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Abstract

We use a consumption based asset pricing model to show that the predictability of
excess returns on risky assets can arise from only two sources: (1) stochastic volatility
of fundamental variables, or (2) departures from rational expectations that give rise to
predictable investor forecast errors and market ineffi ciency. While controlling for stochastic
volatility, we find that a variable which measures non-fundamental noise in the Treasury
yield curve helps to predict 1-month-ahead excess stock returns, but only during sample
periods that include the Great Recession. For these sample periods, higher noise predicts
lower excess stock returns, implying that a shortage of arbitrage capital in financial markets
caused excess returns to drop below the levels justified by fundamentals. The statistical
significance of the predictor variables that control for stochastic volatility are also typically
sensitive to the sample period. Measures of implied and realized stock return variance cease
to be significant when the COVID-influenced data from early 2020 onward is included.
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1 Introduction

A vast literature, pioneered by Fama and French (1988), examines the so-called “predictabil-

ity” of excess returns on risky assets. Predictability is typically measured by the size of a

slope coeffi cient and the adjusted R-squared statistic in forecasting regressions over various

time horizons. This paper examines the predictability question from both a theoretical and

empirical perspective.

Our theoretical approach employs a standard consumption based asset pricing model. We

show that the predictability of excess returns on risky assets can arise from only two sources:

(1) stochastic volatility of fundamental variables, or (2) departures from rational expectations

that give rise to predictable investor forecast errors and market ineffi ciency. Specifically, we

show that excess returns on risky assets can be represented by an additive combination of

conditional variance terms and investor forecast errors. This result holds for any stochas-

tic discount factor, any consumption or dividend process, and any stream of bond coupon

payments.

The conditional variance terms that appear in the expression for excess returns can be a

source of predictability if one or more of the model’s fundamental variables exhibit stochastic

volatility. In the absence of stochastic volatility, rationally time-varying risk aversion, by

itself, is not a source of predictable excess returns. But if we allow for a departure from

rational expectations, then the resulting investor forecast errors will be predictable, serving as

an alternative source of predictable excess returns. Under extrapolative expectations, excess

returns are predictable, but stochastic volatility does not contribute to this predictability.

This is because the investor’s subjective forecasts do not take into account the laws of motion

for the fundamental variables that give rise to stochastic volatility. We provide analytical

examples to illustrate each of these cases.

Our empirical approach examines whether 1-month-ahead excess returns on stocks rela-

tive to the risk free rate can be predicted using data from 1990.M1 to 2020.M12. Motivated

by our theoretical results, we look for evidence that market ineffi ciency (in the form of non-

rational expectations) contributes to the predictability of excess returns while controlling for

the presence of stochastic volatility. As an indirect control for stochastic volatility, we include

the price-dividend ratio– a typical predictor variable in the literature. We show that under

rational expectations, the equilibrium price-dividend ratio in the model will depend on any

fundamental state variables that give rise to stochastic volatility. As direct controls for sto-

chastic volatility, we include the implied variance and the realized variance of recent stock

returns.

Numerous studies have found that measures of investor sentiment or return momentum can
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often help to predict excess stock returns.1 It is tempting to conclude that such results provide

evidence of market ineffi ciency. However, we cannot rule out that measures of sentiment or

momentum are linked to movements in the underlying fundamental variables that give rise to

stochastic volatility. Indeed, Audrino et al. (2020) find that measures of investor sentiment and

investor attention for individual stocks have significant predictive power for a stock’s future

realized return volatility. Wang et al. (2006) find that the lagged stock market return (a

measure of momentum) helps to predict both the implied volatility and the realized volatility

of stock returns. The same study confirms the findings of Brown and Cliff (2004) that the

lagged stock market return helps to predict future changes in sentiment.2 Based on these

results, we include measures of sentiment and momentum as indirect controls for stochastic

volatility. Our sentiment variable is the 12-month change in the University of Michigan’s

consumer sentiment index. Our momentum variable is the trailing 1-month change in the

excess stock return. As an additional control variable, we interact the 12-month sentiment

change with our measure of return momentum because this variable turns out to be a more

robust predictor than either sentiment or momentum in isolation.

The predictor variable that we use to detect market ineffi ciency is a measure of non-

fundamental “noise”in the Treasury yield curve, as constructed by Hu et al. (2013). Specif-

ically, the noise variable is the monthly average root mean squared deviation between the

daily Treasury yield curve and a daily model-fitted, no-arbitrage yield curve. The noise vari-

able captures the degree to which “limits to arbitrage”due to a lack of liquidity in financial

markets may allow asset prices to deviate from fundamental values. According to Hu et al.

(2013, p. 2344), “our noise measure does not simply capture the liquidity concerns specific to

the Treasury market, but rather reflects how different liquidity crises might transmit through

financial markets via the movements of arbitrage capital. In other words, rather than being

a measure specific to the Treasury market, our noise measure is a reflection of overall market

conditions.”

Given that the noise variable in our predictive regressions is constructed using data from

the Treasury yield curve, we include the monthly average Treasury term spread (the difference

between the 10-year and 3-month constant maturity Treasury yields) as an additional control

for stochastic volatility. The term spread captures expectations of future monetary policy

actions that, in turn, could influence asset return volatility.

We find that the regression coeffi cient on the noise variable is statistically significant,

but only during sample periods that include the Great Recession. For these sample periods,

higher noise predicts lower excess stock returns, implying that a shortage of arbitrage capital

1For sentiment, see Huang, et al. (2014) and Adämmer and Schüssler (2020). For momentum, see Moskowitz
et al. (2012), Neely, et al. (2014), and Cujean and Hasler (2017).

2Lansing and Tubbs (2019) report a similar finding.
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in financial markets during the Great Recession caused excess returns to drop below the levels

justified by fundamentals.

