following unconditional moments:

V ar (xt) =

(
1 + φ2 − 2ρφ

)
σ2ε

1− ρ2 , (25)

Corr (xt, xt−1) =
(ρ− φ) (1− ρφ)

1 + φ2 − 2ρφ
. (26)

Corr (xt, xt−2) = ρCorr (xt, xt−1) (27)

The price-dividend ratios under the three information sets are denoted by yt ≡ pt/dt,

yot ≡ pot/dt, and y
∗
t ≡ p∗t/d. Starting from equation (3) and imposing ct = dt for all t, the

first-order conditions under the three information sets be written as

yt = Et [β exp (θxt+1) (yt+1 + 1) |It] , (28)

yot = Et
[
β exp (θxt+1)

(
yot+1 + 1

)
|Iot
]

(29)

y∗t = β exp (θxt+1)
(
y∗t+1 + 1

)
, (30)

4The φ = 1 case corresponds to the following dividend specification: log(dt) = ρ log(dt−1)+µt + εt, where
µt is the the deterministic time trend. Lagging this equation by one period and then subtracting one equation
from the other yields equation (24) with φ = 1, where (1− ρ)x = µ.

11



where θ ≡ 1− α.
The corresponding expressions for the log price-change can be written as follows:

∆ log (pt) = ∆ log (yt) + xt, (31)

∆ log (pot ) = ∆ log (yot ) + xt, (32)

∆ log (p∗t ) = ∆ log (y∗t ) + xt. (33)

The above expressions show that differences in the variance of the log price-change across

information sets can only be due to differences in the variance of the change in the log price-

dividend ratio. Lansing and LeRoy (2014) show that more information about future dividends

increases the variance of the level of the log price-dividend ratio. But, as we shall see, there

is no monotonic relationship between information and the variance of the change in the log

price-dividend ratio.

4.1 Information Set It

I now derive an approximate analytical solution for the price-dividend ratio yt under infor-

mation set It. Given this solution, it is straightforward to derive an analytical expression for

V ar [∆ log (pt)] using the relationship (31). The solution for yt is obtained by solving the

first-order condition (28), subject to the dividend growth process (24). It is convenient to

transform the first-order condition using a nonlinear change of variables to obtain

zt = β exp (θxt) [Et(zt+1|It) + 1] , (34)

where zt ≡ β exp (θxt) (yt + 1) . Under this formulation, zt represents a composite variable

that depends on both the growth rate of dividends and the price-dividend ratio. By making

use of the definition of zt, the first-order condition (28) can be rewritten as yt = Et(zt+1|It).
Hence, the price-dividend ratio under information set It is simply the conditional forecast

of the composite variable zt+1. The following proposition presents an approximate analytical

solution for the composite variable zt.5

5Lansing (2010) demonstrates the accuracy of this solution method for the level of the price-dividend ratio
by comparing the approximate solution to the exact theoretical solution derived by Burnside (1998) for the
case of φ = 0. Here I focus on the variance of the log price-change which is not affected by the constant term
in the approximate solution. The constant term can be an important source of approximation error when the
point of approximation is the deterministic steady state (Collard and Juillard 2001). As in Lansing (2010),
the point of approximation for the solution here is the ergodic mean, not the deterministic steady state, which
helps to improve accuracy.
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Proposition 2. An approximate analytical solution for the composite variable zt ≡ β exp (θxt) (yt + 1)

under information set It is given by

zt = exp [a0 + a1 (xt − x) + a2 εt] ,

where a1 and a2 solve the following system of nonlinear equations

a1 =
θ

1− ρβ exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
] ,

a2 = − a1φβ exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
]

and a0 ≡ E [log (zt)] is given by

a0 = log

{
β exp (θ x)

1− β exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
]} ,

provided that β exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
]
< 1.

Proof : See appendix.

