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Abstract
In recent years, stress testing has become an important component of financial and macro-

prudential regulation. Despite the general consensus that such testing has been useful in many
dimensions, the techniques of stress testing are still being honed and debated. This paper
contributes to this debate in proposing the use of robust forecasting analysis to identify and
construct adverse scenarios that are naturally interpretable as stress tests. These scenarios
emerge from a particular pessimistic twist to a benchmark forecasting model, referred to as a
‘worst case distribution’. This offers regulators a method of identifying vulnerabilities, even
while acknowledging that their models are misspecified in possibly unknown ways.

We first carry out our analysis in the familiar Linear-Quadratic framework of Hansen
and Sargent (2008), based on an estimated VAR for the economy and linear regressions
of bank performance on the state of the economy. We note, however, that the worst case
so constructed features undesirable properties for our purpose in that it distorts moments
that we would prefer were left undistorted. In response, we formulate a finite horizon robust
forecasting problem in which the worst case distribution is required to respect certain moment
conditions. In this framework, we are able to allow for rich nonlinearities in the benchmark
process and more general loss functions than in the L-Q setup, thereby bringing our approach
closer to applied use.
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Back in August 2007, the Chief Financial Officer of Goldman Sachs, David Viniar, com-
mented to the Financial Times: ‘We are seeing things that were 25-standard deviation
moves, several days in a row’

. . . A 7.26-sigma daily loss would be expected to occur once every 13.7 billion or so
years. That is roughly the estimated age of the universe.

. . . Fortunately, there is a simpler explanation: the model was wrong.

Haldane (2009) - Speech at the Marcus-Evans Conference on Stress-Testing, London

1 Introduction

Stress testing has become an important component of financial and macroprudential regula-

tion. The nature of the financial crisis of 2007-9 prompted regulators and financial institutions

to model multidimensional scenarios for macroeconomic and financial variables to assess their

impact on firm capital adequacy and, thereby, reveal vulnerabilities in the financial system

and suggest a policy response (Schuermann (2013), Furlong (2011) and Hirtle, Schuermann,

and Stiroh (2009)). The Federal Reserve’s Supervisory Capital Assessment Program (SCAP)

and the subsequent Comprehensive Capital Analysis and Review (CCAR) exercises are per-

haps the most prominent examples of the stress testing approach and are typically regarded

as having contributed significantly to the strengthening of the financial system during and

immediately after the recent crisis. Beyond the United States, the stress testing paradigm

is also becoming more prominent, notably in the EU-wide stress tests undertaken by the

European Banking Authority and the ECB.

Despite the general consensus that such testing has been useful along many dimensions,

the techniques of stress testing design and implementation are still evolving. This partly

reflects certain misgivings that have been raised over the nature of the stress scenarios as

currently applied and debate over exactly how they should be constructed and interpreted.

In this paper, we use a stylized approach to stress testing based on the methods of robust

forecasting analysis (see Hansen and Sargent (2008)) to identify and construct adverse fore-

casting distributions that generate scenarios naturally interpretable as stress tests. We draw

on the rapidly expanding literature on model uncertainty and ambiguity to inform regulatory

practice. This is a natural approach as, in the world of regulation, model uncertainty is

pervasive and the pessimism that emerges from models of choice under ambiguity is a useful

way of identifying vulnerabilities.

We also show how to ‘focus’ ambiguity within a finite horizon robust forecasting problem.

We do this by requiring that the adverse forecasting distributions respect certain moment re-

strictions. In doing this, we retain the unstructured nature of uncertainty that is the hallmark
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of robustness, while disciplining the agent not to seek robustness against misspecifications

that are thought a priori irrelevant. We refer to these techniques as ‘tilted robustness’.1

Furthermore, this approach nests more standard conditional forecasting techniques so that

the methods we use provide a unified and practical approach to constructing stress scenarios,

even in environments without Knightian uncertainty.

1.1 Motivation

We are motivated by ongoing debates over stress testing practice. A particularly important

area for discussion is the question of how, first, to characterize the plausibility and severity

of stress scenarios and, second, to decide on the appropriate tradeoff between the two. Stress

scenarios should be sufficiently severe to be informative about banks’ vulnerability but also

not so severe as to appear absurd.

If one wishes to obtain a sense of plausibility, acknowledging that the context is stochastic,

then there are many statistical tests that could be used. For example, Breuer, Jandacka,

Rheinberger, and Summer (2009), Covas, Rump, and Zakrajsek (2013) and White, Kim,

and Manganelli (2012), among others, discuss various approaches.2 Although a consensus

has not yet emerged on what measures should be used, a heavy emphasis is typically placed

on characterizing tails of distributions, which are typically taken to be ‘extreme events’.

However, as noted by Haldane (2009) and captured in the quote above, one could have gone

(essentially) arbitrarily into the tail of various risk management models prior to the crisis

and still not revealed vulnerabilities of the sort that ultimately were exposed.

A problem with the ‘tail based’ approach to stress testing, therefore, is that the models un-

derpinning them (presumably estimated from historical data) are reasonable approximations

of the world but in some dimensions are misspecified in damaging and unknown ways. They

are likely to be particularly misspecified in their predictions for the behavior of economies

in unfamiliar times of stress. Explicitly accounting for model uncertainty is one of the most

important challenges of stress test design and one which robustness is perfectly suited to

address.

1.2 Why robustness?

Robust forecasting provides a formal method for confronting model misspecification and

how to evaluate randomness in this context. An agent (in our case a regulator) possesses

a ‘benchmark’ model that implies a probability distribution over random variables in the

1Glassermna and Xu (2013) and Glasserman and Xu (2014) use a very similar approach in the context of
assessing portfolio risk, and many of these results build on the work of Petersen, James, and Dupuis (2000).

2See also Christensen, Lopez, and Rudebusch (2013) for similar issues raised in the context of stress testing
the Fed’s assets and income.
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economy. The agent expresses her doubts of her benchmark model by considering alternative

distributions that are twisted versions of the distribution implied by the benchmark.

In order to construct a ‘robust’ forecast (one that puts a particular pessimistic slant on

the behavior of the financial system), the agent considers adverse distributions and balances

the damage that an implicit misspecification would cause, against the plausibility of that

misspecification. This yields a particular joint distribution over sequences that encodes the

vulnerabilities implicit in the estimated system - dimensions in which misspecifications would

be particularly painful. We use this distribution (typically referred to in the robustness

literature as a ‘worst case distribution’) to generate candidate scenarios and simulations for

stress tests.

Under the robustness approach there is a very clear and tightly parameterized tradeoff

between severity of scenarios and their plausibility. This tradeoff is expressed in terms of

probability ‘distributions’ rather than ‘realizations’. The latter, although easier to plot in

diagrams, are arguably difficult to interpret and utilize in a comprehensive risk management

framework. The explicit acknowledgement of model misspecification also, to some extent,

protects the agent from a false sense of security based on calculating tail probabilities. His-

torical data informs the process (the benchmark model will presumably be based on it) but

the robust regulator allows for other possible data generating processes and concentrates on

those that would be damaging.

To the extent that historical experience contains useful information, the methods we

propose are very ‘informationally efficient’ in the sense that the benchmark model identifies

suggestive dimensions in which the system is vulnerable. This (very complicated) information

is encoded into the worst case distribution via a particular change of measure, based on the

forecaster’s ‘value function’. Thus, it can reveal very subtle and perhaps counterintuitive co-

movements and correlations that would be damaging but, also, unlikely to be anticipated by

a regulator using introspection to identify vulnerabilities (see Schuermann (2013)). Robust-

ness helps identify and confront ‘unknown unknowns’ by yielding a worst case distribution

with statistical properties that can then be interpreted and used to identify economically

interpretable weaknesses in the system that could lead to similar statistical properties or

scenarios.3’4

Another useful feature of the robustness approach is that what constitutes the worst case

distribution will depend on what variables the regulator cares about. That is, if the regulator’s

3See Borio, Drehmann, and Tsatsaronis (2013) and Abdymomunov and Gerlach (2013) for discussions of
the difficulty of envisaging vulnerabilities in tranquil times and the difficulty of using historical experience
and hypothesizing appropriately.

4Breuer and Csiszr (2013) appeal to much of the same intuition that we do and formulate similar finite
horizon problems but without the presence of tilting to respect moment conditions.
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benchmark model is concerned with exposures of the aggregate system then the scenarios

generated from the worst case will be systemically damaging. If, however, the regulator’s

benchmark connects the performance of a particular bank or group of banks to the state of

the economy, the worst case will be different, reflecting the different vulnerabilities. Therefore,

if desired, we can tune scenarios, rather than constructing a ‘one size fits all’ scenario. This

might be relevant in cross checking bank specific scenarios volunteered by banks themselves

as the scenarios they feel would be most dangerous.5

Finally, the robustness framework is very parsimonious and (fairly) easily explainable. It

features very few parameters (beyond those in the benchmark model), a clear connection to

axiomatized decision theory and a precise sense of plausibility that can be used to defend the

final scenarios if they are accused of being inappropriate in the future.6

1.3 Application

We begin with a Gaussian Vector Autoregression (VAR) model of macroeconomic and finan-

cial variables as our benchmark law of motion for the state of the economy. We estimate

linear regressions of measures of aggregate bank performance on the state variables, where

our measures of performance is aggregate return on equity. In terms of period payoff, we

adopt a quadratic form. Given this Linear-Quadratic setup we can appeal to the results

discussed in Hansen and Sargent (2008) and directly compute the worst case distribution,

implicit in a ‘worst case VAR’.

