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1 Introduction

Nominal yields on government debt in several countries have fallen very near their zero lower bound
(ZLB). Notably, yields on Japanese government bonds of various maturities have been near zero since
1996. Similarly, many U.S. Treasury rates edged down quite close to zero in the years following the
financial crisis in late 2008. Accordingly, understanding how to model the term structure of interest
rates when some of those interest rates are near the ZLB commands attention for bond portfolio
pricing, risk management, for macroeconomic and monetary policy analysis. Unfortunately, the
workhorse representation in finance for bond pricing—the affine Gaussian dynamic term structure
model—ignores the ZLB and routinely places positive probabilities on future negative interest rates.
This counterfactual flaw stems from ignoring the existence of currency, which is a readily available
store of value. In the real world, an investor always has the option of holding cash, and the zero
nominal yield of cash will dominate any security with a negative yield !

To recognize the option value of currency in bond pricing, Black (1995) introduced the notion
of a “shadow short rate,” which is driven by fundamentals and can be positive or negative. The
observed short rate equals the shadow short rate except that the former is bounded below by zero.
While Black’s (1995) use of a shadow short rate to account for the presence of currency holds much
intuitive appeal, it has rarely been used. In part, this infrequency reflects the fact that interest rates
in many countries have long been some distance above zero, so the Gaussian models’ positive proba-
bilities on negative future interest rates are negligible and unlikely to be an important determinant in
bond pricing. In recent years, with yields around the world at historic lows, this rationale no longer
applies. However, a second factor limiting the adoption of the shadow-rate structure has been the
difficulty in estimating these nonlinear models. Gorovoi and Linetsky (2004) derive quasi-analytical
bond price formulas for the case of one-factor Gaussian and square-root shadow-rate modelsH Unfor-
tunately, their results do not extend to multidimensional models. Instead, the small set of previous
research on shadow-rate models has relied on numerical methods for pricingH However, in light
of the computational burden of these methods, previous estimations of shadow-rate models have
focused on models that use only one or two factors. For example, Ichiue and Ueno (2007) and
Kim and Singleton (2012) undertake a full maximum likelihood estimation of a two-factor Gaussian
shadow-rate model on Japanese bond yield data using the extended Kalman filter and numerical op-

timization. These analyses were limited to only two pricing factors because the numerical methods

!Actually, the ZLB can be a somewhat soft floor. The nonnegligible costs of transacting in and holding large
amounts of currency have allowed yields to push slightly below zero in a few countries, notably in Denmark recently.
To account for institutional currency frictions in our analysis, we could replace the zero lower bound on yields with
some appropriate, possibly time-varying, negative epsilon.

2Ueno, Baba, and Sakurai (2006) use these formulas when calibrating a one-factor Gaussian model to a sample of
Japanese government bond yields.

3Kim and Singleton (2012) and Bomfim (2003) use finite-difference methods to calculate bond prices, while Ichiue
and Ueno (2007) employ interest rate lattices.



required for shadow-rate models with more than two factors were computationally too onerous. This
practical shortcoming is potentially quite serious given the prevalence of higher-dimensional bond
pricing models in research and industryH Indeed, to overcome the practical difficulties of empirical
implementation, Ichiue and Ueno (2013) simplify the structure by ignoring bond convexity effects,
so the magnitude of the resulting deviations from arbitrage-free pricing is unclear.

An alternative option-based approach to reduce the computational burden associated with the
ZLB, suggested by Krippner (2012), appears to allow for tractable estimation of dynamic term struc-
ture shadow-rate models with more than two factors. The intuition for the option-based approach is
that the price of a standard observed bond (which is constrained by the ZLB) should equal the price
of a shadow-rate bond (which is not constrained by the ZLB) minus the price of a call option per-
taining to the possibility that the unconstrained shadow rates may go negative. That is, the owner of
a shadow bond would have to sell off the probability mass associated with the shadow (zero-coupon)
bond trading above par in order to match the value of the observed bond. Unfortunately, this call
option is difficult to value, so Krippner (2012) provides only an approximate solution to the correct
one. Krippner suggests that the approximation error is likely small, but little is known in practice
about its size and properties.

In this paper, we implement this new option-based approach to estimate the first three-factor
shadow-rate model in the literature. Specifically, we use the option-based method to estimate a
shadow-rate version of the Gaussian arbitrage-free Nelson-Siegel (AFNS) model introduced in Chris-
tensen, Diebold, and Rudebusch (2011), henceforth CDR. The AFNS model class provides a flexible
and robust structure for dynamic term structure modeling that has performed well on a variety of
yield samples by combining good fit with tractable estimation. Furthermore, as we show in this paper,
with an option-based estimation approach, the AFNS specification of the pricing factor dynamics
leads to analytical formulas for the instantaneous shadow forward rates. These new closed-form
expressions facilitate straightforward empirical implementation of higher-order shadow-rate models.
We demonstrate this with an estimation of shadow-rate AFNS models using Japanese term struc-
ture data, which are of special interest because they include a long period of near-zero yields. In
particular, we estimate one-, two-, and three-factor versions of the shadow-rate AFNS model and
compare these to one-, two-, and three-factor versions of the standard Gaussian AFNS model. We
find that shadow-rate models can provide better fit as measured by in-sample metrics such as the
RMSEs of fitted yields and the likelihood values. Still, it is evident from these in-sample results

that a standard three-factor Gaussian dynamic term structure model—like our Gaussian three-factor

“Indeed, Kim and Singleton (2012) suggest that the shadow-rate model results of Ueno, Baba, and Sakurai (2006)
are influenced by their use of a one-factor shadow-rate model that may not be flexible enough to fit their sample of
Japanese data. Similarly, the Kim and Singleton (2012) two-factor results may not generalize to higher-order models.
Finally, note that Bauer and Rudebusch (2013) argue that additional macroeconomic factors will be especially useful
at the ZLB to augment the standard yields-only model.



AFNS model—has enough flexibility to fit the cross-section of yields fairly well at each point in time
even when the shorter-end of the yield curve is flattened out at the ZLB. However, it is not the case
that the Gaussian model can account for all aspects of the term structure at the ZLB. Indeed, we
show that our estimated three-factor Gaussian model clearly fails along two dimensions. First, de-
spite fitting the yield curve, the model cannot capture the dynamics of yields at the ZLB. One stark
indication of this is the high probability the model assigns to negative future short rates—obviously
a poor prediction. Second, the standard model misses the compression of yield volatility that occurs
at the ZLB as expected future short rates are pinned near zero, longer-term rates fluctuate less. The
shadow-rate model, even without incorporating stochastic volatility, can capture this effect.

We then examine two features of the shadow-rate model in detail. As noted above, the option-
based approach provides only an approximation to a fully consistent arbitrage-free dynamic term
structure model. For our three-factor shadow-rate AFNS model, we compare the option-based ap-
proximation to simulation-based results and find that they are very close. Indeed, the option-based
approximation errors are typically an order of magnitude smaller than the in-sample fitted errors, so
the potential loss from using an option-based approach in a realistic setting like ours appears to be
minimal. Second, we examine the robustness to model specification of the shadow short rate, which
has been recommended by some to be a useful measure of the stance of monetary policy at the ZLB
(e.g., Krippner 2012, 2013; Bullard 2012). We find that there is notable disagreement about the
value of the shadow short rate across models with different numbers of factors. This sensitivity to
model specification suggests that conclusions based on the shadow short rate near the zero boundary
are likely to be fragile.

Finally, we should mention two alternative frameworks to modeling yields near the ZLB that
guarantee positive interest rates: stochastic-volatility models with square-root processes and Gaus-
sian quadratic models. Both of these approaches suffer from the theoretical weakness that they treat
the ZLB as a reflecting barrier and not as an absorbing one as in the shadow-rate model. Empirically,
of course, the recent prolonged periods of very low interest rates seem more consistent with an ab-
sorbing state. In addition, Dai and Singleton (2002) disparage the fit of stochastic-volatility models,
while Kim and Singleton (2012) compare quadratic and shadow-rate empirical representations and
find a slight preference for the latter. Still, we consider all three modeling approaches to be worthy
of further investigation, but we view the shadow-rate model to be of particular interest because away
from the ZLB it reduces exactly to the standard Gaussian affine model, which is by far the most
popular dynamic term structure model. Therefore, the entire voluminous literature on affine models
remains completely applicable and relevant when given a modest shadow-rate tweak to handle the
ZLB.

The rest of the paper is structured as follows. Section 2 introduces the shadow-rate framework

and the option-based approach. Section 3 details our shadow-rate AFNS model. Section 4 describes



our Japanese yield data. Section 5 presents our empirical findings for one-, two-, and three-factor
shadow-rate models. Finally, Section 6 concludes. Three appendices provide technical details on

option pricing, model estimation, and detailed model estimation results.

2 Shadow-Rate Models

In this section, we introduce two types of shadow-rate term structure models. The first is the original
approach offered by Black (1995). The second is the option-based approach introduced in Krippner
(2012).

2.1 The Black Shadow-Rate Model

The concept of a shadow interest rate as a modeling tool to account for the ZLB can be attributed to
Black (1995). He noted that the observed nominal short rate will be nonnegative because currency
is a readily available asset to investors that carries a nominal interest rate of zero. Therefore, the
existence of currency sets a zero lower bound on yields.

