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 On June 3, 2016 at 8:30am EDT, the U.S. Bureau of Labor Statistics released the May 2016 

employment report. It was alarmingly bad. According to the report, seasonally-adjusted private 

nonfarm employment in the U.S. grew that month by only 25,000. This was the lowest monthly gain 

in employment in six years and followed very strong reports over the prior three months.2 Economic 

analysts and financial market participants had been expecting a number around 160,000.3 The dismal 

report caught policymakers and financial markets off-guard and raised concern that the labor market 

recovery had stalled. The financial markets reacted strongly to the news, with Treasury bond yields 

and stock market indices falling sharply in the minutes and hours after the report’s release. The 10-

year Treasury yield closed down 10 basis points by the end of the day. 

 After the release, some economic analysts noted in media reports that May had been unusually 

cold in most of the country. They also pointed out that weather-sensitive industries like Construction 

and Mining & Logging saw unusually large declines in employment that month. Less commented 

upon was the fact that February and March had been unusually warm, dry, and devoid of snow in 

most of the nation’s largest economic centers, including New England, the mid-Atlantic, and the 

upper Midwest. And weather-sensitive industries like Construction and Mining & Logging had large 

employment gains in those months. Employment growth in these sectors and overall bounced back 

strongly in June. These bits of information taken together hint at the possibility that current and lagged 

weather had large effects on monthly employment changes during this period, with unusually 

favorable weather in the early spring pulling forward some economic activity that normally would 

take place in May. More surprisingly, they hint at the possibility that financial markets were surprised 

by these weather effects despite the fact that weather data are publicly available in real time and hence 

should be part of the markets’ information set. 

Of course, this is simply one episode and it is possible that weather had nothing to do with the 

unexpected downward blip in employment growth in May 2016. Yet, more generally, weather is often 

cited by the media, financial analysts, and policymakers as a key factor behind short-run fluctuations 

in macroeconomic data. And the role of weather in explaining such fluctuations has been well-

documented.4 A natural implication is that weather, given that it is measurable in real-time, should be 

                                                 
2 It was subsequently revised down to 17,000, making it the worst month of employment growth since February 2010, 
according to the current vintage of BLS employment data. 
3 The median forecast from the survey done by Action Economics (formerly Money Market Services) each month prior 
to the employment report was 154,000. Bloomberg reported a consensus pre-report expectation from financial market 
participants of 160,000. 
4 See Boldin and Wright (2015) and Bloesch & Gourio (2015) regarding nonfarm payroll employment, Lazo, et al. 
(2011) on GDP, Starr-McCluer (2000) on retail sales, and Gilchrist and Sands (2016) on movie theater revenues. 
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useful in predicting, or “nowcasting,” contemporaneous macroeconomic data. Such predictive power 

obviously would be highly valuable to policymakers trying to discern the underlying strength of 

economic conditions as well as to financial market participants given the sensitivity of many asset 

prices to macroeconomic news. Surprisingly, there is little, if any, evidence one way or the other on 

the predictive power of real-time weather data for macroeconomic surprises and their asset price 

responses. This paper takes a step toward filling that void. It develops a methodology for using 

geographically granular real-time data to predict weather’s impact on the latest month’s national 

payroll employment growth prior to its release. These weather effect nowcasts have strong predictive 

power for payroll employment growth surprises – reported employment growth relative to pre-report 

forecasts – and equity and Treasury bond returns on the days of employment reports. 

The first step of the methodology involves estimating a county-level dynamic panel data 

(DPD) model of monthly employment growth as a function of current and lagged values of 

temperature, precipitation, and snowfall. The model is estimated using employment data from BLS 

administrative records and daily NOAA weather-station data aggregated to a monthly frequency. The 

full data set covers the period January 1980 through August 2016, amounting to over 1.3 million 

county-month observations; the nowcasting exercise uses rolling (expanding-window) subsamples of 

these data to simulate real-time predictions.  

The combination of high-frequency and finely geographically-disaggregated data used in 

estimating the county DPD models offers considerable advantages. First, it yields precisely estimated 

marginal effects of each weather variable. Second, it allows for rich specifications. In particular, one 

can account for numerous weather variables, for lagged effects (to assess mean reversion and the 

permanence of weather effects), for heterogeneity in weather effects across key dimensions such as 

region and season, and for spatial spillovers. The vastness of the data set also allows one to control 

for high-dimensional fixed effects. Specifically, I include fixed effects for county*calendar-

month*decade and time (sample-month) fixed effects. The former control for county-specific 

seasonal patterns and the latter control for national common factors such as business cycles, oil price 

shocks, etc. 

 The estimates from the county DPD model show that contemporaneous local monthly 

employment growth is increasing in temperature – with the largest effect in the spring – decreasing 

in precipitation, and decreasing in snowfall. The estimates also indicate that the effects of temperature 

and snowfall are largely transitory, with near-zero cumulative effects over four months. Precipitation, 

on the other hand, is estimated to have a negative contemporaneous effect but a positive cumulative 
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effect over four months. I also find negative contemporaneous and cumulative employment effects 

from the number of very hot days, where the daily high temperature is over 90° Fahrenheit (F) (32.2° 

Celsius (C)) in the month, holding mean daily high temperature fixed. The number of very cold days, 

where the daily low temperature is below 30°F (-1.1°C), has negative but insignificant 

contemporaneous and cumulative effects. 

 In the next step of the methodology, I use the fitted county DPD model to obtain estimates of 

weather’s employment growth effects for every county in any given month. The fitted model is 

generated using the full sample (Jan. 1980 – Dec. 2015) for in-sample “backcasting” evaluations, and 

rolling (expanding-window) subsamples for out-of-sample “nowcasting” evaluations. In the last step, 

the county-level estimates of weather’s employment effect for a given month are aggregated to obtain 

estimates of weather’s national employment effect. Because the national effect could differ from the 

sum of the local effects if there are spatial spillovers, I estimate and aggregate versions of the county 

DPD model that include spatial lags of weather, in addition to more parsimonious models without 

spatial lags. 

After applying this methodology to obtain national weather effect estimates, I first evaluate 

their in-sample and out-of-sample explanatory power for national employment growth. The out-of-

sample estimated weather effects are based on a rolling out-of-sample nowcasting exercise, which 

only uses data that would be available to an analyst prior to the corresponding employment report.5 

Other recent efforts, most notably Boldin and Wright (2015) and Bloesch and Gourio (2015), have 

sought to similarly estimate the real-time effects of weather on the national payroll employment 

growth using more aggregate data. However, the empirical models underlying their estimated national 

effects are much more parsimonious and less precisely estimated than the county DPD model. None 

of these prior studies investigated the predictive power of their estimates for employment release 

surprises or asset prices responses. 

I find that these weather effect nowcasts have better out-of-sample explanatory power for 

national employment growth than nowcasts from a national time series model. Among the different 

versions of the county DPD model I consider – a parsimonious version without regional heterogeneity 

in the marginal effect of each weather variable and without spatial lags, a version with regional 

                                                 
5 The data available to an analyst prior to a given reference month’s employment report release, which typically occurs 
on the first Friday after the end of the reference month, are daily weather-station data through the end of the reference 
month, national employment data through the prior month from the BLS Current Employment Statistics (CES), and 
county employment data through six to eight months prior from the BLS Quarterly Census of Employment and Wages 
(QCEW).  



4 
 

heterogeneity but without spatial lags, and a version without regional heterogeneity but with spatial 

lags – the version with regional heterogeneity yields the best in-sample and out-of-sample fit. 

Nonetheless, even the weather effect estimates from this model explain a relatively small fraction of 

the variation in national employment growth. However, I find that these national weather effects have 

a strong positive association with the surprise component of employment data releases, both in-

sample and out-of-sample. Surprises are measured by the difference between the real-time reported 

data and the median survey forecast from market participants prior to the release. The weather effect 

backcasts, based on estimation of the county DPD model using the full sample, have a positive and 

significant association with monthly employment growth surprises and can explain roughly 8% of 

their time series variation. More importantly, the weather effect nowcasts, based on the rolling out-

of-sample estimation, also are strongly predictive of employment release surprises. The nowcasts 

have a positive and statistically significant effect on employment surprises and can explain about 15% 

of their variation.  

Given this finding, I then investigate the predictive power of the weather effect nowcasts on 

stock market returns and Treasury yield changes on employment report release days. The nowcasts 

have surprisingly strong predictive power for both stock market returns and Treasury yields.6 The 

estimates from these regressions suggest that asset markets do not fully account for weather’s effects 

on macroeconomic data. 

To illustrate the magnitude of weather’s importance for explaining asset price movements on 

employment report days, I estimate the returns, Sharpe ratios and success rates, for equities and 

Treasury bonds, from a simple long-short trading strategy based on the sign of the weather effect 

nowcast. For both stocks and bonds, the weather nowcast correctly predicts the sign of the daily return 

about 60% of the time. For stocks, the trading strategy yields a Sharpe ratio around 0.6 and a 

cumulative annualized return (in excess of any investment returns on non-employment report days) 

of about 2.1%. For Treasury bonds, the results vary by maturity length, with Sharpe ratios as high as 

1.0 and cumulative returns as high as 4.5%. 