Our full-sample predictability regression for the period from 1990.M1 to 2020.M12 yields

an adjusted R-squared statistic of 8.3%. If we omit the noise variable, then the adjusted R-

squared statistic drops to 4.8%. In out-of-sample tests, including the noise variable markedly

improves the out-of-sample R-squared statistic when the out-of-sample period includes the

Great Recession, but not otherwise.

As for the seven predictor variables that control for stochastic volatility, we find that sta-

tistical significance is also typically sensitive to the sample period. The price-dividend ratio,

the implied and realized variances of stock returns, and the sentiment-momentum interaction

variable are not significant during recession periods. The implied stock return variance and

the realized stock return variance both cease to be statistically significant when the COVID-

influenced data from early 2020 onward is included. Using 120-month rolling regressions, we

show that only three predictor variables (price-dividend ratio, implied stock return variance,

and sentiment-momentum interaction variable) are significant across a diverse set of sample

periods. The remaining predictor variables are either intermittently significant, rarely sig-

nificant, or never significant. For the most recent 120-month sample period that runs from

2011.M1 to 2020.M12 and includes the COVID-influenced data, the only significant predictor

variable is the price-dividend ratio.

Overall, our results reinforce the findings of Welch and Goyal (2008), Chen and Hong

(2012), and others who demonstrate the diffi culty of identifying any robust predictors of excess

stock returns. Our results are also in line with the findings of Farmer et al. (2022) who identify

short time intervals that exhibit significant out-of-sample predictability of excess stock returns.

These time intervals, called “pockets of predictability,”are interspersed with longer intervals

that exhibit little or no evidence of predictable excess stock returns. They demonstrate that

an asset pricing model with “sticky expectations”can generate such outcomes. Georges and

Pereira (2021) develop a model with boundedly-rational, machine learning agents that delivers

similar results. Interestingly, the lack of robustness in the predictability of excess stock returns

could itself represent evidence in favor of market ineffi ciency.

1.1 Related literature

Numerous empirical studies find that measures of investor sentiment or investor attention can

often help to predict raw stock returns, as opposed to excess stock returns. Examples include

Brown and Cliff (2005), Lemmon and Portniaguina (2006), Tetlock (2007), Schmeling (2009),

García (2013), Klemola et al (2016), and Fraiberger et al. (2018). Our theoretical results

demonstrate that if some variable helps to predict raw stock returns, even after controlling for
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the presence of stochastic volatility, then this result need not imply market ineffi ciency.

Several studies link the predictability of excess returns to evidence of departures from

rational expectations. Bacchetta, Mertens, and vanWincoop (2009) find that financial markets

which exhibit predictable excess returns also exhibit predictable forecast errors of returns

from surveys, arguing against full rationality of the survey forecasts. Piazzesi et al. (2015)

find evidence of departures from rational expectations in expected excess bond returns from

surveys. Cieslik (2018) shows that investors’real time forecast errors about the short-term

real interest rate help to account for predictability in the bond risk premium.

The idea that excess stock returns tend to be more predictable around recessions has been

documented by Henkel et. al. (2011), Dalig and Halling (2012), Neely, et al. (2014), Cujean

and Hasler (2017), and Gómez-Cram (2022). Using data through December 2019, Gómez-

Cram (2022) shows that an asset pricing model with sticky expectations about future cash

flows can help account for the empirical evidence.

2 Excess returns in a consumption-based model

The framework for our theoretical analysis is a standard consumption-based asset pricing

model. For any type of purchased asset and any specification of investor preferences, the

first-order condition of the representative investor’s optimal saving choice yields

1 = Êt
[
Mt+1R

i
t+1

]
, (1)

where Mt+1 is the investor’s stochastic discount factor and Rit+1 is the gross holding period

return on asset type i from period t to t+ 1. The symbol Êt represents the investor’s subjec-

tive expectation, conditional on information available at time t. Under rational expectations,

Êt corresponds to the mathematical expectation operator Et evaluated using the objective

distributions of all shocks, which are assumed known to the rational investor.

For a dividend-paying stock, we have Rst+1 =
(
dt+1 + pst+1

)
/pst , where p

s
t is the ex-dividend

stock price and dt+1 is the dividend received in period t+ 1. For a default-free bond that pays

a stream of coupon payments (measured in consumption units) we have Rbt =
(
1 + δpbt+1

)
/pbt ,

where pbt is the ex-coupon bond price and δ is a parameter that governs the decay rate of

the coupon payments. A bond purchased in period t yields a coupon stream of 1, δ, δ2...

starting in period t+ 1. When δ = 1, we have a consol bond that delivers a perpetual stream

of coupon payments, each equal to one consumption unit. More generally, the value of δ

can be calibrated to achieve a target value for the Macaulay duration of the bond, i.e., the

present-value weighted average maturity of the bond’s cash flows.3 When δ = 0, we have a

one period discount bond that delivers a single coupon payment of one consumption unit in

3See, for example, Lansing (2015).
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period t + 1. In this case, Rft+1 ≡ 1/pbt is the risk-free rate of return which is known with

certainty in period t.

With time-separable constant relative risk aversion (CRRA) preferences, we have Mt+1 =

β (ct+1/ct)
−α , where β is the subjective time discount factor, ct is the investor’s real consump-

tion, and α is the risk aversion coeffi cient. With recursive preferences along the lines of Epstein

and Zin (1989), we have Mt+1 = βω (ct+1/ct)
−ω/ψ (Rct+1)ω−1 , where Rct+1 ≡ (ct+1 + pct+1

)
/pct

is the gross return on an asset that delivers a claim to consumption ct+1 in period t + 1,

ψ is the elasticity of intertemporal substitution (EIS), and ω ≡ (1− α) /
(
1− ψ−1

)
. In the

special case when α = ψ−1, we have ω = 1 such that Epstein-Zin preferences coincide with

CRRA preferences. With external habit formation preferences along the lines of Campbell and

Cochrane (1999), we have Mt+1 = β [st+1ct+1/ (stct)]
−α , where st ≡ 1 − xt/ct is the surplus

consumption ratio, xt is the external habit level, and α is a curvature parameter that governs

the steady state level of risk aversion.