To account for this ZLB, Black postulated as a modeling tool a shadow short rate, s;, that is
unconstrained by the ZLB. The usual observed instantaneous risk-free rate, r;, which is used for
discounting cash flows when valuing securities, is then given by the greater of the shadow rate or
Zero:

ry = max{0, s¢ }. (1)

Accordingly, as s; falls below zero, the observed r; simply remains at the zero bound.

While Black (1995) described circumstances under which the zero bound on nominal yields might
be relevant, he did not provide specifics for implementation. Gorovoi and Linetsky (2004) derive
one-factor shadow-rate model bond price formulas, which Ueno, Baba, and Sakurai (2006) use to
calibrate a one-factor Gaussian shadow-rate model to Japanese yield data, but these formulas do not
generalize to multifactor models. Instead, previous researchers have employed numerical methods for
pricing. Bomfim (2003) use finite-difference methods to calculate bond prices, while Ichiue and Ueno
(2007) employ interest rate lattices. Kim and Singleton (2012) provide a comprehensive analysis of
this type and implement two-factor affine Gaussian and quadratic Gaussian shadow-rate models.

Kim and Singleton (2012) derive the partial differential equation (PDE) that bond prices must
satisfy under the restriction that the risk-free rate used for discounting is the greater of the shadow

rate or zero,

8—P 1 7’( rp ZZ') — a—PKQ(HQ —z) + max{0,s(z)}P =0, P(0,z)=1. (2)

or 2 O0x0x ox

They solve this PDE using a finite-difference method. Unfortunately, for more than two factors, such



numerical methods render it very difficult to solve the associated higher-dimensional PDE systems
within a reasonable time. This is a severe limitation to estimating shadow-rate models since the

bond pricing literature has focused on models with at least three factors driving bond yields.

2.2 Option-Based Shadow-Rate Models

To overcome the curse of dimensionality that limits numerical-based estimation of shadow-rate mod-
els, Krippner (2012) suggested an alternative option-based approach that could make shadow-rate
models almost as easy to estimate as the corresponding non-shadow-rate model. In particular, esti-
mation of option-based shadow-rate models with more than two state variables could be tractable.
To illustrate this new approach, consider two bond-pricing situations that differ only because one
has a currency in circulation that has a constant nominal value and no transaction costs, while the
other has no currency. In the world without currency, the price of a shadow-rate zero-coupon bond,
P(t,T), may trade above par, as its risk-neutral expected instantaneous return equals the risk-free
shadow short rate, s;, which may be negative In contrast, in the world with currency, the price at
time ¢ for a zero-coupon bond that pays $1 when it matures at time 7 is given by P(¢,7"). This price
will never rise above par, so nonnegative yields will never be observed. Consider the relationship
between the two bond prices at time ¢ for the shortest (say, overnight) maturity available, ¢. In the
presence of currency, investors can either buy the zero-coupon bond at price P(t,t+ J) and receive
one unit of currency the following day or just hold the currency. As a consequence, this bond price,

which would equal the shadow bond price, must be capped at 1:

P(t,t+0) = min{l, P(t,t+9)}
= P(t,t+9) — max{P(t,t +06) —1,0}.
That is, the availability of currency implies that the overnight claim has a value equal to the zero-
coupon shadow bond price minus the value of a call option on the zero-coupon shadow bond with a

strike price of 1. More generally, we can express the price of a bond in the presence of currency as

the price of a shadow bond minus the call option on values of the bond above par:
P(t,T) = P(t,T) - CA(t, T, T;1), (3)

where CA(t, t,T;1) is the value of an American call option at time ¢ with maturity 7" and strike price

1 written on the shadow bond maturing at T'. In essence, in a world with currency, the bond investor

5The modeling approach with unobserved, or “shadow,” components has an analogy in the corporate credit literature.
There, it is frequently assumed that the asset value process of a firm exists but is unobserved. Instead, prices of the
firm’s equity and corporate debt, which can be interpreted as derivatives written on the firm’s assets (see Merton 1974),
are used to draw inferences about the asset value process.



has had to sell off the possible gain from the bond rising above par at any time prior to maturity.
Unfortunately, analytically valuing this American option is complicated by the difficulty in de-
termining the early exercise premium. However, Krippner (2012) argues that there is an analytically
close approximation based on tractable European options. Specifically, he argues that the above
discussion suggests that the last incremental forward rate of any bond will be nonnegative due to
the future availability of currency in the immediate time prior to its maturity. As a consequence, he

introduces the following auxiliary bond price equation
P,(t,T +0) = P(t,T +6) — C¥(t,T,T + 6;1), (4)

where CP(t,T,T + §;1) is the value of a European call option at time ¢ with maturity 7' and strike
price 1 written on the shadow discount bond maturing at 7'+ 0. It should be stressed that P, (t,T+9)
is not identical to the bond price P(¢,T') in equation (B]) whose yield observes the zero lower bound.

The key insight of Krippner (2012) is that the last incremental forward rate of any bond will be
nonnegative due to the future availability of currency in the immediate time prior to its maturity.
By letting § — 0, he takes this idea to its continuous limit, which identifies the corresponding
nonnegative instantaneous forward rate:

i@Tﬁﬂ% —%&@T+®. (5)

Now, the discount bond prices whose yields observe the zero lower bound are approximated by
P (t,T) = e I Lo, (6)

The auxiliary bond price drops out of the calculations, and we are left with formulas for the nonneg-
ative forward rate, f (t,T), that are solely determined by the properties of the shadow rate process
s¢. Specifically, Krippner (2012) shows that

f(th) = f(t’T) + Z(t,T),

where f(t,7T) is the instantaneous forward rate on the shadow bond, which may go negative, while

z(t,T) is given by

| d CE®,T.T+651)
(6 T) = Jim [%{ P, T 1 9) }]

In addition, it holds that the observed instantaneous risk-free rate respects the nonnegativity equation
(I as in the Black (1995) model.



Finally, yield-to-maturity is defined the usual way as

T
Wt T) = g [ s

I 1 [T 0 CE(t,s,5+8;1)
— t 1- . < )
T—t/t Js)ds + 7= | 5136{85 P(t, s) }ds

g 1 QOE(tvst_‘_é;l)}ds

1
= vt D+ 7= | m [65 P(t, s)

It follows that bond yields constrained at the ZLB can be viewed as the sum of the yield on the
unconstrained shadow bond, denoted y(¢,T"), which is modeled using standard tools, and an add-
on correction term derived from the price formula for the option written on the shadow bond that
provides an upward push to deliver the higher nonnegative yields actually observed. Importantly, the
result above is general and applies to any assumptions made about the dynamics of the shadow-rate
process. However, in reality, as implementation requires the calculation of the limit term under the
integral, the option-based shadow-rate models are limited to the Gaussian model class.

It is important to stress that since the observed discount bond prices defined in equation ()
differ from the auxiliary bond price P,(¢,T') defined in equation (@) and used in the construction of
the nonnegative forward rate in equation (Bl), the Krippner (2012) framework should be viewed as
not fully internally consistent and simply an approximation to an arbitrage-free modelH Of course,
away from the ZLB, with a negligible call option, the model will match the standard arbitrage-free
term structure representation.

Some may find the lack of a theoretically airtight option-based arbitrage-free formulation dis-
concerting. However, this feature should be put in context of the rest of the shadow-rate modeling
literature, which is invariably plagued by approximation. Although many empirical shadow-rate
term structure papers start with a theoretically consistent model, various simplifications are made to
facilitate empirical implementation. For example, Ichiue and Ueno (2013) start with a rigorous frame-
work, but in their estimation, they omit Jensen’s inequality terms to obtain a solution. Alternatively,
Kim and Singleton (2012) rigorously solve a PDE using a finite-difference method, but the numerical
burden restricts their results to a two-factor model, which is widely considered too parsimonious to
be realistic. In implementing the option-based approach, we keep in mind the adage: “There are no
true models—only useful ones.” Thus, the question becomes how good the option-based shadow-rate
approximation is near the ZLB. Krippner (2012) compares the option-based results to analytical ones
for a calibrated Gaussian one-factor model, and suggests that the approximation can be quite good.
We go further and examine this issue in the context of an estimated three-factor model below. While

analytical results are not available for a three-factor model comparison, we use simulation-based

5In particular, there is no explicit PDE that bond prices must satisfy, including boundary conditions, for the absence
of arbitrage as in Kim and Singleton (2012) and shown in equation (2I).



results as a benchmark and find that the approximation error is quite small.

3 The Shadow-Rate AFNS Model

In this section, we consider a Gaussian model that leads to tractable formulas for bond yields in
the option-based shadow-rate framework. To model the risk-free shadow rate, we employ the affine
arbitrage-free class of Nelson-Siegel term structure models derived in CDR. This class of models is
very tractable to estimate and has good in-sample fit and out-of-sample forecast accuracyﬂ Here, we

extend the AFNS model to incorporate a nonnegativity constraint on observed yields.

3.1 The Standard AFNS(3) Model

We first briefly describe the standard three-factor AFNS(3) model, which ignores the ZLB on yields.
In this class of models, the risk-free rate, which we take to be the potentially unobserved shadow
rate, is given by

st = X} + X7,

while the dynamics of the state variables (X}, X7, X}) used for pricing under the Q-measure have

the following structureQ'H

dx} 00 0 X} o1 0 0 awe
dXt? = — 0 N =\ Xt2 dt + 091 o092 0 dX}Q . (7)
X} 0 0 A X3 031 032 033 dX?Q

The AFNS model dynamics under the ()-measure may appear restrictive, but CDR show this struc-
ture coupled with general risk pricing provides a very flexible modeling structure. Indeed, CDR
demonstrate that this specification implies zero-coupon bond yields that have the popular Nelson

and Siegel (1987) factor loading structure,

—\(T—t)

)Xf n (ﬂ _ e—)\(T—t)>XE, AT

1—e
y(t’T):th+< Y T — 1) T—t

T—-1)
In this formulation, the three factors, X}, X2, and X}, are identified by the loadings as level, slope,

A}tf? , that is

and curvature, respectively. The yield function also contains a yield-adjustment term,

"See, for example, the discussion and references in Diebold and Rudebusch (2013).