Although we show that the worst case arising from the simple L-Q model has some

interesting properties, it also features some undesirable characteristics. In particular, the

long run properties of the economy and, in particular, the unconditional means under the

worst case, seem implausible and qualitatively unlike what a regulator might wish for in

constructing stress scenarios. For this reason, we undertake a similar (though not recursive)

analysis whereby we restrict these moments when constructing the worst case.

At first we adopt an apparently mechanical method of ensuring that certain moments

are respected. We first derive the distribution over a finite forecast horizon, implied by the

worst case from the basic L-Q approach. We then use exponential tilting to adjust, ex post,

this distribution to respect certain moment restrictions. This is a way of embedding our

5Pritsker (2013) argues in favor of tuning stress scenarios to bank exposures although also see Hirtle,
Schuermann, and Stiroh (2009) for concerns for consistency that arose when banks were allowed to posit
certain scenarios in the initial SCAP framework.

6Anticipating greater opposition in to future stress tests, despite initial successes, seems an important
concern. Indeed, quoting Hirtle, Schuermann, and Stiroh (2009), ‘The positive reaction to [the] release of
the SCAP results may not have been [because of] transparency per se, but simply because the results were
viewed as credible [. . . ] Whether the reception would have been positive if the results and process were not
seen in this way or if there had been a negative ‘surprise’ about a firm or group of firms is open to debate.’
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judgement that certain properties of the basic worst case are inappropriate.7 Within this

context we also show how to nest ‘direct’ (conditioning on adverse behavior of the economy)

and ‘reverse’ (conditioning on adverse behavior of a bank) approaches to stress testing and

relate it to conditional forecasting techniques as discussed in Waggoner and Zha (1999).

We go on to show, however, that this apparently mechanical approach can be understood

as the outcome of a robustness problem in which the agent only considers worst case distribu-

tions that satisfy certain moment conditions. We refer to this approach as ‘tilted robustness’

and show that it relates to the important and delicate issue of ‘focusing’ ambiguity.

2 Comprehensive Capital Analysis and Review (CCAR)

We briefly describe the nature of the Comprehensive Capital Analysis and Review (CCAR)

program undertaken by the Federal reserve, as it can make concrete some of the issues we

hope to address.

CCAR is run annually with the aim of ensuring that bank holding companies’ (BHC)

capital planning is robust to periods of economic and financial adversity, so that they are able

to continue operation during such environments. An important element of the framework is

the provision of supervisory stress test scenarios under which the institutions capital adequacy

is assessed. These scenarios are not necessarily ‘likely’ but are regarded as valuable inputs

into the regulatory process. Indeed, quoting the CCAR documentation (see of Governors

(2012))

. . .the Supervisory Stress Scenario is not a forecast, but rather a hypothetical

scenario to be used to assess the strength and resilience of BHC capital in a

severely adverse economic environment

Assessment of banks under the stress scenario focuses on the nature of the banks’ proposed

capital plans and, in particular, whether the institutions are able to maintain capital above

certain minimum levels throughout the planning horizon. The scenarios considered are in

terms of a variety of macroeconomic and financial data series.8 Three supervisory scenarios

are considered: baseline, adverse and severely adverse. The baseline scenario can be thought

of as similar to a reasonable forecast of a likely path of the economy. The other two scenarios

capture hypothetical paths of varying severity. In figure 1 we include examples of the baseline,

adverse and severely adverse scenarios for real GDP growth, the yield on 10-year Treasuries,

the unemployment rate and the yield on 3-month Treasury.

7See Robertson, Tallman, and Whiteman (2005), Cogley, Morozov, and Sargent (2005) and Giacomini and
Ragusa (2013) for discussions and applications of exponential tilting.

8For a complete list of series for the supervisory scenarios and further details see
http://www.federalreserve.gov/bankinforeg/stress-tests-capital-planning.htm.
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3 Seeking Robustness - The Hansen-Sargent Approach

In this section we lay out an approach to stress testing, based on a robust forecasting prob-

lem. We begin with an abstract problem and then specialize to a workhouse linear-quadratic

Gaussian (LQG) setup, which is common in the robustness literature (as described in de-

scribed in Hansen and Sargent (2008)). Although we will ultimately advocate a different, but

related approach, much of the intuition of this section will be retained.

A robust agent is endowed with a ‘benchmark’ model but fears that it is misspecified. She

is concerned that the world is actually described by a model that is similar to the benchmark

but distorted in some way. The agent expresses her doubts of her model by considering

alternative distributions that are distorted or ‘twisted’ versions of the distribution implied

by her benchmark model. In order to explore the fragility of her model the agent considers

adverse distributions and balances the damage that an implicit misspecification would cause

her, against the plausibility of the misspecification. The distribution that emerges from this

problem can be thought of as a ‘worst case distribution’ that encodes these concerns and

allows insight into the fears that inform the agent. We now formalize this intuition.

3.1 General Case

Let us suppose that the robust agent entertains a benchmark model in which the state and

innovation sequences are related according to the (possibly nonlinear) vector valued equation

xt+1 = g(xt, ut, εt+1) (1)

where xt is the state vector and {εt} is a sequence of random innovations. Given a density,

pε (εt+1|xt), for εt+1, equation (1) implies a benchmark transition density p(xt+1|xt). It is

convenient to partition the state, xt into elements unknown on entering the period, which

we identify with εt, and those elements that are predetermined, denoted st. We capture the

dependence of st on the state prevailing in the previous period by the function f , such that

st = f(xt−1). With this decomposition we have p(xt+1|xt) = pε(εt+1|xt)δf(xt)(st+1).
9

We adopt multiplier preferences as a way of representing the agent’s fear of model mis-

specification (Hansen and Sargent (2008)). In this case, the value function of the agent

satisfies

V0 = min
{mt+1}

∞∑
t=0

E
[
βtMt {h (zt) + βθE (mt+1 logmt+1|=t)} |=0

]
9Note that the xt may contain εt as an element of the state so that an identity mapping is implicit in g.

Note also that δf(xt)(·) takes the value of unity at f(xt) and zero elsewhere. In the case of our benchmark
VAR models below, xt+1 = Axt + Cεt+1 and, thus, f (xt) = Axt.
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where h(·) is the robust agent’s period payoff function, zt = g (xt) is a ‘target’ variable

related to the state by the function g(·) and the problem is subject to equation (1), Mt+1 =

mt+1Mt, E[mt+1|=t] = 1, mt+1 ≥ 0 and M0 = 1.10 Thus, {mt+1, t ≥ 0} is a sequence of

martingale increments that recursively define a non-negative martingale Mt = M0

∏t
j=1mj.

The martingale defines Radon-Nikodym derivatives that twist the measures implicit in the

benchmark model so as to obtain absolutely continuous measures that represent alternative

distributions considered by the agent. Under these twisted measures one can form objects

interpretable as expectations taken in the context of a distorted alternative model. This can

be seen by defining a distorted conditional expectation operator to be

Ẽ[bt+1|=t] ≡ E[mt+1bt+1|=t]

for some =t+1 measurable random variable bt+1 given =t. The conditional relative entropy

associated with the twisted conditional distribution is given by the term E[mt+1 logmt+1|=t],
which is a measure of how different the distorted measure is from the benchmark. We refer the

reader to Strzalecki (2011) and Maccheroni, Marinacci, and Rustichini (2006) for axiomatic

foundations of multiplier preferences.

The agent’s desire for a robust evaluation of the stochastic process for the target is reflected

in the minimization over the sequence of martingale increments that twist the distributions

used to evaluate continuation values towards realizations of the state that are painful to the

robust agent. The degree of robustness is controlled by the penalty parameter, θ > 0, that

enters the objective by multiplying the conditional relative entropy associated with a given

distortion. The penalty reflects our earlier intuition that the agent considers models that,

although different, are somehow ‘near’ the benchmark. Thus, a particular m that might imply

an extremely pessimistic evaluation of welfare may not solve the minimization problem, due

to it implying an excessive relative entropy penalty. The m that solves the minimization,

balancing concerns of ‘pain’ and ‘plausibility’, implies a particular distribution, which is

typically labeled the ‘worst case distribution’.11

Typically one would discipline θ with detection error probabilities, which relate to whether

or not, with a limited amount of data, an agent could accurately distinguish between the worst

case and benchmark distributions using likelihood ratio tests. If the two models have similar

stochastic properties, they will be difficult to detect using sample sizes that are typically

available for analysis. In this case the detection error probability will be close to 0.5, indicating

that the models are almost indistinguishable. Models that have very different characteristics

will be easily distinguishable and imply a detection error probability of close to 0. High

10We assume that the robust agent’s information set, =t contains the entire history of states.
11Note that the word ‘case’ does not, in this context, imply a particular realization - we are working in

terms of distributions and, indeed, the sense in which it is ‘worst’ is also restricted.
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detection error probabilities suggest that the competing models are hard to distinguish using

the amount of data available and thus represent misspecifications that it is plausible to worry

about. We will make use of detection error probabilities in our calibration below.

3.2 Linear Quadratic Gaussian Framework

We now specialize to a standard LQG robust forecasting framework. Although this framework

puts strong restrictions on the nature of the worst case, which we will discuss below, it provides

a familiar setup that can illustrate the concepts at play. As noted in Bidder and Smith (2012)

highly non-linear models can be accommodated within the robustness framework although

at increased computational cost.