For stocks, equation (1) can be rewritten as

pst/dt = Êt

[
Mt+1

dt+1
dt

(
1 + pst+1/dt+1

)]
, (2)

where pst/dt is the price-dividend ratio and dt+1/dt is the gross growth rate of dividends. At

this point, it is convenient to define the following nonlinear change of variables:

zst ≡ Mt
dt
dt−1

(1 + pst/dt) , (3)

where zst represents a composite variable that depends on the stochastic discount factor, the

growth rate of dividends, and the price-dividend ratio.4 The investor’s first-order condition

(2) becomes

pst/dt = Êtz
s
t+1, (4)

which shows that the equilibrium price-dividend ratio is simply the investor’s conditional

forecast of the composite variable zst+1. Substituting p
s
t/dt = Êtz

s
t+1 into the definition (3)

yields the following transformed version of the investor’s first-order condition

zst = Mt
dt
dt−1

(1 + Êtz
s
t+1). (5)

The gross stock return can now be written as

Rst+1 =
dt+1 + pst+1

pst
=

(1 + pst+1/dt+1)

pst/dt

dt+1
dt

=
zst+1

Êtzst+1

1

Mt+1
, (6)

4This nonlinear change of variables technique is also employed by Lansing (2010, 2016) and Lansing and
LeRoy (2014).
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where we have eliminated pst/dt using equation (4) and eliminated p
s
t+1/dt+1 + 1 using the

definitional relationship (3) evaluated at time t+ 1.

Starting again from equation (1) and proceeding in a similar fashion yields the following

transformed first-order condition for bonds:

zbt = Mt(1 + δÊtz
b
t+1), (7)

where zbt ≡Mt(1 + δpbt) and p
b
t = Êtz

b
t+1. The gross bond return can now be written as

Rbt+1 =
1 + δpbt+1

pbt

=
zbt+1

Êtzbt+1

1

Mt+1
. (8)

When δ = 0 we have zbt+1 = Mt+1 and the above expression simplifies to Rbt+1 = Rft+1 =

1/(ÊtMt+1).

Combining equations (6) and (8) yields the following ratio of the gross stock return to the

gross bond return:
Rst+1
Rbt+1

=
zst+1

Êtzst+1

Êtz
b
t+1

zbt+1
. (9)

Taking logs of both sides of equation (9) yields the following compact expression for the excess

stock return, i.e., the realized equity premium:

log(Rst+1/R
b
t+1) = log

[
zst+1/(Êtz

s
t+1)

]
− log

[
zbt+1/(Êtz

b
t+1)

]
, (10)

where the second term on the right side simplifies to log[Mt+1/(ÊtMt+1)] when δ = 0.

Similarly, we can compute the excess bond return which compares the return on a longer-

term bond (δ > 0) to the risk free rate (δ = 0) . In this case, we have

log(Rbt+1/R
f
t+1) = log

[
zbt+1/(Êtz

b
t+1)

]
− log

[
Mt+1/(ÊtMt+1)

]
. (11)

Equations (10) and (11) are striking. If we apply the approximation log (A/B) ' (A−B) /B

to the terms that appear on the right sides of equations (10) and (11), then A−B would rep-

resent the investor’s forecast error. Imposing rational expectations such that Êt = Et might

therefore seem to imply that log (A/B) should be wholly unpredictable. However, as we show

below, predictability can arise under rational expectations if the model exhibits stochastic

volatility. Nonetheless, the intuition of log (A/B) ' (A−B) /B helps to explain why is it

very diffi cult for consumption-based asset pricing models to generate significant predictability

of excess returns under rational expectations. The same intuition also helps to explain why

these same models struggle to produce a sizeable mean equity premium, except in cases where

there is a high degree of curvature in investor preferences. The high degree of curvature serves

to invalidate the approximation log (A/B) ' (A−B) /B.
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3 Predictability from stochastic volatility

In the special case of CRRA utility, normally and independently distributed consumption

growth, and ct = dt, the equilibrium price-dividend ratio is constant. The realized equity

premium relative to the risk free rate is log(Rst+1/R
f
t+1) = εt+1+(α− 0.5)σ2ε, where εt+1 is the

innovation to consumption growth and σ2ε is the associated variance which is not stochastic.
5

In this special case, excess returns at time t + 1 are not predictable using variables dated

time t or earlier. But as we show below, models that exhibit stochastic volatility can generate

predictability of excess returns under rational expectations.

When solving consumption-based asset pricing models, it is common to employ approxi-

mation methods that deliver conditional log-normality of the relevant variables. If a random

variable qt is conditionally log-normal, then

log (Etqt+1) = Et [log (qt+1)] + 1
2V art [log (qt+1)] , (12)

where V art is the mathematical variance operator conditional on information available to the

investor at time t.