Two values of a1 satisfy the nonlinear system in Proposition 2. The inequality restriction

selects the value of a1 with lower magnitude to ensure that exp (a0) is positive. Given the

solution for the composite variable zt, we can recover the solution for the price-dividend ratio

as follows

yt = Et(zt+1|It) = exp

[
a0 + a1ρ (xt − x)− a1φ εt +

1

2
(a1 + a2)

2 σ2ε

]
. (35)

As shown in the appendix, the approximate solution can be used to derive the following

unconditional variances:

V ar [log (yt)] =
[a1 (ρ− φ)]2 σ2ε

1− ρ2 , (36)

V ar [∆ log (pt)] =
[
(a1ρ)2 + (1 + a1ρ)2 − 2a1ρ (1 + a1ρ)Corr (xt, xt−1)

]
V ar (xt)

−2a1φ [a1 (ρ− φ) + (1− ρ+ φ) (1 + a1ρ)] σ2ε (37)

where V ar (xt) and Corr (xt, xt−1) are given by equations (25) and (26).
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From Proposition 2, the magnitude of the solution coeffi cient a1 increases as the risk

aversion coeffi cient α rises above unity. An increase in the magnitude of a1 serves to magnify

the volatility of the price-dividend ratio, as shown by equation (36) which depends on (a1)
2.6

For the case of log utility (α = 1) , we have θ = 1−α = 0, such that a1 = a2 = 0. In this case,

the price-dividend ratio is constant at the value yt = β/ (1− β) . This result obtains because

the income and substitution effects of an innovation to dividend growth are exactly offsetting.

4.2 Information Set I
o

t = It ∪ dt+1
Information set Iot = It∪dt+1 entertains the possibility that investors may have some auxiliary
information that helps to predict future dividends. An example of such auxiliary information

might be company-provided guidance about future financial performance that is typically

disseminated to investors via quarterly conference calls. To capture this idea, I consider an

environment where investors can see dividends one period ahead without error, as in LeRoy

and Parke (1992).

Information set Iot implies the following relationships:

pot = Mt,t+1 (dt+1 + pt+1) , (38)

yot = β exp (θ xt+1) (yt+1 + 1) ,

= zt+1 = exp [a0 + a1 (xt+1 − µ) + a2 εt+1] , (39)

where pot and y
o
t are the price and price-dividend ratio under information set I

o
t , while pt and

yt are the counterparts under set It. Under set Iot , the discount factorMt, t+1 and the dividend

growth rate xt+1 are both known to investors at time t. In equation (39), I have employed the

definition of zt+1 and the corresponding solution implied by Proposition 2 at time t+ 1. Since

yt = Et(zt+1|It) and yot = zt+1, it follows directly that yt = Et(y
o
t |It), which in turn implies

V ar (yt) ≤ V ar (yot ) .

As shown in the appendix, equations (39) and (32) can be used to derive the following

6LeRoy and LaCivita (1981) demonstrate that risk aversion magnifies the volatility of the price-dividend
ratio in a Lucas-type model where the level of dividends is governed by a two-state Markov process.
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relationships

log (yot )− E [log (yot )] = log (yt)− E [log (yt)] + (a1 + a2) εt+1 (40)

∆ log (pot ) = ∆ log (pt) + (a1 + a2) (εt+1 − εt) (41)

V ar [log (yot )] = V ar [log (yt)] + (a1 + a2)
2 σ2ε, (42)

V ar [∆ log (pot )] = V ar [∆ log (pt)] + 2 (a1 + a2) [a1 (1− ρ+ φ) + a2 − 1] σ2ε, (43)

where equation (42) confirms V ar [log (yt)] ≤ V ar [log (yot )] , i.e., news about dt+1 serves to

increase the variance of the log price-dividend ratio. In contrast, equation (43) reveals the

possibility of a complex ordering between V ar [∆ log (pot )] and V ar [∆ log (pt)] . Depending on

parameter values, the second term on the right side of equation (43) can be either positive or

negative because it includes the covariance between ∆ log (pt) and −εt.

4.3 Information Set I∗t

The perfect foresight price-dividend ratio is governed by equation (30), which is a nonlinear

law of motion. To derive analytical expressions for the perfect foresight variances, I approxi-

mate equation (30) using the following log-linear law of motion (details are contained in the

appendix):

log (y∗t )− E [log (y∗t )] ' θ (xt+1 − x) + β exp (θ x)
{

log
(
y∗t+1

)
− E [log (y∗t )]

}
. (44)

As shown in the appendix, the approximate law of motion (44) and the dividend growth

process (24) can be used to derive the following unconditional moments

V ar [log (y∗t )] =
θ2 {1 + β exp (θ x) [2Corr (xt, xt−1)− ρ]}

[1− ρβ exp (θ x)]
[
1− β2 exp (2θ x)

] V ar (xt) , (45)

V ar [∆ log (p∗t )] = [1− β exp (θ x)]2 V ar [log (y∗t )]

+

{
α2 +

2αθ [1− β exp (θ x)]Corr (xt, xt−1)

[1− ρβ exp (θ x)]

}
V ar (xt) , (46)

where V ar (xt) and Corr (xt, xt−1) are again given by equations (25) and (26).
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4.4 Volatility Comparison

Given the complexity of the variance expressions for the log price-change, the variance ordering

across information sets is not obvious. To gain some insight, it is helpful to consider some

special cases.