8We have fixed the mean under the Q-measure at zero and assumed a lower triangular structure for the volatility
matrix, which comes at no loss of generality, as described by CDR.

9As discussed in CDR, with a unit root in the level factor under the pricing probability measure, the model is not
arbitrage-free with an unbounded horizon; therefore, as is often done in theoretical discussions, an arbitrary maximum
horizon is imposed.



time invariant and depends only on the maturity of the bond. CDR provide an analytical formula
for this term, which under our identification scheme is entirely determined by the volatility matrix.

The corresponding instantaneous forward rates are given by

0 N(T— _\(T—
f(#t,T) = == P(t,T) = X} + e MTDX2 L N1 —t)e M TOX3 + AT (1, T), (8)

where the yield-adjustment term in the instantaneous forward rate function is given by

AN T) = _%
1 1 1 — e MT-1)\ 2
= —5oh(T = = S(oh + o) (— )
1 1 2 ey 2 o
_5(0'31 +O’§2 +0'§3) |:p — pe )\(T t) o X(T— t)e )\(T t)
i —2\(T'-t) g _ —2X(T—t) N2, —2M(T—1)
et + (T —t)e + (T —t)%e ]
1 — e~ MT-1)
—onoa(T —1t) 3
-0 [l T—t)— . T — e~ M=) _ (7 _ )2~ MNT—1)
11031 )\( t) /\( t)e (T — 1)%
L2 o1 ANT—t) L ot

N SV
+)\(T t)e }

3.2 Bond Option Prices

To implement the option-based approach to the shadow-rate model, we need the analytical formula
for the price of the European call option written on the shadow bond described above.
From standard asset pricing theory it follows that the value of a European call option with

maturity T and strike price K written on the zero-coupon bond maturing at 7"+ ¢ is given by
E Q —fTs du
CE(t,T,T +6;K) = E2|e~ )i #4 max{P(T, T + §) — K,O}].

Calculations provided in Appendix A show that the value of the European call option within the
AFNS(3) model is given by@)

CEM, T, T+6K) = P(t,T+68d(d)— KP(t, T)®(do),

10For European options, the put-call parity applies. As a consequence, the value of European put options written on
P(t,T 4 ) can be similarly calculated; see Chen (1992) for details.



where ®(-) is the cumulative probability function for the standard normal distribution and

In (L“’T”)) + Lo(t, T, T + 6)
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dy = () and dy =dy — \/v(t,T,T + 6)
o(t, T, T + 0)

with s (T—1)
1= e=20\27 — g 2MT—t

vt, T, T+0) = o016 (T —t)+ (o5 +”§2)( ; ) 62)\

1— e M 21 _ ¢ 2MT~1)

+(a§1 + 03, +U§3) ( j ) 62)\

+672A6 |:62 _ (T +5— t)2672A(T7t) N 5 — (T +5— t)672A(T7t) N 1— 672A(T7t)]

2X 2)2 4AN3
1 2 —2X(T—t) 1 —ox(r—t) , 1— e 2MT—1)
oIt — =5 (T —t lme 7 7
2)\( )e 532 ( )e + e
RSV NSV _—2A(T—t)
_% [5 (T 46— t)e T8 4 1€T]
L B et —aN(T—t)
+ 2 [ oX — (T —t)e ]
Lo —xs _ox(T-t) 11— e 2T -1)
- [ T—t _ 7]
+)\ e ( )e 2
_—2A(T—t)
+§e**5 (7= ty?e 0 4 %(T — e T _ 162#]]
_ 1— e*A(Tft)
+20110218(1 — e *?) =
_ e~ MT-1)
+aonomd| - i(T e %e% (6-@+6-pe ) 4201 - e*”)leT]
+( + ) (1—6*A5)21 _ e 2MT-1)
021031 022032 3 3
_—ax(T—t)
i LR A ) e N e E
1 —ox(T-t) , 1— e*ZA(T*t)]
— |- (T—-t -
+)\2 [ ( Je + X

1 _»s Coar—t) , 1—e 2T
—55e [5—(2T+5—2t)e +f] .

3.3 The Shadow-Rate B-AFNS(3) Model

We refer to the complete three-factor shadow-rate model as the B-AFNS(3) model Given the
above AFNS(3) shadow-rate process and the price of a shadow bond option, we are now ready to
price bonds that observe the nonnegativity constraint in a B-AFNS(3) model.

Krippner (2012) provides a formula for the ZLB instantaneous forward rate, f(t,7), that applies

HFollowing Kim and Singleton (2012), the prefix “B-” refers to a shadow-rate model in the spirit of Black (1995), while
the number shows the number of state variables. Krippner (2012, 2013) adopts the prefix CAB for “currency-adjusted
bond.”
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to any Gaussian model

f(th) = f(th)(I)

(f(uT)

w(t,T))+w(t’T)

1 ( 1
V21 P 2
where f(¢,T) is the shadow forward rate and w(t,T') is related to the conditional variance appearing
in the shadow bond option price formula as follows:

1., 0%(t,T,T+96)

w(t.T)" = 3 lim =75

Within the B-AFNS(3) model, the formula for the shadow forward rate, f(¢,T), is provided by

equation (8)), while after some tedious calculus, w(t, T') takes the following formi'3

1— 6—2)\(T—t)

wt,T)? = ofi(T =)+ (03, + 03) 2)
1— e—2>\(T—t) 1 B B 1 - -
+(03) + 035 + 0?33)[ o —5(T=1e 2MT—) _ ST~ £)2e AT t)}
1— e AT 1 — = NT-1)
+2011021 ‘ \ + 2011031 — (T — t)e—A(T—t) + ef]

1— 6—2)\(T—t)

+(021031 + 022032) [ — (T =)0 2\ } '

Now, the zero-coupon bond yields that observe the ZLB, denoted g(t, T), are easily calculated as

1

T
y.T) =5 | [f(t,s)(I)(

f(t,s)
w(t,s)

1 17 f(t,5)72

+ w(t,s ex (——[ ]) ds. 9
)+t =ew (= 5[5 9)
As highlighted by Krippner (2012), with Gaussian shadow-rate dynamics, the calculation of zero-
coupon bond yields involves only a single integral independent of the factor dimension of the model,

which greatly facilitates empirical implementation.

3.4 Market Prices of Risk

So far, the description of the B-AFNS(3) model has relied solely on the dynamics of the state variables
under the ()-measure used for pricing. However, to complete the description of the model and to
implement it empirically, we will need to specify the risk premiums that connect the factor dynamics
under the @-measure to the dynamics under the real-world (or historical) P-measure. It is important
to note that there are no restrictions on the dynamic drift components under the empirical P-measure
beyond the requirement of constant volatility. To facilitate empirical implementation, we use the

extended affine risk premium developed by Cheridito et al. (2007). In the Gaussian framework, this

2These calculations are available from the authors upon request.
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specification implies that the risk premiums I'; depend on the state variables; that is,
Iy = 70 + 71Xt7

where 79 € R3 and v! € R3*3 contain unrestricted parameters The relationship between real-
world yield curve dynamics under the P-measure and risk-neutral dynamics under the Q-measure is
given by
Q _ P
AW = dW; +I'dt.

Thus, the P-dynamics of the state variables are
dX; = K07 — X3)dt + SdW /[P, (10)

where both K and 67 are allowed to vary freely relative to their counterparts under the Q-measure.
Finally, we note that the model estimation is based on the extended Kalman filter and described

in Appendix B.

4 Data

The bulk of our sample of Japanese government bond yields is identical to the data set examined by
Kim and Singleton (2012) Their data set contains six maturities: six-month yields and one-, two-,
four-, seven-, and ten-year yields, and all yields are continuously compounded and measured weekly
(Fridays). The Kim and Singleton (2012) sample, however, covers only January 6, 1995, to March 7,
2008, and so ends before the recent global financial crisis episode, which was marked by extremely
low bond yields in Japan and in many other countries. This recent episode is extremely interesting
to consider from a variety of economic and finance perspectives; therefore, we augment the original
Kim and Singleton (2012) sample with Japanese government zero-coupon yields downloaded from
Bloomberg through May 3, 2013

Figure [I shows the variation over time in four of the six yields. During two periods—from 2001
to 2005 and from 2009 to 2013—six-month and one-year yields are pegged near zero. These episodes
are obvious candidates for possible negative shadow rates. As noted by Kim and Singleton (2012),
these periods also display reduced volatility of short- and medium-term yields due to the zero bound
constraint.

Researchers have found that three factors are typically needed to model the time-variation in

3For Gaussian models, this specification is equivalent to the essentially affine risk premium specification introduced
in Duffee (2002).

1We thank Don Kim for sharing these data.