Starting from equation (10) and imposing rational expectations such that Êt = Et, we

make the assumption that the composite variables zst+1 and z
b
t+1 are both conditionally log-

normal. Making use of equation (12) to eliminate log
(
Etz

s
t+1

)
and log

(
Etz

b
t+1

)
yields the

following alternate expression for the excess stock return

log(Rst+1/R
b
t+1) = [log

(
zst+1

)
− Et log

(
zst+1

)
] − [log(zbt+1)− Et log(zbt+1)]

−12V art
[
log
(
zst+1

)]
+ 1

2V art[log(zbt+1)] (13)

where zbt+1 = Mt+1 for a 1-period discount bond with δ = 0. Notice that the first two terms in

equation (13) are the investor’s forecast errors for log
(
zst+1

)
and log(zbt+1), respectively. These

forecast errors cannot be a source of predictability under rational expectations. However, the

last two terms in equation (13) show that predictability can arise under rational expectations

if the laws of motion for the endogenous variables log
(
zst+1

)
and log(zbt+1) exhibit stochastic

volatility. This is because the conditional variance terms at time t would partly determine the

realized excess return at time t+ 1.

Specializing equation (13) to the case where δ = 0 such that Rbt+1 = Rft+1 and z
b
t+1 = Mt+1,

5For the derivation, see Lansing and LeRoy (2014), Appendix B. Note that in the risk neutral case with
α = 0, we have the result that E[Rst+1/R

f
t+1] = E[exp(εt+1 − 0.5σ2ε)] = 1.
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we have

log(Rst+1/R
f
t+1) =

[
log
(
zst+1

)
− Et log

(
zst+1

)]
− [log(Mt+1)− Et log(Mt+1)]

−12V art[log (Mt+1R
s
t+1 p

s
t/dt)︸ ︷︷ ︸

= zst+1

] + 1
2V art [log(Mt+1)] , (14)

where the last line exploits the definition of zst+1. Equation (14) implies that the rational

expected excess return on stocks is given by

Et log(Rst+1/R
f
t+1) = −12V art[log(Mt+1R

s
t+1 p

s
t/dt)] + 1

2V art [log(Mt+1)] , (15)

where Rft+1 is known at time t.

Following Campbell (2014), an alternative expression for the rational expected excess re-

turn on stocks can be derived by decomposing the conditional rational expectation in equation

(1) as follows

Et
[
Mt+1R

s
t+1

]︸ ︷︷ ︸
=1

= EtMt+1︸ ︷︷ ︸
=1/Rft+1

EtR
s
t+1 + Covt

[
Mt+1, R

s
t+1

]
. (16)

Solving the above expression for Et
(
Rst+1

)
/Rft+1 and then taking logs yields

log(EtR
s
t+1/R

f
t+1) = log

{
1− Covt

[
Mt+1, R

s
t+1

]}
, (17)

Et log(Rst+1/R
f
t+1) = log

{
1− Covt

[
Mt+1, R

s
t+1

]}
− 1

2V art
[
logRst+1

]
, (18)

where, in going from equation (17) to (18), we have assumed conditional log-normality of

the gross stock return Rst+1. The above expression shows that the rational expected excess

return on stocks will be predictable if Covt
[
Mt+1, R

s
t+1

]
or V art

[
logRst+1

]
are time-varying.

Attanasio (1991) undertakes a derivation similar to equation (18) and concludes (p. 481):

“predictability of excess returns constitutes direct evidence against the joint hypothesis that

markets are effi cient and second moments are constant.”While our derivation of equation

(14) delivers a similar conclusion, it helps to focus attention on investor forecast errors as an

alternative source of predictable excess returns when expectations are not fully rational.

3.1 Analytical example: Exogenous stochastic volatility

Here we provide an analytical example to show how stochastic volatility in the law of motion

for consumption growth can generate predictable excess returns under rational expectations.

Suppose the investor’s stochastic discount factor is given by

Mt+1 = β exp(ct+1/ct)
−α
[

1− κt+1
1− κt

]−α
, (19)
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where κt is a stochastic habit formation parameter that allows for time-varying risk aversion.6

If we define exp(ηt) ≡ [1 − κt]−1, then the investor’s time-varying coeffi cient of relative risk
aversion is given by α exp(ηt).

7 The time-series process for the stochastic discount factor is

governed by the following equations:

Mt+1 = β exp(−αxt+1 + αηt+1 − αηt), (20)

xt+1 = x+ ρx (xt − x) + σtεt+1, |ρx| < 1, εt ∼ NID (0, 1) , (21)

σ2t+1 = σ2 + ρσ
(
σ2t − σ2

)
+ ut+1, |ρσ| < 1, ut ∼ NID

(
0, σ2u

)
, (22)

ηt+1 = η + ρη (ηt − η) + ωt+1,
∣∣ρη∣∣ < 1, ωt ∼ NID

(
0, σ2ω

)
, (23)

where xt+1 ≡ log (ct+1/ct) is real consumption growth that evolves as an AR(1) process with

mean x and persistence parameter ρx. The innovation εt+1 is normally and independently

distributed (NID) with mean zero and variance of one. We allow for stochastic volatility

along the lines of Bansal and Yaron (2004), where ρσ governs the persistence of volatility and

ut+1 is the innovation to volatility.8 The habit formation variable ηt evolves as an AR(1)

process with mean η and persistence parameter ρη. Real dividend growth x
d
t+1 ≡ log (dt+1/dt)

is given by

xdt+1 = xt+1 + vt+1, vt ∼ NID
(
0, σ2v

)
, (24)

where vt+1 is an innovation with mean zero and variance σ2v.

Under rational expectations, we have

Rft+1 = β−1 exp
[
αx+ αρx (xt − x) + α(1− ρη) (ηt − η)− 1

2α
2σ2t − 1

2α
2σ2ω

]
, (25)

log [Mt+1/(EtMt+1)] = −ασt εt+1 + αωt+1 − 1
2α

2σ2t − 1
2α

2σ2ω. (26)

The left side of equation (26) will be predictable only when σ2t is time-varying, i.e., when

σ2u > 0.

