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Abstract

Most existing macro-finance term structure models (MTSMs) appear incompatible with

regression evidence of unspanned macro risk. This “spanning puzzle” appears to invali-

date those models in favor of new unspanned MTSMs. However, our empirical analysis

supports the previous spanned models. Using simulations to investigate the spanning

implications of MTSMs, we show that a canonical spanned model is consistent with the

regression evidence; thus, we resolve the spanning puzzle. In addition, direct likelihood-

ratio tests find that the knife-edge restrictions of unspanned models are rejected with

high statistical significance, though these restrictions have only small effects on cross-

sectional fit and estimated term premia.
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1 Introduction

A long literature in finance has modeled bond yields using a small set of factors that are linear

combinations of bond yields. The resulting “yields-only” models provide a useful reduced-form

description of term structure dynamics but offer little insight into the economic forces that

drive changes in interest rates. To provide that underlying insight, much research has used

affine macro-finance term structure models (MTSMs) to examine the connections between

macroeconomic variables and the yield curve. For example, many papers have estimated

reduced-form MTSMs with a vector autoregression for the macroeconomic and yield-curve

variables coupled with a reduced-form pricing kernel.1 In addition, by incorporating struc-

tural relationships, many researchers have developed equilibrium MTSMs for endowment or

production economies.2 Throughout all of this macro-finance term structure research, the

short-term interest rate is represented as an affine function of risk factors (i.e., the state vari-

ables) that include macroeconomic variables. Accordingly, the assumption of the absence of

arbitrage and the usual form of the stochastic discount factor imply that model-implied yields

are also affine in these risk factors. This linear mapping from macro factors to yields can,

outside of a knife-edge case, be inverted to express the macro factors as a linear combination

of yields. Hence, these models imply “invertibility” (Duffee, 2013b) or “spanning,” in which

information in the macro variables is completely captured by the contemporaneous yield curve.

Because they imply macro spanning, the models used in macro-finance term structure

research have recently come under severe criticism. Joslin et al. (2014) (henceforth JPS) argue

that previous MTSMs impose “counterfactual restrictions on the joint distribution of bond

yields and the macroeconomy” (p. 1197). The criticism is based on regression evidence that

suggests the presence of unspanned macro information. First, regressions of macro variables

on observed yields can give quite low R2. For example, JPS find that only 15% of the variation

in their measure of economic activity is captured in the first three principal components (PCs)

of the yield curve, rather than the 100% predicted by theoretical macro spanning (also see

Duffee, 2013b). Second, there is evidence that macroeconomic variables have predictive power

for excess bond and stock returns beyond the information contained in yields, as documented

by JPS and others (Cooper and Priestley, 2008; Ludvigson and Ng, 2009; Greenwood and

1Some examples of this approach include Ang and Piazzesi (2003), Bernanke et al. (2004), Ang et al. (2008,
2011), Bikbov and Chernov (2010), Joslin et al. (2013b), and Bauer et al. (2014).

2Equilibrium finance models of the term structure include Wachter (2006), Piazzesi and Schneider (2007),
Buraschi and Jiltsov (2007), Gallmeyer et al. (2007), Bekaert et al. (2009), and Bansal and Shaliastovich
(2013). Among many others, Hördahl et al. (2006), Dewachter and Lyrio (2006), Rudebusch and Wu (2008),
and Rudebusch and Swanson (2012) consider term structure implications of macroeconomic models with
production economies.
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Vayanos, 2014). Third, Duffee (2013a,b) documents that forecasts of macroeconomic variables

are not spanned by the yield curve as implied by spanned MTSMs.

The apparent conflict between the theoretical spanning condition implicit in past empiri-

cal MTSMs and the tripartite regression evidence of unspanned macro information constitutes

what we term the “spanning puzzle.” It casts doubt on the validity of essentially all previous

macro-finance models used in the literature and is a major road-block to further macro-finance

term structure research. In his comprehensive survey of macro-finance bond pricing, Duffee

(2013a) describes the contradiction between theoretical spanning and the contrary regression

evidence as an “important conceptual difficulty with macro-finance models” (p. 412). Simi-

larly, Gürkaynak and Wright (2012) see the spanning puzzle as a “thorny issue with the use

of macroeconomic variables in affine models” (p. 350). In response, JPS and others advocate

replacing existing spanned MTSMs with unspanned MTSMs. These new models impose knife-

edge restrictions in an otherwise standard MTSM to sever the direct link from macro factors

to yields.3 Accordingly, the macro variables are unspanned by construction, as they do not

directly determine bond pricing and yields, and yields cannot be inverted for macro factors.

If important factors were indeed unspanned macro variables, that would require development

of a new class of structural economic models to connect bond yields to the economy.4

In this paper, we resolve the spanning puzzle by providing strong empirical support for

spanned models and reconciling them with the regression evidence. We first consider a direct

statistical test of plausible estimated versions of spanned and unspanned models. We demon-

strate how unspanned models are nested by spanned models and perform likelihood-ratio tests

of the knife-edge restrictions required for unspanned models. Our tests strongly reject these

restrictions and hence the unspanned models, both for the macro data used by JPS as well

as for an alternative data set with more usual measures of economic activity and inflation.

We also directly test the knife-edge unspanned macro restrictions in reduced-form yield-curve

models and find that they are strongly rejected, independent of how many yield factors and

which macro data are used.

Our second contribution is a simulation-based test which shows shows that estimated

spanned MTSMs are in fact not contradicted statistically by the regression evidence on un-

spanned macro information. Using our empirical spanned MTSMs, which are representative of

a broad class of models used in macro-finance research, we generate artificial samples of yields

3Examples of research using reduced-form unspanned models include Wright (2011), Chernov and Mueller
(2012), Priebsch (2014), and Coroneo et al. (2015).

4It would also require a rethinking of the monetary policy transmission mechanism; for example, as JPS
note: “Our results suggest that a monetary authority may affect the output gap and inflation through channels
that leave bond yields unaffected, by having a simultaneous [and offsetting] effect on expectations about the
future short rates and risk premiums” (p. 1224).
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and macro data. Using these simulated data, we estimate regressions that are commonly used

to assess the extent of unspanned macro information. This provides the empirical distribu-

tions of the various regression test statistics under the null of a spanned MTSM. Comparing

the regression statistics obtained from the actual data to these distributions allows us to sta-

tistically assess whether the regression results could have plausibly been generated from the

spanned model. We find that the regression evidence is completely consistent with spanned

macro-finance models. In particular, the simulation-based, small-sample p-values of the re-

gression statistics that appear to indicate the presence of unspanned macro information are

generally far above conventional significance levels. Our results reconcile the spanned models

with the data and demonstrate that the regression evidence of JPS and others provides no

empirical reason to reject these models.

How is it that spanned macro-finance models can generate regression results that are con-

sistent with the regression evidence suggesting the presence of unspanned macro information?

We provide two reasons. First, for a given spanned model with, say, N risk factors, macro

spanning implies that macro variables will be spanned by N linear combinations of yields.

But the macro variables will not be spanned by less than N linear combinations, so the valid-

ity of the regression evidence for unspanned macro information depends on using a sufficient

number of linear combinations of yields.5 Second, even after incorporating the correct num-

ber of factors, the regressions are only guaranteed to properly reject a spanned model if that

model fits the data exactly—that is, with no measurement error. But measurement error—a

catch-all for model misspecification, data imperfections, or other noise—is a necessary feature

in all empirical yield-curve models. Indeed, the addition of measurement error is a critical

requirement to reconcile the N -factor models with real-world data that has more than N vari-

ables and never follows an exact factor structure. This same measurement error also resolves

the spanning puzzle and reconciles MTSMs with the regression evidence. Of course, adding

large amounts of noise can render any two statistical models indistinguishable. But we show

that incorporating just the usual, very small yield measurement errors in empirical MTSMs is

sufficient to generate the appearance of unspanned macro information in the data: The wedge

created by measurement error with a standard deviation of six basis points is enough to pre-

vent the spanning regressions from properly identifying the presence or absence of spanning

in MTSMs.6

5For example, consider a spanned MTSM with three yield factors and two macro factors, for a total of
five state variables (or risk factors). Projections of macro variables or excess bond returns on three yield
factors—say, the level, slope, and curvature of the yield curve—will not provide valid tests of spanning.

6Our finding that plausible, small measurement errors is sufficient to generate the empirically observed
patterns of unspanned macro information stands in contrast to claims in the literature, including JPS, Duffee
(2013b), and Priebsch (2014). For example, JPS claim that “the spanning property is independent of the
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Some other studies have also investigated the wedge between information in true and ob-

served risk factors created by measurement error in yield-curve models. Duffee (2011b) shows

that this can hide important information from the yield curve factors, which can be recovered

using Kalman-filtering. In a very specific macro-finance model with trend inflation, Cieslak

and Povala (2015) show that the presence of yield measurement error makes it difficult to re-

cover a risk-premium factor. These studies do not investigate the effects of measurement error

in commonly used macro-finance models or address whether those models can be reconciled

with the spanning regression evidence, as we do in this paper.

Our results show that the unspanned regression evidence provides no statistical basis for

preferring either unspanned or spanned models. However, one of the main uses of MTSMs

has been to estimate risk premia in long-term interest rates and bond returns. We find that

the unspanned knife-edge restrictions are in fact unimportant for estimating such premia.

That is, while the rejections of these restrictions are statistically significant, they are not

economically significant for this purpose, as spanned and unspanned models imply essentially

identical term premia.7 Because unspanned models may be able to reproduce some economic

features of spanned models with a more parsimonious parameterization, they may be a useful

approximation for certain purposes.

In addition, our paper also provides new evidence that helps to elucidate, in economic

terms, the spanning regression results. We broadly classify two types of macroeconomic vari-

ables: those directly relevant for determining monetary policy, and those that are not. The

former, which we denote as “policy factors,” are closely related to the yield curve because

bond prices are crucially determined by expectations and risk assessments about the short-

term policy interest rate set by the central bank.8 These policy factors display little if any

evidence of unspanned macro variation. Other macro variables, “non-policy factors,” are

variables that monetary policymakers pay much less attention to when setting the current

short-term interest rate. The non-policy factors are the variables for which JPS and Duffee

(2013b) document low R2 in regressions on yields, which is not surprising, since they are also

widely found to be unimportant in estimated monetary policy rules. These results provide

insight about unspanned macro variation based on the conduct of monetary policy, which is

issue of errors in measuring either bond yields or macro factors” (p. 1206). This claim ignores the fact that
assessing the relevance of their statistical evidence depends crucially on how the model fits the data, including
the associated measurement error.

7We come to a different conclusion in this regard from JPS because, as we explain in the paper, they in
fact compare an unspanned MTSM to a yields-only model rather than a spanned model.

8These macro variables include measures of economic slack (such as the unemployment rate) and measures
of underlying inflation, which are the most relevant variables for setting the short-term interest rate as identified
from estimated monetary policy rules and the communications of monetary policymakers.
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a key link between macro variables and the yield curve.

The paper is structured as follows: Section 2 presents and discusses the conventional,

spanned macro-finance models, the spanning puzzle, and the unspanned models proposed by

JPS. In Section 3 we test the knife-edge restrictions of unspanned models and show that they

are rejected by the data. In Sections 4, 5, and 6 we assess whether the regression evidence on

unspanned macro variation, unspanned macro risk, and unspanned macro forecasts, respec-

tively, can be reconciled with spanned MTSMs, using simulated data from estimated models.

In Section 7, we investigate the implications of macro-spanning for term premia. Section 8

concludes.

2 Spanning in macro-finance term structure models

To lay the groundwork for our analysis, we first discuss the apparent conflict between conven-

tional macro-finance models and the regression evidence for unspanned macroeconomic infor-

mation. We also describe a new class of MTSMs recently proposed by JPS, which imposes

knife-edge restrictions on the standard model in order to avoid theoretical macro-spanning,

and our specification and estimation of the models.

2.1 The conventional macro-finance model

Especially during the past decade, many studies have used a variety of different MTSMs—

both reduced form and equilibrium or structural models—to examine the dynamic interactions

among macroeconomic variables and interest rates of various maturities. Essentially all of these

models imply that macroeconomic risks are spanned by the yield curve.

The model described here is representative of a broad class of MTSMs, including equi-

librium finance models and macroeconomic models. Our specification closely parallels the

formulation in Joslin et al. (2013b). Yields are collected in the vector Yt, which contains rates

for J different maturities. The risk factors that determine yields are denoted Zt and include

both yield factors and macro factors. We denote the M macro factors by Mt. For the yield

factors, we are free to choose any specific yields or linear combination of yields. We write

W for a (J × J) full-rank matrix that defines “portfolios” (linear combinations) of yields,

Pt = WYt, and we denote by P j
t and W j the first j yield portfolios and their weights. We

take the first L linear combination of yields, PLt , as the yield factors. We use PCs of observed

yields, and the corresponding loadings make up the rows of W . Hence, there are N = L+M
risk factors, denoted Zt = (PLt

′
,M ′

t)
′, all of which are observable.
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All no-arbitrage term structure models have three components: an equation relating the

short-term interest rate to the risk factors, a time series model for the risk factors, and a dy-

namic specification for the risk factors under the risk-neutral pricing measure (or alternatively,

for a stochastic discount factor). The one-period interest rate is affine in the risk factors:

rt = ρ0 + ρ′1Zt = ρ0 + ρ′PP
L
t + ρ′MMt. (1)

The risk factors are assumed to follow a Gaussian vector autoregression (VAR) under the

risk-neutral probability measure Q:

Zt = µQ + φQZt−1 + ΣεQt , εQt
iid∼ N(0, IN ). (2)

Under these assumptions, bond yields are affine in the risk factors,

Yt = A+BZt = A+BPP
L
t +BMMt, (3)

where the affine loadings A and B are given in Appendix A. The time series model for Zt

(under the real-world probability measure) is a first-order Gaussian VAR:9

Zt = µ+ φZt−1 + Σεt, εt
iid∼ N(0, IN ). (4)

2.2 The spanning puzzle

The model assumptions described above, which are representative of essentially all previous

macro-finance models, generally imply that the macro variables are spanned by (i.e., perfectly

correlated with) the first N yield portfolios. To see this, premultiply equation (3) with an

(N ×J) matrix, WN , to select N linear combinations of model-implied yields, PNt = WNA+

WNBZt. This equation can, outside of knife-edge cases, be inverted for Zt, and in particular

for the macro factors:

Mt = γ0 + γ1P
N
t . (5)

That is, Mt is a deterministic function of PNt , or equivalently of any other N linear combina-

tions of yields.