We posit a linear transition law for the state, xt, given by

xt+1 = Axt + Cε̂t+1

ε̂t+1 ∼ N (0, I)

where ut is a vector of controls and {ε̂t} is an iid sequence. The mapping from the state, xt

to the target, zt will be as follows. A payoff variable ct and a ‘bliss’ point variables, bt are

related to the state by

ct = Hcxt

bt = Hbxt

If we let zt ≡ ct − bt and H ≡ Hc −Hb, then the period payoff is given by g(zt) = z′tWzt, a

quadratic form where W captures the weighting scheme. It is useful to note that the period

payoff can also be expressed as x′tQxt where Q ≡ H ′WH.

Given this framework the worst case distribution over sequences can be represented re-

cursively in a particularly tractable form, as shown in appendix 7.2. That is, the worst case

transition law is given by a VAR, that is a distorted form of the VAR implied under the

benchmark model.

x′ = Ãx+ C̃ε′

Ã = A+ CK

K = θ−1
(
I − θ−1C ′PC

)−1
C ′PA

C̃C̃ ′ = C
(
I − θ−1C ′PC

)−1
C ′

This transition law, and its repeated application allows us to characterize and draw from

the worst case distribution over sequences that emerges from the agent’s robust forecasting

problem.
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It is worth noting here that there are various ways of representing the worst case distri-

bution and it is left unspecified what structural misspecification might implicitly be under-

pinning it. The joint distribution over sequences under the benchmark is, in our baseline

case, easily described by a VAR, so that we can speak naturally of ‘processes’. Similarly, the

worst case distribution to emerge from the infinite horizon L-Q robustness problem also can

be induced, or ‘represented’, by a worst case VAR with adjusted autoregressive and Cholesky

matrices. But this is only a representation. For example, the worst case distribution over

sequences could alternatively be expressed in terms of (state dependent) distorted innovation

distributions for εt. This will be emphasized in section 5.2 where we discuss our tilted ro-

bustness approach. In that (finite horizon) case we specify the benchmark in terms of a joint

forecasting distribution over a sequence, without reference to transition laws or ‘innovations’.

Similarly, the worst case is simply expressed as a tilted distribution, rather than a ‘process’.

4 A Baseline Stress Testing Framework

We cast a regulatory problem into the robust forecasting framework laid out in section 3.

Clearly, one would wish to allow for the regulator to operate a control, but developing such a

model in this framework is beyond the scope of the paper. Nevertheless, a useful first step is

to imagine the regulator assessing the behavior of the financial system, when left to its own

devices, as a first step in evaluating how to frame the regulatory environment.

We lay out the (preliminary) benchmark models that will underpin our analysis.12 We

posit a Gaussian VAR for three standard ‘macroeconomic’ variables (the unemployment rate,

inflation and a short rate), augmented with ‘financial’ variables (the change in the stock

market and a term spread). In addition, we estimate linear loadings of target variables on the

state (based on regressions of bank performance on the state). Our measure of performance

will be annualized Return on Equity (RoE). We assert that the robust regulator/forecaster has

a quadratic period payoff in RoE but with a distant satiation point to capture monotonicity

in preferences.

4.1 Data

The macroeconomic series in our ‘state’ are the civilian unemployment rate (LR), Core PCE

Inflation (log difference of JXFE) and the 3 Month Treasury Bill secondary market rate

(FTBS3). The financial series that we also include in the state are the log change in the

12As noted in Covas, Rump, and Zakrajsek (2013) and Guerrieri and Welch (2012) it can be difficult to
obtain reliable and strong predictive relationships in stress testing models based on linear frameworks. This is
particularly the case when looking at aggregate variables. In ongoing work we intend to enhance our empirical
analysis making use of macroprudential data obtained from filings required after the Dodd-Frank reforms.
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quarterly Dow Jones stock market index (SPDJI) and the spread between 10 Year Treasuries

and the 3 Month rate (FCM10 - FTBS3), where all series codes are from HAVER. Our

intention is to begin with a ‘standard macro’ VAR and then augment it with financial series,

whilst retaining sufficient parsimony to estimate the system. The data sample we use to

estimate the VAR is from 1975Q2 to 2011Q3. We estimate a first order VAR.13

We choose to use return on equity (ROE) as the target variable of interest to the ro-

bust forecaster. Although there are various concepts of ‘payoff’ that we could employ and

which might be of interest to a regulator to consider, ROE appears a natural starting point

for our analysis, although effects of leverage are a concern. We use data obtained from the

New York Fed’s ‘Quarterly Trends for Consolidated U.S. Banking Organizations’ website.14

We estimate simple OLS regressions of RoE series for the aggregate system and for indi-

vidual institutions on the contemporaneous values of the VAR state and take the estimated

coefficients as defining the loadings of the target variable on the state. Our sample is for

1991Q1− 2011Q3.

4.2 Estimated Banking System Exposures

In table 1 we report our regression results for the full sample and for two particular financial

institutions, where the explanatory variables were first standardized to have zero mean and

unit standard deviation.15

We first concentrate on the column of table 1 corresponding to the aggregate banking

system. We note that the coefficients typically have economically intuitive signs and, in

many cases, are statistically significant. For example, higher unemployment, higher stock-

market growth and higher term spreads are associated with higher annualized return on

equity. Inflation appears to enter negatively, with varying degrees of significance and the

short rate appears not to exhibit a significant statistical relationship ceteris paribus.16

Turning to the institution-specific regressions, we see broadly similar tendencies although

there are differences in magnitude and significance. This implies, as will be shown below,

13The Akaike Information Criterion (AIC) favors two lags although since this model is intended primarily
as an expositional device and additional lags bring very little of interest to our qualitative story, we simplify
to a single lag specification. We are actively working on developing a more convincing benchmark although,
as section 5 suggests, this will likely not be a Gaussian VAR.

14See the New York Fed’s quarterly trends for data and associated documentation. Out concept of equity
is Tier 1 common equity = tier 1 capital - perpetual preferred stock and related surplus + non-qualifying
perpetual preferred stock - qualifying Class A non-controlling (minority) interests in consolidated subsidiaries
- qualifying restricted core capital elements (other than cumulative perpetual preferred stock) - qualifying
mandatory convertible preferred securities of internationally active bank holding companies.

15All the data we use is public but we choose not to identify the two institutions used as the analysis is
preliminary in its current form and meant only to be illustrative.

16Regardless of significance, we will take the point estimates as given in our following analysis.
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that the predictions of the robust forecasts will vary according to whether the forecaster

is assumed to be concerned with the aggregate or a particular institution. These varying

exposures, which we will take as variations in the maintained benchmark, will ultimately

lead to a different worst case distribution, since they hint at different dimensions in which

misspecification in the benchmark model would be damaging. That is, our stress scenarios

will be tuned according to the regulator’s desired emphasis or mandate.

We will defer our discussion of the properties of our estimated VAR models until section 4.4

since it is most natural to characterize the implied moments, when comparing and contrasting

them to those of the worst case distributions we derive.

4.3 Calibrating Preference Parameters

We calibrate the satiation point of the forecaster’s quadratic period payoff to imply a coeffi-

cient of relative risk aversion of unity, when RoE is at its ergodic mean under the benchmark

model. It is not immediately obvious that this is the appropriate approach. Return on equity,

being a scaled (by equity) version of net income may not be an object over which one can

plausibly define a utility function that is then tuned to yield a particular value of a concept of

aversion to risk. Nevertheless, this approach yields a satiation point that is distant (in terms

of standard deviations under the benchmark) from the average level of RoE and thus ensures

that, despite using quadratic preferences, the model typically operates within a region where

preferences are essentially monotonic, which seems plausible.17

To calibrate the degree of the forecaster’s aversion to model uncertainty, we employ de-

tection error probabilities to assess the plausibility of our calibration. We will use the worst

cases derived under a pair of detection error probabilities (DEP) of 0.2 and 0.1, with a sample

size of 100 observations. The former calibration can be regarded as implying a fairly plau-

sible degree of aversion to model uncertainty (see Hansen and Sargent (2008) for a further

discussion).18 The latter calibration is more extreme (though not ludicrous) and is intended

to help illustrate the qualitative nature of the worst case distortions. More practically, we

follow the CCAR approach in providing scenarios of differing degrees of severity.

17Fixing the satiation point in this way also ensures that we obtain intuitive properties of the worst case
in that low RoE is revealed as a ‘bad’. Initially we fixed the satiation point to be two standard deviations
above the average RoE but this seemed somewhat arbitrary. Nevertheless, when we target a risk aversion
of 1 under the benchmark for the aggregate banking system, estimated with the full sample, it happens to
imply a similar satiation point.

18However, we initialize our simulations from a point common to both the worst case and benchmark
simulations.
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4.4 Results

In this section we discuss our results from our baseline L-Q framework. We emphasize the

differences between the benchmark and worst case models since these are suggestive of the

nature of the implicit misspecifications that particularly concern the robust forecaster. The

worst case VARs can be used to derive various moments of interest. We will briefly lay out

some unconditional moments, but our main aim is to generate stress scenarios.

4.4.1 Unconditional Moments

In table 2 we depict unconditional means and standard deviations of aggregate RoE and

the state variables under the benchmark and under the worst case.19 We observe that the

average return on equity is markedly lower under the DEP = 0.2 case and even lower with

DEP = 0.1, to such an extent that it is substantially below zero. In addition, we observe

pessimistic upward distortions of the unconditional standard deviation of RoE under the

worst cases. Both these patterns are to be expected: the forecaster fears distortions to his

model that would induce lower and more volatile payoff (recall we have set the satiation point

so that the agent essentially has monotonic preferences, at least within a range of realizations

that are likely under the benchmark or nearby models).