Appendix A provides an approximate analytical solution for the composite variable zst+1
that appears in the excess stock return equation (10).9 Under rational expectations, the

6The investor’s external habit formation utility function is given by U = (ct − κtCt)
1−α/(1− α), where Ct

is aggregate consumption per person which the investor views as exogenous. In equilbrium, we have ct = Ct.
7The risk aversion coeffi cient is defined as −ctUcc/Uc. We have Uc = (ct − κtCt)

−α and Ucc = −α(ct −
κtCt)

−α−1. Imposing the equilibrium condition ct = Ct yields −ctUcc/Uc = α/(1− κt).
8When simulating their model, Bansal and Yaron (2004) ensure that σ2t+1 remains positive by replacing

any negative realizations with a very small number, which happens in about 5% of the realizations. We would
obtain similar results if equation (22) was replaced by a GARCH(1,1) model in which σ2t+1 depends on x

2
t and

σ2t but not on ut+1.
9Appendix A also outlines how the various asset pricing equations would change in the case of Epstein-Zin

preferences.
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approximate solution implies the following expression:

log
[
zst+1/(Etz

s
t+1)

]
= a1σt εt+1 + a2ut+1 + a3vt+1 + a4ωt+1

−12 (a1)
2 σ2t − 1

2 (a2)
2 σ2u − 1

2 (a3)
2 σ2v − 1

2 (a4)
2 σ2ω, (27)

where a1 through a4 are Taylor series coeffi cients that depend on the model parameters.

Substituting equations (26) and (27) into the excess stock return equation (10) and imposing

δ = 0 such that Rbt+1 = Rft+1 yields

log(Rst+1/R
f
t+1) = (a1 + α)σt εt+1 + a2ut+1 + a3vt+1 + (a4 − α)ωt+1

+ 1
2

[
α2 − (a1)

2
]
σ2t − 1

2 (a2)
2 σ2u − 1

2 (a3)
2 σ2v + 1

2

[
α2 − (a4)

2
]
σ2ω,

(28)

which shows that excess stock returns will be predictable only when σ2t is time-varying, pro-

vided that α2 − (a1)
2 6= 0. In the special case when ρx = 0, the first Taylor series coeffi cient

becomes a1 = 1− α and the coeffi cient on σ2t in equation (28) becomes α− 0.5.

Equation (28) implies

E[Rst+1/R
f
t+1] = exp[α(α+ a1)σ

2
t + α(α− a4)σ2ω)]. (29)

In the risk neutral case with α = 0, investors do not view stocks as risky assets and we have

E[Rst+1/R
f
t+1] = 1. Notice also that when σ2ω > 0, the model exhibits rationally time-varying

risk aversion but this feature does not introduce predictability of excess stock returns. This

is because the innovation variance σ2ω for the habit formation variable ηt is not time-varying.

This example shows that in the absence of stochastic volatility, rationally time-varying risk

aversion, by itself, is not a source of predictable excess returns.

3.2 Predictability of raw stock returns

Many studies examine the predictability of raw stock returns as opposed to excess stock

returns. Starting from equation (6) and making use of equations (20) and (27) yields the

following expression for the raw stock return

log
(
Rst+1

)
= (a1 + α)σt εt+1 + a2ut+1 + a3vt+1 + (a4 − α)ωt+1

− 1
2 (a1)

2 σ2t − 1
2 (a2)

2 σ2u − 1
2 (a3)

2 σ2v − 1
2 (a4)

2 σ2ω

− log (β) + αx+ αρx (xt − x) + α(1− ρη) (ηt − η) . (30)

Equation (30) shows that log
(
Rst+1

)
will be predictable due to the terms involving xt − x

and ηt − η even when volatility is not stochastic, i.e., when σ2t = σ2 for all t. Hence, if some

variable helps to predict raw stock returns, even after controlling for the presence of stochastic

volatility, then this result need not imply market ineffi ciency.
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3.3 Discussion

Using a log-linear approximation of the stock return identity, Cochrane (2005) shows that the

variance of the log price-dividend ratio must equal the sum of the ratio’s covariances with: (1)

future dividend growth rates, (2) future risk-free rates, and (3) future excess stock returns. The

magnitude of each covariance term is a measure of the predictability of each component when

the price-dividend ratio is employed as the sole regressor in a forecasting equation. But under

rational expectations, our theoretical results show that the price-dividend ratio (or any other

variable) will predict future excess stock returns only in the presence of stochastic volatility.

It is important to note that the mere presence of the state variable σ2t in equation (28) does

not guarantee that the observed amount of excess return predictability will be statistically

significant. Depending on the model calibration, the fundamental shock innovations εt+1,

ut+1, vt+1, and ωt+1 may end up being the main drivers of fluctuations in realized excess

returns, thus washing out the influence of the fundamental state variable σ2t which is the sole

driver of fluctuations in expected excess returns. This washing out effect appears to be present

in most of the leading consumption based asset pricing models.

In the rational long-run risks model of Bansal and Yaron (2004), exogenous stochastic

volatility is achieved by assuming an AR(1) law of motion for the volatility of innovations to

consumption growth and dividend growth, along the lines of equation (22). In the rational

external habit model of Campbell and Cochrane (1999), endogenous stochastic volatility is

achieved via a nonlinear sensitivity function that determines how innovations to consumption

growth influence the logarithm of the surplus consumption ratio.10 Despite these features,

subsequent analysis has shown that these fully-rational models fail to deliver significant pre-

dictability of excess stock returns.

Kirby (1998) had previously shown that the rational habit model of Abel (1990) and the

rational recursive preferences model of Epstein and Zin (1989) both fail to generate significant

predictability of excess stock returns. Chen and Hwang (2018) extend Kirby’s analysis to the

rational models of Campbell Cochrane (1999) and Bansal and Yaron (2004) and find that

neither model can generate any significant predictable excess stock returns. Using simulated

data, Beeler and Campbell (2012) show that the rational long-run risk models of Bansal and

Yaron (2004) and Bansal et al. (2012) both fail to match predictability patterns observed in

the data.
10Appendix B provides an analytical example of predictability that arises from endogenous stochastic volatil-

ity.
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4 Predictability from market ineffi ciency

We now provide a analytical example to illustrate the second possible source of predictable

excess returns, namely, departures from rational expectations that give rise to predictable

investor forecast errors and market ineffi ciency.