While conventional macro-finance models theoretically imply that all relevant information

about the economy is captured by the current yield curve, there are three strands of regression

9While there is some evidence that additional lags (Cochrane and Piazzesi, 2005; Joslin et al., 2013a) or
moving average terms (Feunou and Fontaine, 2015) can be helpful to capture yield dynamics, we stay in the
class of first-order Markov models like the majority of the literature on no-arbitrage MTSMs.
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evidence suggesting otherwise. The first strand is a straightforward direct examination of

spanning that simply regresses macro variables on yields. If macro variables are indeed spanned

by yields, then this regression should have an R2 near one. The information in yields is

often considered well summarized by three principal components (PCs), so one regression

specification to examine this issue is

mt = β0 + β′1PC
(3)
t + ut, (6)

where mt is one of the macroeconomic variables and PC
(3)
t are the first three PCs of observed

yields. There is unspanned macro variation if the R2 in such regressions is low. Evidence for

unspanned macro variation is documented by JPS, Duffee (2013a), and others. For example,

in referring to these regressions, Duffee (2013b) finds that for “typical variables included in

macro-finance models, the R2s are on the wrong side of 1/2” (p. 412). We will investigate the

regression evidence on unspanned macro variation in Section 4.

A second implication of macro-spanning is that only current yield curve predicts excess

bond returns, because it completely captures the predictive power that macro variables may

have. Specifically, under macro spanning, β2 = 0 in the predictive regression

rx
(n)
t,t+12 = β0 + β′1PC

(3)
t + β′2Mt + ut+12, (7)

where rx
(n)
t+12 is a one-year holding-period excess return on a bond with n years maturity

and Mt contains one or more macro variables. Finding that β2 is significantly different from

zero is evidence for unspanned macro risk. Such evidence has been described by JPS, Cooper

and Priestley (2008), Ludvigson and Ng (2009), and others.10 We will consider this type of

evidence in Section 5.

A third implication of macro-spanning is that current yields completely capture the per-

sistence of macro variables. More precisely, in the regression

mt+1 = β0 + β′1PC
(3)
t + β′2Mt + ut (8)

macro spanning implies that β2 = 0, meaning that macro variables have no predictive power

for future macro variables after conditioning on the current yield curve. However, Duffee

(2013a,b) provides strong evidence against β2 = 0, which we term evidence for unspanned

macro forecasts. We revisit this evidence in Section 6.

10However, Bauer and Hamilton (2016) argue that this evidence suffers from severe small-sample problems
and is overturned when appropriate econometric methods are used.
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In sum, there is regression evidence for unspanned macro variation, and this unspanned

variation does not appear to just be noise as it seems to help predict future bond returns

and macro variables. The apparent inconsistency between this tripartite regression evidence

of unspanned macro information and the predictions of the standard macro-finance model

constitutes the spanning puzzle.

2.3 The unspanned MTSM

We now turn to the alternative model that JPS proposed to address the spanning puzzle, a

new macro-finance model specification that incorporates unspanned macro risks.

For the short rate equation, instead of (1), the unspanned model assumes that the short

rate depends only on the yield factors and not the macro factors:

rt = ρ0 + ρ′PP
L
t + 0′M︸︷︷︸

ρ′M

Mt. (9)

Furthermore, instead of equation (2), the yield factors PLt follow an autonomous VAR under

Q that is independent of the macro factors:

PLt = µQP0 + φQPPP
L
t−1 + 0L×M︸ ︷︷ ︸

φQPM

Mt + ΣP ε
Q
tP , εQtP

iid∼ N(0, IL). (10)

That is, macro factors do not affect the risk-neutral expectations of future yield factors:

EQ(PLt+h|Zt) = EQ(PLt+h|PLt ), ∀h.

As a consequence of (9) and (10), yields depend only on the yield factors but not on the macro

factors. That is, instead of equation (3) with a full-rank loading matrix, we have

Yt = A+BPP
L
t + 0M×M︸ ︷︷ ︸

BM

Mt. (11)

Equation (11) clarifies that in unspanned models, there is no direct link from macro factors

8



to contemporaneous yields. This is a direct consequence of the “knife-edge restrictions”11

ρM = 0M, φQPM = 0L×M. (12)

Under the real-world measure, the VAR for Zt is the same as in the spanned model, given

in equation (4). Since expectations of future yields/returns and of future macro variables are

not spanned by model-implied yields, macro variables can have additional predictive power

for both. Furthermore, the spanning condition (5) does not hold: one cannot back out the

risk factors Zt from model-implied yields, because the matrix WNB is singular and cannot be

inverted to yield Zt as a function of PNt . Instead of (5), we have

Mt = γ0 + γPP
L
t +OMt, (13)

(equation (11) of JPS) where OMt captures the orthogonal macroeconomic variation not

captured by a projection on model-implied yields.

The zero loadings of model-implied yields on macro variables imply that there are no direct

effects of macro variables on interest rates. Instead, macro variables indirectly affect yields

through their correlation with the yield factors PLt . The component of macro variables that

is uncorrelated with the yield factors, OMt, does not affect yields at all. A bond yield is the

sum of an expectations (risk-neutral) component and a term premium, hence if shocks to OMt

affect expectations of future short rates, they need to affect term premia with exactly the same

magnitude but with opposite sign, so that the two effects offset each other and yields remain

unchanged.

When comparing equations (5) and (13) it may appear as though spanned models impose

a restrictive constraint while unspanned models allow for more flexibility. This, however, is

incorrect. In fact, equation (13) also holds in spanned models, since a projection on L < N
linear combination of yields cannot fully explain the macroeconomic variation and naturally

leaves an orthogonal projection residual. Because the risk factors are the same in both models,

γ0 and γP are also identical across models, as isOMt.
12 In other words, spanned and unspanned

11This feature parallels the models of unspanned volatility proposed by Collin-Dufresne and Goldstein (2002)
and others, where yields have zero loadings on volatility factors. Collin-Dufresne and Goldstein (2002) speak
of “knife-edge” parameterizations that give rise to unspanned volatility factors, and Duffee (2013a) uses this
term in the context of unspanned macro factors. Knife-edge restrictions have the effect that the relevant factor
loadings, which are determined by the model’s parameters, end up being exactly zero. Bikbov and Chernov
(2009) conduct an analysis of unspanned stochastic volatility that is similar to our analysis of unspanned
macro information.

12JPS claim that conventional, spanned MTSMs impose that OMt in equation (13) is zero (p. 1205). But
this statement is based on a comparison of spanned and unspanned models with a different number of risk
factors—for example, comparing an unspanned model with L = 3 andM = 2 to a spanned model with L = 1
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models have identical implications for projections of macro variables on L yield factors (e.g.,

level, slope, and curvature, when L = 3).

The spanned model nests the unspanned model: If the knife-edge restrictions (12) are

imposed on the spanned model, we obtain the corresponding unspanned model in which yields

do not load on macro factors. For the spanned model with three yield factors and two macro

factors, eight zero restrictions are required to obtain the unspanned model. For testing these

knife-edge restrictions, one needs to account for the fact that additional parameters are not

identified under the null hypothesis, as we do below in Section 3.1.

The only way macro variables enter the unspanned model is as additional predictors in

the VAR in (4), so that they affect real-world expectations of future interest rates and term

premia. Expanding the VAR parameters, we can write(
PLt

Mt

)
=

(
µP0

µM0

)
+

(
φPP φPM

φMP φMM

)(
PLt−1

Mt−1

)
+ Σεt.

The L×M matrix φPM plays a crucial role, as it determines the effects of macro variables on

expectations of yields. If it is restricted to zero, macro variables drop out completely from the

model, as they then affect neither real-world nor risk-neutral expectations of future yields. In

that case we obtain a yields-only model, in which only PLt are the risk factors. We see that the

canonical spanned model nests the unspanned model, which in turn nests the corresponding

yields-only model. These nesting relations will be important to understand and interpret the

different likelihood-ratio tests of these models in Section 3.

2.4 Empirical spanned and unspanned MTSMs

We will assess the empirical relevance of spanning puzzle using estimated spanned and un-

spanned models. We denote the spanned models by SM(L,M), and the un-spanned models

by USM(L,M). We focus on models with three yield factors and two macro factors, that

is, the SM(3, 2) and USM(3, 2) models. However, all of our results were robust to changes

in the number of yield factors employed. In particular, we have estimated models with one

or two yield factors, and found our conclusions regarding the implications of macro spanning

and of knife-edge unspanned restrictions unchanged.

Our models are estimated with yield data that match JPS in construction and sample

period, and consist of monthly observations from January 1985 to December 2007. The mid-

and M = 2. These models have different risk factors and vastly different economic implications and are not
properly comparable. An appropriate comparison requires spanned and unspanned models with the same risk
factors.
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1980s start date avoids mixing different monetary policy regimes (Rudebusch and Wu, 2007)

while ending the sample before 2008 avoids the recent zero-lower-bound episode, which is

troublesome for affine models (Bauer and Rudebusch, 2016). The yields are unsmoothed

zero-coupon Treasury yields, bootstrapped from observed bond prices using the Fama-Bliss

methodology.13 The yield maturities are three and six months, and one through ten years.

To show the robustness of our results, we estimate our models using two different sets of

macroeconomic series. The first set follows JPS and includes GRO, the three-month moving

average of the Chicago Fed’s National Activity Index14, and INF , which corresponds to

survey expectations of inflation in the Consumer Price Index (CPI) over the coming year

(from the Blue Chip Financial Forecasts). The second set includes measures of economic

activity and inflation that are more standard in the context of monetary policy analysis. For

economic activity, this is the unemployment gap, UGAP , calculated as the difference between

the actual unemployment rate and the estimate of the natural rate of unemployment from

the Congressional Budget Office (CBO), and for inflation this is year-over-year growth in the

CPI excluding food and energy prices, i.e., core CPI inflation, which we denote by CPI.

While INF and CPI are highly correlated (with a correlation coefficient of 0.89), the two

activity indicators GRO and UGAP are essentially uncorrelated (with a correlation coefficient

of -0.07). We will discuss differences between the activity indicators in Section 4.1.

An important element for estimation of any term structure model is the choice of the

measurement error specification. Because a low-dimensional factor model cannot perfectly

match the entire yield curve, it is necessary to include measurement errors to avoid stochastic

singularity. We denote the observed yields Ỹt = Yt+ et, where the J-vector et contains serially

uncorrelated Gaussian measurement errors. We assume that the errors on each maturity have

equal variance, σ2
e , so that the likelihood tries equally hard to match yields of all maturities.

As in Joslin et al. (2011), Joslin et al. (2013b), JPS, and other recent studies, we assume

that yield factors are observable, which substantially simplifies estimation as no filtering is

necessary.15 This assumption is largely inconsequential for parameter estimates because fil-

tered and observed low-order PCs are very similar.16 The presence of measurement error has

13We thank Anh Le for supplying these data.
14This measure is constructed so that negative values indicate below-average economic growth and positive

values indicate above-average growth.
15Our assumption P̃Lt = WLỸt = WLYt = PLt implies that WLet = 0, so that et effectively contains

only J − L independent errors. If we denote by V an orthonormal basis of the nullspace of WL (such that

WLV ′ = 0 and V ′V = IJ−L) the measurement error assumption is V et
iid∼ N(0, σ2

eIJ−L). The measurement

error variance that maximizes the likelihood function is therefore σ̂2
e =

∑
e′tet

T (J−L) .
16JPS remark that “experience shows that the observed low-order PCs comprising [the yield factors] are

virtually identical to their filtered counterparts in models that accommodate errors in all PCs” (pp. 1206).
See also Joslin et al. (2013b).
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important implications for the observability of the theoretical macro-spanning condition, as

we will show in Sections 4–6.

As is usual in the macro-finance term structure literature, macroeconomic variables are

assumed to be observed without error. Notably, there are no macro measurement errors in the

(spanned) TSn models in Joslin et al. (2013b) and in the (unspanned) models in JPS. Of course,

measurement errors for the macro variables would create further unspanned macro variation

and reinforce our resolution to the spanning puzzle. We do not pursue this route because

we want to challenge the spanned MTSM as much as possible and investigate whether it can

produce unspanned macro information for specifications that are typical in this literature,

which have no macro measurement errors and only small yield measurement errors.

Estimation is carried out using maximum likelihood. Normalization assumptions are

needed for identification of the parameters in a no-arbitrage term structure model. For the

spanned model, we use the canonical form and parameterization of Joslin et al. (2013b). This

normalization is based on the idea that one can rotate the risk factors into PNt , and then apply

the canonical form of Joslin et al. (2011). The fundamental parameters of the model are λQ,

the eigenvalues of φQ, kQ∞, which determines the long-run risk-neutral mean of the short rate,

the spanning parameters γ0, γ1, the VAR parameters µ, φ, and Σ, and the standard deviation

of the measurement errors, σe.
17 For the unspanned model, we use the canonical form of JPS.

