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Abstract

We construct probability forecasts for episodes of price deflation (i.e., a falling price level)

using yields on nominal and real U.S. Treasury bonds. The deflation probability forecasts

identify two “deflation scares” during the past decade: a mild one following the 2001

recession, and a more serious one starting in late 2008 with the deepening of the financial

crisis. The estimated deflation probabilities are generally consistent with those from

macroeconomic models and surveys of professional forecasters, but they also provide high-

frequency insight into the views of financial market participants. The probabilities can

also be used to price the deflation option embedded in real Treasury bonds.
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1 Introduction

Throughout much of the postwar period, as overall price levels rose fairly rapidly in many

countries, central banks were concerned with reducing price inflation in order to achieve their

mandate for price stability. However, in recent years, as inflation rates around the world

have fallen to much lower levels, the risks to price stability have become more symmetric,

and fears that inflation may fall too low have emerged. In particular, the risk of negative

inflation—price deflation—has become a recurring concern for several central banks.1 Most

seriously, Japan has been mired in deflation and economic stagnation since the mid-1990s.

Among Federal Reserve policymakers, worries about deflation surfaced twice during the

past decade. The first episode followed the 2001 recession. Notably, the Federal Open Market

Committee’s (FOMC) statement of May 6, 2003 publicly expressed the possibility of an

“unwelcome substantial fall in inflation.” Then Federal Reserve Governor Ben Bernanke

(2003) highlighted the importance of this statement, noting that “[t]he May 6 statement broke

new ground as the first occasion in which the FOMC expressed the concern that inflation

might actually fall too low.” The second period of deflationary worries began during the

recent financial crisis and ensuing recession. In the wake of a deepening worldwide financial

upheaval in late 2008, projections of a slowing economy and possible price deflation were

key drivers of monetary policy. Federal Reserve Chairman Bernanke (2010) described the

motivation for policy actions during the crisis in this way: “[T]he FOMC’s policy response

also reflected concerns about a possible unwelcome decline in inflation. Taking note of the

painful experience of Japan, policymakers worried that the United States might sink into

deflation and that, as one consequence, the FOMC’s target interest rate might hit its zero

lower bound, limiting the scope for further monetary accommodation.”

The desire to avoid deflation is often based on the view that a deflationary episode is

particularly treacherous. Early on, Bernanke (2003) stressed the pernicious effects of defla-

tion: “In any case, I hope we can agree that a substantial fall in inflation at this stage has

the potential to interfere with the ongoing U.S. recovery, and that in conceivable—although

remote—circumstances, a serious deflation would do significant economic harm.” Deflation-

ary episodes are considered especially worrying because they may have their own unique and

painful dynamics. The continuing deflationary travails of Japan illustrate the possibility that

the interaction of price deflation with the zero lower bound on nominal interest rates may

produce an intractable regime that is difficult to exit. Even worse, some theoretical models

1See Bordo and Filardo (2005) and Kumar et al. (2003) for historical and cross-county surveys of defla-
tionary episodes.
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suggest that a reinforcing and escalating “deflationary spiral” could arise at the zero bound,

in which the fall in prices boosts real interest rates and vice versa. In addition, deflations also

may carry particularly severe social costs related to the increased real burden on borrowers

with fixed nominal debts. If deflations are special regimes that have their own unique dy-

namics or social costs, it would be particularly useful to go beyond point forecasts of inflation

and consider probability forecasts for the occurrence of a deflationary episode.2

Given the special interest in periods of price deflation, we examine probability forecasts for

such episodes. Of course, there are a variety of ways in which deflation probability forecasts

could be constructed. In this paper, we focus on high-frequency probability forecasts that are

derived from yields on nominal and real Treasury bonds. While nominal Treasury bonds have

fixed coupons and principal, real Treasury bonds—or Treasury inflation-protected securities

(TIPS)—have coupons and principal that vary with changes in the headline consumer price

index (CPI). Differences between comparable-maturity nominal and real yields are widely

used as readings on the inflation expectations of market participants; however, such readings

are obscured by fluctuations in the compensation for inflation risk. To disentangle inflation

expectations and risk premiums, Christensen et al. (2010), henceforth CLR, use an affine,

arbitrage-free dynamic term structure of nominal and real yields.3 In this paper, we show how

to use such a dynamic term structure model to calculate the entire probability distribution

of future inflation outcomes—particularly, the implied deflation probability forecasts—at any

forecast horizon.

Our deflation probability forecasts estimated from yield curves align well with the re-

sults from simple macroeconomic benchmarks, surveys of professional forecasters, and other

financial market prices. These comparisons provide some assurance that our “yields-only” ap-

proach provides useful deflation probabilities under the “real-world” pricing measure needed

for macroeconomic policy analysis and risk management (as opposed to just the “risk-neutral”

pricing measure). Furthermore, we demonstrate how the deflation probability forecasts can

be used to value the deflation protection option embedded in TIPS bonds exploiting the AF

property of the model.4 Our results show that the model-implied value of the embedded de-

2Similar arguments have long been used to motivate the widespread focus on recession probability fore-
casts. That is, since recessions are exceptional episodes or regimes worthy of special attention, it is useful to
consider event probabilities instead of just point forecasts of future growth (e.g., Diebold and Rudebusch 1989,
Rudebusch and Williams 2009).

3Arbitrage-free (AF) models specify the risk-neutral evolution of the underlying yield-curve factors as well
as the dynamics of risk premiums under the key theoretical restriction that there are no residual opportunities
for riskless arbitrage across maturities and over time. Note that these models provide pricing information
under both the risk-neutral and observed (or “real-world”) pricing measures.

4To the best of our knowledge, Grishchenko et al. (2010) is the only other paper to explicitly address the
valuation of the deflation protection embedded in TIPS bonds within a dynamic term structure model.
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flation protection is highly correlated with the observed price difference between TIPS bonds

of similar remaining maturities but different degrees of accumulated inflation exposure.

Our discussion proceeds as follows. Section 2 summarizes the AF model and describes how

deflation probability forecasts are obtained from a full-sample model estimate (i.e., in-sample

fitted values) and from real-time model estimates based on expanding samples (i.e., out-of-

sample forecasts). The resulting deflation probabilities suggest that over the past decade two

“deflation scares” occurred: a mild one following the 2001 recession, and a more serious one

that started in the autumn of 2008 after the deepening of the worldwide financial crisis. In

Section 3, we compare our real-time deflation probability forecasts based on Treasury yields to

a variety of alternative forecasts from macroeconomic models and surveys. These alternative

forecasts are roughly in line with our estimates, but their low frequency makes them less

useful as indicators of future deflation in real time. In Section 4, we compare our real-time

forecasts to alternatives in the finance literature that are based on yield differentials between

seasoned and newly-issued TIPS. These alternative measures contain no correction for risk

premiums and are thus expressed in risk-neutral pricing terms. Using an AF model, we can

generate similar deflation probabilities under the risk-neutral pricing measure; however, our

focus is on deflation probabilities under the alternative “real-world” pricing measure, which

is more relevant for macroeconomic policy and risk management. Indeed, Section 5 provides

a salient example of the model’s asset pricing applications by valuing the deflation protection

option embedded in the principal payments of TIPS bonds.