Proposition 3. For the special case of logarithmic utility (α = 1), we have:

V ar [∆ log (pt)] = V ar [∆ log (pot )] = V ar [∆ log (p∗t )] = V ar (xt) .

Proof : With log utility, we have θ = 1 − α = 0. Proposition 1 then implies a1 = a2 = 0 for

any values of ρ and φ. Plugging these values into the appropriate expressions yields the above

result. �

When the utility function is logarithmic, the income and substitution effects of dividend

growth innovations exactly cancel. As a result, the price-dividend ratios yt, yot , and y
∗
t are all

constant, as can be seen from the variance expressions (36), (42), and (45) when a1 = a2 = 0

and θ = 0, respectively. Given that the price-dividend ratios are constant, any variation in

the stock price must be driven solely by variation in the stream of dividends which is common

across information sets.

Proposition 4. For the special case of iid dividend growth (ρ = φ = 0) we have V ar [∆ log (pt)] >

V ar [∆ log (pot )] when 0 < α < 1, but V ar [∆ log (pt)] ≤ V ar [∆ log (pot )] when α ≥ 1. Sim-

ilarly, we have V ar [∆ log (pt)] > V ar [∆ log (p∗t )] when 0 < α < 1, but V ar [∆ log (pt)] ≤
V ar [∆ log (p∗t )] when α ≥ 1.

Proof : When ρ = φ = 0, Proposition 1 implies a1 = θ and a2 = 0. From equations (37), (43),

and (46), we then have

V ar [∆ log (pt)] = V ar (xt) ,

V ar [∆ log (pot )] = (1− 2θα) V ar (xt) ,

V ar [∆ log (p∗t )] =

{
α2 + θ2

[
1− β exp (θ x)

1 + β exp (θ x)

]}
V ar (xt) ,
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where θ ≡ 1− α. By inspection, the term multiplying multiplying V ar (xt) in the expression

for V ar [∆ log (pot )] is less than unity when 0 < α < 1 but greater than unity when α > 1.

Similarly, the term multiplying multiplying V ar (xt) in the expression for V ar [∆ log (p∗t )] is

less than unity when 0 < α < 1 but greater than unity when α > 1. �

When 0 < α < 1, Proposition 4 shows V ar [∆ log (pt)] > V ar [∆ log (p∗t )] , analogous to the

risk-neutral result obtained by LeRoy (1984) and Engel (2005). When α > 1, the price-change

variance inequality is reversed such that V ar [∆ log (pt)] < V ar [∆ log (p∗t )] . A similar reversal

occurs in the ordering between V ar [∆ log (pt)] and V ar [∆ log (pot )] . Hence, news about future

dividends can either increase or decrease the variance of stock price changes. The variance of

stock price changes can be interpreted as a measure of the “smoothness”of the underlying

price series. According to Proposition 4, a risk aversion coeffi cient above unity is needed to

cause pt (the forecast) to appear smoother than either pot or p
∗
t (the objects being forecasted).

Proposition 4 further shows that there is no obvious ordering between V ar [∆ log (pot )] and

V ar [∆ log (p∗t )] even in the special case with ρ = φ = 0.

Some intuition for the variance inequality reversal in Proposition 4 can be obtained by

writing out equations (28) and (30) for the case of iid dividend growth, which implies xt+j =

x+ εt+j for j = 1, 2, ... We have

pt = dtEt
{
β exp [θx+ θεt+1] + β2 exp (2θx+ θεt+1 + θεt+2) + ...|It

}
(47)

p∗t = dt
{
β exp [θx+ θεt+1] + β2 exp (2θx+ θεt+1 + θεt+2) + ...