In this case, the free parameters are kQ∞, λQ, µ, φ, Σ, and σe. The parameters kQ∞, µ, φ,

and σe can be concentrated out of the likelihood function, and numerical optimization of the

maximum likelihood is carried out over the remaining parameters, of which there are 32 for

SM(3, 2) and 18 for USM(3, 2).

Our model specifications do not impose any overidentifying restrictions, i.e., they are max-

imally flexible. An alternative is to impose restrictions on risk prices, which typically improves

inference about risk premia by making better use of the information in the cross section of

interest rates—for an in-depth discussion see Bauer (2016).18 In their estimation of an MTSM

with unspanned macro risks, JPS impose a number of zero restrictions on risk price parame-

ters, guided in their model choice by information criteria.19 We also conducted our analysis

after carrying out similar model selection exercises with very similar parameter restrictions.

However, including such restrictions did not affect our results because the restrictions mainly

17The parameters ρ0, ρ1, µQ, and φQ are determined by the fundamental parameters according the mapping
provided in Appendix A of Joslin et al. (2013b).

18Estimating models with short samples of highly persistent interest rate data can result in a small-sample
parameter bias. To address this problem, one can take advantage of the information in the cross section of
interest rates with plausible restrictions on risk pricing, as in Bauer (2016) and JPS, or directly adjust for the
small-sample bias, as in Bauer et al. (2012).

19In addition, they restrict the largest eigenvalue of φ to equal the largest eigenvalue of φQ.
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alter the VAR dynamics, which are not important for assessing macro spanning. Therefore,

to allow for an easy comparison across different models—including spanned and unspanned

macro-finance models as well as yields-only models—we focus exclusively on maximally flexible

models.

We report individual parameter estimates in Appendix B, and focus here on the cross-

sectional fit of the models. Table 1 reports root-mean-squared errors (RMSEs), calculated

for selected individual yields as well as across all yields, as well as estimates for the standard

deviation of the yield measurement errors, σ̂e. All four models fit yields well, with fitting

errors on average being around five to six basis points.20 The accurate fit of our models is due

to the fact that the three yield factors well capture the variation in the yield curve (Litterman

and Scheinkman, 1991). The spanned models achieve a slightly better fit because the macro

variables can capture some additional yield variation, but these improvements are small in

economic terms. Our spanned models fit the yield curve notably better than those in Joslin

et al. (2013b) or Joslin et al. (2013a), which allow for only one or two yield factors.

3 Testing knife-edge restrictions

We now carry out likelihood ratio tests of the restrictions of unspanned MTSMs. The use of

unspanned MTSMs is typically motivated and justified only on the basis of indirect regression

evidence for unspanned macro information (see JPS, Wright (2011), and Priebsch (2014),

among others). In contrast, we conduct direct hypothesis tests of the knife-edge unspanned

macro restrictions that underlie these models.21

3.1 Model-based tests

We first test the knife-edge restrictions that model USM(3, 2) imposes on model SM(3, 2),

described in Section 2.3. The log-likelihood values for these two models are shown in Table 2

for the two different data sets with macro variables GRO/INF and UGAP/CPI. For both

data sets, the spanned models fit the data substantially better than the unspanned ones, as

reflected in the larger log-likelihood values. A separate comparison of the two components of

the log-likelihood for cross-sectional fit (based on measurement errors) and for time series fit

(based on VAR forecast errors) reveals that the improved fit is exclusively due to smaller yield

20The two unspanned models achieve the exact same fit to the yield curve because the yield factors are the
same and macro variables do not enter into the bond pricing.

21 Chernov and Mueller (2012) test in an MTSM whether the yield loadings of a partially hidden latent
factor are significantly different from zero. In contrast, we directly test the assumption of unspanned macro
factors.
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fitting errors. The knife-edge restrictions barely affect the VAR dynamics—only Σ changes

slightly while µ and Φ are unchanged—but they do affect how well the models fit observed

yields: Allowing the macro variables to enter as risk factors in the yield equations (3) reduces

the fitting errors of the models (see also Table 1). While the improvements in cross-sectional

fit are modest relative to the magnitude and variability of yields, they are substantial in the

sense that they translate into large increases in the log-likelihood value.22

The last row of each panel of Table 2 reports the values of the likelihood-ratio test statistics.

The null hypothesis imposes eight parameter restrictions, given in equation (12), but some

additional parameters are not identified under the null. Under the knife-edge restrictions,

bond prices are not directly linked to macro variables and hence the risk-neutral dynamics

of Mt are not identified. The canonical unspanned model has 14 fewer parameters, which

means that six parameters are not identified under the null. We cannot simply compare the

values of the likelihood-ratio test statistics to the critical values of a χ2-distribution with eight

degrees of freedom, since the usual regularity conditions for the validity of the asymptotic

χ2-distribution are not satisfied, and the limiting distribution is non-standard (Hansen, 1996).

One possible way to address this problem is to approximate the small-sample distribution of the

test statistic using bootstrap simulations. But such a procedure would require re-estimating

our macro-finance models many times on simulated data sets, which is computationally very

costly.

Fortunately, there is a much simpler way to calculate how significant the improvements

in the log-likelihood function are.23 We can come up with conservative critical values for the

test statistics based on the insight that every MTSM can be viewed as a restricted version

of a reduced-form factor model. MTSMs restrict the loadings of yields on the factors to

be consistent with no-arbitrage, whereas factor models leave these loadings unrestricted.24

Consider the reduced-form model corresponding to SM(3, 2), which consists of a VAR for Zt

and J −L non-trivial measurement equations.25 We denote this reduced-form spanned model

by RSM(3, 2). Our spanned and unspanned models are restricted versions of RSM(3, 2), in

which the loadings of yields on Zt satisfy no-arbitrage conditions. In particular, USM(3, 2)

has 50 less parameters than RSM(3, 2), because RSM(3, 2) has measurement equations with

22Our results are even stronger when considering models with one or two yield factors, as in Joslin et al.
(2013b) and Joslin et al. (2013a), since in those models the inclusion of macro variables leads to even more
substantial improvements in cross-sectional fit.

23This was pointed out to us by Jim Hamilton.
24This connection was emphasized and used for estimation of term structure models by Hamilton and Wu

(2012). Simple factor models for the yield curve were used, for example, by Duffee (2011a) to model and
forecast bond yields.

25J model-implied yields are linearly determined by the factors in Zt, with measurement errors, but L linear
combinations of yields are observed without error.
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(J −L)(1 +N ) = 54 free loadings, while in USM(3, 2) these loadings are determined by just

1 +L = 4 structural parameters. We could test the plausibility of these 50 restrictions using a

likelihood-ratio test—denote the value of the test statistic by LR1. Our real goal is to test the

restrictions of USM(3, 2) vs. SM(3, 2)—denote the value of this test statistic by LR2. Because

RSM(3, 2) is more general than SM(3, 2), we know that LR2 < LR1. We also know that

under the null LR1 has an approximate χ2-distribution with 50 degrees of freedom. Therefore

we can evaluate our test statistics LR2 against the critical values of a χ2(50)-distribution, and

be sure that this is a conservative test. The five-percent (0.1-percent) critical value for this

distribution is 67.5 (86.7), and consequently we strongly reject the knife-edge restrictions with

minuscule p-values.

3.2 Model-free tests

Instead of comparing no-arbitrage MTSMs with and without the knife-edge unspanned macro

restrictions, we can alternatively test these restrictions in reduced-form factor models for

yields. In particular, we can simply estimate models RSM(L,M) using ordinary least squares

(OLS) and test whether the loadings on the macro variables are zero using likelihood-ratio

statistics. In addition to its simplicity, the obvious advantage of this procedure is that it does

not rely on a particular choice of MTSM specification.

The factor model RSM(L,M) consists of a VAR for Zt = (PLt
′
,M ′

t)
′ and measurement

equations relating observed yields to Zt. We estimate models with L = 1, . . . , 5 yield factors

and M = 2 macro factors. The factors in PLt are taken to be the first L PCs of observed

yields, as in the MTSMs described in Section 2.4. The measurement equations are

P−Lt = A∗ +B∗PP
L
t +B∗MMt + ut, (14)

where P−Lt contains the remaining J − L PCs of observed yields Ỹt, and ut is a (J − L) iid

vector of measurement errors with covariance matrix Ω. We can calculate the likelihood-ratio

test statistic for the restriction B∗M = 0 as follows: First, we estimate the unrestricted model

using OLS, obtain the residuals ût, and calculate Ω̂1 = T−1
∑T

t=1 ûtû
′
t. Second, we estimate the

constrained model by dropping Mt from equation (14), and estimate the residual covariance

matrix Ω̂0. The likelihood ratio statistic, using Sims’ small-sample correction (see Hamilton,

1994, eq. 11.1.34), is LR = (T − 1− L−M)(log |Ω̂1| − log |Ω̂0|) and has an approximate χ2-

distribution with degrees of freedom equal to the number of parameter restrictions, (J−L)M.

Note that since the VAR for Zt is unaffected by the restrictions, there is no need to estimate

it for calculation of the LR statistic.
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Table 3 shows that for both macro data sets, and for any number of yield factors, the LR

statistics are always substantially larger than the 0.1%-critical values. These model-free tests

very clearly reject the knife-edge restrictions, and suggest that it is beneficial to include macro

variables as factors explaining cross-sectional variation in yields.

To better understand these results we can go one step further and consider the role of each

macro variable for these rejections. We estimate restricted versions of (14) where we drop only

one macro variable at a time. The resulting LR statistics are reported in the right panel of

Table 3. For the GRO/INF data set, both macro variables are individually as well as jointly

highly significant. For the UGAP/CPI data, the same is true for up to three yield factors,

but beyond that UGAP is only marginally significant or insignificant. The likely reason is

that UGAP is closely correlated with the slope of the yield curve, as we discuss further below.

More generally, however, we conclude that the rejections are not primarily driven by only

specific macro variables—exclusion restrictions are typically rejected for any of the considered

macro risk factors.

Our evidence casts doubt on the validity of the restrictions imposed by unspanned macro-

finance models. The statistical significance of the rejections is very high. At the same time,

however, the rejections of the knife-edge restrictions do not have high economic significance,

as macro variables explain only little cross-sectional variation in the yield curve beyond that

explained in the first three PCs of yields. We will revisit the issue of economic significance in

Section 7, where we compare estimated term premia obtained from spanned and unspanned

models.

3.3 Do JPS reject spanned models?

On the surface, our results contradict the test result in JPS (p. 1214) that appears to show a

spanned MTSM rejected in favor of an unspanned MTSM. Just as puzzling is the fact that JPS

test the spanned model as a restricted version of the unspanned model, which is precisely the

opposite of the specification nesting demonstrated above. Here we reconcile these differences

and reinterpret the test result in JPS.

JPS compare an unspanned MTSM, labeled “Mus,” to a restricted model “Mspan,” in

which the block of the φ matrix corresponding to the lagged macro variables is set to zero.

Their likelihood-ratio test strongly rejects the restricted model, with a reported χ2-statistic

of 1,189. However, the restrictions of Mspan do not imply a spanned MTSM. Instead, since

Mspan restricts φPM and φMM to zero, it effectively corresponds to a yields-only model (see
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Section 2.3).26 The only difference between Mspan and a pure yields-only model is that the

former includes two VAR equations for forecasting macro variables using yield factors, and its

likelihood function includes the corresponding macro forecast errors. But for yields and risk

premia, Mspan and a yields-only model have the exact same observational implications. The

correct interpretation of the likelihood-ratio test in JPS is that in their specific macro-finance

data set including GRO and INF , yields-only models are rejected in favor of macro-finance

models, whether they are spanned or unspanned MTSMs. Importantly, this is not a rejection

of spanned MTSMs.

In the data used by JPS, current yields do not completely capture the relevant information

for forecasting, as macro variables have additional predictive power.27 This statistical rejection

of model Mspan is simply a reflection of the regression evidence for unspanned macro risks

and unspanned macro forecasts in GRO and INF . In Sections 5 and 6 we will show that such

regression evidence is consistent with both spanned and unspanned MTSMs.

4 Empirical MTSMs and unspanned macro variation

In Section 2.2, we described three strands of regression evidence for unspanned macro infor-

mation that appear to reject spanned macro-finance models. We now investigate whether

this regression evidence can discriminate between spanned and unspanned MTSMs. In this

section, we focus on the evidence for unspanned macro variation, based on regressions of the

form in (6).

4.1 Macro data and the distinction between levels and growth

For robustness, we consider ten different macroeconomic inflation and economic activity vari-

ables. Our sample period, which coincides with that used by JPS, extends from January 1985

to December 2007. Our measures of inflation include INF , the survey-based measure used

by JPS, as well as CPI (defined in Section 2.4), and year-over-year growth in the Personal

Consumption Expenditure (PCE) Price Index excluding food and energy prices, i.e., core PCE

inflation.28

26The restrictions of Mspan do not imply macro-spanning as in equation (5) but instead that expectations
of macro variables are spanned by yields.

27The extremely large χ2-statistic that is reported by JPS is mostly driven by unspanned macro forecasts:
If one does not zero out own lags of macro variables in φ the χ2-statistic is only 74 for the model of JPS.