15When the two sources of data overlap during 2007 and 2008, the two sets of yields match almost exactly.
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Figure 1: Japanese Government Bond Yields. We show time-series plots of Japanese government bond
yields at weekly frequency, at maturities of 6 months, 1 year, 4 years, and 10 years. The data cover the period from
January 6, 1995, to May 3, 2013.

cross sections of bond yields (e.g., Litterman and Scheinkman, 1991). Indeed, for our sample of
Japanese bond yields, 99.84 percent of the total variation is accounted for by three factors. As Table
[ reports, the first principal component loading’s across maturities (the associated eigenvector) is
uniformly negative, so like a level factor, a shock to this component changes all yields in the same
direction irrespective of maturity. The second principal component is a slope factor, as a shock to this
component steepens or flattens the yield curve. Finally, the third component has a U-shaped factor
loading as a function of maturity, which is naturally interpreted as a curvature factor. This pattern
of level, slope, and curvature motivates our use of the Nelson-Siegel level, slope, and curvature factors
for modeling Japanese bond yields, even though we emphasize that our estimated state variables are

not identical to the principal components.

5 Results

In this section, we describe and assess one-, two-, and three-factor empirical shadow-rate models.
We first compare the shadow-rate model fit to the data—relative to each other and to non-shadow-
rate dynamic term structure models. We also discuss some of the advantages of using Gaussian

shadow-rate models over standard Gaussian models in a near-ZLB environment. Next, we evaluate
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Maturity Loading on

(months) First P.C. | Second P.C. | Third P.C.

6 -0.21 -0.49 0.53

12 -0.23 -0.50 0.25

24 -0.31 -0.43 -0.32

48 -0.45 -0.15 -0.57

84 -0.57 0.33 -0.11

120 -0.53 0.44 0.46

% explained 93.48 5.85 0.51

Table 1: Factor Loadings for Japanese Government Bond Yields. The first six rows show how
bond yields at various maturities load on the first three principal components. The bottom row shows the proportion of
all bond yield variability explained by each principal component. The data are weekly Japanese zero-coupon government

bond yields from January 6, 1995, to May 3, 2013.

the closeness of the option-based approximation to a matching simulated shadow-rate model. Finally,

we examine the sensitivity of the shadow short rate to the number of factors in the model.

5.1 In-sample Fit of Standard and Shadow-Rate Models

We begin by considering the simplest possible case for the shadow-rate dynamics, namely the one-
factor Gaussian model of Vasic¢ek (1977). Although this model may seem to be too simple to be of
interest, it has been employed by several previous studie and is a useful tool for comparison. In
this one-factor case, the factor dynamics of the shadow rate s; used for pricing under the risk-neutral

(Q-measure are
ds; = k9 (09 — s;)dt + O'thQ,

with the risk-free rate given by the greater of the shadow rate or zero:
r = max{0, s; }.

The instantaneous forward rate is given by

_ —HQ(T—t) 9
_ KTt Qu _ —k(T—t)y L ol—e™" 70
fe,T)=e st+0%(1—e ) 57 ( 2 ) ,

while
1 — e—26%(T~1)

2 _ 2
wt,T)" =0 50
Allowing for time-varying risk premiums, the dynamics under the objective P-measure are fully

flexible,
ds; = k(07 — sy)dt + cdW} .

Y These include Gorovoi and Linetsky (2004), Ueno et al. (2006), and Krippner (2012).
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Maturity in months All

RMSE 612 21 438 84 120 yields “exlosl
One-factor models

V(1) 58 0.0 121 328 556 524 344  28,362.97
B-V(1) 49 02 109 302 525 50.8 327  29,263.60

Two-factor models

AFNS(2) 59 00 9.0 176 216 0.0 12.2 32,186.23
B-AFNS(2) 6.6 0.3 89 146 17.0 3.2 10.3 32,808.21
Three-factor models

AFNS(3) 00 24 02 42 00 233 9.7 35,469.67
B-AFNS(3) 04 21 03 35 0.7 16.7 7.0 36,520.00

Table 2: Summary Statistics of Model Fit. The table presents the root mean-squared error of the fitted
bond yields from one-, two-, and three-factor models estimated on the weekly Japanese government bond yield data
over the period from January 6, 1995, to May 3, 2013. All numbers are measured in basis points. The last column

reports the obtained maximum log likelihood values.

We refer to this representation inspired by Black (1995) as the B-V(1) model. We also estimate the
standard Vasicek (1977) model, denoted as the V(1) model, without the non-negativity constraint
or the shadow-rate interpretation.

Table [2] reports the summary statistics of the fitted errors for the V(1) and B-V(1) models
The better fit of the B-V(1) model across all yield maturities is notable, with an average root mean-
squared error (RMSE) improvement of 1.7 basis points. This better fit can also be seen in the higher
likelihood value of the B-V(1) model.

To most closely approximate the two-factor Gaussian shadow-rate model of Kim and Singleton
(2012) we estimate a two-factor version of the B-AFNS model that has level and slope factors but

no curvature factor. This model is characterized by a shadow rate given by
st = X} + X2
The state variables (X}, X?) used for pricing under the risk-neutral Q-measure have the following
1 1 1,Q
dXt2 0 A Xt2 0921 092 dXE’Q ‘
As for the P-dynamics, we focus on the most flexible specification with full K¥ matrix
dXx} G oF X} o 0 thl’P
= - dt + THE
dth I<L12D1 I<L12D2 95 Xt2 091 092 th ’

"The estimated parameters of all models in this section are provided in Appendix C.
'8 This is their B-AG2 model.

dynamics:
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This model has a total of ten parameters, two less than the canonical B-AG2 model used by Kim
and Singleton (2012). We estimate both the standard version of this model without any constraints
related to the ZLB, denoted as the AFNS(2) model, and the corresponding shadow-rate model,
denoted as the B-AFNS(2) model.

Table [2] also reports summary statistics for the fit of the two-factor models. The AFNS(2) model
performs reasonably well, but the B-AFNS(2) model has smaller yield RMSEs. The fit of the B-
AFNS(2) model is comparable to the B-AG2 model estimated in Kim and Singleton (2012) even
though the B-AFNS(2) model has fewer parameters under the Q-dynamics used for pricing

Finally, we extend the analysis to three-factor models. In the AFNS(3) model, the risk-neutral Q-
dynamics used for pricing are as detailed in Section B, while we assume fully flexible factor dynamics

under the P-measure:

1 P P P P 1 1,P
dXt K11 Ris Kig 91 Xt 011 0 0 th

2 — P P P P 2 2,P
dX; = Ky, Kby Ko 05 - | X; dt+ | o091 o092 O dW;

3 P P P P 3 3,P
dXt 1131 IQ32 1133 93 Xt J31 032 J33 th

Table 2 reports the summary statistics of the fitted errors of the regular AFNS(3) model as well
as its shadow-rate version, B-AFNS(3). Similar to what we observed for the two-factor models, the
shadow-rate model outperforms its standard counterpart when it comes to model fit. In comparing
model fit across the two- and three-factor models, the AFNS(3) model is on par with the B-AFNS(2)
model, while the B-AFNS(3) model has a bit closer fit than either of them.

5.2 Why Use a Shadow-Rate Model?

Before turning to an analysis of the shadow rate models, it is useful to reinforce the basic motiva-
tion for our analysis by examining short rate forecasts and volatility estimates from the estimated
AFNS(3) model. With regard to short rate forecasts, any standard affine Gaussian dynamic term
structure model may place positive probabilities on future negative interest rates. Accordingly, Fig-
ure [2] shows the probability obtained from the AFNS(3) model that the short rate three months
out will be negative. Over much of the sample, the probabilities of future negative interest rates
are negligible. However, near the ZLB—from 1999 to 2005 and from 2009 through the end of our
sample—the model is typically predicting substantial likelihoods of impossible realizations.
Another serious limitation of the standard Gaussian model is the assumption of constant yield
volatility, which is particularly unrealistic when periods of normal volatility are combined with periods

in which yields are greatly constrained in their movements near the ZLB. Again, a shadow-rate

90ur RMSEs are very close to our estimated error standard deviations, 5<(7;), and to the estimated error deviations
reported by Kim and Singleton (2012).

16



1.0

= AFNS(3) model

Probability
0.6

0.4

0.2

0.0
|

1995 2000 2005 2010

Figure 2: Probability of Negative Short Rates. Illustration of the conditional probability of negative
short rates three months ahead from the AFNS(3) model.

model approach can mitigate this failing significantly. Figure Bl shows the implied three-month
conditional yield volatility of the two-year yield from the AFNS(3) and B-AFNS(3) models along
with a comparison to the three-month realized volatility of the two-year yield calculated from our
sample using daily frequency While the conditional yield volatility from the AFNS(3) model
is constant, the conditional yield volatility from the B-AFNS(3) model closely matches the realized
volatility series—with a correlation of 72 percent. Particularly noteworthy is the B-AFNS(3) model’s
ability to produce near-zero yield volatility when yields are at their lowest (during 2001-2005 and
2009-2013).

5.3 How Good is the Option-Based Approximation?

As noted above, Krippner (2012) does not provide a formal derivation of arbitrage-free pricing rela-
tionships for the option-based approach. Therefore, in this subsection, we analyze how closely the
option-based bond pricing from the estimated B-AFNS(3) model matches an arbitrage-free bond
pricing that is obtained from the same model using Black’s (1995) approach based on Monte Carlo
simulations.