2 Deflation Probabilities from a Term Structure Model

A dynamic term structure model can be used to decompose differences between nominal

and real yield curves into market-implied inflation expectations and inflation risk premiums

at various maturities. Such models can also provide information on the full distribution of

expected inflation outcomes. In this section, we summarize the CLR version of such a model

and explain how to obtain the implied deflation probabilities.

2.1 CLR Model Specification

Affine, arbitrage-free term structure models, of which the CLR model is an example, link

yield curve dynamics and investor risk premiums within a consistent framework that can

produce both risk-neutral and real-world representations of yield curves over time. Denote

the nominal and real stochastic discount factors as MN
t and MR

t , respectively. The price of a
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nominal bond that pays one dollar at time τ and the price of a real bond that pays one unit

of the consumption basket at time τ are written as

PNt (τ) = EPt

[

MN
t+τ

MN
t

]

and PRt (τ) = EPt

[

MR
t+τ

MR
t

]

.

The no-arbitrage condition requires a consistency between the prices of nominal and real

bonds such that the price of the consumption basket, denoted as the overall price level Qt, is

the ratio of the stochastic discount factors:

Qt =
MR
t

MN
t

.

As derived in CLR, the relationship between nominal and real zero-coupon yields with

maturity τ at time t, denoted as yNt (τ) and yRt (τ), and expected inflation is

yNt (τ) = yRt (τ) + πet (τ) + φt(τ),

where the market-implied rate of inflation expected at time t for the period from t to t+ τ is

πet (τ) = −
1

τ
lnEPt

[

Qt
Qt+τ

]

= −
1

τ
lnEPt

[

e−
∫ t+τ
t

(rNs −rRs )ds
]

, (1)

where rNt and rRt are the instantaneous nominal and real risk-free rates. The corresponding

inflation risk premium is denoted as

φt(τ) = −
1

τ
ln

(

1 +
covPt

[

MR
t+τ

MR
t

, Qt
Qt+τ

]

EPt

[

MR
t+τ

MR
t

]

× EPt

[

Qt
Qt+τ

]

)

. (2)

The CLR model is a four-factor version of the arbitrage-free Nelson-Siegel (AFNS) rep-

resentation developed by Christensen et al. (CDR, 2010). The first three factors correspond

to the level, slope and curvature factors commonly observed for nominal yields and denoted

LNt , St, and Ct, respectively. The fourth factor, LRt , corresponds to the level factor for real

yields. The state vector is thus defined as Xt = (LNt , St, Ct, L
R
t ). The instantaneous nominal

and real risk-free rates are set to be

rNt = LNt + St,

rRt = LRt + αRSt,
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where the differential scaling of real rates to the common slope factor is captured by the

parameter αR. Within this framework, nominal Treasury zero-coupon bond yields are denoted

as

yNt (τ) = LNt +

(

1− e−λτ

λτ

)

St +

(

1− e−λτ

λτ
− e−λτ

)

Ct +
AN (τ)

τ
,

where AN (τ)/τ is a nominal yield-adjustment term. The real TIPS zero-coupon bond yields

are

yRt (τ) = LRt + αR
(

1− e−λτ

λτ

)

St + αR
(

1− e−λτ

λτ
− e−λτ

)

Ct +
AR(τ)

τ
,

where AR(τ)/τ is a real yield-adjustment term. These two equations when combined in

state-space form constitute the measurement equation within our Kalman filter estimation.

To complete the model, we define the price of risk, which determines the connection

between the risk-neutral and real-world yield dynamics. We assume that the nominal and real

stochastic discount factors have standard dynamics given by dMN
t /M

N
t = −rNt dt − Γ′

tdW
P
t

and dMR
t /M

R
t = −rRt dt − Γ′

tdW
P
t , where WP

t is a Brownian motion process. We use the

essentially affine risk premium specification introduced by Duffee (2002), so the risk premium

Γt is defined by the measure change

dWQ
t = dWP

t + Γtdt,

with Γt = γ0 + γ1Xt, γ
0 ∈ R4, and γ1 ∈ R4×4. Therefore, the real-world dynamics of the

state variables can be expressed as

dXt = KP (θP −Xt)dt+ΣdWP
t . (3)

In the unrestricted case, both KP and θP are allowed to vary freely, but CLR provide a de-

tailed empirical analysis to justify various zero-value restrictions on the KP matrix. Imposing

these restrictions results in the equation















dLNt

dSt

dCt

dLRt















=















κP11 0 0 κP14

κP21 κP22 κP23 0

0 0 κP33 0

κP41 κP42 0 κP44











































θP1

θP2

θP3

θP4















−















LNt

St

Ct

LRt





























dt+Σ















dWP,LN

t

dWP,S
t

dWP,C
t

dWP,LR

t















,
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where the covariance matrix Σ is assumed diagonal and constant. This is the transition

equation in our Kalman filter estimation.

2.2 Calculation of Deflation Probabilities

Using the CLR model, we can examine whether the change in the price index (i.e., the inflation

rate) from time t to t+ τ will fall below a certain critical level q. This event is denoted as

Qt+τ
Qt

= e
∫ t+τ
t

(rNs −rRs )ds ≤ (1 + q).

Taking logs, this expression is equivalent to

Yt,t+τ = ln
(Qt+τ
Qt

)

=

∫ t+τ

t

(rNs − rRs )ds ≤ ln(1 + q).

As shown in the appendix, the conditional distribution of this integral term is

Yt,t+τ ∼ N
(

mP
Y (t, τ), σ

P
Y (τ)

2
)

,

where mP
Y (t, τ) and σ

P
Y (τ)

2 are the distribution’s conditional mean and variance, respectively,

under the real-world probability measure.5 The probability of the change in the price index

being below the critical level q is therefore equivalent to

Probt
(

Yt,t+τ ≤ ln(1+q)
)

= Probt

(

Yt,t+τ −mP
Y (t, τ)

σPY (τ)
≤

ln(1 + q)−mP
Y (t, τ)

σPY (τ)

)

= Φ
( ln(1 + q)−mP

Y (t, τ)

σPY (τ)

)

.

To assess deflationary outcomes, q = 0, and

Probt
(

Yt,t+τ ≤ 0
)

= Φ
(−mP

Y (t, τ)

σPY (τ)

)

.

2.3 Full-Sample Deflation Probability Estimates

We start with a full-sample examination of the model and its fitted (or in-sample) deflation

probabilities. For this estimation, we use nominal Treasury zero-coupon bond yields with

maturities of 3 and 6 months, and 1, 2, 3, 5, 7, and 10 years from January 3, 1995 to

December 7, 2010, for a total of 3,978 daily observations. We also use real TIPS bond yields

with maturities of 5, 6, 7, 8, 9, and 10 years from January 4, 1999, to December 7, 2010,

for a total of daily 2,980 observations.6 The U.S. Treasury first issued TIPS in 1997, but

5Risk-neutral inflation probabilities are readily obtained by replacing the real-world dynamics of the state
variables with their risk-neutral dynamics.