                                                 
6 Most prior work on the relationship between weather and asset prices has focused on the effect of weather on the mood 
of market participants and, in turn, market returns on days of favorable or unfavorable weather. For instance, Saunders 
(1993), Hirshleifer & Shumway (2003), and Goetzmann, et al. (2014) find that daily stock market returns are 
significantly affected by the degree of cloudiness on that day in the city in which the stock market exchange is located. 
Busse, et al. (2014) find similar psychological weather effects on auto purchases. 
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I.  Data 

A. Employment and Other Outcomes 

 Data on employment by county, industry, and month are available from the Quarterly Census 

of Employment and Wages (QCEW).7 As of the time of this writing, the QCEW data for NAICS 

industries are available from January 1990 through December 2015. Data for SIC industries is 

available from January 1975 through December 2000. The QCEW is compiled by the Bureau of Labor 

Statistics based on state Unemployment Insurance administrative records. Nearly all private nonfarm 

employers in the U.S. are required to report monthly employment counts and quarterly total wages of 

their employees to their state’s Unemployment Insurance agency. Employment covers “all full- and 

part-time workers who worked during or received pay (subject to Unemployment Insurance wages) 

for the pay period which includes the 12th day of the month.”8 Note that this is the same definition of 

employment used in the payroll survey underlying the monthly national payroll employment report 

(i.e., the BLS Current Employment Statistics (CES) report).9 

 The CES payroll survey does not cover agriculture, ranching, fishing, and hunting, which are 

included in the QCEW’s all-industry employment total. Thus, to ensure full comparability between 

the CES and QCEW industry coverage, I construct an alternative QCEW “all-industry” sample that 

excludes these subsectors (which are a very small fraction of QCEW total employment). 

I measure monthly surprises to total nonfarm employment growth by the difference between 

actual, real-time (as first reported) employment growth and the median forecast of employment 

growth from a survey of economists and market participants conducted in the few days prior to the 

employment report. The survey and real-time data, from January 1990 to present, come from Money 

Market Services (MMS)/Action Economics and have been used previously in event studies of the 

financial market responses to macroeconomic data releases (see, e.g., Gurkaynak, Sachs, and 

Swanson 2005).10 Daily data (close-of-market) data on the Dow-Jones Industrial price index, S&P 

500 price index, and Treasury bond yields were pulled from the FAME database. 

                                                 
7 http://www.bls.gov/cew/datatoc.htm.  
8 http://www.bls.gov/cew/cewproper.htm.  
9 http://www.bls.gov/web/empsit/cesfaq.htm#qc2. 
10 Unfortunately, the survey did not begin separately asking about private nonfarm employment until late 2011. Hence, I 
use total nonfarm employment here. 
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B. Weather 

I construct data on weather by county and month from the Global Historical Climatology 

Network Daily (GHCN-Daily) data set. The GHCN-Daily is a product of the U.S. National Climatic 

Data Center (part of the National Oceanic and Atmospheric Administration (NOAA)) and contains 

daily weather measurements from weather stations throughout the United States and around the 

world.11 Using these records from individual weather stations, I measure county-level weather as 

follows.12 First, the surface of the conterminous United States is divided into a 5-mile by 5-mile grid. 

Second, weather values for each grid point are estimated using inverse-distance-weighted averages 

of the weather values from weather stations within 50 miles of the grid point. These county-level 

daily weather measures are used to construct monthly variables. 

 As noted above, both the CES and QCEW aim to measure the number of individuals on 

employer payrolls as of the pay period containing the 12th of the month. This suggests that for a given 

firm, weather during the pay period containing the 12th of the month will matter much more than 

weather on other days for the employment counts that they report to the BLS. Thus, aggregating over 

firms, the most relevant set of weather days depends on the distribution of pay period frequencies. 

The BLS reports that about one-third of businesses pay weekly and nearly 20% pay semimonthly 

(i.e., pay periods for the first half of the month and second half of the month)( Burgess 2014). Thus, 

for a little over half of employers, weather on days beyond the first two is largely irrelevant. Another 

37% of businesses pay biweekly, for which weather during the two weeks including the 12th matters 

most. Only a small share of employers pay monthly, for which all weeks of the month are relevant. 

 To assess more formally which weeks of weather are most relevant for reported employment 

counts, I estimate a variant of the panel fixed effects regression discussed in more detail in Section 

II. In this variant, I regress monthly county employment growth on weather variables for each of the 

weeks within the month (where the fourth “week” is day 22 through the end of the month). The 

weekly weather variables are average daily-high temperature, average daily precipitation, and average 

daily snowfall. The regressions include fixed effects for time (sample-month) and county-by-

calendar-month-by-decade to absorb county-specific, decade-varying seasonality.  

The results are shown in Table 1. Though the exact pattern of effects over the four weeks 

varies somewhat by variable, the impact of weather in the first two weeks of the month tends to be 

                                                 
11 http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/. 
12 See Wilson (2017) for further details on the construction of the county-month weather data. The approach broadly 
follows that of Ranson (2014). 
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roughly double that of weather in the last two weeks. To be precise, the implied weights averaged 

over the five variables are 0.30 on week 1, 0.34 on week 2, 0.15 on week 3, and 0.21 on week 4.13 

Thus, both the distribution of pay period frequencies reported by the BLS and these empirical 

estimates suggest giving roughly double weight to weather in the first two weeks relative to the last 

two weeks when constructing monthly weather variables. For the baseline monthly weather variables 

used in the analyses below, weather from the first two weeks is given double weight relative to the 

remainder of the month in constructing the monthly variables.  Alternative results based on using 

equal weights, zero weight on the last two weeks, or the average implied weights from Table 1 are 

all qualitatively similar and are available upon request. The five daily weather variables used to 

construct these monthly weighted averages are daily-high temperature, an indicator for whether the 

maximum temperature was above 90˚F (32.2°C), an indicator for whether the minimum temperature 

was below 30˚F (-1.1°C), daily precipitation, and daily snowfall. 

 

II. Dynamic Panel-Data Model for Local Weather Effects 

 As mentioned earlier, the first step in the methodology for estimating national weather effect 

estimates entails estimating the effect of weather on monthly employment growth at the local level. 

To do so, I use a county-level dynamic panel data (DPD) model.14 The general regression 

specification is of the following form: 

  (1) 

where  is the change in log non-seasonally-adjusted private nonfarm employment in county c and 

month t.  is an industry-specific time (month of sample) fixed effect, which absorbs all national 

common factors such as business cycles, oil price shocks, foreign economic shocks, monetary policy 

changes, and federal fiscal or regulatory policy changes.  is a county-specific calendar-

month*decade fixed effect. The inclusion of this fixed effect has the effect of seasonally adjusting 

                                                 
13 The implied weekly weights for a given variable are the coefficient for that week divided by the sum of the 
coefficients over the four weeks. 
14 Wilson (2017) uses a similar empirical model to explore nonlinear temperature effects, the extent to which local 
economies adapt to their long-run climates, and the extent to which the aggregate economy has become more or less 
sensitive to weather over time. It also estimates industry-specific models, the results of which show that the most 
weather-sensitive industries are Mining and Logging, Construction, Retail Trade, Leisure and Hospitality, and 
Manufacturing. Other recent studies also have used county panel data to investigate the local economic impacts of 
weather. See Deschênes and Greenstone (2007) for results on annual agricultural profits, Deryugina and Hsiang (2014) 
on annual income, and Graff-Zivin and Neidell (2014) and Connolly (2008) on time use allocated to work vs. leisure. 
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employment growth, where seasonal patterns are specific to each county and are allowed to vary by 

decade.15 

 The  are the key parameters to be estimated. They capture the effect of each weather 

variable (indexed by k), by season (i) and by region (j), on employment growth in the current month 

and up to three months ahead.  is an indicator equal to 1 if county  is in region ;  

is an indicator variable equal to 1 if month t is in season ; and  is one of K weather variables 

for the month . Seasons are defined as follows: Winter = December, January, and February; 

Spring = March, April, and May; Summer = June, July, and August; and Fall = September, October, 

and November. The regions are the nine Census Bureau regions. I include five monthly weather 

variables: average daily precipitation (millimeters), average snowfall (centimeters), average daily 

high temperature (degrees Fahrenheit), the number of days in which the low temperature is below 

30°F (-1.1°C), and the number of days in which the high temperature is above 90°F (32.2°C).  

 The model is estimated using weighted OLS, where the weights are log county employment. 

The weighting is done to mitigate the influence of sparsely populated counties. Measurement error in 

the weather data is likely to be inversely proportional to population given that less populous counties 

generally have fewer or no weather stations and thus the weather data for these counties relies more 

heavily on spatial interpolation. In addition, to mitigate the influence of measurement error and 

outliers in the dependent variable, I winsorize employment growth at the 1st and 99th percentiles (i.e., 

values below the 1st and above the 99th percentiles are replaced with the 1st and 99th percentile values, 

respectively). 

Without any constraints imposed, the above model contains 720  parameters16  – too many 

to be estimated with reasonable precision. To reduce this number while retaining the economically 

important sources of heterogeneity in weather effects, I impose some realistic constraints. First, note 

that there is already in equation (1) a constraint imposed by the number of lags included in the model. 

The model assumes that lags beyond 3 months have no effect, which is supported by a Wald test 

involving comparing the baseline model to a model with 4 lags. However, there are no constraints 

imposed on the lag structure within that lag length. This allows for the possibility of permanent (or at 

least persistent) weather effects and transitory (mean-reverting) weather effects. Second, I consider 

constraints on season heterogeneity. In particular, temperature seems likely to have different effects 

in the spring and winter, when warmer days may well boost economic activity, than in the summer, 

                                                 
15 The BLS does not provide seasonally-adjusted QCEW data at the county level. 
16 5 weather variables X 9 regions X 4 seasons X 4 lags. 
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when warmer temperatures may have less positive, or even adverse, effects. Yet, a reasonable (and 

testable) constraint on the model might be to assume the other weather variables – snow, number of 

days below 30°F, number of days above 90°F, and precipitation – have approximately the same 

marginal effects on employment growth throughout the year.17 Hence, I impose this joint constraint 

and test the constraint via a Wald test. 