As a motivating comparison, Figure d] shows analytical and simulation-based yield curves and

203ee Kim and Singleton (2012) for details.
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Figure 3: Three-Month Conditional Volatility of Two-Year Yield. Illustration of the three-month
conditional volatility of the two-year yield implied by the estimated AFNS(3) and B-AFNS(3) models. Also shown is
the subsequent three-month realized volatility of the two-year yield based on daily data.

option-based and simulation-based shadow yield curves from the estimated B-AFNS(3) model as
of January 9, 2004—which is during a Japanese ZLB period. The simulation-based shadow yield
curve is obtained from 25,000 ten-year long factor paths generated using the estimated ()-dynamics
of the state variables in the B-AFNS(3) model, which, ignoring the nonnegativity equation (IJ), are
used to construct 25,000 paths for the shadow short rate. These are converted into a corresponding
number of shadow discount bond paths and averaged for each maturity before the resulting shadow
discount bond prices are converted into yields. The simulation-based yield curve is obtained from
the same underlying 25,000 Monte Carlo factor paths, but at each point in time in the simulation,
the resulting short rate is constrained by the nonnegativity equation (IJ) as in Black (1995). The
shadow-rate curve from the B-AFNS(3) model can also be calculated analytically via the usual affine
pricing relationships, which ignore the ZLB. Note that the simulated shadow yield curve is almost
identical to this analytical shadow yield curve. Any difference between these two curves is simply
numerical error that reflects the finite number of simulations. More interestingly, the differences
between the simulation-based and option-based yield curves are also hard to discern. The minuscule
discrepancies between these two yield curves show that the approximation error associated with the
option-based approach to calculating bond yields near the ZLB is also very small in this instance.

To document that the close match between the option-based and the simulation-based yield curves
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Maturity in months

Dates 12 36 60 84 120
1/2/95 Shadow yields 0.10 -0.04 -0.42 -0.67 -0.76
Yields 0.07 -0.09 -0.46 -0.70 -0.61
1/5/96 Shadow yields 0.37  0.81 1.31 1.68 2.44
Yields 0.33 0.77 1.28 1.69 2.56
Shadow yields 0.04 0.06 0.19 -0.04 0.14
1/10/97 Yields 0.05 0.10 0.21 0.01 0.72
1/9/98 Shadow yields -0.05 -0.22 -0.23 -0.37 -0.95
Yields -0.02 -0.05 0.07 0.24 1.05
1/8/99 Sl}adow yields 0.00 -0.25 -0.34 -0.31 0.23
Yields -0.02 -0.23 -0.29 -0.10 1.36
1/7/00 Shadow yields -0.06 -0.17 0.04 -0.14 -1.02
Yields -0.07 -0.04 0.39 0.72 1.57
1/5/01 Shadow yields 0.07 0.58 0.75 0.61 0.06
Yields 0.08 0.56 1.03 1.45 2.58
1/4/02 Shadow yields 0.14 0.56 0.67 0.45 0.01
Yields 0.08 037 054 082 2.15
Shadow yields -0.11 0.31 0.32 0.38 0.60
1/10/03 Yields 0.00 026 083 1.74 397
1/9/04 Shadow yields -0.07 -0.26 -0.62 -0.79 -0.25
Yields -0.05 -0.11 -0.23 0.18 2.36
1/7/05 Shadow yields 0.19 0.24 0.29 0.31 -0.16
Yields 0.05 0.29 0.83 1.45 2.55
1/6/06 Shadow yields 0.27 0.27 0.37 0.91 1.91
Yields 0.12 0.25 0.44 1.23  3.28
1/6/07 Shadow yields 0.18 -0.13 -0.09 -0.09 -0.17
Yields 0.16 -0.13 0.07 0.51 2.23
1/6/08 Shadow yields -0.12 -0.03 -0.10 -0.27 -0.12
Yields -0.12 0.03 0.12 0.40 1.87
1/2/09 Shadow yields -0.36 -0.66 -0.34 -0.01 0.58
Yields -0.28 -0.30 0.20 0.80 2.73
1/1/10 Shadow yields 0.05 0.14 0.18 0.46 0.69
Yields -0.03 0.20 0.51 1.26  3.37
1/7/11 Shadow yields 0.23 -0.21 -0.88 -1.52 -2.44
Yields 0.05 0.07 0.04 0.21 1.36
1/6/12 Shadow yields 0.06 -0.10 -0.45 -0.40 0.09
Yields -0.01 -0.05 -0.07 0.56 2.89
1/4/13 Shadow yields 0.23 047 0.76 1.06 1.03
Yields 0.06 0.22 0.62 1.48 3.63
Average Shadow yields 0.14 0.29 0.44 0.55 0.72
absolute difference  Yields 0.09 022 043 082 2.25

Table 3: Approximation Errors in Yields for Three-Factor Model. At each date, the table reports
differences between the analytical shadow yield curve obtained from the option-based estimates of the B-AFNS(3) model
and the shadow yield curve obtained from 25,000 simulations of the estimated factor dynamics under the Q-measure in
that model. The table also reports for each date the corresponding differences between the fitted yield curve obtained
from the B-AFNS(3) model and the yield curve obtained via simulation of the estimated B-AFNS(3) model with
imposition of the ZLB. The bottom two rows give averages of the absolute differences across the 19 dates. All numbers

are measured in basis points.

19



— Yield curve, B-AFNS(3) model
Shadow curve, B-AFNS(3) model

= = Yield curve, Black (1995) simulation
Shadow curve, Black (1995) simulation

+ Observed yields

Rate in percent

T T T T T T
0 2 4 6 8 10

Time to maturity in years

Figure 4: Fitted Yield Curves in Three-Factor Shadow-Rate Models. Fitted and shadow
yield curves from an option-based estimated B-AFNS(3) model are shown as of January 9, 2004. In addition, the
corresponding curves are shown based on a simulation using Black’s (1995) approach and N = 25,000 paths of the state

variables drawn using the option-based estimated B-AFNS(3) model factor dynamics under the Q-measure.

is not limited to one specific date, we repeated the simulation exercise for the first observation in
each year of our sample. Table [ reports the resulting shadow yield curve differences and yield curve
differences for various maturities on these 19 dates. Again, the errors for the shadow yield curves
solely reflect simulation error as the model-implied shadow yield curve is identical to the analytical
arbitrage-free curve that would prevail without currency in circulation. These simulation errors in
Table[3l are typically very small in absolute value, and they increase only slowly with maturity. Their
average absolute value—shown in the bottom row—is less than one basis point even at a ten-year
maturity. This implies that using simulations with a large number of draws (N = 25,000) arguably
delivers enough accuracy for the type of inference we want to make here.

Given this calibration of the size of the numerical errors involved in the simulation, we can now
assess the more interesting size of the approximation error in the option-based approach to valuing
yields in the presence of the ZLB. In Table [ the errors of the fitted B-AFNS(3) model yield curve
relative to the simulated results are only slightly larger than those reported for the shadow yield
curve. In particular, for maturities up to seven years, the errors tend to be less than 1 basis point, so
the option-based approximation error adds very little if anything to the numerical simulation error.

At the ten-year maturity, the approximation errors are understandably larger, but even the largest
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errors at the ten-year maturity do not exceed 4 basis points in absolute value and the average absolute
value is around 2 basis points. Overall, the option-based approximation errors in our three-factor
setting appear relatively small. Indeed, they are smaller than the fitted errors described in Table
That is, for the B-AFNS(3) model, the gain from using a numerical estimation approach instead of
the option-based approximation would in all likelihood be negligible.

Of course, these favorable results on the modest size of the approximation error may not generalize
to all situations. We are aware of two other relevant examinations of the option-based approach.
First, Krippner (2012) reports approximation errors closer to 6 basis points at the ten-year maturity
for a calibrated one-factor Vasicek model Second, Christensen and Rudebusch (2013) find only
a few basis point approximation error for their B-AFNS(3) model estimated on U.S. Treasury yield
data. Ultimately, in future applications, we recommend examining the accuracy of the option-based
approximation as a routine matter using the simulation-based validation described here. Indeed,
we view the ready availability of a validation methodology as a positive feature of the option-based
approach. In contrast, the computational burden of the theoretically rigorous approach employed by
Kim and Singleton (2012), which requires using a two-factor model as an approximation to what is
likely a three-factor data generating process, does not permit an investigation of the quality of that

two-factor approximation.

5.4 Shadow Short Rate Comparisons Across Models

Finally, we examine estimates of the shadow short rate, which has been recommended by some to
be a useful measure of the stance of monetary policy at the ZLB (e.g., Krippner 2012, 2013; Bullard
2012). Figure [ shows the instantaneous shadow short-rate paths implied by our one-, two-, and
three-factor shadow-rate models. Also, for comparison, we include the shadow-rate path from the
B-AG2 model as estimated by Kim and Singleton (2012) for their sample from January 6, 1995,
to March 7, 2008. The pairwise correlations between the estimated shadow-rate paths range from
0.887 to 0.993. There is little disagreement across models when the instantaneous rate is in positive
territory; however, when the shadow rate is negative, there can be pronounced differences among the
levels of the estimated shadow short rates across the one-, two-, and three-factor models, with the
shadow short rate from the B-AFNS(3) model generally the least negative. Furthermore, we have
found that even within each model class, there can be disagreement across specifications about how

negative the shadow rate is depending on the parsimony of the model

21Using our Monte Carlo simulation method, we replicated these one-factor results—namely, Table 6.1 of Gorovoi
and Linetsky (2004) and Tables 1 and 2 of Krippner (2012).