In addition, we observe that the volatilities of the state variables are also inflated, al-

though the volatility of stock market growth is only slightly distorted. With regard to the

means, the patterns of distortions are not entirely intuitive given the signs of the estimated

exposure coefficients in table 1. The somewhat counterintuitive signs likely reflect patterns of

unconditional correlation among the states that render the nature of the worst case somewhat

hard to predict.

In table 3 we observe the unconditional correlations among the states under the bench-

mark, the worst case based on aggregate RoE regressions and the worst case based on the first

institution’s RoE regression. Both worst cases are calculated for DEP = 0.1. It is perhaps

illustrative to concentrate on the {2, 1} and {3, 1} elements (the correlations between unem-

ployment and inflation and between unemployment and the short rate). We see that under

the benchmark the {2, 1} term is slightly positive (0.14) whereas under the worst cases the

positive correlation is exaggerated, to 0.31 and 0.28, respectively. This suggests that a world

in which unemployment and inflation are more positively correlated than in the data would

be damaging for the health of the banking sector. This might be interpreted as suggesting a

19Note that the state variables were standardized to be mean 0, standard deviation 1 before estimation of
the VAR and we did not restrict the intercepts in the VAR equations to be zero. Our VAR(2) specification
performs better in terms of capturing the standardizations in the estimation, but we continue with the VAR(1)
setup as we intend the framework to be illustrative.
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fear that the benchmark model underestimates the importance of supply shocks - although

this particular structural interpretation is not strictly implied by the worst case.

With regard to the {3, 1} term we see the moment is barely changed in the ‘aggregate’

worst case (from −0.49 to −0.53), but moderated in the ‘institution 1’ worst case (from

−0.49 to −0.37). In the latter case it appears that misspecifications representable by a

weaker negative correlation between unemployment and the short rate would be damaging

for the financial system. An example of a structural phenomenon that could give rise to

this, and perhaps also relates to the distortions to the {2, 1} term, might be a world where

‘stagflation’ is a problem, necessitating the raising of rates in environments where, despite

high unemployment, inflation is also high. This interpretation is perhaps more than our

preliminary empirical analysis can bear, but it illustrates the sort of suggestive and diagnostic

role the worst case can play.

4.4.2 Stress Scenarios

In this section we consider the evolution of the economy under benchmark and worst cases. We

will identify stress scenarios with conditional mean paths, from particular initial conditions.

Clearly, though, the worst case distribution can be used to generate quantile-based paths and

many other moments.

In figure 2 we depict evolutions from a given initial condition. The initial condition

is common to all the paths and is based on what would prevail after an orthogonalized

unemployment shock under the benchmark, given the economy was initially at steady state.

The worst cases are calculated taking aggregate RoE as the target variable. This diagram

is a stylized version of figure 1 (taken from the 2013 CCAR stress scenarios) - these are our

‘robust stress test’ scenarios.

We think of evolution under the benchmark as being an expression of the ‘baseline’ sce-

nario of CCAR and the evolutions under the worst case as an expression of the adverse and

severely adverse scenarios. The degree of severity is identified with detection error proba-

bilities of 20% and 10%. We also depict the associated paths for aggregate RoE in figure

3.

In addition, as aforementioned, one can ‘tune’ the worst case according to the variables

with which the regulator is concerned. If she wishes to focus on a particular institution

or class of institutions, this is easily handled in the robustness framework. In figure 4 we

depict benchmark and worst case scenarios (DEP = 0.2) based on aggregate RoE and the

two specific institutions discussed above. We observe that the scenarios differ substantially,

indicating that the worst case distributions differ and, implicitly, that the vulnerabilities the

regulator should worry about are different. One could perhaps also envisage this analysis
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being used in sub-samples to identify how vulnerabilities vary over time.

Furthermore, a regulator could choose to ‘tweak’ her VAR or regression loadings on the

basis of extra-model information or a hunch about a structural break within the financial

system. It may be unclear intuitively how this suspected structural break may affect the

vulnerabilities of the system in a complicated, multivariate model (CCAR has more than 20

dimensions to its scenarios).20 However, to the extent that the regulator’s judgement and

the benchmark model are reasonable descriptions of the world (even if they are flawed), the

process of calculating the value function and associated worst case change in measure can be

used as a powerful dimensionality reduction tool to reveal weaknesses that would have been

difficult or impossible to intuit.

However, one could argue that the scenarios (and indeed other moments of the worst case

distributions) exhibit certain undesirable properties. First, from a mechanical perspective,

they do not seem to share some of the qualitative properties of the CCAR scenarios we

depict in figure 1. In figure 1 we observe a tendency for reversion that gives the impression

of the stress scenarios featuring transitory events, from which the economy will ultimately

recover. Second, and related, we might believe that the unconditional ‘average’ behavior of

the economy is (reasonably) well captured by our models, even if there is concern that the

economy is vulnerable to dramatic stresses.21 Thus we may be suspicious that, although

our analysis is disciplined by DEPs, the worst case means that we report in table 2 may be

conceptually implausible.

The scenarios we depict under the worst case, in fact, largely reflect transitions to the

differing stochastic steady states detailed in table 2.22 Given the unstructured nature of

uncertainty that is implicit in robustness analysis, all moments are regarded as possibly

misspecified by the forecaster. A particularly damaging misspecification would be one rep-

resentable by a negative distortion to the unconditional mean of RoE, due to the presence

of a the satiation point in our analysis. Hence, the worst case captures this. In section 5 we

will lay out methods to discipline the worst case and the dimensions in which we allow for

misspecification.

20Schuermann (2013) addresses this issue: ‘Finding coherent outcomes in such a high dimensional space,
short of resorting to historical realizations is daunting indeed. . . Compounding this problem is the challenge
of finding a scenario where the real and the financial factors are jointly coherent.’

21We are using these scenarios as a vehicle for our discussion and, again, for official positions on the
nature of these objects we refer the reader to http://www.federalreserve.gov/bankinforeg/stress-tests-capital-
planning.htm.

22There are some distortions to transitory dynamics also, as indicated by the impulse response diagrams
shown in figure 6. In addition, one might argue that we do or should doubt the unconditional properties of
our models - perhaps reflecting a concern that what we perceive as a sustainable pace of financial innovation
or a ‘technology miracle’ is actually wishful thinking.
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5 Tilted Robustness

In this section we examine a different, yet closely related approach to obtaining a robust

forecast in which we restrict the worst case distribution beyond simply penalizing deviations

from the benchmark in terms of relative entropy. We will begin by taking an apparently ad

hoc method to impose that the distributions generating our scenarios respect certain moment

conditions, using the techniques of exponential tilting. In doing so we illustrate connections

with conditional forecasting and show how to nest ‘direct’ and ‘reverse’ stress testing within

our framework. However, we go on to show that these apparently mechanical methods can

be interpreted from a particular decision theoretic framework, which we refer to as ‘tilted

robustness’.23

5.1 Exponential Tilting

Suppose we judge that certain moment restrictions should be respected by a model. Typically

we will be concerned with situations where the restrictions we wish to impose are not initially

respected. We therefore must adjust the distribution. However, we wish to do this in a way

that incorporates the ‘least’ extra-model information, thus minimizing the manipulation of

the distribution and retaining parsimony.

5.1.1 Theory

Let X denote a generic random variable with p.d.f, π. Let us express the desired moment

restriction as

E [g (X)] = 0

where g is a vector valued function. We could choose X to be a sequence of target and state

variables (or, in richer models, regimes and parameters). We concern ourselves with the case

where this condition will not hold if the expectation is taken with respect to π. We seek,

instead, the (unique) density, π, that a) exists, b) satisfies the moment conditions and c)

is closest to π in the Kullback-Leibler sense. Formally, following the analysis of Robertson,

Tallman, and Whiteman (2005) we solve the following problem

min
π∗

∫
log

π∗ (X)

π (X)
π∗ (X) dX

such that ∫
g (X) π∗ (X) dX = 0

23For a more thorough treatment of ‘tilted robustness’ with an application to interest rate risk, see Bidder
and Giacomini (2015).
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which yields a solution, π∗, where

π∗ (X) ∝ π (X) exp {τ ′g (X)}

for appropriate Lagrange multipliers, τ , on the moment conditions. That is, we obtain an

exponentially tilted distribution.

As we show in appendix 7.4, in the Gaussian case where only first and second moments are

restricted by g, the exponential tilt can be derived analytically and returns a tilted distribution

that remains Gaussian. However, in more general cases, the method is implemented in terms

of empirical approximations to the distributions in question. That is we use approximations

that are given by a set of draws {Xi}i=1:N and a set of corresponding weights, {πi}i=1:N ,

under the benchmark, and a different set of weights, {π∗i }i=1:N , under the tilted distribution.