A priori, regional heterogeneity in weather effects seems important and it is largely absent 

from previous studies.18 Weather is inherently a local phenomenon and its primary economic impacts 

are felt locally; national average effects may be of limited value. On the other hand, allowing for full 

regional heterogeneity could lead to overfitting. Hence, I estimate two versions of the DPD model: 

one version with full regional heterogeneity (RH), as in equation (1), and one version without regional 

heterogeneity (no-RH) – that is, with each  assumed to be equal across regions ( ). The 

RH model yields 288  parameters while the no-RH model yields 32  parameters. 

The RH and no-RH models capture the effects of local weather on local employment growth. 

It is possible that local employment growth is also affected by weather in other places through spatial 

spillovers of local economic shocks. There are a variety of potential channels for such spillovers, and 

spillovers can be positive and negative. For instance, a shock that boosts income in one county can 

positively affect economic activity in nearby counties, especially in non-tradable goods and services, 

due to cross-border shopping and commuting. On the other hand, such a shock could raise local and 

nearby-county wages and thus negatively affect labor demand in nearby counties. There’s also the 

possibility that local shocks affect economic activity in faraway places. For example, vacation 

destinations across the country compete with one another. A negative weather shock in one 

destination can increase tourism in other destinations. In addition, a shock affecting the local tradable-

                                                 
17 Note that this constraint on marginal effects ( ) does not preclude these weather variables from having different 
predicted total effects ( ) across seasons. For instance, though the effects of one centimeter of snowfall is assumed 
to be the same in all seasons, snowfall will typically be zero in summer months for most counties and hence will 
typically have no predicted effect on employment growth in those county-months while its predicted effect in winter 
months will typically be non-zero due to positive snowfall.  
18 Neither Boldin and Wright (2015) nor Bloesch and Gourio (2015) explicitly allow for regional heterogeneity in 
weather effects, however they do measure aggregate weather based on deviations-from-normal-weather at the city 
(Boldin and Wright) or state (Bloesch and Gourio) levels. Thus, the underlying assumption is not that all places respond 
the same to an inch of snow or an extra degree of temperature, but that all places respond the same to an inch of snow 
above their average or an extra degree of temperature above their average. It should also be noted that Boldin and 
Wright, in some specifications, include the Regional Snowfall Index (RSI) provided by the National Centers for 
Environmental Information (NCEI)(see Squires et al. 2014), which incorporates some regional heterogeneity in 
snowfall effects. The RSI rates snowstorms based on their “societal impact,” where the latter is based on the severity of 
the storm, its spatial extent, and its nexus with population centers. However, the index only covers storms in the eastern 
two-thirds of the United States and only covers the subset of storms NCEI considers “major” (roughly 5 per year). 
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goods sector can affect final goods prices faced by consumers and intermediate input costs faced by 

producers in other parts of the country. 

If such spillovers exist, national aggregates of the local weather effects derived from the RH 

and no-RH models may be biased. Hence, I also consider a version of the no-RH model that 

incorporates spatial lags of each weather variables (and its three time lags). The spatial lag of a 

variable for a given county is simply a weighted average of that variable in other counties, where the 

weights measure the spatial linkage between the focal county and each other county. A common 

approach is to weight by the inverse of the geographic distance between population centroids (from 

U.S. Census Bureau data). This is the primary approach I follow for the spatial lag models used in the 

paper. However, I also obtained results from model where the spatial lags are constructed from an 

equal-weighted average of counties 1,000 or more miles away from the focal county (again based on 

distance between centroids). 

 

III. Estimated Models of Local Weather Effects 

 In this section, I briefly present the results from estimating three alternative county DPD 

models: (1) the model without regional heterogeneity in the marginal effects of weather (no-RH), (2) 

the model with regional heterogeneity (RH), and (3) the model accounting for potential spatial 

spillovers of weather in other counties affecting employment growth in the focal county (SL). 

 Each weather regressor is normalized by its full-sample standard deviation so that the 

coefficient magnitudes can be compared across the different weather variables. Each coefficient 

represents the effect on local employment growth of a one standard deviation change in that weather 

measure.  

The coefficients and standard errors from estimating equation (1) for the version of the model 

without regional heterogeneity are shown in Table 2. Recall that the dependent variable is private 

nonfarm employment growth. The regression uses a balanced panel of 1,329,900 observations from 

3,100 counties. The panel covers 429 months from January 1980 to December 2015. The standard 

errors are robust to heteroskedasticity and allow for two-way clustering of the residuals. The first 

cluster group is county. Clustering by county allows for any form of within-county serial correlation. 

The second cluster group is state*sample-month, which allows for cross-sectional spatial correlation 

across counties within a state. Allowing for this cross-sectional spatial correlation accounts for both 

the natural spatial correlation of weather across local areas but also any correlation introduced by the 



11 
 

fact that neighboring counties may use data from the same weather station(s) in the process of 

constructing the weather variables for their county.  

The first column of the table shows the estimated coefficients and their standard errors on the 

contemporaneous values of the weather variables. The second, third, and fourth columns show the 

coefficients and standard errors for the one-, two-, and three-month lagged values, respectively. The 

implied four-month cumulative effect is provided in the final column. The estimates indicate that 

higher temperatures have a positive and statistically significant contemporaneous effect on 

employment growth in all four seasons. The effects are economically significant as well. For instance, 

in spring months, a one standard deviation (18.1°F) increase in temperature is associated with 0.11 

percentage point higher employment growth in the same month. Note that average monthly 

employment growth in the sample is 0.08 percentage point (see Table 1), so this spring temperature 

effect represents more than a doubling relative to baseline employment growth.19 The 

contemporaneous effect of temperature is largest in the spring and smallest in the fall. Precipitation 

and snowfall have modest negative contemporaneous effects; both are significant at below the 1% 

level. The percentage of days in the month in which the high temperature exceeded 90°F and the 

percentage of days in which the low temperature fell below 30°F, holding constant the average daily 

high temperature over the month, each have negative point estimates, though the latter is only weakly 

statistically significant. 

 The lagged effects tend to be of opposite sign to the contemporaneous effect and largest for 

the first two lags. Over the course of four months, the implied cumulative effect is close to zero and 

statistically insignificant for average daily-high temperature, with the exception of a small and weakly 

significant effect in the winter. Precipitation has a negative contemporaneous effect but positive 

cumulative effect, while snowfall has a negative cumulative effect. The number of days above 90°F 

has a negative effect on employment growth in the current month and up to 3 months later, leading 

to a sizable negative cumulative effect. Though it is difficult to know the mechanisms underlying 

such effects, one possible explanation for this last effect is that very hot days increase business 

operating costs (e.g., air conditioning) which, if persistent over several months, can significantly 

dampen employment growth. 

 Due to the very large number of weather effect parameters (288, not counting implied 

cumulative effects), estimates of the model with regional heterogeneity are not shown here. The 

                                                 
19 Note that monthly employment growth of 0.08 percentage points (p.p.) is equivalent to roughly 1.0p.p. growth at an 
annual rate.  
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positive and significant contemporaneous temperature effects, especially in the spring, shown in 

Table 2 are found to be broad-based across regions, though they tend to be largest in the Pacific 

region. The contemporaneous effect of the number of very hot days, which is negative, also is found 

to be largest in the Pacific region. The contemporaneous effect of precipitation is fairly broad-based, 

though the effect is largest in New England and the East North Central and the East South Central 

regions. Lastly, snowfall’s negative effect appears to be most pronounced in the South Atlantic and 

East South Central, two of the three regions with the lowest average snowfall. Consistent with the 

findings from the no-RH model, the cumulative effects of weather are generally close to zero in all 

regions, with some exceptions. Notable exceptions are that higher temperatures in New England have 

persistent negative effects on employment growth in both the summer and the winter, and higher 

temperatures in the Pacific region have persistent positive effects on spring employment growth. 

Precipitation also has a cumulative negative effect in New England. The number of very cold days 

has negative cumulative effects in a few regions, especially in New England, the East North Central, 

and the Mountain region. Lastly, I find that the number of very hot days has negative cumulative 

effects in several regions and especially in the Pacific region (consistent with the negative 

contemporaneous effect in that region) and the South Atlantic. 

The results from estimating a version of the panel data model without regional heterogeneity 

but with spatial lags (SL) are shown in Table 3. For each weather variable (contemporaneous and 

lagged values) included in the no-RH model (Table 2), the SL model includes that variable plus its 

spatial lag. The spatial lags here are based on inverse-distance weighting of other counties, where 

distance is measured between the population centroid of the focal county and each other county. 

Compared with the results in Table 2, the own-county effects are, in general, qualitatively similar but 

quantitatively smaller and less likely to be statistically significant. For instance, as in Table 2, the 

average daily high temperature has a large positive, but transitory, immediate effect on employment 

growth in the spring and the winter. Contrary to the results in Table 2, however, the own-county 

effects for temperature in the summer and fall from the SL model are near-zero contemporaneously 

but negative and significant over a four-month period.  

The spatial lag effects – that is the effects of weather in nearby counties – are often large, 

though estimated somewhat imprecisely, and generally are in the same direction as the own-county 

effects. In particular, contemporaneous own-county employment growth is boosted when nearby 

counties experience higher spring and summer temperatures, lower precipitation, and lower snowfall. 