22The diversity in our shadow short rates can be compared to other studies. Ueno et al. (2006) calibrate one-factor
version of the Black (1995) model on Japanese data and calculate a shadow short rate that is typically lower than
-5 percent, with the lowest reading falling below -15 percent in the summer of 2002. Ichiue and Ueno (2007) use the
Kalman filter to estimate a two-factor shadow-rate model on monthly Japanese government bond yields and report
shadow-rate values in a range from -1 to -0.5 percent for the 2001-2005 period.
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Figure 5: Model-Implied Shadow Rates. Illustration of the model-implied shadow rate from the B-V(1),
B-AFNS(2), and B-AFNS(3) models. For comparison, we include the B-AG2 model shadow rate estimated by Kim
and Singleton (2012) through 2008.

To further illustrate the source of the sensitivity of the shadow short rates to model specification,
we examine the two- and three-factor model fit on a specific date, July 1, 2005, when the shadow
rate attains a very low value according to most models shown in Figure Figure illustrates
observed yields on this date as well as fitted yield curves from the AFNS(2) and B-AFNS(2) models,
while Figure shows the corresponding output for the AFNS(3) and B-AFNS(3) models. For the
two-factor models, we note that the AFNS(2) model has difficulty matching the kink in the observed
yields around the two-year maturity point, which is very pronounced during this period. On the
other hand, for the three-factor models, this distinction between standard and shadow-rate models
is much less apparent. It appears that the plain-vanilla AFNS(3) model has sufficient flexibility to
handle the kink even on this very challenging day in the sample.

All in all, our results indicate that the shadow short rate is model specific and likely not a useful
measure of the stance of monetary policy when yields are near the ZLB. At a minimum, a number of

model specifications should be analyzed to verify the robustness of any shadow short rate conclusions.
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Figure 6: Fitted Yield Curves on July 1, 2005. The figure to the left illustrates the fitted yield curves
from the AFNS(2) and B-AFNS(2) models on July 1, 2005. Also shown are the six observed yields on that date. The
figure to the right shows the corresponding results for the AFNS(3) and B-AFNS(3) models.

6 Conclusion

To adapt the Gaussian term structure model to the recent near-zero interest rate environment, we
have combined the arbitrage-free Nelson-Siegel model dynamics with the option-based shadow-rate
methodology of Krippner (2012). We derive the relevant closed-form solution and estimate variants
of this model—including the first three-factor shadow-rate model—using near-zero Japanese yields.
We find that the option-based B-AFNS(3) shadow-rate model introduced in this paper provides a
very close approximation to the results one would obtain by using a simulation-based implementation
of the same model as originally envisioned by Black (1995). Based on this evidence, we conclude
that the option-based shadow-rate model class appears to be competitive for modeling yield curve
dynamics in the current near-zero yield environment. A useful next step in future research would be
to put this shadow-rate representation to work, say, making interest predictions or valuing derivatives
at the ZLB. For this, finding a preferred specification of the shadow rate factor dynamics and dealing
with any finite-sample estimation bias is of importance.

Finally, although some have recommended using the shadow short rate as a measure of the stance
of monetary policy, we find that estimated shadow short rates are sensitive to the number of factors
included in the estimation. Other aspects of model specification—such as the maturities of yields
included in the sample or the ratio of near-ZLB yields to normal yield observations in the sample—

would also likely have an important influence on the shadow short rate, and we cannot recommend
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it as a robust measure.
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Appendix A: Bond Option Pricing in the AFNS(3) Model

In this appendix we derive the value of a European call option with maturity at time 7" and strike K written on
the zero-coupon bond with maturity 7 4 ¢ when it is assumed that the state variables have the AFNS(3) Q-dynamics
in equation ().

In short form, the factor @-dynamics in the AFNS(3) model are

dX; = K2(0° — X,)dt + SdW 2,

while the instantaneous risk-free rate is r: = p} X;.

Now, recall that the value of the zero-coupon bond that matures at T+ ¢ is
P(t,T +6) = exp(A(t,T + 8) + B(t,T + 6)'Xy),

where A(t,T 4 0) and B(t,T + J) are the unique solutions to the following ordinary differential equations (ODE) as in
Duffie and Kan (1996)

ABOTEO) _ (KOY BT +3), BT +6.T+5) =0,
WCTED IS BT+ 0)BOT+6)S),5 AT +8T+8)=0.

Jj=1

By Ito’s lemma, the Q-dynamics of P(t,T + ¢) are

dA(t,T +6) n dB(t, T + )’
dt dt

+%P(t7 T +6)dX;B(t, T+ 6)B(t, T + §)' dX:

dP(tT+8) = P@tT+0)| Xe]dt+ P(,T + 8) BT +0)'dX,

3

SOBET + )BT +0))55+ (o1 + (K9) B, T +6))' X | de
j=1

P(t T+ 8)B(t,T +8) [k X dt + ZdW 2

- P(t,T+5)[—

N =

P(t, T+ 9) f: S'B(t,T+68)B(t, T+ 6)'Y);  dt
j=1
= P\ X.P(t, T+ (;)dt + P(t,T+68)B(t, T +6)SdWS.
Since p'lXt = r¢, this reduces to
dP(t,T + &) = reP(t,T + 8)dt + P(t,T + §)B(t,T + &) SdW. (11)

These are the bond price dynamics under the risk-neutral measure where the riskless asset has been used as the deflator

and foundation for the martingale measure applied for asset pricing.
The Forward Measure

Now, an alternative martingale measure turns out to be convenient for asset pricing for the problem at hand. This
measure is frequently referred to as the forward measure and uses the zero-coupon bond price with the same maturity
as the option, that is P(¢,T), as deflator instead of the riskless asset.

To begin, let Z(t,T,T + §) denote the zero-coupon bond price underlying the option deflated by the zero-coupon
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bond P(¢,T)

P(t,T + )
Z(t,T,T + 6) P
By Ito’s lemma,
1 P(t,T + )
dZ(t, T, T+0) = ——dP(t,T+0)— ————LdP(t,T
( ) bl + ) P(t7 T) ( ) + ) P(t7 T) ( ) )
1 0 PR dP(t,T + 6)
+=( dP(t,T+6) dP(t,T) < - s ) < .
2 ( ) P(t,;")2 P(t,T)3 dP(t’T)
Using the result in equation ({I]), this reduces to
dZ(t, T, T+06) = mZt,T,T+8)dt+ Z(t, T, T+ 8)B(t, T + 8)'SdWZ
—ri Z(t, T, T + 8)dt — Z(t, T, T + 6)B(t,T)' SdW S
L b, 7+ 0)ap@, 1)+ LLT 9 gpy 1y

- P(,T)? P(t,T)*

= Z(t,T,T+06)[B(t, T +68) — B(t,T)] SdWS2
3

—Z(t,T,T+06) Y (S'B(t, T +8)B(t,T)'S); ;dt

Jj=1

w

Z(t,T,T + 0) Z S'B(t, T)B(t,T)'S); jdt.

We can now define the new measure by determining the Girsanov transformation, which is the process g(¢,T") that
shows the change in drift from the old measure to the new measure and establishes the connection between the old

Brownian motion and the new Brownian motion
T
dWE = dWS2 — g(t,T)dt.
Inserting this in the dynamics above, it follows

dZ(t,T,T+6) = Z(tT,T+0)[B(t,T+08) — B, T)SAWS" + g(t, T)dt]
3
—Z(t,T,T+06)> (X'B(t,T+0)B(tT)S);,dt

j=1

w

+Z(t,T,T+06) Y (X'B(t,T)B(t,T)'Y); ;dt.

Jj=1

Since the new measure should be a martingale measure that can be used for pricing, g(¢,T') is chosen such that the

drift in the dynamics above is eliminated

3

-3 (2’[3(1:7 T +6) — B(t,T)]B(t, T)’E) _ +[B(t,T+06) - B(t,T)]'Sg(t,T) =0 for te€[0,T) (12)
= 3,3

Thus, under the forward QT-measure, it holds that

dZ(t, T, T +8) = Z(t, T, T + 8)[B(t, T + 8) — B(t,T))SdW&" .

Option Pricing under the Forward Measure
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Now, the key thing is the dynamics of the deflated zero-coupon bond price underlying the option, i.e. P(¢,T + §),

under the T-forward measure
dZ(t, T, T +8) = Z(t, T,T + 8)[B(t, T + 8) — B(t,T))SdW" .
In integral form, this converts into
Z(s,T,T +08) = Z(t, T, T +8) + / Z(uw, T, T+ 8)[B(u, T +06) — Blu,T)SdWE |, se (t,T).
t
Due to the martingale property of the Ito integral, it follows that
EQ" [ Z(s, T, T +6)] = Z(t, T, T +5).

Now, we focus on pricing bond options under the T-forward measure. To begin, consider the call option with
maturity at T and strike price K written on the zero-coupon bond maturing at T+§. Denote its price by C(¢, T, T+6; K).
Due to the Q7-martingale property of the deflated bond price dynamics, it holds that

Cit, T, T+ 6§ K) QT[C’(T,T,T—G-&K)]

P, T) - P(T,T)

However, at maturity 7', P(T,7) = 1 and C(T,T,T + ¢; K) = max{P(T,T + 6) — K,0}. This implies that the call

option price can be calculated as
T T
C(t,T.T + 6 K) = P(t,T)E’ [P(T7 T+ 5)1{P(T,T+6>2K}] ~ KP(t,T)E} [1{P<T,T+6)2K}]-

To calculate these two contingent expectations, we exploit the properties of the Z(¢,T,T + ) process. At time T,

it holds that
P(T,T +9)

P(T,T)
Thus, the states of the world where P(T,T + §) are above the strike K are the states of the world where

Z(T,T,T + ) = = P(T,T +9).
Z(T,T,T+90) > K.
Since Z(t,T,T + §) is a log-normal process, we take its log
Y(t,T,T +6) =InZ(t, T,T +§).