28In contrast to core inflation, headline inflation, which includes volatile food and energy prices, is noisy
and displays a much weaker link to monetary policy actions and interest rates. A focus on core inflation is
consistent with the statements of monetary policymakers.
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Regarding the activity measures, we include measures of the level and the growth of activity

in the U.S. economy, which differ greatly. Level measures capture deviations of economic

activity from the full-employment or potential level of activity. That is, they measure the

degree of slack in the economy. Our preferred measure of slack is the unemployment gap

(UGAP ). As a second measure of slack, we consider the output gap, measured as the difference

between the log-level of GDP and the log-level of potential GDP as estimated by the CBO.29

We consider five measures of growth in economic activity: GRO, the measure used by JPS;

growth of monthly real GDP, smoothed by using either a three-month moving average (ma3)

or year-over-year (yoy) growth rates; growth of industrial production; and growth of nonfarm

payroll employment (the last two are measured as three-month moving averages).

Level and growth indicators are essentially uncorrelated with each other over the business

cycle. For example, just after a recession ends, growth will turn positive and even shift

above trend while the level of output and employment remains depressed. Importantly, the

empirical monetary policy rules literature has identified level rather than growth variables

as the ones most important for central banks in setting the short-term interest rate.30 To

see this difference, we estimate standard policy rules that regress the federal funds rate on

pairs of macro variables. Each economic activity indicator that we consider is paired with

CPI, whereas the inflation measures are each paired with UGAP . The first two columns

of Table 4 report the R2 for these policy rules, and the partial R2 for each macro variable

under consideration (that is, its explanatory power of a given macro variable in the policy rule,

controlling for the effect of the other variable). The R2 in the first column can be compared

to the R2 in univariate regressions of the policy rate on CPI, which is 0.51, and on UGAP ,

which is 0.17.

Level indicators (i.e., measures of slack) are important determinants of monetary policy as

demonstrated by their high explanatory power in simple policy rules. When paired with core

CPI, they achieve an R2 of 0.80. In contrast, growth measures do not show a close association

with the policy rate. In particular, with GRO, the policy rule R2 barely edges up to 0.53

(compared with the R2 of 0.51 for the univariate fed funds rate regression on inflation). Those

variables that appear to drive monetary policy we term “policy factors.” Those variables—

29To obtain monthly numbers for GDP, we use monthly estimates from Macroeconomic Advisers starting in
1992, and quarterly GDP data from the Bureau of Economic Analysis (BEA) interpolated to monthly values
before 1992.

30Notably, the Taylor rule uses a levels output gap and not a growth rate. More generally, the use of core
CPI and the unemployment gap are supported by estimated monetary policy rules and by the statements
of monetary policymakers. See, among many others, Taylor (1999), Orphanides (2003), Bean (2005), and
Rudebusch (2006). The low weight on growth in monetary policy rules can also be optimal (e.g. Rudebusch,
2002).
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notably the growth variables—that display only a weak direct relationship with the policy rate

we term “non-policy factors.” Note that all three inflation measures are very closely linked

to the policy rate, giving R2 values ranging from 0.74 to 0.80, and are therefore included in

our set of policy factors. The partial R2 estimates using the policy factors are all 0.60 to 0.70,

whereas the partial R2 estimates using the non-policy factors are at most 0.20. This sharp

difference clearly shows the dichotomy between the policy and non-policy groups of variables.

4.2 Regression evidence for unspanned macro variation

To measure how much macroeconomic variation is captured by the yield curve, we regress each

of the ten macroeconomic variables on the first three PCs of yields—see equation (6). The

R2 estimates from these regressions, displayed in the third column of Table 4, show that most

of the variation in each of the policy factors is explained by the yield curve, with R2 values

from 0.60 to 0.70. This is true for measures of slack as well as for core inflation measures.

In contrast, only a small portion of the variation in non-policy factors, including GRO, is

captured by yields—the R2 estimates are all below 0.30.31

To help uncover how the yield curve captures macro variation, the last three columns

of Table 4 report R2’s for univariate regressions of macro variables on each yield PC sepa-

rately. As usual, the first three PCs correspond to level, slope, and curvature of the yield

curve. Measures of slack are most closely correlated with the slope of the yield curve, while

inflation measures are mainly correlated with the level. In contrast, growth measures are

correlated most strongly with the curvature. Given that the curvature accounts for only a

small, noisy portion of yield curve variation, this correlation with growth variables could be a

sign of overfitting and further evidence of the tenuous relationship between yields and growth

measures.

To further document these differing correlations, Figure 1 provides an expanded and rein-

terpreted version of Figure 2 in JPS, which showed that the three yield PCs had weak corre-

lations with GRO. Our Figure 1 shows the second PC of yields (the slope of the yield curve),

GRO, and UGAP , with all three series standardized to have zero mean and unit variance.

This figure illustrates the crucial difference between level/gap measures (policy factors) and

growth measures (non-policy factors). The strong comovement of UGAP and the yield slope

is very clear—the correlation coefficient is 0.84. In other words, this policy factor is closely

related to (i.e., essentially spanned by) the yield curve. On the other hand, GRO is basically

uncorrelated with the slope.

31We find that 28% of the variation in GRO is explained by the first three PCs of yields, whereas JPS
estimate only 15%. The difference is due to the fact that we use a somewhat different yield data set.
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What emerges from this evidence is an explanation for the source of spanned and unspanned

macro variation that is based on the monetary policy reaction function, which provides a

systematic link between certain macroeconomic variables and interest rates.32 Policy factors—

those macro variables that subtantially drive monetary policy—show very little evidence for

unspanned macro variation, and are essentially spanned by the yield curve. This is true

for measures of resource slack and for core inflation. On the other hand, the non-policy

factors—and specifically, growth variables—display a weak relationship with the policy rate

and, consequently, also exhibit significant unspanned variation. This reflects the low weight

these variables have in directly setting the short-term interest rate by the Fed.33

4.3 Simulating data from empirical MTSMs

To examine the statistical relevance of the spanning puzzle, we use the empirical spanned and

unspanned models that we estimated as described in Section 2.4, and generate simulated data

samples. We then estimate the three spanning regressions using these simulated samples, and

assess whether spanned models can reproduce the regression evidence in the actual data or

are rejected by that evidence. In addition to these small-sample simulations, we also calculate

and report population moments for each of the regressions in Appendix C.

Our simulation design is the following: With parameter estimates for four different MTSMs

in hand—SM(3, 2) and USM(3, 2), each for two different macro data sets—we simulate 10,000

macro/yield data sets from each model. The simulated data sets have the same length as the

actual data, which is T = 276 months. Our procedure is to simulate yield and macro factors

from the VAR, construct fitted yields using the affine factor loadings, and add iid Gaussian

measurement error to obtain simulated yields.34 The standard deviation of the measurement

errors, σ, is taken to be equal to six basis points, similar to our maximum likelihood estimates

reported in Table 1. We also consider the case with σ = 0.35 In each simulated yield data

32This is consistent with the findings in Diebold et al. (2006) and Rudebusch and Wu (2008) in which
the central bank adjusts the short rate and the slope of the yield curve in response to cyclical fluctuations
in resource utilization, and the level of the yield curve adjusts to changes in inflation expectations and the
perceived central bank inflation target.

33Our arguments suggest that growth measures of economic activity would be related more strongly to
changes than to levels of the yield curve. We have found that this is indeed the case. For example, a
regression with quarterly changes in three PCs explains 42% of the variation in GRO, as opposed to the 28%
that Table 4 reports for a specification in levels. This underlines the importance of using the right type of
macro variables when investigating spanning by the yield curve.

34Pricing errors of estimated term structure models are often serially correlated, as documented for exam-
ple by Adrian et al. (2013) and Hamilton and Wu (2014). However, using serially-correlated errors in our
simulations did not change our results.

35In the estimation we assumed observable yield factors, whereas in our simulation setup all yields are
measured with error and yield factors are latent. This is inconsequential for our simulation results, as filtered
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set, we construct the yield factors as linear combinations of yields, using the PC loadings in

W . Then we run the spanning regressions in the simulated macro/yield data, in order to

obtain the model-based distribution of the regression statistics. By comparing the regression

statistics obtained in the actual data to these distributions, we can then test whether the

assumptions of the model are consistent with the unspanned regression evidence.

4.4 Spanned MTSMs are consistent with regression evidence

We first run regression (6) in both actual and simulated data samples. Table 6 reports the R2

for regressions using the actual data in the top two rows, with either three or five PCs of yields,

which provide the comparison benchmark for the model-based simulated R2 distribution.

As noted above, GRO exhibits much unspanned variation, while UGAP and both inflation

measures are largely spanned by yields. The remaining rows of Table 6 show results for

simulated data, namely, medians of the R2 across simulations, as well as the fractions of

simulated samples in which the R2 is below the value in the actual data. These fractions

can be interpreted as model-based, small-sample p-values for the joint restrictions imposed

by the MTSM, and using the conventional significance level, values below 0.05 would indicate

evidence against a particular model.

First, we consider regressions of macro variables on 5 PCs using data simulated from the

spanned model SM(3, 2)—these results are in the bottom panel of Table 6. The model has

five factors, so five (linear combinations of) model-implied yields completely span the macro

variation. Hence, when we simulate yields without measurement error and regress macro

variables on five PCs, we find an R2 of 1 in every simulated data set (the final two lines in the

table with σ = 0). In this case the model cannot reproduce any unspanned macro variation

and appears inconsistent with the data. However, adding small, plausible yield measurement

error changes this conclusion: With σ = 6bps the amount of unspanned macro variation in

the simulated data matches that in the actual data, and the p-values are substantially above

five percent. There is no evidence against the spanned model based on this type of regression

evidence.

Of course, it is not surprising that with some amount of measurement error, a spanned

model has data-generating properties that are consistent with the data-generating properties

of an unspanned model. Indeed, with enough stochastic variation, any two economic models

are indistinguishable. But our results show there is an empirically plausible spanned model,

with the usual, tiny yield measurement error, that cannot be distinguished from the corre-

and observed low-order PCs are virtually indistinguishable (Joslin et al., 2013b, 2014).

21



sponding estimated unspanned version using the spanning regression. These results certainly

depend on the specific models and samples employed, but as noted above, we have explored a

variety of alternative specifications with different variables, numbers of factors, and parameter

restrictions and obtained similar results. In Appendix C, we consider large-sample results for

the spanning regressions based on model-implied population moments, which provides further

detail and intuition.

Theoretical spanning only holds if the number of PCs in the spanning regression is at least

as large as the number of risk factors. For SM(3, 2), regressions using only three PCs of

simulated yields give R2’s that are well below 1 and close to values in the actual data even

without any measurement error, as shown in the middle panel of Table 6. Evidently, even in

a spanned MTSM with three yield factors, which fits the yield curve well, three PCs of yields

leave a substantial amount of macro variation unspanned. This further lessens the significance

of the theoretical spanning condition: spanned models do not impose that macro variables are

spanned by only L PCs of yields. Only when we include higher-order PCs, i.e., condition on

N linear combinations of yields, does the spanning condition in conventional MTSMs have

testable implications. But higher-order PCs have less explanatory power for the cross section

of yields and are measured much more imprecisely.

Finally, we consider the unspanned models, USM(3, 2), in the top panel of Table 4. In

this case, we use three PCs of yields, because only the three yield factors enter the affine

yield equations—including more PCs does not increase explanatory power of yields but leads

to multicollinearity. The results of this exercise show, not surprisingly, that the unspanned

models are able to replicate the unspanned macro variation in the data. But note that both

spanned and unspanned models have the same implications for the relationship between macro

variables and L linear combinations of yields, because equation (13) holds in both types of

models. Therefore, the results reported in the top panel of Table 6 are essentially identical to

those in the middle panel. Based on spanning regressions on L yield PCs, there is no evidence

to distinguish between spanned and unspanned models.

These small-sample simulation results are confirmed by the model-implied population mo-

ments, which we report in Appendix C.1. In sum, regressions of macro variables on yields

provide no reason to prefer unspanned over spanned macro-finance models.

4.5 The role of measurement error

Measurement error plays a crucial role for reconciling spanned models with the evidence from

regressions of macro variables on five yield PCs. Yield-curve models generally require mea-

surement error to fit the data, because their factor structure otherwise would lead to stochastic
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singularity. For macro-finance models, measurement error has the additional important effect

that it breaks theoretical macro spanning, just as it breaks stochastic singularity. While this

is obvious conceptually, our analysis shows that it also works empirically: The small amount

of measurement error needed to fit observed yields at the same time also generates sufficient

unspanned macroeconomic information to reconcile macro-finance models with the spanning

regression evidence.

It may appear puzzling that a large amount of unspanned macro information can be

generated by very small measurement errors. After all, “the measurement error of yields is

tiny relative to the variability of yields” (Duffee, 2013b, p. 412). Furthermore, low-order PCs

of observed yields are generally very close to low-order PCs of model-implied yields. The

reason that spanned models with small measurement errors can generate substantial amounts

of unspanned macro information is that measurement error matters little for level, slope and

curvature, but substantially affects higher-order PCs, since these are relatively smaller and

less precisely estimated. In Appendix D we report the share of the variance in each PC that is

due to measurement error. This share is large for the higher-order PCs, e.g., it is about 99%

for the fifth PC. The higher-order yield PCs matter for theoretical macro-spanning, but they

are contaminated by noise with the introduction of even of small yield measurement error.

While the results and analysis in this paper pertain to MTSMs with three yield factors,

we have found that spanned models with fewer yield factors also reproduce the regression

evidence on unspanned macro information. For models with two yield factors, as in Joslin et al.