}
. (48)

Since Et {exp (θεt+j) |It} = exp
(
θ2σ2ε/2

)
for j = 1, 2, ..., the price-dividend ratio pt/dt under

information set It is constant in this case. If we neglect the higher-order terms in the above

expression for p∗t , then the corresponding log price changes can be compared directly as follows

∆ log (pt) = log (dt)− log (dt−1)

= x+ εt (49)

∆ log (p∗t ) ' log (dt)− log (dt−1) + θεt+1 − θεt
' ∆ log (pt) + (1− α) (εt+1 − εt) . (50)
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where I have made use of the definition θ ≡ 1− α. The above expressions imply

V ar [∆ log (p∗t )] ' V ar [∆ log (pt)] + 2 (1− α)2 σ2ε − 2 (1− α)Cov [∆ log (pt) , εt]︸ ︷︷ ︸
σ2ε

,

' V ar [∆ log (pt)]− 2 (1− α)ασ2ε, when ρ = φ = 0. (51)

The two variance statistics in equation (51)are equal when α = 1. When 0 < α < 1,

the covariance term involving the current innovation εt serves to shrink the magnitude of

V ar [∆ log (p∗t )] relative to V ar [∆ log (pt)] , whereas the variance of the future innovation εt+1

always serves to magnify V ar [∆ log (p∗t )] relative to V ar [∆ log (pt)] . The negative influence of

εt dominates the positive influence of εt+1 when 0 < α < 1. The differential impact of current

versus future innovations is similar to the effect noted earlier in describing the intuition for

Proposition 1. Recall that the above approximation neglects the variance impact of the higher

order terms which involve the future innovations εt+2, εt+3, ... etc. But when 0 < α < 1, the

stochastic discount factors applied to these future innovations decay gradually in equation

(48). By taking the log-difference of p∗t in equation (48) to obtain ∆ log (p∗t ) , the terms

involving the future innovations tend to cancel out, rendering the above approximation valid,

provided that α is not too far from unity.

4.5 Model Calibration

I now turn to a quantitative analysis of the model’s predictions for the volatility of the log

price-change. There are six parameter values to be chosen: four pertain to the dividend

process (x, ρ, φ, and σε) and two pertain to the investor’s preferences (α and β).

Given that an equity share in the model represents a consumption claim, I calibrate the

process for xt in equation (24) using U.S. data on real per capita aggregate consumption

expenditures (services and nondurable goods) from 1930 to 2012.7 For the baseline calibration,

I choose values for x, σε, ρ, and φ to match the mean, standard deviation, and the first two

autocorrelation statistics for U.S. real per capita consumption growth. I also consider an

alternative calibration that simply imposes ρ = 0.8 and then calibrates the values for x, σε,

and φ to match the mean, standard deviation, and the first autocorrelation statistic for U.S.

real per capita consumption growth. The calibrated parameters are shown in Table 1.
7Data on nominal consumption expenditures for services and nondurable goods are from the Bureau of

Economic Analysis, NIPA Table 2.3.5, lines 8 and 13. The corresponding price indices are from Table 2.3.4,
lines 8 and 13. Population data are from Table 2.1, line 40.
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Table 1: Calibrated Parameter Values
Parameter Baseline Higher ρ

x 0.0186 0.0186
σε 0.01863 0.01822
ρ 0.385 0.800
φ −0.154 0.420

Table 2 compares the moments of U.S. real per capita consumption growth versus those

in the model. By construction, the baseline calibration matches both Corr (xt, xt−1) and

Corr (xt, xt−2) in the data while the alterative calibration with ρ = 0.8matchesCorr (xt, xt−1)

but not Corr (xt, xt−2).

Table 2. Moments of Consumption Growth: Data versus Model

Statistic
U.S. Data
1930 to 2012 Baseline Higher ρ

Mean (xt) 0.0186 0.0186 0.0186
Std Dev (xt) 0.0216 0.0216 0.0216
Corr (xt, xt−1) 0.50 0.50 0.50
Corr (xt, xt−2) 0.19 0.19 0.40
Note: Data source is Bureau of Economic Analysis, NIPA tables 2.1, 2.3.4, and 2.3.5.