By Ito’s lemma, it holds that

1 1 1 )
Tt T 2T T +0) — 5 oy (4T T +9))

dY (t,T,T + 6) S ZETTTD
[B(t, T +6) — B(t,T)'Sdw?"

% f:(z’[B(t, T +6) - B, T)|[B(t, T +6) — B(t,T)|'S),.dt.

In integral form, this converts into
1 [T '
Y(T7T7T+6) = Y(t7T7T+5)_ 5 Z(Z [B(57T+6)_B(SvT)][B(57T+5)_B(87T)] Z)j’jds
t =1

+ /T [B(s,T +8) — B(s,T)Sdw 2" .
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It follows that Y(T,T,T + §) is normally distributed
Y(T,T,T +6) ~ N(my (¢, T,T + 6),vy (¢t,T,T + 9)),

where my (¢, T,T + §) and vy (¢,7,T + §) will be determined below.

Now, the call option is in the money whenever
Y(T,T,T+6)=my(t,T,T +0)+ oy (&, T,T +0) Xy > InK,

where Xy is a standard normally distributed variable. Equivalently,

In K —my(t,T,T +0)
’Uy(t7T7T+5)

Xy >

It follows that the second part of the option payment can be calculated as

T
C:(t, T, T+ 6 K) = —Kp(th)EQ [1{P(TT+6)>K}]

1 2
o 3%
XY 4 Xy

—KP(t,T)— /

‘/ In K —my (t,T,T+86)
2 \/7%

my(t,T,T+6)—an)

Uy(t7 T,T+ 5)

_KP(t, T)cI>(
As for the first part of the option payment, it holds that

Ci(t, T, T+ 6 K) = [P T, T+0)1p(r, T+6>>K}]
= [Z T71T,T+ 5)1{P(T T+6)>K}]

eV (I THo) Lip(T, T+6)>K}]

1 oo _ 12
_ P( ) my(t,T,T+5)+\/vy(t,T,T+6)XY6 ngde'
21 JInK—my (t, T, T+46)

oy (6T, T+3)

Now, it is noted that
1 2 1 1.2
_§(XY_ ’Uy(t7T7T+5)) +§’Uy(t7T7T+(5):—EXY+\/vy(t7T7T+(5)Xy7

which implies that we can integrate by substitution with zy = Xy — /vy (¢,T,T 4+ §) whereby dzy = dXy and the

intervals to be integrated over change to

o = X¥P— oy (t, T, T +6) =
xl;;)ttom — X{?/ottom _ 'UY(t,T,T—‘-(;) _ an—my(t,T7T+5) —'UY(t,T,T"‘(S).
vy (¢, T, T +9)
Thus, the first payment expectation can be calculated as
O\, T, T+6K) = P ) 1 emy(t,T,T+6)+%vy(t,T,T+6)67%x§/dmy

o JImK-—my (+,T,T+6)—vy (+,T,T+6)
vy (&, T, T+9)

Pt T)emy(t,T,T+6)+%vy(t,T,T+6)(I)(mY(t7 T,T40)+vy(t,T,T+5)—In K)‘
’ vy (6, T, T +0)
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Due to the property of the log-normal distribution, it follows that

EQT [ TTT0) — pRT [ Z(T, T, T + §)] = ™ T TH) 45y (WT.T+6)

Since Z(t,T,T + 6) is a QT-martingale, this implies that

Z(t, T, T +0) = Pg’(f;)d) — oMy (BT TH8)+Foy (8T.7+6)
)

Now, insert that in the expression above to obtain

Ci(t, T, T + 6 K) = P(t,T+5)<I>(my(t’T’T+5) oy (BT T +9) = 1’“K)

vy (¢, T, T + )

To summarize, the call option with maturity at 7" and strike price K written on the zero-coupon bond maturing

at T + 0 is given by

Ct, T,T+6K) = Ci(t,T,T+6K)+ Co(t,T,T + 6; K)
P(t,T +6)®(d1) — KP(t,T)®(d2),

where

o d = my (t,T,T+8)+vy (¢t,7,T4+5)—In K
vy (,T,T+38)

o do=di—\/oy(t,T,T +0).

The conditional mean of Y (7T',T,T + ) under the T-forward measure is

)

my (6, T, T +8) = Y (t, T, T + ) — % /T S ([B(s, T +68) — B(s, D)|[B(s, T + 6) — B(s, T)]'S);.;ds,

while its conditional variance is given by

wt, T,T+8) = v [/tT[B(s, T +6) — B(s, T)'Sdw®" |]-‘t]
T 3
= [ SSBT - 0) ~ Bl TB.T )~ B T 9) s

From this it follows that

my (& T, T +6) = Y(t,T,T+5)—%UY(t,T,T+5)
. P(t, T+ 9) 1

This implies that we can rewrite d; as

In (iﬂi’,ﬁ}?) + 3oy (4, T,T + )

di =
vy (¢, T, T + )

This structure is consistent with the more simple Gaussian option price formulas derived in Jamshidian (1989) and
Chen (1992). Importantly, once we have the analytical formula for the conditional variance, we have all ingredients

needed to calculate the call option price. This is the task we now turn to.

The Analytical Formula for the Conditional Variance
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To begin, we expand the expression for the conditional variance of Y (¢,T,T + 0) as follows:

T 3 011 021 031 B'(s, T +6) — B'(s,T)
oy (6, T, T +6) = /Z 0 o2 o3 B*(s,T + 6) — B(s,T)
b= 0 0 o3 B3(s,T + ) — B3(s,T)

x( BYs,T+6) - B'(s,T) Bs,T+6)~Bs,T) B%s,T+06)~Bs.T) )

X 021 022 O ds.
3,3
This produces a total of six unique integrals that have to be calculated.

The first of the six integrals is given by
T
VLT, T +8) = 031/ [BY(s,T + 8) — B'(s, T)|%ds.
¢
The second integral is given by
T
vy (t, T, T+3) = (03, + agz)/ [B*(s,T + 8) — B*(s,T)]%ds.
t
The third integral is given by
T
Wy (6T, T+6) = (05 + 05+ 033) / [B*(s, T +6) — B*(s,T))"ds.
t
The fourth integral is given by
T
vy (6, T, T+6) = 20110m / [B'(s,T 4 &) — B'(s,T)][B*(s, T 4 6) — B*(s, T)]ds.
t
The fifth integral is given by
T
v (4, T, T+08) = 201103 / [B'(s,T 4 &) — B'(s,T)][B*(s, T 4 6) — B*(s, T)]ds.
t
The sixth and final integral is given by

T
W, T, T+6) = 20co03 —|—c722032)/ [B*(s,T + &) — B*(s, T)][B*(s,T + &) — B*(s, T)]ds.
t
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Unreported calculations show that the conditional volatility of the Y (¢,7,T + §) process i

’Uy(t7T7T + 5)

6
D ov(tT.T +0)
i=1

1— e*Aé)Q 1 _ e=2MT-1)

A 2
LM\ 2] _ p—2AT-D)

1—e
o3 + o+ 0% () — 55

Coxs [52 — (T +6—t)%e 22T N 6 —(T+6—t)e ATV L1 e*QMT*”]
2\ 2)2 403
1 B _ 1 B _ 1— 672>\(T—t)
+(U§1 +05 + 033) [ - ﬁ(T - t)2€ T ﬁ(T —t)e T 4 T}
(1— efxa)efm [ Coar—n) | 1— e~ 2MT—1)
- - (T+d6—t¢ 7]
2 (T + e + N

—A8 ] _ p—2MT—1)

0202 (T — 1) + (02 + 032)(

+(¢732‘1 + 03 + Ugs)e

—(‘732‘1 + 03 + 032‘3)

2 2 2 \1—e [ 72)\(T—t)]
Hom + o5 + o) 2 (T — t)e
1o~ (T 1 — e—2NT—1)
oot e om0 12
A 2
2 2 2 1 a5 2 —ax(T-t) , 1 Coar—yy 1-— = 2MT—1)
Hodh bt )3T - e 5 (T = e -
AT
+20110210(1 — efké)lei

A2
1— 67>\(T7t) i|

—1—20110316[ — %(T —t)e MY %ef’\é (6 —(T+96—- t)eiA(T*t)) +2(1—e ) e

_ 67A6)2 1 — e—2MT-1)

1
+(o21031 +022032)( 5\ 5\

L -23[s_ (745 Cox(T—yy | 1—e D
+(o21031 +022032)ﬁ€ [ —(T+d—te +T]

1 Con(T—1) 1— 672A(T7t)]

—|—(T—t - -
+(o21031 + 022032))\ [ ( )e + 2

1 _ B B 1 — e 2MT—1)
—(o21031 + 022032)ﬁ6 1o [5 — (2T + 6 — 2t)e 2MT=t) o ef]

Appendix B: Kalman Filter Estimation of Shadow-Rate Models

In this appendix we describe the estimation of the shadow-rate models based on the extended Kalman filter.