Spatial lags of temperature in the summer and fall have positive cumulative effects while the spatial 
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lag of the number of very hot days has a negative cumulative effect. These results potentially suggest 

that spatial spillovers of weather to nearby places tend to be positive (i.e., in the same direction as 

own-county effects). However, it is also possible that county level weather contains measurement 

error and that spatial lags of weather, by averaging weather measurements across nearby counties, 

provide a less noisy measure of own-county weather (in addition to picking up any spatial spillovers). 

I am agnostic here as to which interpretation is more accurate. Either case implies that the SL model, 

when aggregated, could potentially provide a better in-sample and out-of-sample fit for national 

employment growth.20   

 

IV. Estimating National Weather Effects, Historically and in Real-Time 

 The county panel models estimated above can potentially be useful in estimating the effects 

of weather on national economic activity, historically and in real-time. In this section, I show how 

these estimated county panel models can be used to obtain estimates of the overall weather effect on 

any given month’s employment growth at the county level, which can then be aggregated to the 

national level. I then use this methodology to estimate national weather effects, and I evaluate the 

extent to which these weather effects can explain national payroll employment growth as well as 

employment data surprises and financial market returns on employment release days. 

 

A. Methodology 

 The first step in obtaining the estimated overall weather effect for a given county and month 

is to obtain the fitted values of employment growth from estimating the county DPD model (equation 

(1)): 

 

where  is the vector of weather variables, . Thus,  is predicted local employment 

growth as a function of national factors (captured by the time fixed effect), seasonal factors (captured 

by the county*calendar-month*decade fixed effect), and actual weather in the current and past three 

months.  

                                                 
20 I also have estimated a version of the SL model replacing the inverse-distance spatial lags with the 1,000-miles-plus 
distance spatial lags, as mentioned in the previous section. In general, the estimates suggest unfavorable weather in far-
away counties tends to boost employment growth at home. This model, however, yields aggregate weather effect 
estimates with a very weak fit for national payroll employment growth. 
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 The second step is to obtain counterfactual estimates of employment growth had weather that 

month been equal to its historical average for that county, calendar month, and decade: 

, where  is the vector of weather variables where each is set equal to their 

county*calendar-month*decade mean. The difference between predicted employment growth given 

actual weather and predicted employment growth given average weather, 

, is an estimate of the overall weather effect for that county and 

month.  One can then sum these local growth effects, using employment weights, to get an estimate 

of the national weather effect on employment growth for a given month: 

  , 

where . 

 Because weather data is collected and made public by NOAA in nearly real-time – it is 

released with a one-day lag – such estimates of national weather effects can be produced both 

historically and concurrently with, or even a few days in advance of, the BLS’ monthly release of 

national payroll employment growth, which leads the release of QCEW data by six to eight months. 

In other words, national aggregates of the fitted county DPD model can provide both “backcasts” 

(historical estimates) and “nowcasts” (real-time estimates) of weather’s effect on national 

employment growth. 

 

B. In-Sample and Out-of-Sample Fit for National Employment Growth 

 Policymakers and others often want to know the effect of weather in a given (typically the 

latest) month on national employment growth and other macroeconomic outcomes. A common 

approach is to estimate the historical relationship between weather, measured using national (cross-

sectional) averages, and the national outcome in question using a time series regression, and then 

obtain weather effect estimates using a methodology similar to that described above. The rich 

heterogeneity of weather effects in the county DPD model and the precision of its estimates based on 

large degrees of freedom offer the potential of better explaining national weather effects.  

 However, there are two potential disadvantages. First, the county model is estimated using the 

QCEW data on employment. While the QCEW, being a census from administrative records rather 

than a survey, is likely a more accurate measure of employment than that from the CES payroll survey, 

the QCEW data are released with a several-month lag while the payroll survey’s employment data is 
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available in nearly real-time and hence is followed closely by policymakers and the public. Thus, 

estimates of the national weather effect based on the county DPD model using QCEW data may not 

be able to explain national CES employment growth as well as a simple national time series model 

based on CES data.21 Second, though one can attempt to capture spatial spillover effects via spatial 

lags in the county model, the true nature of spatial spillovers is unobserved. If these spillovers are 

quantitatively important and not fully captured by any spatial lags included in the county model, then 

the national effects obtained by aggregating across counties will be mismeasured. 

 To assess whether the advantages outweigh the disadvantages or vice-versa, I evaluate the in-

sample and out-of-sample explanatory power of the national weather effect estimates derived from 

the county DPD model compared to estimates derived from a national time series model. The latter 

estimates are based on the same methodology as in the previous subsection – predicted values using 

actual weather minus predicted values using average weather – but using the following time series 

regression to obtain the fitted model: 

  (2) 

where  is seasonally-adjusted payroll employment growth from the official BLS Current 

Employment Situation (CES) series. This is the payroll employment series commonly reported on in 

the media each month and that is closely tracked by policymakers and the public. The regressor,  

for each weather variable k, is the national employment-weighted average of the county-level 

deviation of that variable from its county*calendar-month*decade average. That is, the regressor 

captures the extent to which weather across the county deviated from local seasonal norms in that 

month.  is a season fixed effect (see text after equation (1) for season definitions), which is 

included to account for potential residual seasonality not captured by the BLS seasonal adjustment of 

employment. 

 This national model is estimated using the same sample period as that used for the county 

DPD model, January 1980 to December 2015. The estimated coefficients and standard errors are 

shown in Table 4. The effects of weather implied by the national time series regression are 

                                                 
21 Note that the historical CES employment levels are annually benchmarked to the QCEW employment levels. 
However, the two series vary independently within the year. Also, the published CES data are seasonally adjusted using 
the Census X13 algorithm which is a different technique for seasonal adjustment than that which underlies our county-
DPD/QCEW estimates of weather effects. The latter relies on seasonal adjustment within the county DPD regressions 
via county*calendar-month*decade fixed effects. 
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considerably different, and estimated much more imprecisely, than those obtained from the analogous 

county DPD model without regional heterogeneity (Table 2). In fact, none of the contemporaneous 

weather variables are statistically significant, though several have economically significant 

coefficients. For instance, the number of days in the month with minimum temperature below 30°F 

is estimated to have a large negative effect on employment growth, both contemporaneously and 

cumulatively, though only the cumulative effect is statistically significant. 

 In addition to the estimated national weather effects based on the fitted national model shown 

in Table 4, I calculate national weather effects based on three alternative versions of the county DPD 

model. The first is the county DPD model with regional heterogeneity (RH); the second is the county 

model without regional heterogeneity (no-RH), as in Table 2; and the third is same model but 

including inverse-distance-based spatial lag terms, as in Table 3 (SL).  

 To assess the power of each model’s estimated national weather effects for 

explaining/predicting national payroll employment growth, I regress private nonfarm employment 

growth (from the CES payroll survey) on that model’s national weather-effect series. For in-sample, 

backcasting evaluations, the county and national models are estimated using the sample described 

above, from January 1980 to December 2015. 

 The results from regressing payroll employment growth on each model’s implied weather 

effects are shown in Table 5. Specifically, the table reports the estimated slope coefficient from each 

of these bivariate time series regressions – i.e., the coefficient on the weather effect – and its standard 

error, as well as the R2. In sample, the national model yields the best fit (highest R2). Moreover, the 

implied weather effect from that model is highly statistically significant. The full-sample R2 is 

considerably lower for the county models, with the county spatial lag model having the worst fit. 

Nonetheless, the weather effect estimates from the RH and no-RH versions of the county model are 

statistically significant. Note that for the national model, this regression is in essence equivalent to 

the regression in Table 4, since that regression uses the same dependent variable and the same sample 

period, while the regressor in Table 5 is just the predicted values from the regression in Table 4. 

Hence, the fact that the national model’s implied weather effects give the best in-sample fit is not 

surprising; after all, that model is fitted to minimize the sum of squared errors (via OLS). 

 The more relevant question is which model yields the best fit out of sample. In particular, an 

analyst or policymaker would like to know which model specification would be most useful for 

estimating weather’s effect on employment growth in the current month, even before that month’s 

employment data is released. In other words, which model is best for “nowcasting”? A model with 
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good out-of-sample/nowcasting properties could be useful to policymakers and market participants 

attempting to gauge the employment implications of weather in the current or most recent month, 

especially given that the NOAA weather data is released with only a one-day lag.  

I construct rolling out-of-sample nowcasts of the national weather effects as follows. For the 

county models, I estimated the county DPD model iteratively over sample periods in which the first 

sample month is fixed at January 1980 and the end-month is iterated from May 2003 to December 

2015. For each rolling sample, I calculate the implied county-level weather effect for the month eight 

months past the end-month and aggregate to the national level (as described in subsection A above). 

Using eight-month out-of-sample estimates mimics the best an analyst could do in real-time given 

that county-level QCEW data are released (at a quarterly frequency) with a lag of six to eight months. 

This process yields a time series of national weather effect nowcasts from January 2004 to August 

2016.  

For the national model, I estimate the model iteratively over sample periods in which the first 

month is fixed at January 1980 and the end-month is iterated from December 2003 to July 2016. For 

each rolling sample, I calculate the implied national weather effect for the month following the end-

month. Using one-month out-of-sample estimates mimics the best an analyst could do in real-time 

given that the national CES data are released on the first Friday of the month following the reference 

month. As with the county-model based estimates, this process yields estimated national weather 

effects from January 2004 to August 2016.  

The second row of Table 5 shows the nowcasting/out-of-sample results, where actual payroll 

employment growth is regressed on the nowcasts of weather effects for each model. All three of the 

county models yield a better out-of-sample fit than the national model. The county models without 

spatial lags perform considerably better than the spatial lag model. The R2’s for the county models 

with and without regional heterogeneity are very similar, about 0.04. The weather effects from each 

of these two county models are statistically significant at below the 5% level. 