6The data are described in Gürkaynak et al. (2007, 2010) and are available from the Board of Governors
of the Federal Reserve website. Nominal yields are constructed from off-the-run Treasury bonds, while real
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 θP Σ

KP
1,· 0.5999 0 0 -0.3719 0.0614 Σ1,1 0.0052

(0.2539) (0.2157) (0.0039) (0.0001)
KP

2,· 1.1921 0.6820 -0.6698 0 -0.0288 Σ2,2 0.0082

(0.3873) (0.1561) (0.1055) (0.0105) (0.0001)
KP

3,· 0 0 0.6070 0 -0.0215 Σ3,3 0.0324

(0.2584) (0.0094) (0.0002)
KP

4,· -3.2348 -0.5551 0 2.3674 0.0340 Σ4,4 0.0063

(0.4303) (0.1213) (0.3198) (0.0047) (0.0001)

Table 1: Parameter Estimates for the Preferred Specification of the CLR Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown for the

preferred specification of the CLR model. The estimated value of λ is 0.4925 (0.0015), while αR is

estimated to be 0.5323 (0.0017). The numbers in parentheses are the estimated parameter standard

deviations. The maximum log likelihood value is 298,501.8.

for several years afterward, the liquidity of the secondary TIPS market was impaired by the

small amount of securities outstanding and uncertainty about the Treasury’s commitment to

the program. Indeed, to avoid the illiquid nascent years of this market, CLR began their

estimation sample of TIPS yields in 2003. Here, in order to shed some light on deflation

probabilities early in the 2000s, we start our sample of TIPS data earlier, which does not

significantly affect our later conclusions.

Table 1 presents the estimated parameters of the preferred CLR model specification over

the full sample. The estimates are comparable to those given in CLR for a shorter sample of

weekly data. In particular, the off-diagonal elements in the estimated KP matrix are highly

statistically significant except for κP14, which has seen its significance decline since the onset of

the financial crisis. However, a robustness check indicates that this parameter has a negligible

effect on the fitted, in-sample deflation probabilities, therefore we proceed with the preferred

CLR specification throughout the paper.

Figure 1 shows our full sample estimates of the one-year probability of deflation (i.e., q = 0

and τ equals one year). Using a rough benchmark of a probability greater than five percent,

two “deflation scare” episodes stand out. Outside these two periods of elevated deflation risk,

the estimated deflation probability is effectively zero.

Figure 2 puts the two deflation scares into sharper focus along with grey shading to

indicate recessions. Both episodes were preceded by recessions, but in each case, the risk

of deflation persisted long after the recessions ended. The first episode spans September

2001 through December 2003. During this period, as noted in the introduction, the FOMC

yields are based on both on-the-run and off-the-run TIPS bonds.
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Figure 1: In-Sample One-Year Deflation Probabilities.

Illustration of the probability of non-positive net inflation (or deflation) over the forthcoming year as

estimated by the CLR model over the full sample period.

expressed concern for the first time that inflation might fall too low. The one-year market-

implied deflation probability averaged 3.0% over this period, reaching highs of over 25% in

August 2002 and August 2003. During this 28-month period, negative month-to-month values

for headline CPI inflation were recorded six times. The second deflation scare episode begins

shortly after the Lehman Brothers bankruptcy on September 15, 2008 and runs through April

2010. This episode is marked by a sharp spike in the fitted, one-year deflation probabilities up

to near certainty in late October and early November 2008. In response to concerns of a very

severe and rapid economic collapse, the Federal Reserve enacted a variety of conventional

and unconventional monetary and liquidity policy actions, which likely helped reduce the

probabilities in the first quarter of 2009 to an average of 4.3% with temporary spikes up to

15 percent. The model’s one-year-ahead deflation probabilities averaged 5.3% over the course

of 2009. The probabilities averaged 2.6% for the dataset in 2010 and dipped below 5% in

April. Over this 20 month period, seven months registered negative, month-to-month values

for headline CPI with annualized values of more than -10% in October and November 2008.

The very high deflation probabilities immediately after the Lehman bankruptcy certainly

reflect the widespread fear of a resulting global macroeconomic free fall, but they are also likely
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(a) First deflation scare.
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(b) Second deflation scare.

Figure 2: In-Sample Deflation Probabilities over the Defined Deflation Scares.

Illustration of the fitted, in-sample one-year deflation probabilities from the preferred specification of

the CLR model over the defined deflation scares (i.e., probability > 5%). Shown in grey shading are

recessions as determined by the NBER.

boosted by market illiquidity during the financial crisis. Several asset classes faced impaired

liquidity during the fall of 2008 with widening bid-ask spreads, lower trading volumes, and

concurrent increases in yields. The jump in risk aversion also helped create a heightened

global demand for safe assets, and this “flight-to-quality” (or “safe haven”) demand favored

highly liquid nominal Treasury securities and led to a sharp decline in their yields, while real

yields declined by less. Liquidity in the TIPS market was especially hard hit (see Campbell et

al. 2009 and CLR for detailed discussions), which lead to higher real yields and a narrowing

of spreads to nominal Treasuries. The model’s deflation probabilities are certainly boosted

during the last few months of 2008 due to these liquidity events, but this volatile period of

very high deflation probabilities appears to have been relatively short in nature.

2.4 Real-time Deflation Probability Forecasts

In order to generate deflation forecast probabilities that would be relevant to market par-

ticipants and policymakers in real time, we complement our fitted, in-sample estimates with

deflation probabilities based on expanding-sample model estimations. In particular, we re-

estimate the preferred specification of the model using weekly data with end of sample dates

from January 7, 2005 to December 3, 2010, a total of 309 estimations.7 We start this analysis

7That is, starting with the first week of January 2005, each new weekly observation is included in the
sample, and the model is re-estimated. Note that the shift to weekly data from daily data had little effect on
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Figure 3: Real-Time, One-Year Probability Forecasts of Deflation.

Illustration of the real-time, out-of-sample probabilities of non-positive net inflation (i.e., deflation)

over the following year as estimated by the CLR model. Included are the corresponding estimates

from the full sample estimation.

in 2005 in order to provide a minimum sample size for accurate estimation and thus cannot

examine the earlier deflation episode in this manner.