Given the parameter values from Table 1 and the expression for the price-dividend ratio

(35) under set It, I choose the value of the subjective time discount factor β to achieve

E [log (yt)] = 3.36, consistent with the sample mean of the log price-dividend ratio for the

S&P 500 stock index from 1930 to 2012, i.e., the same sample period used to measure U.S.

consumption growth. When the coeffi cient of relative risk aversion is α = 2, this procedure

yields β = 0.9840 for the baseline calibration and β = 0.9835 for the alternative calibration

that imposes ρ = 0.8.8 The same value of β is used for all information sets. Whenever

α or the parameters of the dividend process are changed, the value of β is recalibrated to

maintain E [log (yt)] = 3.36. When α exceeds a value slightly above 3, achieving the target

value E [log (yt)] = 3.36 requires a β value greater than unity. Nevertheless, for all values of

α examined, the mean value of the stochastic discount factor E
[
β (ct+1/ct)

−α] remains below
unity.9
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Figure 1: Investor information and the volatility of the change in the log stock price. Providing
investors with more information about the dividend process can either increase or decrease
the volatility of the log price-change. Moreover, under the alternative calibration with ρ = 0.8
(bottom panel), the volatility lines can cross at two different values of α, implying reversals
in the variance ordering at the crossing point. Under the baseline calibration (top panel),
model-predicted volatility can match the data volatility with α ≤ 10 under information sets
Iot and I

∗
t .

5 Quantitative Analysis

Figure 1 plots the standard deviation in percent of ∆ log (pt) , ∆ log (pot ) , and ∆ log (p∗t ) as a

function of the risk aversion coeffi cient over the range 0 ≤ α ≤ 10.10 The top panel shows the

results for the baseline calibration while the bottom panel shows the results for the alternative

calibration that imposes ρ = 0.8. The horizontal dashed lines at 18.98% show the standard

8Cochrane (1992) employs a similar calibration procedure. For a given discount factor β, he chooses the
risk aversion coeffi cient α to match the mean price-dividend ratio in the data.

9Kocherlakota (1990) shows that a well-defined competitive equilibrium with positive interest rates can
still exist in growth economies when β > 1.
10Mehra and Prescott (1985) argue that risk aversion coeffi cients that fall within this range are plausible.
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deviation of the log real stock price change in U.S. data for the period 1930 to 2012.11

Figure 1 shows that the volatility of the log price-change is U-shaped with respect to α

for information sets It and Iot . In contrast, volatility is approximately linear in α under set I
∗
t .

Regardless of the calibration, all three lines intersect at α = 1, consistent with Proposition

3. When 0 < α < 1, the volatility of the log price-change is lowest under set I∗t and highest

under set It, with volatility under set Iot in between the other two. Hence, for 0 < α < 1,

the variance ordering is similar in spirit to the results obtained by Engel (2005) and LeRoy

(1984) in risk neutral settings. However, when α > 1, the ordering of the three variances is

different, with set Iot now exhibiting the highest volatility under both model calibrations.

Both panels illustrate the reversal in the price-change variance inequality as α crosses unity.

Recall that Proposition 4 considered the special case of iid dividend growth (ρ = φ = 0) .

But even in that special case, there was no obvious ordering between V ar [∆ log (pot )] and

V ar [∆ log (p∗t )] . Both calibrations in Figure 1 employ non-zero values for ρ and φ. Under

both calibrations, we have V ar [∆ log (pot )] > V ar [∆ log (p∗t )] whenever α 6= 1. So this is an

example where providing investors with more information about dividends, i.e., moving from

information set Iot to set I
∗
t , will decrease the variance of the log price-change– similar in

spirit to the results obtained by Engel (2005) and LeRoy (1984). But as we have seen, this is

not a general result.

The bottom panel of Figure 1 shows that the volatility lines for information sets It and

I∗t can cross at two different values of α, implying reversals in the variance ordering at the

crossing point. The first crossing point occurs at α = 1 while the second occurs at α = 3.86.