 In sum, the county models, despite being estimated using QCEW employment data instead of 

CES data and being estimated at the local rather than national level, yield national weather effect 

estimates with better nowcasting explanatory power for national CES employment growth than does 

a national time series model estimated on national CES employment growth data. It is particularly 

interesting that the county model with no regional heterogeneity, which is exactly the same 

specification as the national model aside from fixed effects, yields a better out-of-sample fit than the 

national model. This suggests the advantage afforded by the large degrees of freedom in the county 
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DPD regression outweigh the disadvantage of having to rely on a different employment data source 

at the local level. 

 

C. Impact of National Weather Effects on Other National Labor Market Outcomes 

 Above I found that nowcasts of the national weather effect implied by the estimated county 

DPD model can help predict national payroll employment growth. Here I consider whether these 

weather effect nowcasts also help predict other national labor market outcomes. As I did for payroll 

employment growth in Table 5, for each of several national labor market variables I regress the 

variable on the national weather effect nowcast from the county DPD model or the national model. 

For this exercise, I use the county DPD model with regional heterogeneity (“RH”); the results are 

very similar using the model without regional heterogeneity (“no RH”).  

The results are shown in Table 6. The results from Table 5 for national CES employment 

growth are repeated in the first row for comparison. The right-most column shows the p-value on the 

Giacomini-White (GW) test that the mean squared errors of the two forecasts of employment growth 

are the same. I find that the county DPD model’s weather effects have a statistically significant impact 

on national CES employment growth, national QCEW employment growth, the vacancy rate, and the 

hires rate.22 Weather effects from the national model are statistically insignificant in all of these cases. 

Furthermore, the R2 is higher using the county DPD model’s weather effects in every case, though 

the GW test fails to reject the null that their predictive power is the same. 

I also consider the predictive power of the weather effect nowcasts on payroll employment 

growth broken out by establishment size class (from national CES data).23 The results are shown in 

rows 6-8 of Table 6. Interestingly, the county model’s nowcast is most powerful at predicting 

employment growth at small establishments (less than 50 employees), while the national model is 

best at predicting employment growth at very large establishments (more than 500 employees). It is 

possible that small establishment employment growth is particularly sensitive to local weather (and 

insensitive to non-local weather), and hence the local model is particularly good at capturing those 

effects. Large establishment employment growth, on the other hand, may be less sensitive to local 

                                                 
22 Like county level QCEW data, national QCEW data is not seasonally adjusted. For these regressions, I seasonally 
adjust QCEW employment growth by taking the residual from a regression of raw QCEW employment growth on 
calendar-month dummies. 
23 Unfortunately, the QCEW data only provide employment by size class for the first quarter of each year, so it is not 
possible to estimate a county DPD model for local employment growth by size class. 
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weather and more sensitive to non-local/nationwide weather, and hence the national model is 

somewhat better at predicting employment growth at large establishments. 

Next, as a type of cross-validation exercise, I estimate the relationship between the weather 

effect nowcasts and the monthly change in the rate of self-reported work absences due to weather 

from the household survey portion of the employment report. In the household survey (i.e., the 

Current Population Survey), respondents are asked if they were employed but absent from work 

during the week containing the 12th of the month. Those that say yes are asked which of the following 

was the reason for the absence: vacation, illness, bad weather, labor dispute, or “other reasons”? The 

absence rate is the number of respondents reporting an absence divided by total household-survey 

employment. The penultimate row of Table 6 shows that the weather effect nowcasts are strongly 

negatively related to the change in the weather-absences rate. That is, in months in which the nowcasts 

indicate that recent weather positively (negatively) affected employment growth, the rate of work 

absences due to bad weather tends to fall (rise). By contrast, the nowcasts from the national model 

have virtually no correlation with reported work absences due to bad weather. 

Lastly, as a falsification test, I evaluate whether the weather effect nowcasts are correlated 

with the monthly change in the rate of work absences for non-weather reasons.  The final row of 

Table 6 shows that, as expected, the nowcasts have no significant relationship with non-weather 

related absences. 

The results in Table 6 are also informative regarding the extent to which the county model’s 

implied national weather effects capture the true effect of weather on national employment growth. 

That is, they are informative as to how well the county model is able to overcome the two challenges 

inherent in using county data to estimate national weather effects on CES payroll employment growth: 

(1) using QCEW data instead of CES data in the model estimation and (2) estimating at the county 

level and aggregating instead of estimating at the national level. If the model perfectly captured the 

true weather effect, one would expect a slope coefficient of one when the dependent variable is private 

nonfarm employment growth.24 When this is measured using the aggregated QCEW data, we obtain 

a slope coefficient of 1.041, suggesting little if any measurement error is introduced by the county-

to-national mapping. When employment growth is measured using the CES data, the slope coefficient 

falls a bit, to 0.899. While this is not statistically significantly different from one, the drop in the point 

estimate below one suggests there is some amount of measurement error introduced by the mismatch 

                                                 
24 Note that even with a slope coefficient of one, we might expect a low R2. The low R2 would simply reflect that a 
small fraction of the variation in employment growth is due to weather.  
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between the QCEW and CES. That mismatch could be due to differences between the two data 

sources in coverage, employment definition, and seasonal adjustment methods. 

V. Predictive Power for Employment Report Surprises and Asset Prices 

A. Predictive Power for Payroll Employment Report Surprises 

While the R2’s for payroll employment growth in Table 5 from the county-based models are 

greater than that for the national model, they are still fairly low, at about 0.04. Even if one measured 

the employment growth weather effect perfectly, this R2 likely would be quite low, indicating that a 

relatively small fraction of the variation in employment growth is due to weather as opposed to other 

factors. It is quite possible, however, that these other factors – e.g., strikes, financial conditions, and 

overall economic conditions – are largely observed and known to policymakers, market participants, 

and other analysts interested in tracking real-time employment growth (i.e., “nowcasting”). The 

national weather effect, on the other hand, may not be well observed given that it requires both a rich 

understanding of weather’s local effects and real-time local weather data. In that case, one would 

expect the weather effect to predict the unanticipated, or “surprise,” component of national 

employment data releases. Moreover, to the extent that the weather effect predicts employment 

surprises, one might also expect an effect on financial market asset prices on employment report 

release days given the strong sensitivity of asset prices to employment surprises.25 

I investigate these conjectures in Table 7 and Figure 1. I measure monthly surprises to total 

nonfarm employment growth by the difference between actual, real-time (as first reported) 

employment growth and the median forecast of employment growth from a survey of economists and 

market participants conducted in the few days prior to the employment report. The survey and real-

time data, from January 1990 to present, come from Money Market Services (MMS)/Action 

Economics and have been used previously in event studies of the financial market responses to 

macroeconomic data releases (see, e.g., Gurkaynak, Sachs, and Swanson 2005).  

I regress employment growth surprises on estimated national weather effects. I consider this 

relationship both for the weather effect backcasts derived from the full-sample county DPD 

                                                 
25 Note that payroll surprises should only affect asset prices to the extent that market participants perceive the surprise 
as reflecting news about cash flow or discount rate fundamentals. Payroll surprises perceived to have been due to 
transitory idiosyncratic factors, such as weather, should not affect asset prices. Hence, the hypothesis here is that the 
effect of current and lagged weather on employment is not fully observed/measured by market participants, in which 
case payroll surprises driven by weather can be misconstrued by the market as representing fundamentals, rather than 
weather, and hence affect asset prices. In addition, because the market does not recognize in such cases that the payroll 
surprise was actually driven by weather effects, there is no reason to expect the equity price response to be any different 
in weather-sensitive sectors than in non-weather-sensitive sectors.    
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estimation and the weather effect nowcasts derived from the rolling out-of-sample series of 

estimations (described in Section IV.B).  The regression results are shown in the top row of each 

panel in Table 7. Panel A shows the results for the backcasts while Panel B shows the results for the 

nowcasts. In addition, these relationships are shown graphically via bin-scatter plots in the top two 

panels of Figure 1.26 Table 7 provides results for weather effects estimates based on both the county 

model without regional heterogeneity (Columns 1-2) and the model with regional heterogeneity 

(Columns 3-4). The sample period for the employment growth surprise regressions in Panel A covers 

December 1989 to August 2016. (The MMS survey data necessary for constructing the surprises 

begins with December 1989.) The sample period for the regression in Panel B is January 2004 (the 

first month of the nowcasts) to August 2016. 

The results in Panel A indicate that the backcasts have a highly significant effect on the 

surprise component of employment growth, suggesting that, historically, market participants did not, 

or were unable to, fully account for the local effects of weather when forming their expectations of 

the latest month’s employment growth. The R2 is around 0.10 for both the no-RH and RH model 

based estimates, suggesting that weather is a significant, but not a dominant, factor in explaining 

unanticipated fluctuations in reported employment growth. 

Panel B of Table 7 and the right-hand side of Figure 1 shows the analogous results based on 

the nowcasts. Recall that the nowcast of the weather effect for a given month uses only data that 

would be available to an analyst prior to that month’s employment report. These nowcasts are able to 

explain around 15 percent of the variation in employment growth surprises. The slope coefficient in 

the regressions is around 0.4 and is highly statistically significant. 