In general we will have
∑
πig (Xi) 6= 0 and we wish to construct tilted weights such that∑

π∗i g (Xi) = 0. We do this by finding an appropriate vector of multipliers, τ which solves

τ = arg min
τ

N∑
i=1

πi exp {τ ′g (Xi)}

and set

π∗i =
πi exp {τ ′g (Xi)}

N∑
j=1

πj exp {τ ′g (Xj)}
∝ πi exp {τ ′g (Xi)}

5.1.2 Application

We can use exponential tilting to twist the worst case forecasting distributions obtained in

section 4.4. For example, in figure 8 we illustrate the conditional mean paths for RoE under

the distributions implied by the benchmark and worst case VARs (based on aggregate RoE

regressions and with DEP = 0.2), along with the path obtained by tilting the distribution

implied by the worst case VAR but to respect the moment condition that at the end of the

forecast horizon, it should have the same mean as under the benchmark.24 In this linear

Gaussian case with a restriction in terms of the first moment, we can calculate the twisted

Gaussian distribution analytically and its associated conditional mean path. We see the red

line bend back up to strike the benchmark at the final horizon. Thus, we have ‘fixed’ one of

the undesirable properties of the L-Q worst case distribution. We also show, in figure 9, the

associated conditional mean paths for the states.

24We actually also restrict the standard deviation at the final horizon to be the same as under the benchmark
and we have added a small amount of measurement noise to the system (an additive shock to the connection
between RoE and the states), for mechanical coding reasons.
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There are several points to note from these diagrams. Firstly, although our restriction is

only in terms of the final forecast horizon, we do not see the tilted worst case aligned with

the untilted until the final horizon and then leap discontinuously up (in terms of conditional

means). The reason for this is that the distortion to the distribution is derived in the most

efficient manner, and it happens to be the case that the K-L divergence minimizing way of

imposing the desired moment, is to distort other moments also. This is obvious in the shape

of the red path for RoE and the differing shapes of the paths for the states. Note also, that

in the final horizon, the states do not return to their benchmark means, despite the fact that

RoE is restricted to do so.

Although we have not done so here, we could require that the divergence between the

distributions generating the blue (benchmark) and green (untilted W.C.) lines and between

the blue and red (tilted) worst case, are equal. Intuitively, one might expect that, once one

has removed the final horizon mean from the set of moments that can be distorted (which was

the dominant feature of our untilted worst case), there is greater scope for more interesting

conditional moment and co-movement distortions among the variables. This appears to be an

important avenue which we are actively pursuing. Essentially, we free up the relative entropy

‘budget’ faced by the robust agent to be used on more ‘relevant’ distortions.

5.1.3 Direct and Reverse Stress Testing

Finally, using these techniques we can nest ‘reverse’ and ‘direct’ stress testing, which is

essentially a question of conditioning either on adverse scenarios for the state or for RoE.

This is comparable to the sort of approach discussed in Waggoner and Zha (1999) but is more

general, since it operates in terms of moments in (theoretically) arbitrarily nonlinear models.

In figure 10 we depict conditional mean paths obtained under a version of direct and reverse

stress testing.

We first define a tightly parameterized expression of an ‘adverse’ path. We pick a finite

horizon and a sequence of scale parameters, one for each horizon, that will be used to scale

the standard deviations at each horizon, which will then be added (or subtracted) from the

untilted unemployment (or RoE) conditional mean paths. We assert that the scale sequence

attains a maximum at horizon τ = 6 and must be zero at the beginning and end of the

forecast period. Between these points we linearly interpolate. Clearly there are much more

sophisticated methods we could use to define ‘adverse’ but this parsimonious approach allows

us to tell a simple story.

Looking at the red lines in the diagrams, we see that if we restrict the unemployment

path to respect certain moment conditions, we can back out a particular path for RoE and,

unsurprisingly, it is pessimistically twisted downwards. Similarly, if we impose that the tilted
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distribution respect an adverse sequence of conditional means for RoE, we can back out an

implied adverse sequence of means for unemployment (green lines). This example is very

simple and conceptually not enormously removed from conditional forecasting approaches

that are already commonly employed by researchers and policy-makers. However, as we now

show, we can provide a decision theoretic perspective on some of these approaches.

5.2 A ‘Tilted Robustness’ Problem

We will introduce some slightly different notation in this section, recognizing that we are

switching to a finite horizon case, while retaining the essence of the basic robustness problem

discussed in section 3.25

An agent derives utility according to the realization of a random variable, X, and a

function, v, that maps a realization of X into a payoff for the agent. The agent possesses a

model describing the behavior of X, characterized by a ‘benchmark’ distribution, π. Were

the agent to fully trust this model, she would evaluate her welfare on the basis of expected

utility,
∫
v (X) π (X) dX. However, the agent distrusts her model and evaluates welfare using

a pessimistic twist to π. The twist is captured by a likelihood-ratio, m, with respect to which

the agent minimizes her expected payoff, under the twisted measure. This minimization is

subject to a penalty for twisting the benchmark distribution, controlled by θ and related to

the relative entropy of the twisted distribution to the benchmark. In addition, however, we

posit a constraint requiring that the twisted distribution respects moment conditions captured

by the function, g.

W = min
m

∫
m (X) v (X) π (X) + θm (X) log (m (X))π (X) dX (2)

s.t.

1 =

∫
m (X)π (X) dX

0 =

∫
m (X)π (X) g (X) dX (3)

Whereas in section 3 we operated within a setting that easily allowed a recursive repre-

sentation of the problem, here we will simply posit that the agent is facing a (finite horizon)

sequence problem. Thus, as alluded to at the end of section 3.2, although our benchmark

model can be naturally spoken of in terms of a tightly parameterized ‘process’ (a VAR), we

here focus on conditional forecasting distributions and attack the distributions over sequences

directly. We will also not be expressing our worst case in terms of a VAR. This makes explicit

the unstructured nature of uncertainty (despite the restriction on moments). The agent is

25There is also slight abuse and reuse of notation - we are running out of letters.
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concerned that ‘something’ is misspecified in her benchmark that would induce some other

distribution over sequences. That ‘something’ is left implicit.

Solving problem 2 yields a particular minimizing likelihood ratio

m∗ (X) =
exp

{
−v(X)−ϕ∗g(X)

θ

}
E
[
exp

{
−v(X)−ϕ∗g(X)

θ

}] (4)

where ϕ∗ is the Lagrange multiplier on the constraint 3 at the solution. We refer the reader

to appendix 7.3 for derivations

The minimizing likelihood ratio, m∗ (X), is similar to the familiar exponential tilt ob-

tained under the approach to robust control advocated by Hansen and Sargent, m∗HS (X) ∝

exp
{
−v(X)

θ

}
, but differs due to the presence of the moment restrictions that the twisted

distribution must satisfy. Similar expressions are obtained in Kwon and Miao (2013), Hansen

and Sargent (2012) and also in Petersen, James, and Dupuis (2000) and Glasserman and

Xu (2014). The two former works remain within a recursive LQG framework and introduce

moment restrictions in the sense of characterizing a particular type of robustness in which a

policymaker forms a robust policy, informed by a distribution that respects the intertemporal

optimality conditions of the private sector.

Our framework, provided that one can evaluate the moment condition and draw from the

benchmark model, allows for a richer class of non-linear dynamics and moment conditions.

In addition, our motivation is more related to questions of the ‘plausibility’ of distortions

to certain moments. Our restriction to finite horizon, although something we hope to relax,

does not seem inappropriate for our (important) policy application as invariably, regulatory

oversight is expressed in terms of fixed horizons. Petersen, James, and Dupuis (2000) lay out

a very general framework and then specializes to the LQG case. Glasserman and Xu (2014)

apply these methods in the context of portfolio analysis. We bring these powerful techniques

to bear in our stress testing application.

A similar approach is taken by Breuer and Csiszr (2013) in the sense that they construct

worst case distortions to finite horizon distributions that are derived from possibly non-

linear and non-Gaussian models. They do not employ the tilting methods we advocate and

apparently also work with linear and quadratic approximations to the worst case distribution,

rather than fully exploiting the scope of importance sampling to obtain draws (approximately)

from the underlying worst case.26

The restriction to finite horizon brings significant benefits in terms of enhancing tractabil-

ity, such that we can go well beyond the Gaussian framework. It is not necessary for our

26Of course, in many applications the approximations they use to obtain analytical results may be advisable,
due to the sampling error that might arise from Monte-Carlo methods.
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analysis to be able to evaluate the pdf of the benchmark distribution, provided that we can

simulate from it. In that case we would work with an equally weighted set of draws that

represents an empirical approximation to the distribution. Our methods would then simply

involve changes in discrete measures implied by importance weights. This seems important

in practice where one might be working with large, complicated models built up from var-

ious ‘satellite’ sub-models separately maintained and drawn from, as perhaps is common

in regulatory environments. In appendix 7.5 we illustrate the use of the exclusively im-

portance sampling approach in a (very) stylized example that allows for non-linearity and

non-Gaussianity over a finite multi-period horizon.

5.2.1 A Simple Example

For expositional purposes we set aside our estimated VAR example and here deal with a

simpler case, to illustrate the tilted robustness method. We take a Gaussian AR(1) as a

primitive for the evolution of the state

xt+1 = ρxt + εt+1

εt ∼ N
(
0, σ2

)
Let us envisage a situation in which we are concerned with realizations of the state over

a horizon from t + 1 to t + τ . From the perspective of time t, one can think of a stacked

vector of the state in the above system as a multivariate Normal random variable that has a

particular structure on its distribution. Thus, in the notation of the earlier analysis π is the

stacked Normal distribution and x is xτ ≡ (xt+1, . . . , xt+τ ). We use v (x) =
∑τ

j=1 β
ju (xt+j).