Figure 3 shows that inference based on the two sets of default probabilities does not change

qualitatively. To provide further context for these deflation probability forecasts, Figure 4

examines the ability of the model’s point estimates of one-year-ahead expected inflation to

track actually observed inflation rates. In Figure 4(a), we graph these expectations relative to

the corresponding observed year-over-year changes in headline CPI, which is the index used for

TIPS bonds. Note that the model does well at predicting deflation in 2009 as headline CPI in

May 2009 was 2.1 percent below its level the year before. However, the model does not capture

the volatile short-term variation in headline CPI. Such volatility is driven by fluctuations in

crude food and energy prices which are notoriously difficult to forecast. Therefore, in Figure

4(b), we compare the model’s one-year inflation expectations to the observed year-over-year

changes in the less volatile core CPI series. The model tracks these changes remarkably well

using both estimation samples. Thus, the model and its deflation probabilities may be useful

tools for real-time macroeconomic policy or historical analysis.

our analysis but speeded the re-estimation process.
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(a) Comparison to headline CPI inflation.
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(b) Comparison to core CPI inflation.

Figure 4: Real-Time, One-Year Inflation Forecasts.

Illustration of the real-time estimates of the one-year inflations expectations from the CLR model.

Included are the corresponding estimates from the full sample estimation as well as the subsequent

year-over-year change in headline and core CPI, respectively.

Table 2 reports summary statistics for the model’s forecasts of both headline and core CPI

one and two years ahead from both the full-sample and the real-time analysis and compares its

performance to that of the random walk. In general, under the root-mean-squared-error loss

function, the model is able to beat the random walk at forecasting headline CPI, and is not

that far behind when it comes to forecasting changes in the more stable core CPI. During this

sample period, the model generally underestimated realized inflation. Bond investors likely

underestimated the persistent increases in energy prices from 2003 to mid-2008. In addition,

at times, TIPS yields were likely artificially elevated due to liquidity premiums, which would

translate into low BEI rates and, presumably, correspondingly low model inflation forecasts.

3 Forecasts from Macroeconomic Models and Surveys

In this section, we compare the deflation probability forecasts from the CLR yields-only model

to those obtained from simple macroeconomic models and from professional forecasters. One

source for deflation probabilities is the quarterly Survey of Professional Forecasters (SPF),

which provides point forecasts for CPI inflation over the next four quarters. These forecasts

can be used to generate implied SPF deflation probability forecasts based on the distribution

of past SPF forecast errors. Specifically, the SPF probability forecast in a particular quarter
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Full sample analysis, 1999-2010

One-year forecast Two-year forecast
Headline CPI

Mean RMSE Mean RMSE

Random walk 3.96 212.12 22.66 130.53
CLR model -105.97 167.43 -97.23 139.72

One-year forecast Two-year forecast
Core CPI

Mean RMSE Mean RMSE

Random walk 9.32 55.87 10.32 59.27
CLR model -64.64 87.08 -59.83 82.64

Real-time analysis, 2005-2010

One-year forecast Two-year forecast
Headline CPI

Mean RMSE Mean RMSE

Random walk 32.60 288.81 99.50 167.30
CLR model -50.27 173.87 -12.18 106.58

One-year forecast Two-year forecast
Core CPI

Mean RMSE Mean RMSE

Random walk 22.56 55.80 22.71 58.61
CLR model -24.17 63.54 2.69 58.16

Table 2: Summary Statistics for Inflation Forecast Errors.

The summary statistics for the forecast errors from the random walk and the CLR models in
forecasting both headline and core CPI inflation one and two years ahead. The top panel is
based on the full sample estimate generating 131 and 119 monthly forecast errors from the
end of January 1999 until the end of November 2009 and November 2008, respectively. The
bottom panel is based on the real-time analysis which generates 59 and 47 monthly forecast
errors from the end of January 2005 until the end of November 2009 and November 2008,
respectively. All numbers are measured in basis points.

assumes a normal distribution of outcomes around the point forecast with a variance equal

to that of SPF CPI forecast errors from 1981:Q1—the first quarter of SPF CPI forecasts —

up to that particular quarter. Rudebusch and Williams (2009) apply a similar methodology

to obtain implied SPF recession probability forecasts and show that they correspond quite

closely with the subjective recession probabilities, that are reported in the SPF.8 The SPF

inflation forecasts and implied deflation probability forecasts are shown in Figures 5 and 6,

respectively.

It is also of interest to compare our yields-only deflation probabilities to those generated

8The SPF has long asked participants to report inflation forecast probability distributions; unfortunately,
this direct subjective assessment refers to gross domestic product (GDP) price inflation on a calendar year
average over calendar year average basis rather than the one-year-ahead CPI percent change relevant for the
TIPS-based probabilities. (Since 2007, the SPF has also reported subjective probabilities for core CPI inflation
on a calendar year basis.) To the extent they are comparable across their differing price indexes, the reported
SPF deflation probabilities appear to be consistent with our model-implied deflation probabilities.
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Figure 5: CPI and Core CPI Inflation Forecasts.

See main text for the description of the various inflation forecasts.

from models of inflation. From the vast macroeconomic literature, we consider two simple

real-time, macroeconomic benchmarks using data and analysis that arguably were available

to forecasters contemporaneously—that is, in the early to mid 2000s. The first model employs

a random walk forecast of the kind recommended by Atkeson and Ohanian (2001); that is, at

each point in time, inflation over the next year is projected to be the same as it was over the

past year. The second model is a simple Phillips curve along the lines considered by Stock and

Watson (1999) as well as Rudebusch and Svensson (1999) in which inflation depends on lagged

inflation and inversely on the degree of slack. For this purpose, we simply regress the one-

quarter-ahead core CPI inflation on four lags of itself and one lag of the unemployment rate

over the sample 1984:Q1 to 1999:Q4.9 Each quarter from 2000 through 2010, this equation

is iterated ahead (using SPF real-time forecasts for unemployment) to produce four-quarter-

ahead inflation forecasts. Probability forecasts from these models also require a distribution

of likely outcomes. After the mid 1980s, U.S. output growth and inflation exhibited much

less volatility than before, as detailed by Stock and Watson (2007). Therefore, like our SPF

implicit forecast distribution, we assume a normal distribution of outcomes around the point

9Given the short available samples, simple Phillips curves do not yield satisfactory estimates with headline
CPI. Williams (2009) estimates a similar model using the core PCE price index and gets broadly similar
probabilities.
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Figure 6: Probability Forecasts of of CPI and Core CPI Deflation.

See main text for the description of the various deflation probability forecasts.

forecast with a variance equal to that of the Phillips curve CPI forecast errors after 1984. The

point inflation forecasts and resulting deflation probability forecasts are shown in Figures 5

and 6, respectively.

Figures 5 and 6 also show the CLR model’s inflation forecasts and deflation probabilities

for comparison. During the second half of the sample, the one-year-ahead CLR inflation

forecasts are generally consistent with the macroeconomic models and survey results. The

divergence seen in the first few years of the sample can most likely be attributed to the TIPS

liquidity issues discussed earlier, which raised TIPS yields and reduced inflation forecasts.

The deflation probabilities in Figure 6 are also generally consistent with each other in that

two deflationary episodes are identified following the 2001 recession and the bankruptcy of

Lehman Brothers in September 2008. During other periods, all of the deflation probabilities

are close to zero. During 2010, the various deflation probability forecasts have the largest dif-

ferences, which is consistent with the recent heightened uncertainty about the future direction

of inflation (e.g., Leduc, Rudebusch, and Weidner, 2009).