4.1 Analytical example: Extrapolative expectations

Studies by Vissing-Jorgenson (2004), Amromin and Sharpe (2014), Frydman and Stillwagon

(2018), and Da et al. (2021) all find evidence of extrapolative or procyclical expected returns

among stock investors. Greenwood and Shleifer (2014) and Adam et al. (2017) show that

measures of investor optimism about future stock returns are strongly correlated with past

stock returns and the price-dividend ratio.11 Interestingly, even though a higher price-dividend

ratio in the data empirically predicts lower realized stock returns (Cochrane 2008), the survey

evidence shows that investors fail to take this relationship into account; instead they continue

to forecast high future returns on stocks following a sustained run-up in the price-dividend

ratio. Using survey data, Casella and Gulen (2018) show that the ability of the dividend yield

(inverse of the price-dividend ratio) to forecast 12-month ahead excess returns is contingent

on a variable that measures the degree to which investors extrapolate past stock returns.

Along the lines of Lansing (2006), we model extrapolative expectations as ÊtMt+1 = AfMt

and Etzst+1 = Aszst , where A
f > 0 and As > 0 are extrapolation parameters. The value of

Ai for i = f, s governs the nature of the extrapolation, where Ai = 1 corresponds to a

random walk forecast. For stocks, As > 1 can be viewed as “optimistic” about the future

stock price while As < 1 can be viewed as “pessimistic.”A more complex scheme could allow

the extrapolation parameters to be time-varying and linked to past price movements.

The stochastic discount factor continues to be defined by equations (20) through (22). In

this case, we have

log[Mt+1/(ÊtMt+1)] = log

[
β exp

(
−αxt+1 + αηt+1 − αηt

)
Afβ exp

(
−αxt + αηt − αηt−1

)] ,
= − log(Af )− ασt εt+1 + αωt+1 + α (1− ρx) (xt − x)

−α
(
2− ρη

)
(ηt − η) + α(ηt−1 − η), (31)

which shows that log[Mt+1/(ÊtMt+1)] will be predictable due to the terms involving xt − x,
ηt − η, and ηt−1 − η.
11We confirm this finding in Figure 5 using survey data about investors’perceived probability of an increase

in stock prices over the next year.

12



Appendix C provides an approximate analytical solution for the expression zst+1/ (Êtz
s
t+1).

The approximate solution implies

log[zst+1/(Êtz
s
t+1)] = − log(As) + (1− α− b1)σt εt+1 + (1− b2)vt+1 + (α− b3)ωt+1

− (1− α− b1) (1− ρx) (xt − x) − (1− b2)vt
− [(α− b3)(1− ρη) + α+ b4](ηt − η) + (α+ b4)(ηt−1 − η), (32)

where b1 through b4 are Taylor series coeffi cients that depend on the model parameters. Sub-

stituting equations (31) and (32) into the excess stock return equation (10) and imposing δ = 0

such that Rbt+1 = Rft+1 yields

log(Rst+1/R
f
t+1) = log(Af/As) + (1− b1) σt εt+1 + (1− b2)vt+1 − b3ωt+1

− (1− b1)(1− ρx) (xt − x) − (1− b2) vt
− [(α+ b3)ρη − b3 + b4](ηt − η) + b4(ηt−1 − η), (33)

which shows that the four terms involving xt − x, vt, ηt − η, and ηt−1 − η represent sources
of predictable excess returns that arise from market ineffi ciency. Notice that in this example,

the presence of stochastic volatility does not contribute to predictable excess returns. This is

because the investor’s subjective forecasts ÊtMt+1 and Êtzst+1 do not take into account the

fundamental law of motion (22) that governs the evolution of σ2t .

5 Predictability regressions

Our empirical approach examines whether 1-month-ahead excess returns on stocks relative

to the risk free rate can be predicted using data from 1990.M1 to 2020.M12. Motivated

by our theoretical results, we look for evidence that market ineffi ciency contributes to the

predictability of excess returns while controlling for the presence of stochastic volatility. In

this section we describe: (1) our motivation for the choice of predictor variables, (2) properties

of the data, and (3) the results of our predictability regressions.

5.1 Choice of predictor variables

Our predictability regressions take the following form:

ersf t+1 = c0 + c1 pd+ c2 iv + c3 rv + c4 term+ c5 ∆sent12

+c6 ∆ersf + c7 ∆sent12×∆ersf + c8 noise, (34)

where ersf t+1 ≡ log(Rst+1/R
f
t+1) is the realized excess return on stocks relative to the risk free

rate in month t + 1. The gross return on stocks Rst+1 is measured by the 1-month nominal

return on the S&P 500 stock index, including dividends. The gross risk free rate Rft+1 is
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measured by the 1-month nominal return on a 3-month Treasury Bill. The predictor variables

on the right side of equation (34) are all dated month t. We do not perform long-horizon

predictability regressions because the empirical reliability of such results have been called into

question by Boudoukh et al. (2008) and Bauer and Hamilton (2017).