Then, if we wanted to ensure that the worst case distribution respected the same expectation

for xt+τ as the benchmark, we would set g (x) = xt+τ − ρτxt. We could envisage u as

u (xt+j) = u1 ◦ u2 (xt+j) where u2 maps the state realization in a period into ‘consumption’

and then u1 is a period utility function. We take u2 to be an identity mapping in the example

below and use a CRRA utility function for u1. Although in this particular example the

tilted worst case can be derived analytically (much as in section 5.1.2), we will use the more

general importance sampling techniques mentioned above, based on reweighting draws from

the benchmark.

In figure 11 we depict the conditional mean paths (jagged due to multinomial resampling

variability) under the benchmark distribution, ‘Hansen-Sargent’ worst case distribution and

the ‘Tilted Robustness’ worst case distribution.27 We observe that a pessimistic twist is at

27We have picked θ in the two twisted cases to yield the same equally weighted (of both divergence di-
rections) K-L divergences, although that is not obvious from the diagram, where, at least the conditional
mean path under the tilted robustness case seems ‘closer’ to the benchmark. Perhaps other moments not
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play in the two worst case paths but, in the tilted robustness case, the mean restriction (to

be equal to the benchmark) at the final horizon seems to be respected. In figure 12 we also

show that both worst cases feature elevated standard deviations, by horizon.

5.2.2 Interpretation of Tilted Robustness: Focusing Ambiguity

In the basic Hansen-Sargent case, we allow the agent to distort all moments of the benchmark

distribution, subject to the relative entropy penalty and a requirement of absolute continu-

ity. There is only one parameter, θ, that releases the agent from the requirement that she

fully trusts her model.28 In a sense, then, this parameter is the only degree of freedom for

determining the worst case and it is ‘used up’ in deviating from Expected Utility. So it is

unsurprising that it can have pathological properties that may not be consistent with our

ideas of what elements of a model are most worth doubting. This captures the intuition that

the agent is facing completely unstructured uncertainty that conceivably could render all mo-

ments of the benchmark distribution misspecified. Here, by restricting a subset of moments

under the worst case we retain much of the unstructured nature of the uncertainty faced by

an agent. But we implicitly assert that the agent trusts certain dimensions of her benchmark

model, even if she does not trust it entirely. That is we ‘focus’ ambiguity.

Now, there are other ways of ‘focusing’ ambiguity in the uncertainty literature. However,

these methods typically entail violation of the ‘intuition of ambiguity’. By this we mean that

the modeler tends to specify very particular dimensions in which the agent is ambiguous and

often does so while introducing free parameters picked by the analyst to assert certain ‘known

unknowns’. This approach arguably is unsuited to truly ambiguous situations. Frequently,

it involves positing an interval around some parameter or scalar object within a model and

asserting that the agent behaves as if the value taken is at the ‘adverse’ end of the inter-

val. Although this approach may make sense in certain situations, it often seems to be an

inappropriate transfer of some of the intuition from the famous ‘Ellsberg’ examples to very

different situations (see Ellsberg (1961)).

In the Ellsberg case (how many black balls in urns full of black and red balls etc.) a ‘model’

is essentially a question of a relative frequency - that is, a real scalar. In this case, when one

speaks of ambiguity and constructing a set of priors (over which we ultimately minimize) it

is utterly natural to end up with ‘intervals’ capturing the multiple models that an ambiguous

agent may be concerned could be generating the data (it surely cannot be plausible that

illustrated here are being distorted more under the tilted robustness case, such as, implicitly, moment related
to serial dependence. In our finite horizon case, it is not entirely obvious how to calibrate this divergence as
the standard approach to calculating DEPs seems to have a slightly different interpretation.

28Or two if one counts the specification of the robustness problem (and particularly the use of relative
entropy in the penalty) as a ‘generalized’ parameter.

22



there would be ‘holes’ in the set of priors). But, our intuition does not begin with intervals,

it begins with a desire to construct a plausible set of priors that convey ambiguity. In the

Ellsberg case, it happens to make complete sense that we should be working with intervals.

But it may not always make sense to try to manhandle priors into the form of intervals on

arbitrarily selected objects in a given model. Through tilting to respect moment conditions,

we focus ambiguity by asserting confidence in a limited set of moments, rather than asserting

a lack of confidence in a, perhaps arbitrarily, selected set of moments. Thus our approach

appears less obtrusive on the part of the modeler and more true to the intuition of ambiguity.

the methods used here nest fairly standard conditional forecasting methods that can

be used even if the theory of robustness is thought uncompelling: simply switch off the

value function part of the minimizing likelihood ratio and do exponential tilting (much as

in Cogley, Morozov, and Sargent (2005)). But our methods also allow the regulator to

acknowledge the Knightian model uncertainty that they invariably face in a disciplined and

theoretically grounded way - this is an ambiguity paper and the world of financial regulation

is an ambiguous place. Our emphasis on finite horizons, though undesirable in some respects,

also buys the regulator much more generality in terms of the models that can be applied

numerically when carrying out the testing. This hopefully renders our approach not only

theoretically interesting but also practically useful.

6 Conclusion

We have used a stylized approach to constructing stress test scenarios, based on the tools

of robust forecasting. We take a simple model of the economy and banks’ exposures and

twist the probabilities implied by this model in a particular pessimistic manner to identify

dimensions in which the system is vulnerable. The tools are easily implemented and can yield

a set of moments that can be used to derive distributions over objects of interest (in this case

bank performance) in a way that emphasizes possible model misspecifications in dimensions

in which the system is vulnerable.

We initially operate in a simple, but illustrative, linear-quadratic framework, but then

generalize our analysis (in a finite horizon context) to allow for nonlinearities in the model of

the economy and a broader class of uncertainties. In doing so, we articulate a way in which

ambiguity can be ‘focused’. Beside its theoretical interest, this approach also renders our

analysis closer to what might ultimately be implementable in the real world.

In ongoing work, we are attempting to solidify the, as yet, rather preliminary benchmark

model we use, exploiting the rich data set obtained from regulatory filings required since the

Dodd-Frank reforms. Allowing for regime switching, parameter or estimation uncertainty,

latency and non-standard shock distributions are important avenues. These models seem to
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hold more promise in our stress testing application than the L-Q framework and hopefully can

help provide a theoretical and practically useful set of techniques. Importantly, these methods

also seem well suited to addressing other areas of policy, beyond financial regulation.



7 Appendix

In this section we include additional details to help with understanding the results in the

paper.

7.1 Recursive representation of the worst case distribution (general case)

We seek a recursive expression of the problem and, invoking results in Hansen and Sargent

(2008), obtain a value function of the following form

V (εt, st) = minm(εt+1,st+1) h(zt)
+ β

∫
m(εt+1, st+1)V (εt+1, st+1)pε(εt+1|xt)

+ θm(εt+1, st+1) logm(εt+1, st+1)pε(εt+1|xt)dεt+1

(5)

subject to
∫
m(εt+1, st+1)p(εt+1|xt)dεt+1 = 1 for all values of st+1. If one solves the inner

minimization problem (interpretable as that of the ‘evil’ agent) one obtains the minimizing

martingale increment, which has the form

m(εt+1, st+1) =
e−

V (εt+1,st+1)

θ

E
[
e−

V (εt+1,st+1)

θ |εt, st
] (6)

If one substitutes this solution into the original problem, then we obtain the following ex-

pression for the Bellman equation (with slight abuse of notation), where we note that the

expectation in equation (7) is with respect to the benchmark transition density.

V (xt) = h(zt)− βθ logE

[
exp

(
−V (xt+1)

θ

)
|xt
]

(7)

The martingale Mt from the solution of the agent’s problem is a ratio of joint densities,
p̃(x1:t)
p(x1:t)

, where p̃ denotes the density implied by the worst case model while p denotes the

benchmark model’s density. The martingale increment, m(xt+1), is a ratio of conditional

densities, p̃(xt+1|xt)
p(xt+1|xt) . Thus we have p̃(xt+1|xt) = m(xt+1)p(xt+1|xt). While p̃ is not directly

interpretable as the conditional ‘beliefs’ of the agent, the fact that it differs from p emphasizes

that more than one distribution plays a role in this problem, in contrast to the case where

the agent fully trusts his model.

7.2 LQG Robustness

We posit a linear transition law for the state, xt, given by

xt+1 = Axt + Cε̂t+1

ε̂t+1 ∼ N (0, I)
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where ut is a vector of controls and {ε̂t} is an iid sequence. To represent misspecification in

this case we first consider distorted models represented by allowing the mean of the Gaussian

innovation in t+ 1 to depend, possibly in a nonlinear fashion, on the history of the state up

to and including t. Thus, alternative models, capturing some unknown misspecification, are

represented by the distorted transition law

xt+1 = Axt + C (εt+1 + wt+1)

εt+1 ∼ N (0, I)

wt+1 = gt (xt, xt−1,...)

We will ultimately show that the agent will envisage a particular distortion featuring a twist

to the innovation covariance matrix. However, we will defer that discussion because it turns

out that the solution of the robust problem, in terms of the distortion to the mean, does not

depend on this twist.

Given θ ∈ (θbd,+∞] the multiplier problem considered is29

min
{wt+1}∞t=0

E0

∞∑
t=0

βt
{
h (zt) + βθw′t+1wt+1

}
subject to zt = g (xt) and the distorted law of motion

xt+1 = Axt + C (εt+1 + wt+1)

εt+1 ∼ N (0, I)

wt+1 = gt (xt, xt−1,...)