In summary, the deflationary episodes identified with the CLR model have rough parallels

with those from macroeconomic models and survey forecasts, supporting the suggestion that

the yields-only approach encompasses macroeconomic data quite well, even during the recent
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crisis.

4 Alternative Forecasts from Financial Market Data

Alternative yields-only approaches for generating deflation probabilities have been examined

in a few recent studies. With respect to U.S. data, Sack (2000) showed how to generate

a proxy for inflation expectations based on TIPS yields and a similar portfolio of Treasury

STRIPS. The author assumed that risk-neutral investors arbitrage away differences between

the payment structure of a real TIPS security (i.e., both coupons and principal) and a portfolio

of nominal Treasury STRIPS that has the same payment schedule. The market-implied

inflation compensation measure is the constant rate of inflation over the maturity of the

portfolio that equates the prices of the TIPS security and the matching STRIPS portfolio.

Higgins (2010) extended this analysis by assuming that investors believe that the inflation

process has a Gaussian distribution with a constant mean and variance. Once the model’s

parameters are estimated, the probability of deflation over the maturity of the investment,

which was five years in his analysis, can be generated as the integral over the appropriate

interval of the inflation process.

Wright (2009) proposed an alternative, risk-neutral yields-only approach that is based

on comparing the yields on a pair of TIPS securities that have comparable maturity dates

but different issuance dates and thus different reference CPI rates; see Section 5 for further

discussion of specific TIPS bond pairs. The intuition here is to take advantage of the market

pricing of the deflation protection options with different strike prices that are embedded in

the two TIPS bonds; i.e., the contractual feature that insures that the principal repayment

cannot be less than the face value of the bond. Based on the proposedWright (2009) approach,

a lower bound on the implied, risk-neutral deflation probability can be calculated over the

period up to the maturity of the bonds.

Figure 7 shows our full-sample and real-time five-year deflation probabilities under the

risk-neutral pricing measure. These deflation probabilities follow the same qualitative pattern

as the one-year, real-world probabilities presented in Figures 1 and 2; that is, they rise sharply

after the Lehman bankruptcy in September 2008 and then decline in light of the various policy

actions taken by the Federal Reserve and other central banks over the course of the financial

crisis. However, the risk-neutral probabilities are generally more persistent, and their decline

through 2009 and 2010 is slower than that typically exhibited by real-world probabilities.

The differences between the two sets of deflation probabilities, especially during the financial

crisis, underscores the usefulness of a dynamic term structure model that allows us to generate
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Figure 7: Five-Year-Ahead Deflation Probability Forecasts.

Illustration of the real-time probability forecasts of non-positive net inflation (i.e., deflation) under

both the real-world (or P ) probability measure and the risk-neutral (or Q) pricing measure over the

following five years as estimated by the CLR model. Included are two alternative measures. The one

following Higgins (2010) is only available since April 27, 2010. The other is our application of the lower

bound calculation described in Wright (2009) to the pairs of comparable TIPS analyzed in Section 5.

and analyze both of them.

In comparing our estimates to the existing alternatives described previously, we note that,

with few exceptions, our real-time risk-neutral estimates are above the Wright lower bound,

but typically close to it.10 On the other hand, our estimates are well below those reported

by Higgins (2010). Based on these results, we conclude that the CLR model produces very

reasonable estimates of the deflation probability under the risk-neutral pricing measure, which

is in line with the model’s ability to fit the cross sections of nominal and real yields very well.

As discussed in Section 2.3, all yields-only approaches are vulnerable to changes in liquidity

premiums in the Treasury markets that could distort the market pricing mechanism. In this

regard, the Wright procedure has the advantage of not depending on differential liquidity

premiums across the nominal and real Treasury markets, although liquidity issues may remain

10Maturity mismatches likely account for most violations since our estimates have constant five-year matu-
rities, while the Wright measure varies with the maturity of the underlying TIPS bonds.
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across different TIPS bonds. Although these distortions directly affect the model-implied

deflation probabilities, we are comfortable with the CLR model’s ability to smooth through

the recent excess volatility and capture the underlying trends in the data.

The most important shortcoming of the alternative yields-only approaches is that they

only provide deflation probabilities under the risk-neutral pricing measure and not under

the real-world pricing measure. Thus, these deflation probabilities are not comparable to

those generated from macroeconomic sources. In contrast, the CLR modeling structure can

generate real-world probabilities that can be used for macroeconomic policy analysis.11

Aside from TIPS bonds, derivative contracts could be a separate source of financial market

data from which to generate deflation probabilities. Notably, since it provides its purchaser

with protection when realized inflation exceeds a specified threshold, an inflation swap could

provide a reading on the market-based deflation probability on the day the contract was

struck.12 Since contracts are created every day at various possible maturities, a time-series

of deflation probabilities at various maturities could be generated. However, trading volume

on such swaps contracts is very limited in the U.S.13

5 Pricing Inflation Floors with Deflation Probabilities

TIPS coupons and principal have an asymmetrical indexation to the observed headline CPI

changes. The indexation in light of accumulated inflation leads to increases in the coupon

and principal payments accordingly.14 If at maturity the indexed principal payment is less

than the par amount at issuance due to accumulated deflation, the payment is increased back

to its par value. This embedded deflation floor protects the investor from declines in the

price level. Under normal inflationary circumstances, the option value of the TIPS deflation

floor is negligible since the probability of having negative accrued inflation compensation at

11The alternative approaches also generate only a single deflation probability at the forecast horizon deter-
mined by the maturity of the bonds under analysis. In contrast, the CLR model’s use of the entire yield curve
allows us to generate deflation probabilities for all horizons of interest.

12See Hinnerich (2008) for a discussion of the pricing of various forms of inflation-indexed derivatives.
Haubrich et al. (2008) use monthly inflation swap data in their joint model of nominal and real Treasury
rates.

13In addition, other inflation derivatives, such as inflation caps or floors that provide binary payments when
the observed inflation rate is above or below the contracted inflation rate, are said to be available and actively
traded. Given existing option pricing models, inflation-indexed derivatives could be used to extract market-
based deflation probabilities. However, aside from market liquidity issues, an important shortcoming of such
an approach is that the probabilities would again be solely based on the risk-neutral pricing measures.

14As described in Gürkaynak et al. (2010), the reference CPI values used in the adjustment have an
indexation lag since the Bureau of Labor Statistics publishes price index values with a one-month lag; i.e., the
index for a given month is released in the middle of the subsequent month. The reference CPI is thus set to
be a weighted average of the CPI for the second and third months prior to the month of maturity.
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maturity is very small. However, at the peak of the financial crisis in late 2008, neither the

perceived nor the priced probabilities of deflation were negligible. Under these circumstances,

a wedge developed between the prices of seasoned TIPS bonds with a significant amount of

accrued inflation compensation and recently issued TIPS bonds that had no accumulated

inflation compensation and therefore were at the deflation floor upon issuance. Grishchenko

et al. (2010) used a monthly two-factor AF model to compute the value of the deflation option

during the recent financial crisis and showed that its value peaked in mid-2009. In this section,

we use the contingent claim pricing derived by Duffie et al. (2000) within the AF modeling

framework described above to value this deflation protection option. This exercise provides a

relevant application of our deflation probabilities and, as we shall see, an independent check

on the overall fit of the model.