(2013a), the intuition is similar to the case of SM(3, 2), because the yield fit is reasonable and

the measurement error modest. For MTSMs with only one yield factor, like those in Bernanke

et al. (2004) and Joslin et al. (2013b), the fit to the cross section of yields is much poorer

and large measurement errors are required, which in turn generate substantial unspanned

macroeconomic information. Overall, both reduced-form MTSMs that fit yields very well and

have small measurement errors, as well as models that do not match observed yields very

accurately, are consistent with the regression evidence on unspanned macro variation.

5 Empirical MTSMs and unspanned macro risk

We now consider whether macroeconomic variables contain information that is useful for

predicting excess bond returns, above and beyond the information contained in the yield

curve. That is, does the unspanned macro variation represent unspanned macro risk? We

use predictive regressions of the form in (7), using the average excess returns for bonds of

maturities from two through ten years as the dependent variable. Then we investigate whether
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this evidence rejects spanned MTSMs.

5.1 Regression evidence for unspanned macro risk

We first provide the regression evidence on unspanned macro risk using as predictors the first

three PCs of yields and each of our ten macroeconomic variables. The first and second columns

of Table 5 show t-statistics and p-values for testing the hypothesis that the macro variable

can be excluded from this regression, using Newey-West standard errors with 18 lags.36 The

third column reports the increase in R2 when including macro variables, relative the R2 in

predictive regressions with only three yield PCs, which is 20%. The fourth column shows the

relative root-mean-squared error of the predictions that include the macro variable compared

to those that use only yield PCs—values below one indicate improvements of forecast accuracy

due to inclusion of macro information. While the t-tests indicate statistical significance, the

changes in R2 and the relative RMSEs measure the economic significance of unspanned macro

information for predicting excess bond returns.

Measures of economic slack do not help to predict bond returns in our data.37 The same

holds true for core inflation measures. In general, we find that the policy factors—those vari-

ables that display little unspanned variation—do not significantly improve forecast accuracy.

This is not surprising because the policy factors contain very little independent information.

On the other hand, four out of five non-policy factors display in-sample predictive power that

is significant at least at the 10% level. As was true above with our spanning regressions, there

is a marked difference in predictive power between policy and non-policy factors (although

INF is an exception). However, even for those macro variables that significantly improve bond

return forecasts, the size of forecast gains is quite modest—the median RMSE is improved by

only 3% by inclusion of a macro predictor.

Overall, there is some evidence for predictive power of macro variables for bond returns,

i.e., for unspanned macro risk, consistent with the findings of Cooper and Priestley (2008),

Ludvigson and Ng (2009), and JPS. But the evidence appears somewhat weak and variable

across different macroeconomic data series. Duffee (2013b) is also skeptical that such evidence

is robust to changes in the sample period used. Furthermore, inference about predictive

accuracy in bond return regressions is problematic from an econometric perspective—for an

in-depth analysis, see Bauer and Hamilton (2016). Finally, the evidence on the predictive

36This is the usual lag choice for predictive regressions for annual returns with overlapping monthly
observations—see, for example, Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009).

37While Cooper and Priestley (2008) find some predictive power of the output gap for excess bond returns,
Bauer and Hamilton (2016) show that these results are not robust, consistent with our results here.
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power of macro variables is in sample and may not be reflected in out-of-sample forecasting.38

In sum, there are many question marks about the evidence on unspanned macro risk. However,

even if this evidence is taken at face value, we show below that it does not invalidate the

spanned models.

5.2 Spanned MTSMs are consistent with excess return regressions

Can spanned models reproduce the regression evidence on bond return predictability? In

Table 7 we compare the results for predictive regressions in actual and simulated data. In this

case the predictors are PCs of yields and either GRO and INF or UGAP and CPI, depending

on the model. Table 7 reports Wald statistics, calculated using Newey-West standard errors

with 18 lags, for the joint significance of the two macro variables in the predictive regressions,

and the changes in R2 when the macro variables are added to the predictive regressions. The

former measures statistical significance, while the latter measures economic significance, and

high values indicate the presence of unspanned macro risk.

The first two rows in Table 7 show the results in the actual data when we condition

on either three or five PCs of yields. For the Wald statistics, we report p-values using the

asymptotic χ2-distribution. The macro variables GRO and INF increase the predictive power

substantially, as also reported by JPS, and are highly significant in the predictive regressions.

On the other hand, UGAP and CPI improve forecast accuracy only marginally, and this

improvement is not statistically significant—with p-values of 0.22 and 0.12, respectively.

The rest of Table 7 reports medians of the statistics across simulated samples, as well

as the fractions of samples in which these statistics are above the value in the actual data,

i.e., simulation-based p-values. Without measurement error (σ = 0) and with five PCs as

regressors, the spanned model SM(3, 2) of course implies that the macro data cannot have

any additional predictive power—see the bottom two rows of Table 7. However, this theoretical

spanning result is overturned either by introducing measurement error or by conditioning on

only three yield factors instead of all five factors. In these cases, adding macro variables

increases the predictive power of the return regression—there is some unspanned macro risk

in the simulated data. The PCs of observed yields do not fully capture the information in the

yield curve and as a consequence, macro variables, though theoretically spanned by model-

implied yields, contain additional information useful for predictions. The key question is, can

the spanned model reproduce the amount of unspanned macro risk we find in the data?

It turns out that the answer is yes, even for the case with GRO/INF where JPS have

38Note that GRO, the Chicago National Activity Index, was not available to investors in real time, but only
became available in 1999.
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found a large degree of unspanned macro risk. The spanned models can reproduce the gains in

return forecast accuracy of macro variables, even if we condition on five yield PCs. With yield

measurement error, the spanned model cannot be rejected by this evidence. The statistical

significance for predictive power in the data, measured by the Wald statistic, is easily matched

in the simulated data, with p-values above 0.3 for both data sets.

Furthermore, unspanned models do not have any advantage over spanned models in captur-

ing the predictability of excess bond returns. Comparing the results for predictive regressions

using three yield PCs, we again see that the spanned and unspanned models have virtually

identical implications.

For predictive regressions of asset returns, small-sample econometric issues often arise.

Indeed, Appendix C.2 shows that in population, the model-implied predictability of bond

returns is smaller, as is the degree of unspanned macro risk. It is therefore important to

simulate small samples, as we do here, in order to correctly assess the models’ plausibility in

light of the predictive regression evidence. Our small-sample results show that the evidence

on unspanned macro risk does not give any reason to prefer unspanned models over spanned

models.

6 Empirical MTSMs and unspanned macro forecasts

The third and final dimension of macro spanning that we investigate concerns macroeconomic

forecasts. If macro information is spanned by the yield curve, then forecasts made using

information in the yield curve cannot be improved upon by including own lags of macro

variables. In particular, the persistence in macro variables would be completely captured

by the yield curve. This would hold true even in the case that macro spanning holds but

observed macro variables are measured with (serially uncorrelated) measurement errors. For

this reason, Duffee (2013b) considers this regression-based analysis “more direct evidence that

the problem is misspecification” (p. 412). To study unspanned macro forecasts, we take a

similar approach as Duffee (2013b), using the predictive regressions of the form in (8).

6.1 Regression evidence for unspanned macro forecasts

We first consider the evidence for unspanned macro forecasts for our ten macro variables. We

obtain yields-only macro forecasts by regressing each macro variable in month t+ 1 on three

PCs of yields dated at t, and compare these to ”macro-yields” forecasts in which the predictors

are augmented by a lag of the macro variable. Table 5 reports t-statistics (using Newey-West
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standard errors with 12 lags) for the null hypothesis that the lagged macro variable can be

excluded, i.e., that macro forecasts are spanned, as well as the relative RMSE comparing

macro-yields forecasts to yields-only forecasts. We also calculate first-order autocorrelations

of the macro variables to help elucidate the role of persistence in this context.

The evidence for unspanned macro forecasts is strong. Rejections of the spanning hypoth-

esis are both statistically and economically highly significant in our monthly data set. As one

would expect, the more persistent variables generally display a larger degree of unspanned

persistence, i.e., a larger improvement of forecast accuracy with the inclusion of own macro

lags. Our results are qualitatively consistent with Duffee (2013b), but our evidence is stronger

because our measures of slack and (year-over-year) core inflation are more persistent than

Duffee’s growth and quarterly headline inflation measures.

6.2 Spanned MTSMs are consistent with macro forecast regres-

sions

We now investigate whether spanned MTSMs are inconsistent with the empirical findings of

unspanned macro forecasts. The metric we focus on is the relative RMSE of (one-month-

ahead) macro-yields forecasts vs. yields-only forecasts for each macro variable—values below

one indicate the presence and magnitude of unspanned macro forecasts. Again, we compare

the values obtained for regressions using the real-world data to the distribution of values in

regressions using simulated data.

Table 8 provides the results of this analysis. The first two rows report the values for the

data, using either three or five PCs of yields to obtain macro forecasts. As we noted above,

the evidence for unspanned macro forecasts is very strong in our data. The rest of the table

show medians and p-values based on the simulations from our MTSMs. Importantly, the

spanned MTSMs can match the strong regression evidence on unspanned macro forecasts in

the real-world data. The distribution of the median relative RMSEs across the simulations

is close to the values in the real-world data. This is true even for the spanned model in a

regression with five yield PCs, where measurement error generates a substantial amount of

unspanned macro forecasts. and helps to reconcile the models with the regression evidence.

With the exception of INF , the small-sample p-values are above 0.1. The only case in which

data simulated from a spanned MTSM does not exhibit any unspanned macro forecasts is

when we condition on all five PCs and do not allow for any yield measurement errors. In this

case, macro spanning holds exactly in the simulated data—as in Tables 6 and 7—so the yield

curve completely captures all relevant macro forecast information and lags of macro variables
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are not needed.

We also calculated population moments for these regressions, which are reported in Ap-

pendix C.3. For unspanned macro forecasts, just like for unspanned macro variation, the

large-sample results closely parallel the small-sample results.

The simulated regression evidence on unspanned macro forecasts mirrors the results for un-

spanned macro variation and risk: spanned models are generally able to match the regression

evidence about as well as unspanned models. In particular, the actual values of the regression

test statistics from the real-world data are usually well within the probability distributions for

these statistics when generated from plausible estimated spanned MTSMs. That is, statisti-

cally, even if the null hypothesis of theoretical macro spanning holds, the regressions appear to

reject macro-spanning based on the presence of unspanned macroeconomic information—the

regression tests are oversized as they reject the true null too often. As a result, the regression

evidence cannot discriminate between these spanned and unspanned MTSMs. Importantly,

we have shown that spanned models are consistent with the regression evidence, which resolves

the spanning puzzle.

7 Term premia in spanned and unspanned MTSMs

We now examine the economic implications of macro spanning for model-based estimation of

term premia. First, we revisit the estimates of JPS, using the same macro data, GRO and

INF . Figure 2 shows two-to-three-year forward term premia from models USM(3, 2) and

SM(3, 2), as well as from a three-factor yields-only model.39 Forward term premia are defined

as differences between model-implied forward rates and risk-neutral forward rates. With one

addition, this figure essentially reproduces Figure 1 of JPS: Our USM(3, 2) model corresponds

to their Mus model, and our yields-only model corresponds to their Mspan model. The

comparison shows that our estimated term premia closely resemble those of JPS. This is true

even though our models are maximally flexible while those in JPS have various overidentifying

restrictions (see our discussion in Section 2.4) and despite our use of a slightly different yields

data set.

Figure 2 also shows that the spanned and unspanned models imply essentially identical

forward term premia—the two lines corresponding to models SM(3, 2) and USM(3, 2) lie

almost exactly on top of each other. Evidently, the knife-edge restrictions of unspanned

models do not materially affect estimated term premia. While we have shown in Section 3

39Our yields-only model is a maximally flexible affine model estimated using maximum likelihood with the
first three PCs of observed yields as risk factors and the normalization of Joslin et al. (2011).
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that the rejections of these restrictions are statistically significant, Figure 2 reveals that from

the perspective of term premium estimation, these rejections are not economically significant.

The same holds for the improvements in cross-sectional fit achieved by spanned models, which

are on the order of one basis point or less, and hence are also not economically significant

(Table 1). We cannot rule out that there are other empirical objects of interest for which the

knife-edge restrictions have a material impact, but for the estimation of term premia they are

inconsequential—spanned and unspanned models give practically identical results.

The intuition for our finding of essentially identical term premia from spanned and un-

spanned models is straightforward. Fitted yields and forward rates are very similar from both

types of models. At the same time, spanned and unspanned models contain the same VAR

specification for Zt, and result in almost identical forecasts. Therefore not only the fitted rates

but also the risk-neutral rates, which aside from convexity terms correspond to VAR-based

forecasts of future short rates, are very similar for spanned and unspanned model. Term

premia, the differences between these two series, are therefore essentially identical as well.

This finding sharply contrasts with the claim in JPS that unspanned models “accom-

modate much richer dynamic codependencies among risk premiums and the macroeconomy

than in extant MTSMs” (p. 1198). First, unspanned models are in fact restricted versions of

spanned models. Second, both types of models allow for essentially the same risk premium

dynamics—incorporating unspanned macro risks in an MTSM does not change the term pre-

mium implications of the model.