The mapping from the state, xt to the target, zt will be as follows. A payoff variable ct

and a ‘bliss’ point variables, bt are related to the state by

ct = Hcxt

bt = Hbxt

If we let zt ≡ ct − bt and H ≡ Hc −Hb, then the period payoff is given by g(zt) = z′tWzt, a

quadratic form where W captures the weighting scheme. It is useful to note that the period

payoff can also be expressed as x′tQxt where Q ≡ H ′WH.

As discussed in Hansen and Sargent (2008) the solution to this problem implies a sta-

tionary rule relating the distorted conditional mean of the t+ 1 innovation to the state in t,

wt+1 = Kxt. Letting −x′0Px0 − p be the value of the problem and h (z) = z′Wz (= x′Qx),

then we have the following Bellman equation

−x′Px− p = min
w
E {h (z) + θβw′w − βx∗′Px∗ − βp}

29The lower bound or ‘breakdown’ point considered for θ, θbd, ensures that the problem remains well posed.
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subject to

x∗ = Ax+ C (ε+ w) (8)

ε ∼ N (0, I) (9)

Now, P can be recovered from solving an associated certainty equivalent problem in which

εt+1 ≡ 0. This allows us to omit εt+1 from the problem and abstract from p. Based on this

insight, we can solve for many of the objects of interest by solving a deterministic robust

linear forecasting problem:

min
{wt+1}

∞∑
t=0

βt
{
h (zt) + θβw′t+1wt+1

}
given x0 and subject to equation (9). If −x′0Px0 is the value of the sequence problem, then the

value of the agent’s problem can be expressed recursively according to the Bellman equation

−x′Px = min
w
{h (z) + θβw′w − βx∗′Px∗}

subject to

x∗ = Ax+ Cw

If one considers the inner minimization problem we observe that it induces a pessimistic

twist to the continuation value, captured by the application of an operator D (P ), defined as

follows

−x∗′D (P )x∗ = −x′A′D (P )Ax = min
w
{θw′w − x∗′Px∗}

where the minimization is subject to the dynamics of the distorted model

x∗ = Ax+ Cw

Thus we have that

D (P ) = P + θ−1PC
(
I − θ−1C ′PC

)−1
C ′P

It transpires that after allowing for the solution of the inner minimization problem and

the pessimistic twist to the continuation value that it implies, one can represent the Bellman

equation as

−x′Px = h (z)− βx∗D (P )x∗

subject to the approximating model30

x∗ = Ax

30 Recall we are working with deterministic cases due to the aforementioned augmented certainty equiva-
lence result.
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The maximization in the Bellman equation implies a particular operator that maps from a

given ‘continuation P ’ to the P that captures the value of the agent’s problem in the current

period, given his robust control. This operator, T
(
P̃
)

is given by

T
(
P̃
)

= Q+ βA′P̃A

Therefore, the P associated with the solution of the robust problem is the fixed point of the

composite operator T ◦D. Associated with this P is the distorted mean law, w = Kx where

K = θ−1
(
I − θ−1C ′PC

)−1
C ′PA

Applying these laws to the evolution equation {equation} yields dynamics under the

deterministic worst case given by

x′ = (A+ CK)x

= Ãx

which can be contrasted with the dynamics that emerge under the benchmark, but allowing

for the agent’s robust control law, given by

x′ = Ax

Allowing for randomness, but still restricting ourselves only to consider distortions to means,

implies that the evolution of the state under the worst case is characterized by

x′ = Ãx+ Cε′

and, under the benchmark,

x′ = Ax+ Cε′

However, when one allows for more general distortions in this framework than simply those

representable by a state dependent distortion to the mean of innovations, the worst case also

features a distortion to the covariance matrix of the innovations. That is, the worst case

transition law is given by

x′ = Ãx+ C̃ε′

C̃C̃ ′ = C
(
I − θ−1C ′PC

)−1
C ′

This transition law, and its implicit repeated application allows us to characterize and draw

from the worst case distribution over sequences that emerges from the agent’s robust fore-

casting problem.
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7.3 Tilted Robustness Derivations

The first order conditions of the minimization problem 2 (leaving aside the constraints, for

now) are

v (x) + θ (log (m (x)) + 1) = λ+ ϕg (x)

where λ and ϕ are, respectively, the Lagrange multipliers on the constraints that the twisted

distribution integrates to one and that the moment conditions are satisfied. Exploiting the

first constraint (that the twisted measure integrates to 1) we obtain

1 = exp

{
−1 +

λ

θ

}∫
exp

{
−v (x)− ϕg (x)

θ

}
π (x) dx

= exp

{
−1 +

λ

θ

}
E

[
exp

{
−v (x)− ϕg (x)

θ

}]
which implies the minimizing likelihood ratio is given by31

m∗ (x;ϕ∗) =
exp

{
−v(x)−ϕ∗g(x)

θ

}
E
[
exp

{
−v(x)−ϕ∗g(x)

θ

}] (10)

We can obtain ϕ∗ by defining

m (x;ϕ) =
exp

{
−v(x)−ϕg(x)

θ

}
E
[
exp

{
−v(x)−ϕg(x)

θ

}]
substituting into the moment condition constraint∫

m (x;ϕ) π (x) g (x) dx = 0 (11)

and then exploiting a root-finding subroutine (and numerical integration) to find the ϕ that

satisfies this equation, call it ϕ∗ . We then define m∗ (x) ≡ m∗ (x, ϕ∗) ≡ m (x;ϕ∗).

7.4 Tilting in a Linear Gaussian Framework

We will consider a special case of the tilting framework discussed in section 5.1, that of a linear

Gaussian state space where only restrictions on first and second moments are imposed. It is

therefore useful first to examine how tilting in a multivariate Normal context is implemented.

So let us consider a random variable y ∼ N (ζ,Σ). Suppose we wish to impose that E [y2] = µ2

31We make explicit the dependence on the multiplier ϕ as we have not yet discussed how it is obtained.
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and V ar (y2) = Ω22 where we partition y = (y′1, y
′
2)
′.32 Then we have

µ1 = ζ1 + Σ12Σ
−1
22 (µ2 − ζ2)

Ω12 = Σ12Σ
−1
22 Ω22

Ω11 = Σ11 − Σ12Σ
−1
22 Σ21 + Ω12Σ

−1
22 Σ21

Now, in our linear Gaussian model, the state space we consider takes the form

yt = Gxt + wt

xt+1 = Axt + εt(
wt
εt

)
∼ N (0,Ω)

where

Ω ≡
(

Ωw Ωwε

Ω
′
wε Ωε

)
We will find it convenient to stack the variables to create a VAR system for x̃t ≡ (y′t, x

′
t)
′

which takes the form

x̃t+1 = Ãx̃t + ε̃t

ε̃t ∼ N
(

0, Ω̃
)

where

Ã ≡ A−10 A

Ω̃ ≡ A−10 Ω

A0 ≡
(
Iny −G
0 Inx

)
A1 =

(
0 0
0 A

)
Clearly, from the perspective of time t, one can think of a stacked vector of the variables

in the above system at different horizons as a multivariate normal random variable that has

a particular structure on its distribution, arising from the underlying system being a VAR.

32Ordering variables so that the partitions are contiguous is clearly without loss of generality.
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That is, denoting x̃τt ≡
(
x̃′t+1, x̃

′
t+1, ..., x̃

′
t+τ

)′
, we have that, conditional on x̃t

x̃τt ∼ N



A
A2

...
Aτ

xt,


Ω11 Ω12 ... Ω1

Ω′12 Ω22 ...
...

... ...
. . .

...
Ω′1τ ... ... Ωττ




Ωij =

{
A|j−i|Ωjj if i ≥ j

Ωii

(
A|j−i|

)′
o/w

Ωii =
i∑

k=1

Ak−1Ω̃
(
Ak−1

)′
Consequently, we can invoke the analytic expressions for the tilted moments in the multivari-

ate Normal case laid out above.

7.5 Robustness Using Importance Sampling in a Non-Linear and Non-Gaussian
Framework

In this example we construct a very stylized example to illustrate some of the properties of

the finite horizon approach to robustness described in the main body of the paper, without

employing additional tilting.33 Thus, this is akin to some of the examples in Breuer and

Csiszr (2013) (based on the framework of Jimnez and Menca (2009)) although extended to

convey some stylized points of interest. In particular, we wish to emphasize the importance of

non-linearity, parameter uncertainty and the unfamiliarity of ‘crisis’ regimes and carry out the

analysis entirely with the use of importance sampling, rather than analytical approximations.

The calibration is only qualitatively illustrative.