This result shows that providing investors with more information about future dividends can

either increase or decrease the variance of the log price-change, depending on the level of risk

aversion and the parameters that govern the dividend growth process. The value of α at the

second crossing point depends on the value of ρ. Given the intuition from the risk neutral case

in Section 3, it is not surprising that a dividend growth persistence parameter can influence

the direction of the variance inequality in the model with risk aversion.12

Another interesting result shown in Figure 1 is that, under the baseline calibration (top

panel), model-predicted volatility can match the data volatility with α ≤ 10 under information

11The real stock price in the data is measured as the real value of the S&P 500 index from Robert Shiller’s
website.
12A similar reversal pattern occurs when plotting the variance of log equity returns, as shown by Lansing

and LeRoy (2014).
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sets Iot and I
∗
t . Under information set I

o
t the model can match the volatility in the data when

α ' 5.4. Put another way, volatility in the data does not appear excessive if α > 5.4 and

one is willing to accept the idea that investors can predict dividends accurately one year in

advance.

6 Conclusion

This paper showed that providing investors with more information about future dividends

can either increase or decrease the variance of stock price changes, depending on some key

parameters, namely, those governing the properties of dividends and the stochastic discount

factor. I reconcile this result with Engel (2005) and LeRoy (1984) who found that more

information decreases the variance of stock price changes in specialized model settings. The

results derived here are important because it means that news about future dividends can

help account for the high variance of stock price changes in the data.
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A Appendix: Information Set It

A.1 Proof of Proposition 2

Iterating ahead the conjectured law of motion for zt and taking the conditional expectation

yields

Et (zt+1|It) = exp
[
a0 + ρa1 (xt − x)− a1φ εt + 1

2
(a1 + a2)

2 σ2ε
]
. (A.1)

Substituting the above expression into the first order condition (34) and then taking logarithms

yields

log (zt) = F (xt, εt) = log (β) + θxt

+ log
{

exp
[
a0 + ρa1 (xt − x)− a1φ εt + 1

2
(a1 + a2)

2 σ2ε
]

+ 1
}
,

' a0 + a1 (xt − x) + a2 εt, (A.2)

where the Taylor-series coeffi cients a0 ≡ E [log (zt)] , a1, and a2 are given by

a0 = F (x, 0) = log (β) + θ x+ log
{

exp
[
a0 + 1

2
(a1 + a2)

2 σ2ε
]

+ 1
}

(A.3)

a1 =
∂F

∂xt

∣∣∣∣
x, 0

= θ +
ρa1 exp

[
a0 + 1

2
(a1 + a2)

2 σ2ε
]

exp
[
a0 + 1

2
(a1 + a2)

2 σ2ε
]

+ 1
. (A.4)

a2 =
∂F

∂εt

∣∣∣∣
x, 0

=
−a1φ exp

[
a0 + 1

2
(a1 + a2)

2 σ2ε
]

exp
[
a0 + 1

2
(a1 + a2)

2 σ2ε
]

+ 1
(A.5)

Solving equation (A.3) for a0 yields

a0 = log

{
β exp (θ x)

1− β exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
]} , (A.6)

which can be substituted into equations (A.4) and (A.5) to yield the following system of

nonlinear equations that determines a1 and a2:

a1 = θ + ρa1β exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
]

(A.7)

a2 = −a1φβ exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
]

(A.8)
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Solving equation (A.7) for a1 yields the expression shown in Proposition 1. When ρ 6= 0, the

above equations can be combined to obtain the following explicit expression for a2

a2 = φ (θ − a1) /ρ, (ρ 6= 0) , (A.9)

which can be substituted back into equation (A.7). There are two solutions, but only one

solution satisfies the condition β exp
[
θ x+ 1

2
(a1 + a2)

2 σ2ε
]
< 1. �

A.2 Asset Pricing Moments

This section briefly outlines the derivation of equations (36) and (37). Starting from equation

(35) and taking the unconditional expectation of log (yt) yields

log (yt)− E [log (yt)] = a1ρ (xt − x) − a1φ εt, (A.10)

which in turn implies

V ar [log (yt)] = (a1ρ)2 V ar (xt) + (a1φ)2 σ2ε − 2 (a1)
2 ρ φ Cov (xt, εt)︸ ︷︷ ︸

=σ2ε

. (A.11)

The above expression can be simplified to obtain equation (36).

An expression for∆ log (pt) can be obtained using equation (31). Substituting for∆ log (yt)

and then subtracting the unconditional expectation of ∆ log (pt) yields

∆ log (pt)− E [∆ log (pt)] = (1 + a1ρ) (xt − x) − a1ρ (xt−1 − x)− a1φ εt + a1φ εt−1.

(A.12)

Taking the square of the above expression and then taking the unconditional expectation

yields equation (37).