The yields-only model (which corresponds to the Mspan model in JPS) implies a very

different term premium than the macro-finance models with GRO and INF . Just like the

rejections of the VAR restrictions emphasized by JPS (see Section 3.3), this difference in term

premia is simply due to the in-sample predictive power of the unspanned components of GRO

and INF . Should we prefer this particular macro-finance term premium over the yields-only

term premium? One way to answer this question is to judge the plausibility of the behavior

of these risk premia from a macroeconomic perspective. On these grounds, JPS argue in

favor of the macro-finance term premia, because they “show a pronounced cyclical pattern

with peaks during recessions” (p. 1198). However, these peaks occur early in recessions or

even before the beginning of the recessions, while the economy is still expanding briskly and

risk aversion and risk compensation are low. A more plausible business cycle pattern for risk

premia is to be high in troughs and low at peaks (Cochrane and Piazzesi, 2005; Rudebusch

and Swanson, 2012). The yields-only term premium is therefore more plausible, since it is low

late in expansions and rises throughout recessions. It peaks near the end of the recession or

early in the recovery, when economic prospects are highly uncertain. From a macroeconomic
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perspective, there are reasons to question the plausibility of the term premium implied by

an MTSM with GRO and INF . The fact that these variables display substantial unspanned

variation is not necessarily a good reason to include them in an MTSM. Not only does the

in-sample predictive power most likely lack robustness, it also leads to quite puzzling behavior

of the resulting term premia.40

An MTSM with more conventional macroeconomic variables delivers term premia that do

not show this puzzling behavior. In Figure 3, we show the forward term premia obtained

from MTSMs with UGAP and CPI, together with the yields-only term premium. Again, the

implied term premia from the spanned and unspanned models are essentially identical. In this

case, they both resemble the term premium from the yields-only model. The reason is that

these macro variables are closely tied to monetary policy and to the yield curve and display

little to no unspanned macro risks (see Section 4.2). From a macroeconomic perspective,

the term premia in Figure 3 appear more plausible than the macro-finance term premia in

Figure 2, given their more reasonable cyclical behavior. This evidence can be viewed as a

caution against including macro variables in MTSMs that are selected on the basis of high

in-sample predictive power for excess returns. Such variables can substantially alter estimated

risk premia and can reduce their plausibility.41

Our key point here is that spanned and unspanned models imply essentially identical term

premia. While we come to different conclusions in our comparison of spanned and unspanned

models than JPS, we view their novel class of unspanned MTSMs as potentially quite useful

in applications. Importantly, we have shown that the knife-edge restrictions are rejected on

statistical grounds but leave at least some economic implications of affine MTSMs essentially

unchanged. Hence, there is no grave danger in using unspanned models for, say, analysis of

bond risk premia. One benefit of these models is the lower number of parameters, and this

parsimony simplifies estimation and inference. Overall, unspanned models may be a useful

shortcut in practical applications of MTSMs.42 We emphasize, however, that these models

are not needed to match the regression evidence that is usually cited to justify their use and

40Bauer et al. (2012) and Bauer et al. (2014) also discuss the countercyclical behavior of term premia
estimated from term structure models.

41Duffee (2013b) notes that “the spanning requirement [...] reduces significantly the ability of researchers to
fish for variables that forecast excess returns.” Doing away with the spanning constraint removes the discipline
imposed by it. Instead of simply adding variables that are found to have in-sample significance in forecasting
regressions, it will be important to document robust and stable predictive power before using any particular
series to augment MTSMs.

42An established example of another such usefully constrained model in the literature is the arbitrage-free
Nelson-Siegel (AFNS) model of Christensen et al. (2011). Although modest in-sample statistical rejections
of the three parameter restrictions associated with the AFNS model are not uncommon, the AFNS model
provides notable economic benefits in terms of parsimony, tractability, and intuition.

30



that they give the same answers as spanned models to questions about risk premia.

8 Conclusion

In this paper, we have proposed a solution to the macro-finance spanning puzzle that pro-

vides support for the conventional MTSMs widely used in the literature. Our findings should

reassure the many researchers who have employed conventional spanned models for analyz-

ing macro-finance interactions. We show that the theoretical spanning of macro variables by

model-implied yields in MTSMs does not have any practical significance in terms of the re-

gression evidence. Specifically, a spanned MTSM with conventional small yield measurement

errors does not conflict with the regression evidence on unspanned macro variation, macro risk,

or macro forecasts. The reason is that these regressions cannot distinguish between plausible

estimated spanned and unspanned macro-finance models. We also cast some doubt on the

validity of the alternative unspanned MTSMs. Their knife-edge restrictions are strongly re-

jected in the data. At the same time, spanned and unspanned models deliver similar estimates

of term premia in long-term interest rates and fit observed yields about equally well. That

is, the rejections of the knife-edge restrictions of unspanned models are statistically but not

economically significant. One interpretation of our results is that the choice between spanned

and unspanned models is less important than the choice of which macro variables should be

used to augment the information set for forecasting and inference about risk premia.

One could imagine alternative solutions to the spanning puzzle. For example, some struc-

tural and reduced-form MTSMs imply nonlinear mappings from risk factors to bond yields.

In theory, such nonlinearity breaks the (linear) spanning condition, but it remains an empiri-

cal question as to how much unspanned macro information such nonlinearities can generate.

Another possible solution is regime-switching or parameter instability across subsamples. If

macro spanning holds but the parameters in the spanning relation change, then regressions

using the full sample would find evidence for unspanned macro information. While our sample

period is chosen to minimize the likelihood of possible structural breaks (for example, due to

changes in the monetary policy rule), we cannot rule out this possibility.43 These explanations

may contribute to the unspanned phenomenon in the data, but our results reconcile spanned

models with the regression evidence without adding any assumptions or model features not

commonly included in the MTSM literature.

Our simulation-based approach can be used to assess the spanning implications of any

43For example, Song (2014) appears to generate some unspanned macro variation using regime-switching in
an equilibrium MTSM.
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macro-finance model of the yield curve. We have argued that the canonical reduced-form

MTSM considered in this paper is representative of a broad class of spanned macro-finance

models, and in this sense our conclusions extend to many other models. However, equilibrium

models of the yield curve often impose additional restrictions on macro-yield interactions, or

are calibrated to match certain asset pricing moments in the data. It may therefore be of

interest to investigate whether specific structural macro-finance models are indeed consistent

with the unspanned regression evidence. We leave such an investigation to future research.

An open question about unspanned MTSMs is whether the severing of the direct link

between macro variables and yields has any serious consequences. It appears that since direct

effects of macro state variables on asset prices are ruled out, the usefulness of these models for

policy analysis may be limited, in particular for studying the effects of monetary policy. It is

unclear whether the indirect link through the interaction of macro and yield factors is sufficient

to thoroughly study macro-yield interactions. More generally, the question is whether there

are economic implications of MTSMs other than the one we study here, based on which either

spanned or unspanned models seem preferable. Depending on the answer to this question, it

may be useful to develop hybrid models with both spanned and unspanned macroeconomic

risks.
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Feunou, Bruno and Jean-Sébastien Fontaine (2015) “Bond Risk Premia and Gaussian Term

Structure Models,” working paper, Bank of Canada.

34



Gallmeyer, Michael F., Burton Hollifield, Francisco Palomino, and Stanley E. Zin (2007)

“Arbitrage-Free Bond Pricing with Dynamic Macroeconomic Models,” Working Paper

13245, National Bureau of Economic Research.

Greenwood, Robin and Dimitri Vayanos (2014) “Bond Supply and Excess Bond Returns,”

Review of Financial Studies, Vol. 27, pp. 663–713.

Gürkaynak, Refet S. and Jonathan H. Wright (2012) “Macroeconomics and the Term Struc-

ture,” Journal of Economic Literature, Vol. 50, pp. 331–367.

Hamilton, James D. (1994) Time Series Analysis: Princeton University Press.

Hamilton, James D. and Jing Cynthia Wu (2012) “Identification and estimation of Gaussian

affine term structure models,” Journal of Econometrics, Vol. 168, pp. 315–331.

(2014) “Testable Implications of Affine Term Structure Models,” Journal of Econo-

metrics, Vol. 178, pp. 231–242.

Hansen, Bruce E. (1996) “Inference When a Nuisance Parameter Is Not Identified under the

Null Hypothesis,” Econometrica, Vol. 64, pp. 413–430.
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A Affine bond pricing

Under the assumptions of Section 2, bond prices are exponentially affine functions of the
pricing factors:

Bm
t = eAm+BmXt ,

and the loadings Am = Am(µQ, φQ, δ0, δ1,Σ) and Bm = Bδ1) follow the recursions

Am+1 = Am + (µQ)′Bm +
1

2
B′mΣΣ′Bm − δ0

Bm+1 = (φQ)′Bm − δ1

with starting values A0 = 0 and B0 = 0. Model-implied yields are determined by ymt =
−m−1 logBm

t = Am + BmXt, with Am = −m−1Am and Bm = −m−1B. Risk-neutral yields,
the yields that would prevail if investors were risk-neutral, can be calculated using

ỹmt = Ãm + B̃mXt, Ãm = −m−1Am(µ, φ, δ0, δ1,Σ), B̃m = −m−1Bm(φ, δ1).

Risk-neutral yields reflect policy expectations over the life of the bond, m−1
∑m−1

h=0 Etrt+h, plus
a convexity term. The yield term premium is defined as the difference between actual and
risk-neutral yields, ytpmt = ymt − ỹmt .

B Parameter estimates

Here we report parameter estimates for our spanned and unspanned models, which were
obtained using maximum likelihood as described in Section 2.4 and then used for generating
simulated macro-finance data sets as described in Section 4.3. The yield factors are related
to yields by the matrix W , which contains the PC loadings. To construct W we start from
the orthonormal eigenvectors of actual yields, scale the loadings for the first PC to add up to
unity, and then scale all loadings by 1200 so that they correspond to annualized percentages.
In this way the yield factors have the same scaling as the macro variables.

Table B.1 presents the parameters for models SM(3, 2) and USM(3, 2) estimated on the
data set with the macro variables GRO and INF , and Table B.2 presents the estimates
obtained using the data set with UGAP and INF . For further discussion of the macro
variables, see Section 4.1. We present the parameter estimates without standard errors, as
these are not needed for our purpose of simulating and comparing maximally-flexible models.
In addition, the numerical approximations to the first and second derivatives of the likelihood
functions are unreliable for models with this many parameters. While could obtain standard
errors using a bootstrap exercise, this would require re-estimating our macro-finance models
many times on simulated data sets, involving very high computational costs.

Tables B.1 and B.2 report in the last row of each panel the estimated measurement error
standard deviation, which is multiplied by 1200 so that the units are annualized percentage
points, and indicates the cross-sectional fit to observed yields. Also reported are the maximized
value of the log-likelihood function, and the maximum absolute eigenvalue of the VAR mean-
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reversion matrix Φ, which shows that the estimated VARs are stationary.

C Spanning results in large samples

Here we calculate the model-implied population moments for spanning regressions to comple-
ment the results for small-sample model simulations in Sections 4–6 and to see the possible
role of small-sample issues.

We first define notation and show the expressions we use to calculate population R2 and
relative RMSEs. Given a linear regression model

yt = β′xt + εt,

where it is assumed that (i) {yt, xt} are jointly stationary and ergodic, (ii) all N regressors xt
are predetermined, and (iii) E(xtx

′
t) has full rank, the regression R2 converges in probability

to

R2 =
V ar(β′xt)

V ar(yt)
=
β′Cov(xt)β

V ar(yt)
=
Cov(yt, xt)Cov

−1(xt)Cov(xt, yt)

V ar(yt)
.

In our notation, Cov(yt, xt) is a (1×N) row vector, Cov−1(xt) is the inverse of the (N ×N)
variance-covariance matrix Cov(xt), and Cov(xt, yt) is an (N × 1) column vector. Since the
mean-squared-error converges to V ar(εt) = V ar(yt) − V ar(β′xt), the relative RMSE of an
unrestricted and a restricted model converges to

RMSEur
RMSEr

=

√
1−R2

ur

1−R2
r

,

where R2
ur and R2

r are the population R2 of the unrestricted and restricted models, respectively.

C.1 Unspanned macro variation

In the first type of regressions, macroeconomic variables are regressed on PCs of contempora-
neous yields. We denote the macroeconomic variable under consideration as mt. To emphasize
the role of measurement error we write for observed yields

Ỹt = Yt + et = A+BZt + et,

where we have Cov(et) = σ2IJ . Note that for unspanned models, the rows of B corresponding
to the macro factors contain only zeros. The loadings for the principal components will be
taken as fixed in this analysis, corresponding to PCs in the real-world data. They are given
in the matrix W , which is a (3 × J) or (5 × J) matrix, depending on how many yield PCs
are used as regressors. Hence the regressors are P̃t = WỸt, and we also define the PCs of
model-implied yields as Pt = WYt. With this notation, the first type of spanning regressions
are

mt = const+ β′P̃t + εt.
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Table B.1: Parameter estimates for macro-finance models using data set with GRO/INF

Spanned model: SM(3, 2)

kQ∞ λQ

0.032 0.991 0.990 0.864 0.864 0.864
γ0 γ1

-0.153 0.031 -0.013 -1.434 5.911 62.960
-1.300 0.398 0.104 0.957 2.822 -40.953
µ Φ

0.078 0.937 -0.013 -0.022 0.105 0.100
0.021 0.006 0.978 0.170 -0.167 -0.040
0.100 -0.010 -0.006 0.783 -0.040 0.044
0.069 -0.005 0.018 -0.111 0.882 -0.002
0.050 0.002 0.006 -0.059 0.028 0.986

Σ

0.284 0 0 0 0
0.158 0.275 0 0 0

-0.084 -0.020 0.130 0 0
0.044 0.001 -0.023 0.187 0
0.030 0.012 0.014 0.006 0.112
σe LLK Φ ev.