The framework is that of a Markov Switching VAR(1) process for a bivariate state, xt =

(yt, ut) where yt = log ((1− pd) /pdt) is a transformation of a ‘default rate’, pdt, and ut is a

‘macro factor’ (see Fong and Wong (2008) for an empirical application of a MSVAR setup

to a non-robust regulatory problem). The two variables feed back on each other such that

a higher (worse) realization for ut implies higher default probabilities (lower yt). Similarly,

higher default probabilities imply higher realizations of the macro factor, ceteris paribus. The

dynamic relationships among the variables are described by

xt = µt + Atxt−1 + Ctεt

εt v N (0, I)

where µt, At and Ct are governed by a discrete state, st which follows a first order Markov

33This section is extremely preliminary.
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chain:

µt = µ (st)

At = A (st)

Ct = C (st)

st|st−1 v T

In our application, we will assume that st ∈ {1, 2} and that the first state is both ‘better’

and more ‘familiar’ than the second, ‘crisis’ state. We set

µ1 = (I − A (1)) ·
(
ȳ1
1

)
µ1 = (I − A (2)) ·

(
ȳ2
1.3

)
ȳ1 = log

(
1− 0.05

0.05

)
ȳ2 = log

(
1− 0.25

0.25

)
A (1) = A (2) =

(
0.5 −0.4
−0.4 0.5

)
C (1) =

(
1 0
0 1

)
C (2) =

√
1.2C (1)

T =

(
0.75 0.25
0.8 0.2

)
Thus, the the first state will be more frequently occupied under the ergodic distribution of

the chain (more familiar) and is associated with lower volatilities of innovations and VAR

intercepts (better). In addition, we assert that there is a distribution over loss given default

(LGD). in the two regimes. We assert that the fixed (but unknown) LGD are distributed as

beta random variables

LGDst=1 v B (24.9, 58.1)

LGDst=2 v B (7.9, 5.3)

implying means and variances of {0.3, 0.6} and {0.052, 0.132} respectively. Thus, the best

estimate of the LGD under the bad regime is higher than that for the good regime, but the

uncertainty around it is also greater, capturing the intuition that our information regarding

unusual regimes (which are perhaps the most relevant for stress testing) is inferior.

32



In terms of the loss function, we calculate the expected payoff in t as

EAD ∗ (1− pdt ∗ LGDt)

where EAD is a notional ‘exposure at default’. We do not discount these expected payoffs

over the forecast horizon.

We initialize the economy with s0 = 1 and with the xt at its regime-1 ‘unconditional

mean’ but with the macro factor shocked by a negative one standard deviation innovation.

We simulate over a horizon of 10 periods, drawing N = 300000 times and each time also

drawing LGD for the two possible regimes. Note that the LGD draws are fixed over each

simulation of xt over the forecast horizon. Thus we obtain equally weighted draws from the

benchmark. We then re-weight and redraw according to mHS using β = 1 and the period

loss function described above.

In figure 13 we plot the point-wise medians at each horizon for pdt and ut, together with

the relative frequency of the ‘good’ regime (st = 1) under the benchmark and worst case. We

observe that the default rate and macro factors are elevated under the worst case, relative

to the benchmark. Consistent with this, the economy spends less time in the good regime

under the worst case at each horizon. Indeed, if one fits a first order Markov chain to the

state transitions under the worst case simulations one obtains an estimated transition matrix

Twc =

(
0.69 0.31
0.73 0.27

)
Furthermore, if one examines the simulated εt in figure 14 we also observe adverse shifts in

the distributions for the innovations. The differences between the worst case and benchmark

are small but they can be seen more clearly for regime 2. This is likely largely because of the

same mechanisms outlined in Barillas, Hansen, and Sargent (2009) and Bidder and Smith

(2012) where the size of distortions to innovations is increasing in the level of volatility and

C (2) > C (1) in our case. It is also possible that the unfamiliarity of the second regime induces

greater distortion in that regime for a given relative entropy between the joint distribution

over regimes, innovations and LGD under the benchmark and worst case.

Finally, we consider the distributions for LGD. We observe in figure 15 that these also are

pessimistically twisted under the worst case with the twist particularly obvious in the lower

panel, corresponding to LGDst=2. The reasons for this are likely the fact that (especially

under worst case) the probability of default is higher in this regime. The value function

encodes this fact and emphasizes distortions to the benchmark distribution that reveal this

vulnerability (if defaults are higher then it will be particularly damaging to have higher losses

given default). In addition to this, however, is the additional uncertainty around LGD in the

second regime under the benchmark, which renders a given distortion less expensive in terms

of its contribution to the relative entropy penalty.



8 Tables

Table 1: OLS regressions of RoE on the VAR state, in the aggregate and for two different
institutions.

(1) (2) (3)
Aggregate Inst. 1 Inst. 2

Unemployment -3.918*** -3.238*** -1.643

Inflation -4.713** -3.909** -3.745

3-M Tbill 2.226 -1.068 7.496

∆D.J. 3.875*** 1.655*** 3.097***

Term Spread 2.493** 1.440 3.312**

Const 8.757*** 9.678*** 12.44***
N 83 58 43
R2 0.443 0.460 0.440

* p < .1, ** p < .05, *** p < .01

Table 2: Unconditional moments of aggregate RoE and states under the benchmark and
worst cases based on aggregate RoE regressions and for DEPs of 10% and 20%

Benchmark W.C. (0.2) W.C. (0.1)
Mean S.D. Mean S.D. Mean S.D.

RoE 8.21 9.41 0.97 11.06 -4.09 11.88
Unemployment 0.31 2.36 2.28 2.75 3.65 2.95

Inflation -0.29 0.91 -0.12 0.97 0.01 0.99
3-M Tbill -0.61 1.27 -1.33 1.31 -1.84 1.33

∆D.J. 0.00 0.98 -0.01 0.99 -0.03 0.99
Term Spread 0.26 1.55 1.45 1.73 2.28 1.83
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Table 3: Unconditional correlations of states under the benchmark and worst cases based on
aggregate RoE regressions and institution 1 (for DEP of 10%)

(a) Benchmark
1.00 · · · ·
0.14 1.00 · · ·
−0.49 0.59 1.00 · ·
0.16 0.02 −0.08 1.00 ·
0.77 −0.15 −0.72 0.14 1.00


(b) Aggregate - W.C.(0.1)

1.00 · · · ·
0.31 1.00 · · ·
−0.53 0.44 1.00 · ·
0.13 0.01 −0.08 1.00 ·
0.82 0.04 −0.73 0.14 1.00


(c) Institution 1 - W.C.(0.1)

1.00 · · · ·
0.28 1.00 · · ·
−0.37 0.62 1.00 · ·
0.15 0.01 −0.09 1.00 ·
0.77 −0.05 −0.65 0.15 1.00
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9 Figures

Figure 1: A subset of CCAR scenarios (2013).
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Figure 2: Conditional mean evolution for the states, generated under the benchmark and
worst case VARs where the worst case is based on the aggregate RoE regressions and the DEPs
considered are 20% and 10%. Initialization is based on an orthogonalized unemployment
shock.



Figure 3: Conditional mean evolution for aggregate RoE, generated under the benchmark and
worst case VARs where the worst case is based on the aggregate RoE regressions and the DEPs
considered are 20% and 10%. Initialization is based on an orthogonalized unemployment
shock.
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Figure 4: Conditional mean evolution for states under the benchmark and worst cases (with
DEP of 20%) based on the aggregate and institution-specific RoE regressions. Initialization
is based on an orthogonalized unemployment shock.
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Figure 5: IRFs for states under the benchmark and worst cases (with DEP of 20%) based
on the aggregate and institution-specific RoE regressions. Response is to an orthogonalized
unemployment shock.
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Figure 6: IRFs for RoE under the benchmark and worst cases (with DEP of 20%) based
on the aggregate and institution-specific RoE regressions. Response is to an orthogonalized
unemployment shock.
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Figure 7: IRFs for RoE under the benchmark and worst cases (with DEP of 20%) based
on the aggregate and institution-specific RoE regressions. Response is to an orthogonalized
inflation shock.
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Figure 8: Conditional mean evolution of aggregate RoE under the benchmark, untilted worst
case VAR (with DEP of 20%) and the tilted distribution based on the worst case VAR but
respecting the same expectation as the benchmark at the end of the forecast horizon.
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Figure 9: Conditional mean evolution of states under the benchmark, untilted worst case VAR
(with WC based on aggregate RoE regressions and DEP of 20%) and the tilted distribution
based on the worst case VAR but respecting the same expectation for RoE as the benchmark
at the end of the forecast horizon.
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Figure 10: Direct and Reverse Stress Testing: Comparing conditional mean evolutions of
(aggregate) RoE and Unemployment. Top panel - RoE. Bottom panel - Unemployment.
‘Direct’ paths are from conditioning on a particular (adverse) path for the conditional means
of unemployment at each horizon and ‘reverse’ paths are from conditioning on a particular
(adverse) path for the conditional means of RoE at each horizon.
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Figure 11: Tilted Robustness: A simple AR example. We plot conditional means by horizon
under the benchmark, HS worst case and TR worst case, where the restriction imposed
upon the worst case is that it respect the same mean at the end of the forecast horizon as the
benchmark. Plots obtained from using importance sampling with the benchmark as proposal.
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Figure 12: Tilted Robustness: A simple AR example. We plot conditional standard deviations
by horizon under the benchmark, HS worst case and TR worst case, where the restriction
imposed upon the worst case is that it respect the same mean at the end of the forecast horizon
as the benchmark. Plots obtained from using importance sampling with the benchmark as
proposal.
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Figure 13: Robustness - non-linear and non-Gaussian example. We plot the point-wise
medians of the probability of default and the macro factor over a horizon of 10 periods from
an initial condition, and also the probability of being in the ‘good’ regime, in each period.
Objects are plotted under the benchmark and worst case distribution.
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Figure 14: Robustness - non-linear and non-Gaussian example. We plot empirical relative fre-
quencies of the VAR innovations, pooling regimes and then conditioning on regimes. Objects
are plotted under the benchmark and worst case distribution.
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Figure 15: Robustness - non-linear and non-Gaussian example. We plot empirical distribu-
tions of LGD under the two regimes. Objects are plotted under the benchmark and worst
case distribution.
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