We calculate the deflation options value by comparing under the risk-neutral pricing mea-

sure the prices of a newly issued TIPS bond without any accrued inflation compensation

and a seasoned TIPS bond with sufficient accrued inflation compensation. First, consider a

hypothetical seasoned TIPS bond with T years remaining to maturity that pays an annual

coupon C semi-annually. Assume this bond has accrued sufficient inflation compensation so

it is impossible to reach the deflation floor before maturity. The par-coupon bond satisfying

these criteria has a coupon rate determined by the equation

2T
∑

i=1

C

2
EQt [e

−
∫ ti
t rRs ds] + EQt [e

−
∫ T
t
rRs ds] = 1. (4)

The first term is the sum of the present value of the 2T coupon payments using the model’s

fitted real yield curve at day t. The second term is the discounted value of the principal

payment. The coupon payment for this seasonal bond that solves this equation is denoted as

CS .

Next, consider a new TIPS bond with no accrued inflation compensation with T years to

maturity. Since the coupon payments are not protected against deflation, the difference is in

accounting for the deflation protection on the principal payment:

2T
∑

i=1

C

2
EQt [e

−
∫ ti
t rRs ds] + EQt

[QT
Qt

· e−
∫ T
t
rNs ds1

{
QT
Qt

>1}

]

+ EQt

[

1 · e−
∫ T
t
rNs ds1

{
QT
Qt

≤1}

]

= 1.

The first term is the same as before. The second term represents the present value of the

principal payment conditional on a positive net change in the price index over the bond’s

maturity; i.e., QT
Qt

> 1. Under this condition, full inflation indexation applies, and the price
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change QT
Qt

is placed within the expectations operator and weighted by the probability of

accumulated inflation at time T . The third term represents the present value of the floored

TIPS principal conditional on accumulated net deflation; i.e., when the price level change is

below one, QT
Qt

is replaced by a value of one to provide the promised deflation protection.

Since
QT
Qt

= e
∫ T
t
(rNs −rRs )ds,

the equation can be rewritten as

2T
∑

i=1

C

2
EQt [e

−
∫ ti
t rRs ds]+EQt

[

e−
∫ T
t
rRs ds

]

+

[

EQt

[

e−
∫ T
t
rNs ds1

{
QT
Qt

≤1}

]

−EQt

[

e−
∫ T
t
rRs ds1

{
QT
Qt

≤1}

]

]

= 1,

where the last term on the left-hand side represents the net present value of the deflation

protection of the principal in the TIPS contract.15 The par-coupon yield of a new hypothetical

TIPS bond that solves this equation is denoted as C0.

The difference between CS and C0 is a measure of the advantage of being at the inflation

adjustment floor for a newly issued TIPS bond. The black line in Figure 8 shows the difference

between the CS and C0 values that solve the pricing equations at the five-year maturity using

our real-time model estimates. Prior to the Lehman bankruptcy, the differences between

the two synthetic TIPS bond yields were quite near zero, but slightly negative. However,

the yield differences jumped during the financial crisis, which is consistent with our model

implied deflation probabilities shown in Figure 3. Even by the end of our sample in December

2010, the spreads remained above 5 basis points, suggesting that deflation protection was still

of some value despite the fact that the model-implied deflation probabilities had reached

insignificant levels months before.16

Figure 8 also compares our model-based estimates to the observed yield differences between

pairs of comparable seasoned and recently issued TIPS bonds. The solid grey line represents

the yield difference between a seasoned ten-year TIPS bond with approximately five years

remaining to maturity and the most recently issued five-year TIPS bond.17 Since these pairs

15The appendix explains how these contingent conditional expectations are calculated within the CLR model
using the contingent claim pricing results of Duffie et al. (2000).

16This spread suggests that seasoned and newly issued TIPS bonds should not be pooled to construct real
yield curves, unless the prices of the recently issued TIPS are corrected for the value of the deflation protection.

17From January 3, 2005 to April 24, 2006, we use the 5-year TIPS that matured in April 2010 and the
10-year TIPS that matured in January 2010. From April 25, 2006 to April 23, 2007, we use the 5-year TIPS
with maturity in April 2011 and the 10-year TIPS with maturity in January 2011. From April 24, 2007 to
April 22, 2008, we use the 5-year TIPS with maturity in April 2012 and the 10-year TIPS with maturity in
July 2012. From April 23, 2008 to April 22, 2009, we use the 5-year TIPS with maturity in April 2013 and
the 10-year TIPS with maturity in July 2013. From April 23, 2009 to April 23, 2010, we use the 5-year TIPS
with maturity in April 2014 and the 10-year TIPS with maturity in July 2014. Since April 26, 2010, we use
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Figure 8: Value of the Deflation Protection Embedded in TIPS.

Illustration of the model-implied five-year par-coupon yield spread of a seasoned TIPS over a compa-

rable newly issued TIPS. Included are the spread in the yield-to-maturity as reported by Bloomberg

between the on-the-run pairs of seasoned and newly issued TIPS.

of TIPS bonds have similar remaining payment schedules and liquidity, their yield difference

should be primarily due to the value of the embedded deflation protection option. Our real-

time model estimates track the observed TIPS yield spread remarkably well, especially since

the individual TIPS spreads are not used directly in the model estimation. These results

provide further support for the model’s underlying deflation probability forecasts.18

6 Conclusion

The possibility of deflation has been an important risk factor for the Federal Reserve over the

past decade and, in light of the current low inflation environment, is likely to continue to be

so going forward. In this paper, we use a yields-only dynamic term structure model developed

by Christensen et al. (2010) to generate inflation expectations and corresponding deflation

the 5-year TIPS with maturity in April 2015 and the 10-year TIPS with maturity in July 2015.
18The model-based yield spreads are lower than the observed spreads. Incorporating stochastic volatility into

the model, as in Adrian and Wu (2010), might improve the pricing of the deflation option. We are pursuing
this issue in further work.
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probability forecasts that could be used directly for macroecnomic policy analysis and asset

pricing purposes. A key advantage of the model is that it can be updated daily with just

Treasury bond yields and used for real-time analysis, unlike macroeconomic analysis based

on lower-frequency data. The model’s deflation probabilities, both under the risk-neutral and

real-world pricing measures, are shown to correspond well with forecasts from macroeconomic

models, survey data, and other yields-only approaches in the literature. Finally, the model’s

ability to capture fluctuations of the value of the TIPS embedded deflation protection option

provides further model validation and an example of its usefulness.

21



Appendix

A). The Probability of Deflation in the CLR Model

The probability that the change in the price index is below a certain critical level q equals

the probability of the states of the world where

Qt+τ
Qt

≤ 1 + q.