0.057 21501.9 0.984

Unspanned model: USM(3, 2)

kQ∞ λQ

0.033 0.997 0.959 0.872
µ Φ

0.078 0.937 -0.013 -0.022 0.105 0.100
0.021 0.006 0.978 0.170 -0.167 -0.040
0.100 -0.010 -0.006 0.783 -0.040 0.044
0.069 -0.005 0.018 -0.111 0.882 -0.002
0.050 0.002 0.006 -0.059 0.028 0.986

Σ

0.282 0 0 0 0
0.185 0.281 0 0 0

-0.082 -0.016 0.130 0 0
0.047 0.001 -0.019 0.186 0
0.036 0.014 0.015 0.006 0.112
σe LLK Φ ev.

0.066 21172.9 0.984

kQ∞ and σe are scaled by 1200. “Φ ev.” is largest absolute eigenvalue of Φ.
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Table B.2: Parameter estimates for macro-finance models using data set with UGAP/CPI

Spanned model: SM(3, 2)

kQ∞ λQ

0.028 0.996 0.975 0.843 0.623 0.623
γ0 γ1

-86.891 1.112 -1.416 24.812 203.202 -1293.107
-28.240 0.156 -0.862 5.771 78.644 -345.862
µ Φ

0.127 0.965 0.005 -0.074 0.033 0.028
0.042 -0.059 0.951 0.166 0.095 -0.025
0.107 -0.005 -0.008 0.812 0.025 -0.006

-0.058 0.025 0.012 0.046 0.950 0.037
0.092 0.031 -0.024 -0.064 -0.056 0.918
Σ

0.275 0 0 0 0
0.138 0.291 0 0 0

-0.083 -0.024 0.131 0 0
0.005 0.001 0.010 0.132 0
0.025 -0.015 -0.001 0.006 0.126
σe LLK Φ ev.

0.062 21336.5 0.970

Unspanned model: USM(3, 2)

kQ∞ λQ

0.033 0.997 0.960 0.870
µ Φ

0.127 0.965 0.005 -0.074 0.033 0.028
0.042 -0.059 0.951 0.166 0.095 -0.025
0.107 -0.005 -0.008 0.812 0.025 -0.006

-0.058 0.025 0.012 0.046 0.950 0.037
0.092 0.031 -0.024 -0.064 -0.056 0.918
Σ

0.286 0 0 0 0
0.161 0.296 0 0 0

-0.081 -0.022 0.131 0 0
0.006 0.002 0.010 0.132 0
0.025 -0.015 -0.001 0.006 0.126
σe LLK Φ ev.

0.066 21209.5 0.970

kQ∞ and σe are scaled by 1200. “Φ ev.” is largest absolute eigenvalue of Φ.
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Table C.1: Unspanned macro variation in MTSMs – population moments results

GRO INF CPI UGAP

Data 3 PCs 0.28 0.81 0.81 0.73
5 PCs 0.38 0.86 0.81 0.75

USM(3, 2) 3 PCs
σ = 6bps 0.28 0.79 0.76 0.71
σ = 0 0.29 0.79 0.77 0.71

SM(3, 2) 3 PCs
σ = 6bps 0.28 0.76 0.76 0.72
σ = 0 0.29 0.77 0.77 0.72

SM(3, 2) 5 PCs
σ = 6bp 0.47 0.87 0.77 0.74
σ = 0 1.00 1.00 1.00 1.00

Unspanned macro variation in population, measured by the theoretical R2 implied by model
parameters, for regressions of macro variables on contemporaneous yield PCs. For comparison, the
first two rows show R2 for the actual data.

The population R2 is

R2 =
Cov(mt, P̃t)Cov

−1(P̃t)Cov(P̃t,mt)

V ar(mt)
,

The relevant population moments are

Cov(P̃t) = WCov(Ỹt)W
′ = WBCov(Zt)(BW )′ + σ2WW ′,

Cov(P̃t,mt) = WBCov(Zt)ιm,

V ar(mt) = ι′mCov(Zt)ιm.

where ιm is a column vector that selects mt from Zt, i.e., mt = ι′mZt, and the uncon-
ditional covariance matrix of the risk factors Cov(Zt) is determined by vec(Cov(Zt)) =
(IN 2 − φ⊗ φ)−1 vec(ΣΣ′).

Table C.1 shows the model-implied R2 for each of the cases and models that we considered
in Section 4.4. The results are very similar to the small-sample results reported there—model-
implied unspanned macro variation is clearly not a small-sample phenomenon. First, in the
case of 3 PCs, models USM(3, 2) and SM(3, 2) have essentially identical implications—both
generate a very substantial amount of unspanned macro variation, sufficient to fit the R2

in the data. Second, in the case that only 3 PCs are used, measurement error does not
noticeably affect the R2. Third, confirming our simulation results, macro spanning holds for
model SM(3, 2) only if we use 5 PCs and do not have measurement error. In this case, the
regressors are PNt , which spans mt, hence the R2 is 1. Finally, even in the case that theoretical
spanning holds, small measurement error with σ = 6bp generates substantial unspanned macro
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variation, usually enough to match the values in the real-world data.

C.2 Unspanned macro risk

For the analysis of unspanned macro risk we consider two alternative regressions for excess
bond returns: The unrestricted model includes both P̃t and the macro variables Mt, whereas
the restricted contains only P̃t as predictors.

Denote the model-implied excess returns for a bond with maturity n and a holding period
of h months by rx

(n)
t,t+h.

44 We first consider the expected excess return, for which we can write

Etrx
(n)
t,t+h = β′nZt, β′n = B′n−hφh − B′n + B′h.

This follows easily from the definition of the expected excess return—which is Etrx
(n)
t,t+h =

Etp
(n−h)
t+h − p(n)t − y

(1)
t , for p

(n)
t the log bond price, logP

(n)
t —the affine formulas for log bond

prices (see Appendix A), and the VAR specification for Zt. The surprise component of the
excess return is

rx
(n)
t,t+h − Etrx

(n)
t,t+h = B′n−hνt,t+h, νt,t+h =

h∑
i=1

φh−iΣεt+i,

where we defined the VAR forecast errors νt,t+h = Zt+h − EtZt+h. The dependent variable in
our regressions is the average excess return across all maturities longer than h periods, which
we write as

r̄xt,t+h = K−1
∑
n

rx
(n)
t,t+h,

denoting the number of relevant maturities by K, which is equal to 9 (from 2 to 10 years)
in our paper. For the average return we have r̄xt,t+h = β̄′Zt + B̄′νt,t+h, where β̄ denotes the
average of βn and B̄ denotes the average of Bn−h across these K maturities. For the restricted
regression of excess returns on only the yield PCs we have

R2
r =

Cov(r̄xt,t+h, P̃t)Cov
−1(P̃t)Cov(P̃t, r̄xt,t+h)

V ar(r̄xt,t+h)
,

which can be calculated based on Cov(P̃t) and the following moments:

Cov(r̄xt,t+h, P̃t) = Cov(r̄xt,t+h, Pt) = β̄′Cov(Zt)(WB)′,

V ar(r̄xt,t+h) = β̄′Cov(Zt)β̄ + B̄′Cov(νt,t+h)B̄,

Cov(νt,t+h) =
h∑
i=1

φh−iΣΣ′(φh−i)′.

The first equality is due to the fact that we focus on model-implied returns. For the unre-

44To simplify this analysis, we ignore the yield measurement errors that enter observed excess returns. Their
effects are negligibly small and unimportant for our results and intuition.
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Table C.2: Unspanned macro risk in MTSMs – population moments

GRO/INF UGAP/CPI

R2 Y R2 Y+M ∆R2 RMSE R2 Y R2 Y+M ∆R2 RMSE

Data 3 PCs 0.28 0.47 0.19 0.86 0.28 0.34 0.06 0.96
5 PCs 0.33 0.49 0.15 0.88 0.33 0.41 0.08 0.94

USM(3, 2) 3 PCs
σ = 6bps 0.11 0.20 0.09 0.95 0.16 0.18 0.02 0.99
σ = 0 0.11 0.20 0.09 0.95 0.16 0.18 0.02 0.99

SM(3, 2) 3 PCs
σ = 6bps 0.11 0.20 0.09 0.94 0.16 0.18 0.02 0.99
σ = 0 0.11 0.21 0.10 0.94 0.16 0.18 0.02 0.99

SM(3, 2) 5 PCs
σ = 6bps 0.17 0.20 0.03 0.98 0.16 0.18 0.02 0.99
σ = 0 0.21 0.21 0.00 1.00 0.18 0.18 0.00 1.00

Unspanned macro risk in large samples, measured by the difference in theoretical R2 for regressions
of one-year excess bond returns on yield PCs (“Y”) and on both yield PCs and macro variables
(“Y+M”), and by the relative root-mean-squared error (RMSE) of return forecasts with and
without macro variables. The first two rows show these metrics for the actual historical data for
comparison.

stricted regression the regressors are Xt = (P̃ ′t ,M
′
t)
′. The population R2 is

R2
ur =

Cov(r̄xt,t+h, Xt)Cov
−1(Xt)Cov(Xt, r̄xt,t+h)

V ar(r̄xt,t+h)
,

and the additional required population moments are

Cov(r̄xt,t+h,Mt) = β̄′Cov(Zt)ιM ,

Cov(P̃t,Mt) = WBCov(Zt)ιM , and

Cov(M) = ι′MCov(Zt)ιM .

where ιM is a selection matrix such that Mt = ι′MZt. Note that if spanning holds and Mt and
P̃t are perfectly correlated, then Cov(Xt) is not invertible. In this case the collinear regressors
Mt are dropped and hence we have R2

ur = R2
r .

Table C.2 shows the population R2 and the relative RMSEs for the return regressions in
the data and in population. The predictability of excess returns is smaller in population than
in small samples, as is the additional predictability due to the inclusion of macroeconomic
variables. Small-sample issues arise due to the lack of strict exogeneity and the high per-
sistence of the regressors—for a detailed discussion see Bauer and Hamilton (2016). Hence,
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Table C.3: Unspanned macro forecasts in MTSMs – population moments

GRO INF CPI UGAP

Data 3 PCs 0.47 0.30 0.29 0.33
5 PCs 0.50 0.34 0.29 0.34

USM(3, 2) 3 PCs
σ = 6bps 0.47 0.31 0.30 0.33
σ = 0 0.47 0.31 0.30 0.33

SM(3, 2) 3 PCs
σ = 6bps 0.47 0.30 0.30 0.34
σ = 0 0.47 0.30 0.30 0.34

SM(3, 2) 5 PCs
σ = 6bps 0.52 0.39 0.30 0.35
σ = 0 1.00 1.00 1.00 1.00

Unspanned macro forecasts in large samples, measured by the relative root-mean-squared error
(RMSE) of macro forecasts using yield PCs, with and without inclusion of own macro lags. The
first two rows show R2 for the actual historical data for comparison.

when comparing model implications for unspanned macro risk to real-world data, we need to
use short simulated samples, as in Section 5 and Table 7. However, while the absolute mag-
nitude of return predictability is affected by small-sample issues, the qualitative conclusions
about unspanned macro risk and unspanned vs. spanned models remain unchanged: For 3
PCs, spanned and unspanned models have the same implications, and measurement error has
essentially no effect, while in the case of 5 PCs for the spanned model measurement error is
needed to break theoretical spanning.

C.3 Unspanned macro forecasts

For investigating unspanned macro forecasts, we compare unrestricted forecasts of mt+1 using
both P̃t and mt as predictors, and restricted forecasts with only P̃t as predictors. For the
restricted model we can calculate the R2 using results given above and

Cov(P̃t,mt+1) = Cov(Pt,mt+1) = WBCov(Zt,mt+1)

= WBCov(Zt, Zt+1)ιm = WBCov(Zt)φ
′ιm.

For the unrestricted model we also need

Cov(mt,mt+1) = ι′mCov(Zt)φ
′ιm.

Note that as for the unspanned macro risk regressions, spanning leads to perfect multicollinear-
ity in the unrestricted model, hence in that case R2

ur = R2
r .
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Table C.3 shows the data and model-implied population moments for these predictive
regressions for macro variables. As in the case of unspanned macro variation, the large-sample
results closely correspond to the small-sample results. Spanned and unspanned models match
the data equally well when using three yield PCs in the regressions. The results for the spanned
model with 5 yield PCs again show the importance of measurement error. Notably, even very
small measurement errors create a substantial amount of unspanned macro forecasts.

D Measurement error and the variance of yield PCs

In Section 4.5 we discuss how the introduction of small measurement error can significantly
reduce the information content in yield PCs. Here we provide further details.

The effects of measurement error can be seen most clearly by comparing the variances of
the PCs of observed yields and true yields. Note that

Cov(P̃t) = Cov(Pt) + Cov(Wet) = Cov(Pt) + σ2WW ′.

Since the rows of W are orthogonal, WW ′ is diagonal and measurement error affects only the
variances but not the covariances of P̃t. Table D.1 shows these variances for models SM(3, 2),
using σe = 6bps. The absolute magnitudes of these variances are of little importance, since
they affected by the scaling of W , so we report the share of the variance of P̃t that is due to
measurement error.

For the low-order PCs—the level, slope, and curvature—the variances are little affected by
measurement error. However, the fourth and fifth PC are small, relative to the error variance,
and hence they get overwhelmed by the measurement errors. For example, about 99% of the
variation in the fifth PC is due to measurement error.