 

B. Predictive Power for Stock Market Returns and Treasury Bond Yield Changes on Report Days 

Given this strong correlation between the estimated weather effects and employment growth 

surprises, and the well-known sensitivity of asset prices to macroeconomic data surprises, I evaluate 

the impact of the estimated weather employment effect on the stock market return and Treasury bond 

yield change on the day of the corresponding employment report release.27 The asset price changes 

                                                 
26 Each panel in Figure 1 contains a bin-scatter plot showing the relationship between the indicated outcome variable 
(y-axis) and the national employment weather effect estimate (x-axis). Each point shows the mean x and y values within 
a bin. Bins are defined according to 30 quantiles of the x variable. The shown fit line is based on a linear regression of 
the outcome variable on the national employment weather effect, using the raw data (not the binned data). Thus, the fit 
lines match the regression results shown in Table 7. 
27 The employment reports are generally the dominant macroeconomic news on their release days. Possible exceptions 
are the eight observations (3/7/80, 12/5/80, 9/7/90, 12/7/90, 2/1/91, 3/8/91, 12/6/91, and 9/4/92) in which there was an 
unscheduled FOMC policy announcement made on the same day as the employment report. The full-sample results are 
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are calculated from the close of the prior market day to the close of the market day on which the 

employment report occurs.28 For comparison, Column 5 of Table 7 shows the slope coefficient and 

standard error from a regression of the indicated dependent variable for that row on the payroll 

employment growth surprise. Column 5 in Panel A shows that for this December 1989 to August 

2016 sample period, employment growth surprises have no clear average effect on stock market 

returns (on the days of the employment report release) but have a strong positive effect on the 

Treasury bond yield change on those days. These results are consistent with prior empirical and 

theoretical research on the effect of macroeconomic data news on stock and bond returns.29 Positive 

data news have ambiguous effects on stock returns but unambiguously positive effects on Treasury 

yields because positive news not only can signal higher future earnings, boosting stock prices today, 

but can also raise the discount rate, which both lowers current stock prices and raises current Treasury 

yields. 

The full-sample results of regressing the stock market returns and yield changes on the 

weather effect backcasts are shown in the remainder of Table 7, Panel A, and the lower three panels 

on the left side of Figure 1. The backcasts based on the county no-RH model have a positive and 

significant association with the S&P 500 index daily return. The impact on the Dow-Jones index 

return is significant at the 10% level for both county models. The weather effects have a stronger 

association with the Treasury bond yield changes, particularly for the medium-length maturities of 

two, five, and ten years. This mirrors the pattern of the effect of employment surprises themselves on 

Treasury yields (column 5). 

The analogous nowcast results are shown in Table 7, Panel B and the right side of Figure 1. 

First, notice that during this sample period (Jan. 2004 – Aug. 2016), employment growth surprises 

have a strong positive effect on both Treasury yield changes and stock market returns on the days of 

the employment reports. Consistent with that effect, the weather effect nowcasts also have a positive 

and significant effect on the stock market returns and the change in Treasury bond yields on the days 

                                                 
virtually unchanged if these observations are dropped. The rolling out-of-sample results are unaffected because these 
dates are all prior to the rolling out-of-sample evaluation period.  It is also possible that employment report releases 
coincide with other important macroeconomic or financial news. One approach to dealing with this issue would be to 
use intraday changes in asset prices for narrow windows of time around the employment report. However, intraday 
Treasury data is only available from June 1991 onward, so this would result in the loss of more than one decade’s worth 
of observations for the full sample regressions. 
28 The regressions for stock market returns exclude seven observations (four of which are in the rolling out-of-sample 
window) in which the employment report occurs on a “Good Friday” holiday because the NYSE is closed on those 
days. 
29 For instance, McQueen and Roley (1993), Boyd et al. (2005), and Andersen et al. (2007) all find that the response of 
stock prices to macroeconomic news is small on average and varies along the business cycle, with positive responses to 
“good” macroeconomic news during contractions and negative responses during expansions. 
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of employment report releases.30 As with the full-sample, the Treasury yield effects are strongest for 

maturies between two and thirty years. For stock returns, the nowcasts and the employment surprises 

themselves explain only a small share of the variation (2-4 percent), consistent with the somewhat 

ambiguous relationship in the literature between positive macroeconomic data news and stock returns 

mentioned above. For release-day changes in Treasury yields, though, employment surprises explain 

close to a third of the variation when looking at medium-term maturities. The weather effect nowcasts 

explain as much as 6.1% of the variation in yield changes, depending on the maturity.  

Another way to assess the predictive power of the weather effect nowcasts for data surprises 

and asset price changes on employment report days is to compare the means of these variables over 

all days to their means over days when the nowcast is positive and over days when the nowcast is 

negative. These means are shown in Table 8.31 The first row shows the mean payroll employment 

growth surprise over all employment report release days between January 2004 and August 2016 

(Column 1), over those release days in which the nowcast is positive (Column 2), and over those 

release days in which the nowcast is negative (Column 3). Note that over this period, which of course 

contained the Great Recession and its slow recovery, employment reports tended to surprise on the 

downside over this period. Specifically, the average release reported a monthly employment growth 

rate that was about 0.8 percentage point (p.p.) lower than the median expectation. Yet, on release days 

in which the weather effect nowcast is positive, the average surprise was a positive 0.9 p.p., so 1.7 

p.p. above the entire sample average. On release days in which the nowcast is negative, the average 

surprise was –2.3 p.p., or 1.5 p.p. below the entire sample average.     

The second and third rows of Table 8 show means for stock market returns over various 

samples. For all trading days from January 1, 2004 through August 31, 2016, the mean daily stock 

market return is just 0.02%, according to either index. The mean stock return over just employment 

report release days is also 0.02%. Yet, on release days in which the nowcast is positive, the mean 

stock return is an order of magnitude larger, at 0.21%. When the nowcast is negative, the mean return 

is of a similar magnitude but negative. A similar story arises looking at Treasury bond yield changes. 

Treasury yield changes in general tend to be close to zero on average, but across days in which the 

nowcast is positive the mean yield change is over 2 basis points for maturities above one year. When 

                                                 
30 The effect on the 30-year Treasury yield is positive but insignificant. The statistical insignificance may reflect the fact 
that there are fewer observations for these regressions because new issuances of 30-year Treasury bonds were 
suspended from late 2001 until February 2006. 
31 The nowcasts used to generate Table 8 are based on the county model with regional heterogeneity. 
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the nowcast is negative, the mean yield change is around -2 basis points for the 2-year, 5-year, and 

10-year bonds. 

C. Illustration Based on a Simple Weather-Based Trading Strategy 

To illustrate the economic significance of the predictive power of the nowcasts for asset prices, 

I evaluate the performance of a simple trading strategy based on the nowcasts. For simplicity and to 

compare across asset types, I implement the strategy separately for each asset type: the Dow-Jones 

Industrial index, the S&P 500 index, and 2-, 5-, 10- and 30-year Treasury bonds. The trading rule is 

straightforward: when the weather effect nowcast is positive, take a long position in equities or a short 

position in bonds; when the nowcast is negative, take a short position in equities or a long position in 

bonds. In other words, if the nowcast indicates employment growth last month was boosted by 

favorable weather, the strategy calls for buying stocks and selling bonds; if the nowcast indicates 

employment growth last month was constrained by unfavorable weather, the strategy calls for the 

opposite. Trades are assumed to be made at the close of the day before the employment report. The 

trade is unwound, and the balance put into cash, at the end of the day of the report. The balance 

remains in cash until the day before the next employment report, which implies that the cumulative 

returns on the strategy can be interpreted as returns in excess of the return on whatever assets the 

balance is held in on non-report days. 

I assume an initial trading balance of 100 in December 2003 and follow the trading rule from 

January 2004 to August 2016. The weather effect nowcasts are the rolling out-of-sample estimates 

based on the county model with regional heterogeneity (RH). The panels of Figure 2 show the 

evolution of the balance from following this trading strategy for each asset type. The panels also 

provide the cumulative annualized return, the annualized Sharpe ratio, and the success rate over the 

period, where the success rate is defined as the percentage of trades yielding a positive daily 

return.32,33 The success rates range from 56% (for the S&P 500) to 64% (for the 2-year Treasury bond) 

                                                 
32 The return on a long position in Treasury bonds of maturity M on day d is calculated as:  , where r 
is the yield on the bond at the close of day. The return on the short position is simply . This expression 
comes from the relation between the price ( ) of a zero-coupon bond to its face value (F), time to maturity (M), and 
yield to maturity ( ):  . The rate of return is then approximately: 

  . 

 
33 Because there are 12 employment reports a year, the annualized Sharpe ratio is calculated as the  times the mean 

return per report day divided by its standard deviation. The same formula, but with , is used in Lucca and Moensch 
(2015) for computing the annualized Sharpe ratio for returns on pre-FOMC announcement days, which occur 8 times a 
year. 
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across the asset types. For the stock market indices, the strategy would have earned a roughly 2.1% 

cumulative annualized return with a Sharpe ratio of about 0.6. For Treasury bonds, the cumulative 

annualized return increases with the maturity of the bond, ranging from 0.5% for 2-year bonds to 

4.5% for 30-year bonds.34 However, the standard deviation of the returns across the employment 

report days also increases with the maturity, so the Sharpe ratio is highest, at about 1.0, for the 2- and 

5-year bonds.  

 

VI. Conclusion 

 Weather has important short-run effects on economic activity, particularly employment 

growth, at the local level. This paper asks whether estimates of local weather effects, when aggregated 

to the national level, can be useful in explaining and predicting movements in aggregate payroll 

employment as well as asset price responses to payroll employment releases. Using a county-level 

dynamic panel data (DPD) model and monthly data from January 1980 to December 2015, I estimated 

the effects of temperature (by season), precipitation, snowfall, the frequency of very hot days, the 

frequency of very cold days, and storm property damages on private nonfarm employment growth. I 

then demonstrated how this county DPD model can be used to obtain local weather effects estimates 

that can be aggregated to the national level. Following this approach in a rolling out-of-sample 

nowcasting exercise, I found that the monthly national weather effect nowcasts have better 

explanatory power for the BLS’s national payroll employment series than do nowcasts based on a 

national time series model fitted on that same employment growth data. In addition, the county DPD 

model’s weather effect nowcasts were found to be useful in predicting other national labor market 

outcomes such as the vacancy rate, hires rate, and quits rate. 