For affine Gaussian models, in general, the conditional mean vector and the conditional covariance matrix are

EF[Xr|F] = (I-exp(—-KPA1)0" + exp(—KF At)X;,

At ,
VP IXr|F) / e K my e (KD °ds,
0

where At =T —t. We compute conditional moments of discrete observations and obtain the state transition equation

X; = (I —exp(—K"At))0" + exp(—KTAH) X1 + &,

where At is the time between observations. In the standard Kalman filter, the measurement equation would be affine,

in which case

yt:A+BXt+Et.

23 The calculations leading to this result are available from the authors upon request.

31



The assumed error structure is

() =160 )]

where the matrix H is assumed diagonal, while the matrix @ has the following structure:
At P
Q / 7K SEZI —(KFYy 5ds.

In addition, the transition and measurement errors are assumed orthogonal to the initial state.

Now we consider Kalman filtering, which we use to evaluate the likelihood function.

Due to the assumed stationarity, the filter is initialized at the unconditional mean and variance of the state variables
under the P-measure: Xg = oF and Yo = fooo (fKPSEZ'(f(KP)ISdS7 which we calculate using the analytical solutions
provided in Fisher and Gilles (1996).

Denote the information available at time ¢ by Y: = (y1,¥2,...,yt), and denote model parameters by 1. Consider
period t — 1 and suppose that the state update X:_1 and its mean square error matrix >;—; have been obtained. The
prediction step is

Xijpo1 = BY[Xe[Vioa] = @70 () + 9771 () X1,

Sije-1 = € () 2197 (8) + Qi)
where ®;°° = (I — exp(—KTA))0F, X = exp(—KTAt), and Q; = At e K syyy e (KDY ®ds, while At is the time

between observations.

In the time-t update step, X;;_; is improved by using the additional information contained in Y;. We have
Xt = E[X4|Yy] = Xojo—1 + Sejp—1 B) Fy Moy,

3 = Zt\t—l - Zt\t—lB(lb)/F;lB(¢)Et\t—17
where
vi =yt — Elys|Yic1] = ye — A[W) — B(¥) X1,

Fy = cou(v,) = B®)Sy1 BW) + H(®),
H($) = diag(e* (), ..., o> (7x)).

At this point, the Kalman filter has delivered all ingredients needed to evaluate the Gaussian log likelihood, the

prediction-error decomposition of which is
o 1
logl(y1,...,yr;¥ Z ( — —log(2m) — = log |Fy| — Sv, Fy fut)
t=1 2

where N is the number of observed yields. We numerically maximize the likelihood with respect to v using the

Nelder-Mead simplex algorithm. Upon convergence, we obtain standard errors from the estimated covariance matrix,

85 1 8loglt(¢)310glt($)/ -1
Q) = T[TZ ) O ] ’

t=1

where ZZ denotes the estimated model parameters.
This completes the description of the standard Kalman filter. However, in the shadow-rate models, the zero-coupon

bond yields are not affine functions of the state variables. Instead, the measurement equation takes the general form

yr = 2(Xe; ) + v
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In the extended Kalman filter we use, this equation is linearized through a first-order Taylor expansion around the best
guess of X; in the prediction step of the Kalman filter algorithm. Thus, in the notation introduced above, this best

guess is denoted X,;_; and the approximation is given by

0z(X; 1)

Xe;0) = 2(Xejp—1;
Z( t71/}) Z( tft 171/))+ 0X¢ Xt=Xy14—1

(Xt — Xt\tfl)«

Now, by defining

02(Xe;9) 02(Xe;¢)
gRALY) Xio_ d By (y)= Z&26%) ,
X, X=Xy tjt—1 an t('@z}) X, Xi=X,1

At(¢) = Z(Xt\tfl;w) -
the measurement equation can be given in an affine form as
yr = A(¥) + Be(¢¥) Xt + e,

and the steps in the algorithm proceeds as previously described.

Appendix C: Parameter Estimation Results

In this appendix we report the estimated parameters for the one-, two-, and three-factor standard and shadow-rate

models discussed in the main text.

Parameter V(1) B-V(1)

kT 0.0311 0.0217
(0.0831) | (0.1476)

6F 0.0097 0.0101
(0.0102) | (0.0314)

o 0.0029 0.0042
(0.0001) | (0.0001)

K9 0.0002 0.0003
(0.0002) | (0.0002)

0 14.0501 12.6290
(10.0754) | (8.4576)
Max log L | 28,362.97 | 29,263.60

Table 4: Parameter Estimates of One-Factor Models. The estimated parameters are shown for the

V(1) and B-V(1) models. The numbers in parentheses are estimated parameter standard deviations.

Table M reports the estimated parameters for both one-factor models. In terms of the Q-dynamics, the very low
values of k® imply that the state variable is a level factor. This is also reflected in its very high persistence under the
P-dynamics. The estimated mean values 07, which are the average levels of the state variable, are about the same
in each model. The largest difference between the models is that the B-V(1) model has an estimated factor volatility
about forty percent larger than in the V(1) model.

Tables [ and [6] report the estimated parameters for the AFNS(2) and B-AFNS(2) models, respectively.

In the AFNS(2) and B-AFNS(2) models, the estimated A values are low, which indicates that the slope factor
in each model operates almost as a level factor for the fit to the cross section of yields. Beyond that, the estimated
mean-reversion matrix, mean vector, and volatility matrix share only a few broad similarities such as positive 6,
negative 0%, and negative 021 parameters, but in terms of magnitudes the differences are sizeable.

Tables [7] and [§] contain the estimated parameters for the AFNS(3) and B-AFNS(3) models. With the exception
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K'| KI KT, o = Y1 Y2

KT | -05292  -0.5451 || 0.0682 || ¥1.| 0.0583 0
(1.3987) (1.4338) || (0.0344) (0.0097)

K3 | 0.7142  0.6968 | -0.0462 || Z5. | -0.0590  0.0029
(1.4338) (1.4662) || (0.4186) (0.0097)  (0.0000)

Table 5: Parameter Estimates of the AFNS(2) Model. The estimated parameters of the K matrix,
the 8% vector, and the X matrix are shown for the AFNS(2) model. The associated estimated A is 0.0179 (0.0031) with
maturity measured in years. The numbers in parentheses are estimated parameter standard deviations. The maximum
log likelihood value is 32,186.23.

K7 K7 KT, o7 > S S

KT [ 04096 05461 | 0.1111 || %, | 0.0076 0
(0.2187)  (0.2375) || (0.0781) (0.0003)

K | 02273 -0.2925 | -0.1018 || S5 | -0.0070  0.0048
(0.2107)  (0.2435) || (0.0575) (0.0003)  (0.0001)

Table 6: Parameter Estimates of the B-AFNS(2) Model. The estimated parameters of the K*
matrix, the 87 vector, and the ¥ matrix are shown for the B-AFNS(2) model. The associated estimated A is 0.1260

(0.0039) with maturity measured in years. The numbers in parentheses are estimated parameter standard deviations.

The maximum log likelihood value is 32,808.21.

KT K& KT, KT, o7 > S S Ss

KT | 20515 25376 -0.8283 || 0.039 | ;.| 0.0137 0 0
(1.1176)  (1.3554) (0.3924) || (0.1266) (0.0005)

K | 07631 -0.8852  0.3825 || -0.0466 || B5. | -0.0132  0.0026 0
(1.0967) (1.3327) (0.3831) || (0.0987) (0.0005)  (0.0001)

KL | 15648 21032 04196 || -0.0267 || D3. | -0.0199  -0.0017  0.0147
(1.6314)  (1.9929) (0.5450) | (0.0098) (0.0009)  (0.0004)  (0.0003)

Table 7: Parameter Estimates of the AFNS(3) Model. The estimated parameters of the K matrix,
the 8% vector, and the X matrix are shown for the AFNS(3) model. The associated estimated A is 0.3918 (0.0044) with

maturity measured in years. The numbers in parentheses are estimated parameter standard deviations. The maximum
log likelihood value is 35,469.67.

K| KT K% KT, o7 > S 5o Ss

KT [ 20140 30510 -1.0411 | 0.0040 | =;.| 0.0211 0 0
(0.7362) (1.1116) (0.3695) | (0.1434) (0.0006)

K | 08440 -1.3316 04768 || 0.0352 || Sp. | -0.0192  0.0040 0
(0.7016)  (1.0417) (0.3244) || (0.3557) (0.0006)  (0.0001)

Kf | -1.9305 -34216 11847 | 0.1118 | %5. | -0.0292  -0.0009  0.0177
(1.0397)  (1.4122) (0.5008) | (0.7828) (0.0009)  (0.0006)  (0.0004)

Table 8: Parameter Estimates of the B-AFNS(3) Model. The estimated parameters of the K*
matrix, the 87 vector, and the ¥ matrix are shown for the B-AFNS(3) model. The associated estimated A is 0.4896
(0.0043) with maturity measured in years. The numbers in parentheses are estimated parameter standard deviations.
The maximum log likelihood value is 36,520.00.
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of the estimated A values and % volatility matrices, there are large differences in both signs and magnitudes for most
parameters across the two models. Furthermore, the estimated parameters for the level and slope factors in the AFNS(3)
models only vaguely resemble the corresponding parameters in the AFNS(2) models, but this is a common feature when

estimating flexible latent factor models such as ours

24This is part of the reason why CDR recommend focusing on parsimonious specifications of the AFNS models, say,
with a diagonal ¥ matrix and additional restrictions on K* as in Christensen, Lopez, and Rudebusch (2010).
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