The variable pd is the price-dividend ratio for the S&P 500 stock index defined as the end-

of-month nominal closing value of the index divided by cumulative nominal dividends over the

past 12 months. Any consumption-based asset pricing model with rational expectations implies

that the price-dividend ratio will depend on the model’s fundamental state variables, including

any that would give rise to the conditional variance terms in equation (13). We illustrate this

idea in Appendix A using the rational asset pricing model of Section 3.1. Cochrane (2017)

shows that the price-dividend ratio in U.S. data exhibits strong co-movement with a measure

of “surplus consumption” constructed from the data using the parameters of Campbell and

Cochrane (1999) habit formation model. Hence, including pd as a regressor is a way to control

indirectly for the presence of stochastic volatility when the state variables that drive stochastic

volatility are not directly observable.

To control directly for the presence of stochastic volatility, we include the variables iv and

rv which are, respectively, the implied variance and the realized variance of returns on the

S&P 500 index. Implied variance is measured by the end-of-month VIX-squared, de-annualized

(i.e., VIX2/12). Realized variance is measured by the sum of squared 5-minute log returns on

the S&P 500 stock index over the month. Studies by Attanasio (1991), Guo (2006), and Welch

and Goyal (2008) employ measures of realized stock return volatility as predictor variables.

The difference between iv and rv is the “variance risk premium,” as originally defined by

Bollerslev et al. (2009). Numerous studies find that the variance risk premium can be a useful

predictor of excess stock returns.12 We include iv and rv as separate predictor variables rather

than imposing the restriction that the regression coeffi cients on iv and rv must be of equal

magnitude but opposite sign. Imposing such a restriction does not qualitatively affect our

results.

The variable term is the monthly average yield spread between the 10-year and 3-month

constant maturity Treasury securities. Studies by Welch and Goyal (2008) and Faria and

Verona (2020) employ versions of the Treasury term spread as predictor variables. A study

by Miranda-Agrippino and Rey (2020) finds that a single global factor, partly driven by U.S.

monetary policy, helps to explain a significant share of the variance of equity and bond returns

around the world. Given that the Treasury yield curve reflects expectations of future U.S.

monetary policy, we view the inclusion of term as a way to control indirectly for the presence

of stochastic volatility.

12See, for example, Drechsler and Yaron (2011), Bollerslev et al. (2014), Zhou (2018), and Pyun (2019).
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As reviewed in the introduction, measures of sentiment and momentum have been shown

to predict future stock return volatility (Audrino et al. 2020, Wang et al. 2006). We therefore

include measures of sentiment and momentum as indirect controls for stochastic volatility.

The variable ∆sent12 is the 12-month change in the University of Michigan’s consumer sen-

timent index. We experimented with higher frequency changes in the sentiment index, but

the resulting fit was not improved. The momentum variable ∆ersf is the 1-month change in

the excess stock return. In a recent comprehensive study of excess return predictability, Gu

et al. (2020) find that “allowing for (potentially complex) interactions among the baseline

predictors”can substantially improve forecasting performance. Motivated by this finding, we

interact the sentiment and momentum variables to obtain ∆sent12×∆ersf as an additional

predictor variable. This interaction variable turns out to be a more robust predictor than

either ∆sent12 or ∆ersf in isolation.

We experimented with including additional controls for stochastic volatility in the form of

volatility measures for consumption growth or dividend growth, each computed using rolling

data windows of various lengths. None of these measures were found to be statistically signif-

icant.

According to Shleifer and Vishney (1997, p. 35): “Arbitrage plays a critical role in the

analysis of securities markets, because its effect is to bring prices to fundamental values and

to keep markets effi cient.” They describe how forces such as performance-based access to

arbitrage capital, or noise trader risk, can create “limits to arbitrage,”thus allowing mispricing

to persist. When investor expectations are fully-rational, the first-order condition (1) in our

model represents a no-arbitrage condition for the equilibrium stock or bond price. But if

investor expectations are not fully-rational, then the no-arbitrage condition will be violated,

giving rise to mispricing that would influence the excess return on stocks relative to bonds.

Motivated by these ideas, we use the variable noise to detect market ineffi ciency because

it captures the degree of mispricing in U.S. Treasury bonds that make up the yield curve.

According to Hu et al. (2013, p. 2342) “abnormal noise in Treasury prices is a symptom of

a market in severe shortage of arbitrage capital. More importantly, to the extent that capital

is allocated across markets for major marginal players in the market, this symptom applies

not only to the Treasury market, but also more broadly to the overall financial market.”Hu

et al. (2013) construct their noise measure by fitting a theoretical no-arbitrage yield curve to

the daily Treasury yield curve and then compute the root mean squared deviation between

the two daily curves. The variable noise is the monthly average root mean squared deviation

between the two daily yield curves. We obtain similar results using the end-of-month root

mean squared deviation between the two daily yield curves.

We must acknowledge that the variables we use to control for stochastic volatility are

imperfect. For example, departures from rational expectations could affect the price-dividend
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ratio, the variance of stock returns, or measures of sentiment and momentum. Numerous

empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have shown that

stock prices appear to exhibit excess volatility when compared to fundamentals, as measured

by the discounted stream of ex post realized dividends.13 A study by Greenwood et al. (2019)

using stock returns for various U.S. industries finds that stock valuation ratios and stock

return volatility both increase substantially during the 24 months preceding what they define

as “bubble peaks.”Ineffi cient movements in stock prices could influence the variable term if

Federal Reserve monetary policy reacts to the stock market, as appears to be the case (Rigobon

and Sack 2003, Hayford and Malliaris 2004, Lansing 2003, 2008, Cieslak and Vissing-Jorgensen

2021). As discussed in detail by Brav and Heaton (2002), it is extremely diffi cult to distinguish

between rational and behavioral explanations of financial market phenomena. Nevertheless, in

our empirical analysis, we treat all variables except noise as controls for stochastic volatility.

Figures 1 and 2 provide time series plots of our eight predictor variables. Notice that all

of the predictor variables tend to exhibit extreme upward or downward movements during

recessions. In our predictive regressions, we examine how recession periods influence the

statistical significance of each predictor variable.