B Appendix: Information Set Iot = It ∪ dt+1

Substituting the law of motion for dividend growth (24) into equation (39) yields

yot = zt+1 = exp[a0 + a1ρ (xt − µ)− a1φ εt︸ ︷︷ ︸
log(yt)−E[log(yt)]

+ (a1 + a2) εt+1]. (B.1)

where a0 = E [log (zt)] = E [log (yot )] . Taking logs of equation (B.1) and then comparing to the

approximate solution for log (yt) from equation (35) yields the relationship shown in equation
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(40). Taking the first difference of log (yot ) and log (yt) and making use of equations (31) and

(32) yields the relationship shown in equation (41).

Taking the square of equations (40) and (41) and then taking the unconditional expectation

yields equations (42) and (43).

C Appendix: Information Set I∗t
C.1 Log-linearized Law of Motion

Taking logarithms of the nonlinear law of motion (30) yields

log (y∗t ) = G
[
xt+1, log

(
y∗t+1

)]
= log (β) + θxt+1 + log

{
exp

[
log
(
y∗t+1

)]
+ 1
}

' b0 + b1 (xt+1 − x) + b2
[
log
(
y∗t+1

)
− b0

]
, (C.1)

where the Taylor-series coeffi cients b0 ≡ E [log (y∗t )] , b1, and b2 are given by

b0 = G (x, b0) = log (β) + θ x+ log [exp (b0) + 1] , (C.2)

b1 =
∂G

∂xt

∣∣∣∣
x, b0

= θ, (C.3)

b2 =
∂G

∂ log
(
y∗t+1

)∣∣∣∣∣
x, b0

=
exp (b0)

exp (b0) + 1
. (C.4)

Solving equation (B.2) for b0 yields

b0 = log

{
β exp (θ x)

1− β exp (θ x)

}
, (C.5)

which can be substituted into equation (B.4) to obtain b2 = β exp (θ x) .

C.2 Asset Pricing Moments

This section briefly outlines the derivation of equations (45) and (46). Since b0 ≡ E [log (y∗t )] ,

equation (C.1) implies

log (y∗t )− E [log (y∗t )] = θ (xt+1 − x) + β exp (θ x)
{

log
(
y∗t+1

)
− E [log (y∗t )]

}
, (C.6)
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which in turn implies

V ar [log (y∗t )] =
θ2V ar (xt) + 2θβ exp (θ x) Cov [log (y∗t ) , xt]

1− β2 exp (2θ x)
. (C.7)

The next step is to compute Cov [log (y∗t ) , xt] which appears in equation (C.7). Starting

from equation (C.6), we have

Cov [log (y∗t ) , xt] = θCov (xt, xt−1) + β exp (θ x)Cov
[
log
(
y∗t+1

)
, xt
]︸ ︷︷ ︸

=Cov[log(y∗t ), xt−1]

, (C.8)

Cov [log (y∗t ) , xt−1] = θ Cov (xt, xt−2)︸ ︷︷ ︸
=ρCov(xt, xt−1)

+β exp (θ x)Cov
[
log
(
y∗t+1

)
, xt−1

]︸ ︷︷ ︸
=Cov[log(y∗t ), xt−2]

, (C.9)

where repeated substitution is used to eliminate Cov [log (y∗t ) , xt−j] for j = 1, 2, ... Applying

a transversality condition yields

Cov [log (y∗t ) , xt] = θCov (xt, xt−1)
∞∑
j=0

[ρβ exp (θ x)]j

=
θCov (xt, xt−1)

1− ρβ exp (θ x)
. (C.10)

where the infinite sum converges provided that ρβ exp (θ x) < 1. Substituting equation (C.10)

into equation (C.7), together with Cov (xt, xt−1) = Corr (xt, xt−1)× V ar (xt) and then sim-

plifying yields equation (45).

Starting from equation (33) and subtracting the unconditional expectation of the perfect

foresight log price change and then substituting for∆ log (y∗t ) computed using the approximate

law of motion (C.6) yields

∆ log (p∗t )− E [∆ log (p∗t )] = α (xt − x) + [1− β exp (θ x)] {log (y∗t )− E [log (y∗t )]} .

(C.11)

Taking the square of the above expression, followed by the unconditional expectation and

then once again making use of equation (C.10) yields equation (46).
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