This is equivalent to requiring

∫ t+τ

t

(rNs − rRs )ds ≤ ln(1 + q).

Therefore, we are interested in the distributional properties of the following process:

Y0,t =

∫ t

0
(rNs −rRs )ds =

∫ t

0
(LNs +Ss−L

R
s −α

RSs)ds ⇒ dY0,t = (LNt +(1−αR)St−L
R
t )dt.

In general, the real-world P -dynamics of the state variables Xt are given by

dXt = KP (θP −Xt)dt+ΣdWP
t .

Adding the Y0,t-process to this system, leaves us with a five-factor SDE





















dLNt

dSt

dCt

dLRt

dY0,t





















=





















κP11 κP12 κP13 κP14 0

κP21 κP22 κP23 κP24 0

κP31 κP32 κP33 κP34 0

κP41 κP42 κP43 κP44 0

0 0 0 0 0









































θP1

θP2

θP3

θP4

0





















dt

−





















κP11 κP12 κP13 κP14 0

κP21 κP22 κP23 κP24 0

κP31 κP32 κP33 κP34 0

κP41 κP42 κP43 κP44 0

−1 −(1− αR) 0 1 0









































LNt

St

Ct

LRt

Y0,t





















dt+





















σ1 0 0 0 0

0 σ2 0 0 0

0 0 σ3 0 0

0 0 0 σ4 0

0 0 0 0 0









































dW
1,P
t

dW
2,P
t

dW
3,P
t

dW
4,P
t

dW
5,P
t





















,

where Z0,t = (LNt , St, Ct, L
R
t , Y0,t) represents the augmented state vector.

This is a system of Gaussian state variables, and all we need to describe its distributional

properties is to calculate the conditional mean vector and covariance matrix. If we define

mP (0, t) = EP [Z0,t|F0], it follows from Duffie (1996), p. 293, that the vector of conditional
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means is given by the solution to the following system of ODEs:

dmP (0, t)

dt
= aP + bPmP (0, t), mP

0 = Z0,
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According to the same source, the conditional covariance matrix can be calculated as

dV P (t)

dt
= bPV P (t) + V P (t)(bP )′ +ΣΣ

′
, V P (0) = 0,

where bP is as above and

Σ =





















σ1 0 0 0 0

0 σ2 0 0 0

0 0 σ3 0 0

0 0 0 σ4 0

0 0 0 0 0





















. (5)

We solve both systems of ODEs with a standard fourth-order, Runge-Kutta method. Given

solutions for mP
0,t and V

P
t , we focus on the elements related to Y0,t which allows us to write

Yt,t+τ =

∫ t+τ

t

(rNs − rRs )ds ∼ N
(

mP
Y (t, τ), σ

P
Y (τ)

2
)

.

Now, the probability of the change in the price index being below the critical level q is

Probt
(

Yt,t+τ ≤ ln(1+q)
)

= Probt

(

Yt,t+τ −mP
Y (t, τ)

σPY (τ)
≤

ln(1 + q)−mP
Y (t, τ)

σPY (τ)

)

= Φ

(

ln(1 + q)−mP
Y (t, τ)

σPY (τ)

)

.

B). Calculation of the NPV of the TIPS Principal Deflation Protection

In general, we are interested in finding the net present value (NPV) of terminal payoffs

from TIPS bonds contingent on the cumulated inflation being below some critical value q;
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specifically, the following difference is of interest

EQt

[

e−
∫ T
t
rNs ds1

{
QT
Qt

≤1+q}

]

− EQt

[

e−
∫ T
t
rRs ds1

{
QT
Qt

≤1+q}

]

.

Thus, the states of the world of interest are characterized by

QT
Qt

≤ 1 + q ⇐⇒ Yt,T =

∫ T

t

(rNs − rRs )ds ≤ ln(1 + q).

To price these terminal principal payments, we need the dynamics of the state variables under

the risk-neutral Q-measure, such that





















dLNt

dSt

dCt

dLRt

dY0,t





















= −





















0 0 0 0 0

0 λ −λ 0 0

0 0 λ 0 0

0 0 0 0 0

−1 −(1− αR) 0 1 0









































LNt

St

Ct

LRt

Y0,t





















dt+





















σ1 0 0 0 0

0 σ2 0 0 0

0 0 σ3 0 0

0 0 0 σ4 0

0 0 0 0 0









































dW
1,Q
t

dW
2,Q
t

dW
3,Q
t

dW
4,Q
t

dW
5,Q
t





















.

Now, define the following two intermediate functions

ψ1(B, t, T ) = EQt

[

e−
∫ T
t
rRs dseB

′

Zt,T
]

,

and

ψ2(B, t, T ) = EQt

[

e−
∫ T
t
rNs dseB

′

Zt,T
]

.

In order to calculate ψ1(B, t, T ) and ψ2(B, t, T ), we summarize the risk-neutral dynamics by

the following matrices and vectors:

K
Q =





















0 0 0 0 0

0 λ −λ 0 0

0 0 λ 0 0

0 0 0 0 0

−1 −(1− αR) 0 1 0





















, Σ =





















σ1 0 0 0 0

0 σ2 0 0 0

0 0 σ3 0 0

0 0 0 σ4 0

0 0 0 0 0





















, ρ
N =





















1

1

0

0

0





















, ρ
R =





















0

αR

0

1

0





















.

From Duffie et al. (2000), it follows that

ψ1(B, t, T ) = exp(Bψ1(t, T )′Zt,t +Aψ1(t, T )),
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where Bψ1(t, T ) and Aψ1(t, T ) are the solutions to the following system of ODEs:

dBψ1(t, T )

dt
= ρR + (KQ)′Bψ1(t, T ), Bψ1(T, T ) = B,

dAψ1(t, T )

dt
= −

1

2

5
∑

j=1

(Σ
′
Bψ1(t, T )Bψ1(t, T )′Σ)j,j, Aψ1(T, T ) = 0.

This system of ODEs can be solved analytically, and the solution is provided in the following

proposition.