How does this matter for the spanning regressions in data? In the spanned model, the
higher-order PCs “complete” the spanning in the SM(3, 2) models in the following sense: The
amount of macro information captured by low-order PCs (say, level, slope, and curvature) is
essentially identical in spanned and unspanned models, and largely unaffected by the presence
of measurement error—see the results for 3 PCs in Tables 6–8 and in Tables C.1–C.3. The
theoretical spanning condition implies that spanned models capture the remaining macro
information in the higher-order PCs, i.e., in the fourth and fifth PCs in SM(3, 2). But these
have very different properties from low-order PCs—they are smaller on average and estimated
less precisely—so adding measurement error essentially wipes out their information content
in the higher-order PCs. Since their information content is crucial, but does not survive the
introduction of measurement error, even small measurement errors can lead to a substantial
degree of unspanned macro information.
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Table D.1: Variance of model-implied yield PCs

V ar(P̃t) V ar(Pt) V ar(Wet)
V ar(Wet)

V ar(P̃t)

SM(3, 2), GRO/INF
PC 1 266.30 266.27 0.03 0.01%
PC 2 225.95 225.59 0.36 0.16%
PC 3 8.92 8.56 0.36 4.03%
PC 4 0.93 0.57 0.36 38.92%
PC 5 0.36 0.00 0.36 98.96%

SM(3, 2), UGAP/CPI
PC 1 251.08 251.05 0.03 0.01%
PC 2 221.80 221.44 0.36 0.16%
PC 3 8.81 8.45 0.36 4.09%
PC 4 0.40 0.04 0.36 90.69%
PC 5 0.36 0.00 0.36 98.82%

Table 1: Cross-sectional fit of spanned and unspanned MTSMs

Model Macro Variables σ̂e All 3m 6m 1y 2y 3y 5y 7y 10y

SM(3, 2) GRO, INF 5.7 5.0 5.1 4.6 6.8 3.6 3.9 5.4 4.2 6.3
SM(3, 2) UGAP,CPI 6.2 5.4 5.9 4.6 7.3 3.8 4.8 6.1 4.4 7.4
USM(3, 2) GRO, INF 6.6 5.7 6.1 4.8 8.4 4.2 4.7 6.1 4.5 7.7
USM(3, 2) UGAP,CPI 6.6 5.7 6.1 4.8 8.4 4.2 4.7 6.1 4.5 7.7

This table presents the root-mean-squared fitting errors (RMSEs) for four different MTSMs in
annualized basis points across all maturities and for selected individual maturities, as well as the
estimated standard deviation of the yield measurement errors, σ̂e, which by construction equals the
RMSE times

√
J/(J − L).



Table 2: Tests of knife-edge restrictions in MTSMs

Cross section Time series Total

GRO/INF models
LLK SM(3, 2) 21,109 393 21,502
LLK USM(3, 2) 20,781 392 21,173
Likelihood-ratio statistic 658

UGAP/CPI models
LLK SM(3, 2) 20,906 431 21,337
LLK USM(3, 2) 20,780 429 21,210
Likelihood-ratio statistic 254

For each pair of MTSMs, the table presents the log-likelihood (LLK) values for spanned and
unspanned MTSMs—SM(3, 2) and USM(3, 2), respectively—and the likelihood-ratio statistic that
USM(3, 2) is an acceptable restricted version of SM(3, 2). The first two columns report the
contribution to the log-likelihood of the cross-sectional fitting errors and the VAR forecast errors.
The 5% (0.1%) critical value for a χ2(50)-distributed random variable is 67.5 (86.7).

Table 3: Tests of knife-edge unspanned macro restrictions in reduced-form regressions

L GRO/INF UGAP/CPI 0.1% c.v. GRO INF UGAP CPI 5% c.v. 0.1% c.v.

1 559.6 375.7 48.3 140.5 358.7 140.4 233.1 19.7 31.3
2 248.3 338.9 45.3 138.2 80.9 139.5 196.9 18.3 29.6
3 119.6 199.7 42.3 48.9 67.0 50.8 143.7 16.9 27.9
4 113.7 81.2 39.3 48.7 61.4 15.3 65.3 15.5 26.1
5 89.8 76.5 36.1 46.3 42.3 15.2 60.7 14.1 24.3

The left panel shows the values of likelihood-ratio test statistics for the null hypothesis that macro
variables have zero loadings in the system of cross-sectional regressions of yields on risk factors.
The explanatory variables in the unrestricted regression are L PCs of yields and 2 macro variables.
The dependent variables are the remaining J − L PCs of yields, with J = 12 the number of yield
maturities. The test statistics have an asymptotic χ2-distribution with 2(J −L) degrees of freedom,
and the table shows the corresponding 0.1%-critical values (c.v.). The right panel shows test results
for individually restricting the loadings on macro variables to zero, in which case the degrees of
freedom are J − L.



Table 4: Monetary policy rules and unspanned macro variation

Policy rule Macro-spanning R2

R2 partial joint level slope curvature

Policy factors
1.) Unemp. gap 0.80 0.59 0.72 0.01 0.67 0.04
2.) Output gap 0.79 0.58 0.57 0.01 0.45 0.10
3.) INF (JPS) 0.75 0.71 0.81 0.74 0.03 0.04
4.) Core CPI inflation 0.80 0.76 0.81 0.67 0.04 0.10
5.) Core PCE inflation 0.74 0.68 0.77 0.60 0.05 0.12

Non-policy factors
6.) GRO (JPS) 0.53 0.05 0.28 0.01 0.00 0.27
7.) GDP growth (ma3) 0.52 0.02 0.14 0.01 0.01 0.12
8.) GDP growth (yoy) 0.51 0.01 0.20 0.00 0.00 0.19
9.) IP growth (ma3) 0.60 0.20 0.32 0.14 0.02 0.16
10.) Jobs growth (ma3) 0.61 0.20 0.20 0.04 0.01 0.15

The first two columns report monetary policy rule regressions in which each economic activity
measure (variables 1, 2, 6-10) are paired with Core CPI inflation (which has a univariate R2 = 0.51
in the rule regression) and the inflation measures (variables 3-5) are paired with the unemployment
gap (univariate R2 = 0.17). The first column shows the R2 of these bivariate regressions, and
second column shows the partial R2 for each macro variable. The last four columns document
whether yields span macro variables by providing four R2 for the regression of each macro variable
on the three PCs of yields—denoted level, slope, and curvature—jointly and one at a time.



Table 5: Unspanned macro risk and unspanned macro forecasts

Excess returns Macro forecasts
t-stat. p-value ∆R2 RMSE Autocorr. t-stat. RMSE

Policy factors
1.) Unemp. gap 0.61 (0.54) 0.01 1.00 0.98 50.84 0.34
2.) Output gap 0.68 (0.50) 0.01 1.00 0.95 26.99 0.46
3.) INF (JPS) 4.20 (0.00) 0.16 0.89 0.99 44.29 0.34
4.) Core CPI inflation 1.63 (0.10) 0.06 0.96 0.99 55.51 0.29
5.) Core PCE inflation 1.73 (0.08) 0.03 0.98 0.98 49.60 0.32

Non-policy factors
6.) GRO (JPS) 2.70 (0.01) 0.05 0.97 0.91 21.31 0.50
7.) GDP growth (ma3) 1.83 (0.07) 0.01 0.99 0.47 4.94 0.92
8.) GDP growth (yoy) 0.84 (0.40) 0.01 1.00 0.77 11.18 0.71
9.) IP growth (ma3) 3.39 (0.00) 0.12 0.92 0.94 36.45 0.42
10.) Jobs growth (ma3) 1.60 (0.11) 0.03 0.98 0.87 17.00 0.53

The first four columns assess unspanned macro risk via the predictive power of macro variables for
one-year excess bond returns. The first and second columns show the t-statistic and the p-value for
the coefficient on the macro variable, using Newey-West standard errors with 18 lags. The third
column shows the increase in R2 when a macro variable is included as predictor along with three
PCs of yields—when using only the three yield PCs, the R2 is 0.20. The fourth column shows the
relative root-mean-squared error (RMSE) of forecasts with and without macroeconomic
information—values below one indicate improvement in predictive accuracy. The last three columns
document the predictive power of macro variables at time t for their value at t+ 1, conditional on
three PCs of the yield curve at time t, i.e., unspanned macro forecasts. The fifth column reports
the first-order autocorrelation of the macro variables. The sixth column shows the t-statistics for
testing the null hypothesis that macro variables can be excluded from the forecasting regressions,
using Newey-West standard errors with 12 lags. The last column shows the relative RMSE of
macro-yield vs. yields-only forecast.



Table 6: Unspanned macro variation in MTSMs

GRO INF CPI UGAP

Data 3 PCs 0.28 0.81 0.81 0.72
5 PCs 0.38 0.86 0.81 0.75

USM(3, 2) 3 PCs σ = 6bps 0.31 0.74 0.68 0.71
[0.38] [0.72] [0.82] [0.53]

σ = 0bps 0.32 0.74 0.69 0.71
[0.35] [0.72] [0.81] [0.53]

SM(3, 2) 3 PCs σ = 6bps 0.31 0.72 0.68 0.72
[0.39] [0.79] [0.83] [0.51]

σ = 0bps 0.32 0.72 0.68 0.72
[0.34] [0.79] [0.81] [0.51]

SM(3, 2) 5 PCs σ = 6bps 0.51 0.83 0.68 0.74
[0.10] [0.68] [0.82] [0.54]

σ = 0bps 1.00 1.00 1.00 1.00
[0.00] [0.00] [0.00] [0.00]

This table documents unspanned macro variation in actual data and in data that is simulated from
MTSMs, measured by the R2’s from regressions of macro variables on contemporaneous yield PCs.
Low R2 indicate a large degree of unspanned macro variation. The first two rows show results for
the actual data while the rest of the table reports median R2 across simulations and in square
brackets the fractions of the simulated samples in which the R2 is below the value in the actual
data (that is, p-values). We simulated 10,000 artificial data samples in each case.



Table 7: Unspanned macro risk in MTSMs

GRO/INF UGAP/CPI
Wald ∆R2 Wald ∆R2

Data 3 PCs 21.64 0.19 3.00 0.06
(0.00) (0.22)

Data 3 PCs 13.71 0.15 4.23 0.08
(0.00) (0.12)

USM(3, 2) 3 PCs σ = 6bps 9.41 0.10 4.48 0.05
[0.20] [0.20] [0.62] [0.41]

σ = 0bps 9.38 0.10 4.51 0.05
[0.19] [0.19] [0.62] [0.41]

SM(3, 2) 3 PCs σ = 6bps 10.03 0.11 4.57 0.05
[0.21] [0.21] [0.62] [0.41]

σ = 0bps 10.00 0.11 4.56 0.05
[0.21] [0.22] [0.63] [0.41]

SM(3, 2) 5 PCs σ = 6bps 8.53 0.06 4.61 0.05
[0.32] [0.05] [0.53] [0.29]

σ = 0bps 0.00 0.00 0.00 0.00
[0.00] [0.00] [0.00] [0.00]

This table shows evidence for unspanned macro risk in actual and simulated data, based on
predictive regressions for one-year excess bond returns on yield PCs and macro variables.
Statistical significance is measured by the Wald statistic for joint significance of the coefficients on
the two macro variables, using Newey-West standard errors with 18 lags. Economic significance is
measured by the change in R2 when macro variables are added as predictors. High values of the
statistics indicate a large degree of unspanned macro risk. The top panel reports results for the
actual data, and numbers in parentheses are p-values using ttexhe asymptotic χ2-distribution. The
rest of the table reports medians of the statistics across simulated samples, and numbers in square
brackets are the fractions of the simulated samples in which each statistic is above the value in the
actual data (that is, p-values). We simulated 10,000 artificial data samples in each case.



Table 8: Unspanned macro forecasts in MTSMs

GRO INF CPI UGAP

Data 3 PCs 0.47 0.30 0.29 0.32
5 PCs 0.50 0.34 0.29 0.34

USM(3, 2) 3 PCs σ = 6bps 0.49 0.36 0.33 0.37
[0.38] [0.11] [0.21] [0.16]

σ = 0bps 0.49 0.36 0.33 0.37
[0.35] [0.11] [0.19] [0.15]

SM(3, 2) 3 PCs σ = 6bps 0.49 0.35 0.33 0.38
[0.37] [0.15] [0.19] [0.14]

σ = 0bps 0.49 0.35 0.34 0.38
[0.35] [0.15] [0.16] [0.13]

SM(3, 2) 5 PCs σ = 6bps 0.55 0.44 0.33 0.39
[0.11] [0.01] [0.18] [0.16]

σ = 0bps 1.00 1.00 1.00 1.00
[0.00] [0.00] [0.00] [0.00]

This table shows the degree of unspanned macro forecasts in actual and simulated data, based on
one-step-ahead macro forecasts using linear projections on current yield PCs and the relevant
macro variable. It reports relative root-mean-squared error (RMSE) of forecasts based on both the
macro variable and yield PCs compared to forecasts based only on yield PCs. The first two rows
show the relative RMSEs for the actual data, and the rest of the table shows medians across
simulated samples and in square brackets the fractions of the simulated samples in which the
relative RMSE is below the value in the actual data (that is, p-values). We simulated 10,000
artificial data samples in each case.



Figure 1: Slope of the yield curve and macroeconomic variables
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This figure plots the slope of the yield curve, which is measured as the second principal component

of yields; UGAP , which is the unemployment gap; and GRO, which is the economic growth

indicator used by Joslin et al. (2014). All variables are standardized to have mean zero and unit

variance.



Figure 2: Term premium estimates from MTSMs with GRO and INF
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This figure depicts the two-to-three-year forward term premium estimated from spanned and

unspanned macro-finance models—SM(3, 2) and USM(3, 2), respectively—using GRO and INF

macro data, as well as from a three-factor yields-only model.



Figure 3: Term premium estimates from MTSMs with UGAP and CPI
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This figure depicts the two-to-three-year forward term premium estimated from spanned and

unspanned macro-finance models—SM(3, 2) and USM(3, 2), respectively—using UGAP and CPI

macro data, as well as from a three-factor yields-only model.
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