Lastly, I showed that these estimated weather effect nowcasts are predictive of the 

unanticipated, or surprise, component of real-time employment releases, explaining about 15% of 

their time-series variation. These nowcasts, in turn, were found also to have predictive power for 

stock market returns and Treasury yield changes on employment report release days. A simple trading 

strategy based on the weather effect nowcasts was shown to yield a Sharpe ratio for equities of about 

0.6 and for Treasuries bonds of as high as 1.0.  

These results are striking in that they suggest that financial markets do not, or are unable to, 

fully account for the effects of recent months’ weather on current month’s economic activity. This is 

                                                 
34 Note, however, that the performance of the strategy applied to 30-year bonds is not completely comparable to that for 
the other asset types because the sample periods differ; 30-year Treasury bonds were not issued between February 2002 
and January 2006. 
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likely due to some combination of the difficulty and complexities involved with processing the 

NOAA weather station data, processing the BLS QCEW county-level employment data, deriving a 

sufficiently rich empirical specification of weather’s local employment effects, and properly 

estimating this specification. In particular, one can imagine market participants having fairly good 

information about average weather (temperature, snowfall, precipitation, etc.) across the country in a 

given month. However, understanding the geographic distribution of these weather data and how they 

correlate with the geographic distribution of employment may be more elusive. In addition, knowing 

how weather in prior months should affect current employment growth is difficult and arguably 

requires a precisely estimated empirical model. The vast geographical granularity and high frequency 

of the data employed in this paper allow for such precise estimation. 
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Table 1. Effects of Weather by Week on Monthly Employment Growth

(1) (2) (3) (4) (5) (6)
Daily-High Temp Precipitation Snowfall % days > 90F % days < 30F Average Implied Weight

Week 1 0.004∗∗∗ -0.004∗∗∗ -0.037∗∗∗ -0.054∗∗ -0.027 0.297
(0.001) (0.001) (0.006) (0.025) (0.021)

Week 2 0.007∗∗∗ -0.004∗∗∗ -0.040∗∗∗ -0.102∗∗∗ -0.007 0.341
(0.001) (0.001) (0.006) (0.025) (0.022)

Week 3 0.002∗∗∗ -0.002∗∗ -0.015∗∗ -0.016 -0.020 0.152
(0.001) (0.001) (0.006) (0.026) (0.021)

Week 4 0.002∗∗ -0.005∗∗∗ -0.002 -0.049∗ -0.032 0.211
(0.001) (0.001) (0.006) (0.027) (0.023)

***p<0.01, **p<0.05, *p<0.10

Table 2. Contemporaneous and Lagged Weather Effects on Employment Growth
Industry: All Private Industries

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.109∗∗∗ -0.068∗∗∗ -0.046∗∗∗ 0.005 0.001
(0.009) (0.009) (0.008) (0.008) (0.013)

Avg. daily high temp - Summer 0.081∗∗∗ -0.049∗∗∗ -0.022∗∗ -0.014 -0.004
(0.013) (0.011) (0.010) (0.009) (0.017)

Avg. daily high temp - Fall 0.032∗∗∗ -0.012 -0.028∗∗ 0.018 0.010
(0.010) (0.011) (0.012) (0.013) (0.019)

Avg. daily high temp - Winter 0.085∗∗∗ -0.021∗∗ -0.016 -0.017 0.031∗

(0.010) (0.011) (0.011) (0.011) (0.018)
Precipitation (mm) -0.025∗∗∗ 0.025∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.021∗∗∗

(0.003) (0.004) (0.003) (0.003) (0.006)
Snowfall (cm) -0.035∗∗∗ 0.016∗∗∗ 0.007∗∗ -0.003 -0.014∗∗

(0.004) (0.004) (0.003) (0.003) (0.006)
% days high temp >90F -0.024∗∗∗ -0.010 -0.013 -0.006 -0.053∗∗∗

(0.009) (0.009) (0.009) (0.008) (0.014)
% days low temp <30F -0.024∗ -0.021 0.006 0.012 -0.027

(0.013) (0.013) (0.013) (0.012) (0.021)
N 1329900
Counties 3100
Months 429
R2 0.553

***p<0.01, **p<0.05, *p<0.10



Table 3: Model Including Spatial Lags (Inverse-Distance)

Panel A: Own-County Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.056∗∗∗ -0.066∗∗∗ -0.011 -0.005 -0.026
(0.016) (0.015) (0.014) (0.013) (0.021)

Avg. daily high temp - Summer 0.007 -0.042∗∗ -0.037∗∗ -0.009 -0.081∗∗∗

(0.019) (0.018) (0.017) (0.015) (0.026)
Avg. daily high temp - Fall 0.017 -0.034∗ -0.044∗∗ -0.015 -0.076∗∗∗

(0.018) (0.019) (0.021) (0.019) (0.028)
Avg. daily high temp - Winter 0.095∗∗∗ -0.027 -0.060∗∗∗ 0.019 0.026

(0.018) (0.017) (0.019) (0.019) (0.028)
Precipitation (mm) -0.006 0.011∗∗ 0.010∗∗ 0.005 0.019∗∗

(0.004) (0.004) (0.004) (0.004) (0.008)
Snowfall (cm) 0.003 -0.008∗ -0.002 -0.005 -0.011∗

(0.004) (0.004) (0.004) (0.004) (0.007)
% days high temp >90F -0.018∗ 0.000 0.014 -0.010 -0.015

(0.010) (0.011) (0.010) (0.010) (0.016)
% days low temp <30F -0.006 -0.001 -0.021 0.007 -0.022

(0.017) (0.017) (0.016) (0.016) (0.027)

Panel B: Spatial Lag Effects

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.097∗∗ 0.043 -0.069 0.033 0.104
(0.048) (0.044) (0.044) (0.043) (0.070)

Avg. daily high temp - Summer 0.251∗∗∗ -0.007 0.072 -0.013 0.302∗∗∗

(0.069) (0.059) (0.052) (0.045) (0.087)
Avg. daily high temp - Fall 0.031 0.092 0.111 0.123∗ 0.357∗∗∗

(0.053) (0.059) (0.069) (0.070) (0.098)
Avg. daily high temp - Winter -0.121∗∗ 0.076 0.167∗∗∗ -0.104∗ 0.018

(0.048) (0.054) (0.055) (0.055) (0.093)
Precipitation (mm) -0.051∗∗∗ 0.036∗∗∗ 0.004 0.016 0.005

(0.010) (0.011) (0.011) (0.010) (0.019)
Snowfall (cm) -0.182∗∗∗ 0.114∗∗∗ 0.043∗∗∗ 0.010 -0.015

(0.018) (0.018) (0.016) (0.015) (0.029)
% days high temp >90F -0.019 -0.028 -0.112∗∗∗ 0.023 -0.136∗∗

(0.038) (0.037) (0.038) (0.038) (0.057)
% days low temp <30F -0.058 -0.056 0.137∗ -0.007 0.017

(0.073) (0.075) (0.070) (0.069) (0.122)
N 1329900
Counties 3100
Months 429
R2 0.553

***p<0.01, **p<0.05, *p<0.10



Table 4. Contemporaneous and Lagged Weather Effects on Nonfarm Payrolls

National Time Series Model

(1) (2) (3) (4) (5)
Contemporaneous 1st lag 2nd lag 3rd lag Cumulative effect

Avg. daily high temp - Spring 0.017 -0.040 -0.012 -0.046 -0.081
(0.056) (0.054) (0.051) (0.049) (0.094)

Avg. daily high temp - Summer 0.084 -0.068 -0.048 -0.044 -0.076
(0.111) (0.075) (0.060) (0.056) (0.144)

Avg. daily high temp - Fall -0.027 0.031 -0.110 -0.066 -0.172
(0.059) (0.083) (0.126) (0.109) (0.172)

Avg. daily high temp - Winter 0.007 -0.064 -0.090 -0.045 -0.192∗∗

(0.050) (0.055) (0.057) (0.062) (0.096)
Precipitation (mm) -0.064 0.010 -0.062 -0.043 -0.158∗

(0.045) (0.044) (0.046) (0.045) (0.092)
Snowfall (cm) 0.003 0.097∗ 0.145∗∗∗ 0.092∗ 0.337∗∗∗

(0.056) (0.054) (0.055) (0.054) (0.102)
% days high temp >90F -0.032 0.051 0.167 0.086 0.273

(0.105) (0.096) (0.119) (0.106) (0.183)
% days low temp <30F -0.178 -0.288∗ -0.336∗∗ -0.360∗∗ -1.162∗∗∗

(0.140) (0.150) (0.147) (0.143) (0.287)
N 429
R2 0.287
RMSE 0.218

***p<0.01, **p<0.05, *p<0.10

Table 5. In-Sample and Out-of-Sample Explanatory Power of Weather Effects for National Payroll Employment Growth

County Model RH R2 County Model no RH R2 County Model SL R2 National Model R2
Backcast 0.457** 0.009 0.414** 0.008 0.091 0.002 1.000*** 0.102

(0.238) (0.225) (0.099) (0.144)
Nowcast 0.899*** 0.043 0.847*** 0.043 0.248** 0.020 0.233 0.011

(0.345) (0.328) (0.141) (0.177)

Notes: ***p < 0.01, **p < 0.05, *p < 0.10. Employment Growth is private nonfarm employment growth from the BLS CES payroll survey.
For the backcast results, both the model estimation and fit evaluation use data from 1980m1 to 2015m12. For the nowcast results, models
are estimated iteratively with first month fixed at 1980m1 and last month iterated from 2003m5 to 2015m12 for county models and from
2003m12 to 2016m7 for national model. The fitted models are then used to predict weather effects 8 months out of sample for county models
(inline with the 8 month QCEW data lag) and 1 month out of sample for national model (inline with the 1 month CES data lag). County
weather effects are then aggregated to national level. This process results in a time series, for each model, of national weather effect nowcasts
from 2004m1 to 2016m8. The table shows the slope coefficient, standard error (in parentheses), and R2 from bivariate regressions of each
model’s national weather effect estimates on payroll employment growth from 2004m1 to 2016m8. See text for further details.