Proposition 1:

If the state variables are given by Zt,T = (LNt , St, Ct, L
R
t , Yt,T ) and the real instantaneous

risk-free rate is given by rRt = (ρR)′Xt, then

ψ1(B, t, T ) = exp(B1
ψ1(t, T )L

N
t +B

2
ψ1(t, T )St+B

3
ψ1(t, T )Ct+B

4
ψ1(t, T )L

R
t +B

5
ψ1(t, T )Yt,t+Aψ1(t, T )),

where19

B1
ψ1(t, T ) = B

1
+ B

5
(T − t),

B2
ψ1(t, T ) = e−λ(T−t)B

2
− [αR − (1− αR)B

5
]
1− e−λ(T−t)

λ
,

B3
ψ1(t, T ) = e−λ(T−t)B

3
+ λ(T − t)e−λ(T−t)B

2
+ [αR − (1 − αR)B

5
]
{

(T − t)e−λ(T−t) −
1− e−λ(T−t)

λ

}

,

B4
ψ1(t, T ) = B

4
− (1 +B

5
)(T − t),

B5
ψ1(t, T ) = B

5
,

and20

19The calculations leading to this result are available upon request.
20As we will see later, we need to evaluate Aψ1(t, T ) (and Aψ2(t, T ) below) at B

5
= 0. Since the analytical

Aψi(t, T )-functions are not well-defined in this case (while the underlying ODEs obviously are), we approximate

them by using B
5
= 10−7 instead.
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Aψ1(t, T ) = −

σ2
1

6B
5
[(B

1
)3 − (B

1
+B

5
(T − t))3]

+σ
2
2[α

R
− (1− α

R)B
5
+ λB

2
]2
1− e−2λ(T−t)

4λ3
+

σ2
2

2

[αR − (1− αR)B
5
]2

λ2
(T − t)

−σ
2
2[α

R
− (1− α

R)B
5
+ λB

2
][αR − (1− α

R)B
5
]
1− e−λ(T−t)

λ3

+σ
2
3[α

R
− (1− α

R)B
5
+ λB

3
]2
1− e−2λ(T−t)

4λ3
+

σ2
3

2

[αR − (1− αR)B
5
]2

λ2
(T − t)

+
σ2
3

2
[αR − (1− α

R)B
5
+ λB

2
]2
[

−

1

2λ
(T − t)2e−2λ(T−t)

−

1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(t−t)

4λ3

]

−σ
2
3[α

R
− (1− α

R)B
5
+ λB

3
][αR − (1− α

R)B
5
]
1− e−λ(T−t)

λ3

+σ
2
3
[αR − (1− αR)B

5
+ λB

3
][αR − (1− αR)B

5
+ λB

2
]

λ

[

−

1

2λ
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ2

]

−σ
2
3
[αR − (1− αR)B

5
][αR − (1− αR)B

5
+ λB

2
]

λ

[

−

1

λ
(T − t)e−λ(T−t) +

1− e−λ(T−t)

λ2

]

+
σ2
4

6(1 +B
5
)
[(B

4
)3 − (B

4
− (1 +B

5
)(T − t))3].

Using a similar approach, it holds that

ψ2(B, t, T ) = exp(Bψ2(t, T )′Zt,t +Aψ2(t, T )),

where Bψ2(t, T ) and Aψ2(t, T ) are the solutions to the following system of ODEs

dBψ2(t, T )

dt
= ρN + (KQ)′Bψ2(t, T ), Bψ2(T, T ) = B,

dAψ2(t, T )

dt
= −

1

2

5
∑

j=1

(Σ′Bψ2(t, T )Bψ2(t, T )′Σ)j,j, Aψ2(T, T ) = 0.

This system can also be solved analytically, and the solution is provided in the following

proposition.

Proposition 2:

If the state variables are given by Zt,T = (LNt , St, Ct, L
R
t , Yt,T ) and the nominal instanta-

neous risk-free rate is given by rNt = (ρN )′Xt, then

ψ2(B, t, T ) = exp(B1
ψ2(t, T )L

N
t +B

2
ψ2(t, T )St+B

3
ψ2(t, T )Ct+B

4
ψ2(t, T )L

R
t +B

5
ψ2(t, T )Yt,t+Aψ2(t, T )),
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where21

B1
ψ2(t, T ) = B

1
− (1−B

5
)(T − t),

B2
ψ2(t, T ) = e−λ(T−t)B

2
− [1− (1− αR)B

5
]
1− e−λ(T−t)

λ
,

B3
ψ2(t, T ) = e−λ(T−t)B

3
+ λ(T − t)e−λ(T−t)B

2
+ [1− (1− αR)B

5
]
{

(T − t)e−λ(T−t) −
1− e−λ(T−t)

λ

}

,

B4
ψ2(t, T ) = B

4
− B

5
(T − t),

B5
ψ2(t, T ) = B

5
,

and

Aψ2(t, T ) =
σ2
1

6(1−B
5
)
[(B

1
)3 − (B

1
− (1−B

5
)(T − t))3]

+σ
2
2[1− (1− α

R)B
5
+ λB

2
]2
1− e−2λ(T−t)

4λ3
+

σ2
2

2

[1− (1− αR)B
5
]2

λ2
(T − t)

−σ
2
2[1− (1− α

R)B
5
+ λB

2
][1− (1− α

R)B
5
]
1− e−λ(T−t)

λ3

+σ
2
3[1− (1− α

R)B
5
+ λB

3
]2
1− e−2λ(T−t)

4λ3
+

σ2
3

2

[1− (1− αR)B
5
]2

λ2
(T − t)

+
σ2
3

2
[1− (1− α

R)B
5
+ λB

2
]2
[

−

1

2λ
(T − t)2e−2λ(T−t)

−

1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(t−t)

4λ3

]

−σ
2
3[1− (1− α

R)B
5
+ λB

3
][1− (1− α

R)B
5
]
1− e−λ(T−t)

λ3

+σ
2
3
[1− (1− αR)B

5
+ λB

3
][1− (1− αR)B

5
+ λB

2
]

λ

[

−

1

2λ
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ2

]

−σ
2
3
[1− (1− αR)B

5
][1− (1− αR)B

5
+ λB

2
]

λ

[

−

1

λ
(T − t)e−λ(T−t) +

1− e−λ(T−t)

λ2

]

+
σ2
4

6B
5
[(B

4
)3 − (B

4
−B

5
(T − t))3].

With these results at our disposal, we can turn our attention to the pricing of the deflation

protection in the TIPS contract. From Duffie et al. (2000), it follows that

EQt

[

e−
∫ T
t
rRs dseB

′

Zt,T1{b′Zt,T≤z}

]

=
ψ1(B, t, T )

2

−
1

π

∫ ∞

0

Im{e−ivzψ1(B + ivb, t, T )}

v
dv

21The calculations leading to this result are available upon request.
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and

EQt

[

e−
∫ T
t
rNs dseB

′

Zt,T1{b′Zt,T≤z}

]

=
ψ2(B, t, T )

2

−
1

π

∫ ∞

0

Im{e−ivzψ2(B + ivb, t, T )}

v
dv.

Since we interested in the condition

Yt,T =

∫ T

t

(rNs − rRs )ds ≤ ln(1 + q),

the expectations above should be evaluated at

b =





















0

0

0

0

1





















and z = ln(1 + q).

Furthermore, we have zero boundary values at maturity so

B =





















0

0

0

0

0





















.

The functions Im{e−ivzψ1(B+ivb,t,T )}
v

and Im{e−ivzψ2(B+ivb,t,T )}
v

that need to be integrated in

order to calculate the NPV of the TIPS deflation protection typically have converged to zero

for values of v above 500. Thus, we approximate the infinite integral in the pricing formulas

by capping v at 1000 to err on the side of conservatism and use a step size of ∆v = 0.01 in

the numerical approximation, which is sufficient since the functions are clearly smooth.
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