Table 6. Out-of-Sample Explanatory Power of Weather Effects for Various National Labor Market Outcomes

County Model (RH) R2 National Model R2 GW test
Employment Growth, Private Nonfarm, Payroll Survey 0.899*** 0.043 0.233 0.011 0.201

(0.345) (0.177
Employment Growth, Private Nonfarm, QCEW (SA) 1.041*** 0.037 0.200 0.005 0.258

(0.437) (0.224)
Vacancy Rate (monthly change) 0.712*** 0.037 0.138 0.006 0.228

(0.295) (0.151)
Hires Rate (monthly change) 0.862*** 0.077 0.076 0.002 0.164

(0.244) (0.128)
Quits Rate (monthly change) 0.222 0.011 0.000 0.000 0.574

(0.174) (0.088)
Employment Growth, less than 50 employees 1.059*** 0.050 0.572 0.042 0.900

(0.485) (0.295)
Employment Growth, 50 to 499 employees 0.869 0.026 0.854 0.060 0.617

(0.616) (0.367)
Employment Growth, 500 or more employees 0.567 0.020 0.681*** 0.058 0.552

(0.504) (0.299)
Weather Absences Rate (monthly change) -0.683*** 0.107 0.017 0.000 0.174

(0.161) (0.086)
Non-weather Absences Rate (monthly change) 0.100 0.000 -1.449 0.012 0.500

(2.131) (1.065)

Notes: ***p < 0.01, **p < 0.05, *p < 0.10. Standard errors in parentheses. Model is estimated iteratively with first month fixed at
1980m1 and last month iterated from 2003m5 to 2015m12 for county models and from 2003m12 to 2016m7 for national model. The
fitted models are then used to predict weather effects 8 months out of sample for county models (inline with the 8 month QCEW data
lag) and 1 month out of sample for national model (inline with the 1 month CES data lag). County weather effects are then aggregated
to national level. This process results in a time series, for each model, of national weather effect nowcasts from 2004m1 to 2016m8. The
table shows the slope coefficient, standard error (in parentheses), and R2 from separate bivariate regressions of each model’s national
weather effect estimates on each of the indicated variables from 2004m1 to 2016m8. See text for further details.



Table 7: Weather Effects and Asset Price Responses on Employment Report Release Days

Panel A: Full Sample

(1) (2) (3) (4) (5) (6) (7)
County no RH R2 County RH R2 Payroll surprise R2 N

Real-Time Surprise in Payroll Employment Growth .527*** .091 .589*** .103 313
(.094) (.099)

S&P 500 daily return 3.013** .013 2.223 .007 -.338 .001 306
(1.482) (1.569) (.825)

Dow Jones Ind. Avg daily return 3.618*** .022 2.921** .013 .635 .002 306
(1.389) (1.473) (.775)

3-month Treasury Bond daily change .246*** .041 .273*** .046 .321*** .216 313
(.067) (.071) (.034)

1-year Treasury Bond daily change .357*** .046 .416*** .056 .581*** .372 313
(.092) (.097) (.042)

2-year Treasury Bond daily change .529*** .063 .609*** .076 .71*** .349 313
(.115) (.12) (.054)

5-year Treasury Bond daily change .581*** .068 .669*** .082 .681*** .285 313
(.122) (.127) (.06)

10-year Treasury Bond daily change .494*** .064 .567*** .076 .536*** .229 313
(.107) (.112) (.055)

30-year Treasury Bond daily change .455*** .075 .531*** .09 .386*** .173 265
(.099) (.104) (.051)

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel B: Rolling Out-of-Sample

(1) (2) (3) (4) (5) (6) (7)
County no RH R2 County RH R2 Payroll surprise R2 N

Real-Time Surprise in Payroll Employment Growth .375*** .136 .422*** .155 152
(.077) (.081)

S&P 500 daily return 3.075* .019 3.276* .02 3.432* .025 148
(1.838) (1.912) (1.761)

Dow Jones Ind. Avg daily return 3.223* .024 3.307* .023 3.937** .039 148
(1.703) (1.773) (1.625)

3-month Treasury Bond daily change -.004 0 .013 0 .104* .023 152
(.056) (.059) (.055)

1-year Treasury Bond daily change .064 .005 .14* .021 .483*** .283 152
(.075) (.079) (.063)

2-year Treasury Bond daily change .27** .032 .366*** .053 .817*** .302 152
(.121) (.127) (.101)

5-year Treasury Bond daily change .377*** .044 .465*** .061 .982*** .311 152
(.143) (.15) (.119)

10-year Treasury Bond daily change .323** .042 .382*** .053 .812*** .274 152
(.126) (.132) (.108)

30-year Treasury Bond daily change .243* .03 .269** .032 .62*** .19 127
(.123) (.132) (.115)

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: In Panel A, the county model is estimated over 1980m1 to 2015m12. County weather effects are obtained from the fitted model
and aggregated to the national level. The regressions in Panel A use a sample from 1989m12 (the earliest month of the payroll surprise
data) to 2016m8. In Panel B, each model (county DPD model with or without regional heterogeneity) is estimated iteratively with first
month fixed at 1980m1 and last month iterated from 2003m5 to 2015m12. The fitted models are then used to predict weather effects
8 months out of sample (inline with the 8 month QCEW data lag). County weather effects are then aggregated to national level. This
process results in a time series, for each model, of national weather effect nowcasts from 2004m1 to 2016m8. The table shows the slope
coefficient, standard error (in parentheses), and R2 from separate bivariate regressions of each model’s nowcasts on each of the indicated
variables from 2004m1 to 2016m8.The financial market variables are changes (or returns) from the market close of the prior day to the
market close of the day of the employment report. See text for further details.



All Days 
(1/1/2004 to 
8/31/2016) All Release Days

Release Days, 
Nowcast >0

Release Days, 
Nowcast <0

Payroll Surprises (%) -- -0.78 0.87 -2.29

S&P 500 (%) 0.02 0.02 0.21 -0.14

Dow Jones (%) 0.02 0.02 0.21 -0.15

1-yr Treasury (bps) -0.01 -0.03 0.72 -0.64

2-yr Treasury (bps) -0.02 0.26 2.50 -1.64

5-yr Treasury (bps) -0.04 0.17 2.95 -2.21

10-yr Treasury (bps) -0.06 0.32 2.57 -1.57

30-yr Treasury (bps) -0.05 0.81 2.14 -0.41

Table 8. Mean Daily Stock Returns and Treasury Yield Changes

Various Subsamples

Notes: The payroll employment surprise and stock returns are in percentage points; Treasury yield changes are 
in basis points. See text for details.



Figure 1. Relationship between Weather Effect and Financial Markets on Employment Report Release Days
(Bin-scatter plots)
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y = .039 + (1.314)*x
    .054    (1.255)
R-squared = .003
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y = .036 + (3.307)*x
    .085    (1.773)
R-squared = .023

-1
-.5

0
.5

1
1.

5
D

ow
-J

on
es

 In
du

st
ria

l I
nd

ex
 D

ai
ly

 R
et

ur
n

-.1 -.05 0 .05 .1 .15
Weather Effect - County DPD Model (Regional Heterogeneity)

y = -.004 + (.434)*x
    .005    (.115)

R-squared = .032
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y = .005 + (.382)*x
    .006    (.132)

R-squared = .053
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Notes: Each panel contains a bin-scatter plot showing the relationship between the indicated outcome variable (y-axis) and the national employment
weather effect estimate (x-axis). Each point shows the mean x and y values within a bin. Bins are defined according to 30 quantiles of the x
variable. The shown fit line is based on a linear regression of the outcome variable on the national employment weather effect, using the raw data
(not the binned data). The weather effect estimate is derived from aggregating county-level weather effects, estimated using the county DPD model
without regional heterogeneity. The left-side panels use weather effect estimates for which the county model is estimated using the full 1980m1
- 2016m8 sample; the right-side panels use estimates for which the county model is estimated using rolling (expanding-window) samples ending
eight months prior to the observation month. See text for details.



Figure 2. Performance of Simple Trading Strategy Based on Weather Effect Nowcasts
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Notes: Each panel shows the evolution of an investment balance, with an initial value of 100 in 2003m12, from following a simple trading strategy
based on the weather effect nowcasts applied to the indicated asset type. Below each chart, the cumulative annualized return and the success rate
(percentage of trades yielding a positive daily return) over the entire period are shown. The trading rule is as follows: when the weather effect
nowcast is positive, at the end of the day before the employment report take a long position in stocks or a short position in bonds; when the
nowcast is negative, do the opposite. Positions are closed out at the end of the day of the report and held in cash until the day before the next
employment report. See text for details.
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