5.2 Data

We use monthly data for the period from 1990.M1 to 2020.M12. The starting date for the

sample is governed by the availability of data for iv which makes use of the VIX index. The

sources and methods used to construct the data are described in Appendix D.

Table 1 reports summary statistics for excess stock returns and our eight predictor vari-

ables. The mean excess return on stocks relative to the risk free rate is 0.59% per month.

The summary statistics show that excess stock returns exhibit excess kurtosis. Five out of the

eight predictor variables also exhibit excess kurtosis, namely, iv, rv, ∆ersf, ∆sent12×∆ersf,

and noise.

Five of the eight predictor variables are highly persistent, namely, pd, iv, term, ∆sent12,

and noise. In Appendix E, we use a bootstrap procedure to gauge the quantitative impact

of persistent regressors on the critical values of the standard t-statistic. The bootstrapped

critical values are not substantially different from the asymptotic ones, but there are some

noticeable shifts in either direction for some of the persistent predictor variables, particularly

pd. Use of the bootstrapped t-statistics does not change any of our conclusions regarding the

statistical significance of the noise variable which is the focus of our interest for detecting

market ineffi ciency.

Table 1 shows that noise exhibits reasonably strong cross-correlations with iv and rv. All
13Lansing and LeRoy (2014) provide a recent update on this literature.
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three of these variables tend to spike upwards during significant stock market declines, such

as occurred during the financial crisis from late 2008 through early 2009 and during the onset

of the COVID pandemic in March 2020. The cross-correlations between noise and the other

five predictor variables are rather weak.

5.3 Predictive regressions

The results of our predictability regressions are summarized in Tables 2 through 5. Figures 3

and 4 plot estimated coeffi cients from a series of 120-month rolling regressions using all eight

predictor variables. The t-statistics for the estimated coeffi cients in the tables and figures

are computed using Newey-West HAC corrected standard errors. Bold entries in the tables

indicate that the predictor variable is significant at the 5% level using the asymptotic critical

values. Adjusted R-squared values are shown at the bottom of each regression specification.

The rolling regressions show that the statistical significance of the eight predictor variables is

often sensitive to the sample period.

Table 2 shows the full-sample regression results. Specification 1 includes pd only– a typical

univariate specification in the literature. According to the theory, pd encodes any fundamental

state variables that would give rise to stochastic volatility. Specification 2 adds iv, rv, and

term as additional controls for stochastic volatility. Specification 3 goes further by including

∆sent12, ∆ersf, and ∆sent12×∆ersf. As noted earlier, we interpret these three variables

as additional controls for stochastic volatility because there is evidence in the literature that

sentiment and momentum measures can help to predict future stock return volatility. Recall

that stochastic volatility is the only source of predictability under rational expectations.

The estimated coeffi cient on pd in Table 2 is always negative and statistically significant

in the full sample. This result is consistent with numerous previous studies which find that

a higher price-dividend ratio predicts a lower excess stock return. The estimated coeffi cient

on iv is positive while the estimated coeffi cient on rv is negative, but neither coeffi cient is

statistically significant in the full sample. However, if we drop the COVID-influenced data from

2020.M3 onward, then both iv and rv become strongly significant with coeffi cients that are

approximately equal in magnitude but opposite in sign. This result is consistent with previous

findings in the literature that the variance risk premium (iv minus rv) helps to predict excess

stock returns with a positive regression coeffi cient. The literature has interpreted the variance

risk premium as a proxy for macroeconomic uncertainty. A positive regression coeffi cient on

the variance risk premium implies that higher uncertainty in month t induces investors to

demand a higher excess stock return in month t+ 1.

The rolling regression results in Figure 3 confirm that both iv and rv cease to be sta-

tistically significant when the COVID-influenced data enters the 120-month moving window.
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Three COVID-influenced data points contribute to the breakdown of iv and rv (and by ex-

tension the breakdown of the variance risk premium) as predictors of 1-month-ahead excess

stock returns. The variance risk premium turns strongly negative in 2020.M3, but this ob-

servation is followed by a strongly positive excess stock return in 2020.M4. The pre-COVID

regression relationship predicts a negative excess stock return in 2020.M4. Subsequently, the

variance risk premium turns positive in 2020.M8 and 2020.M9, but these two observations are

followed by a strongly negative excess stock returns in 2020.M9 and 2020.M10, respectively.

The pre-COVID regression relationship predicts positive excess stock returns in 2020.M9 and

2020.M10. This example shows that predictor variables that previously have been considered

robust can lose their statistical significance in short order.

The estimated coeffi cients on∆sent12 and∆ersf in Table 2 are not statistically significant

in the full sample. A finding of non-significance for these two variables is a typical result

across all of our regression specifications. However, the estimated coeffi cient on the interaction

variable ∆sent12×∆ersf is negative and strongly significant in both Specifications 3 and 4.

Specification 3 delivers an adjusted R-squared statistic of 4.8% versus 0.90% for Specification 2.

Further investigation of the interaction variable reveals that its statistical significance derives

mainly from periods of declining sentiment and negative return momentum, forecasting a

further decline in the excess stock return.14

The estimated coeffi cient on the variable noise in Table 2 is negative and strongly signifi-

cant with a t-statistic of −3.164. As shown in Appendix E, the 2.5% percentile bootstrapped

critical value for noise is −2.331. Higher values of noise predict lower 1-month-ahead excess

stock returns, implying that a shortage of arbitrage capital in financial markets causes excess

returns to drop below the levels justified by fundamentals. From Figure 2, we see that noise

is highest during the Great Recession that runs from December 2007 to June 2009. But there

are some smaller upward spikes in 1998.M10 (following the collapse of the hedge fund Long-

Term Capital Management), 1999.M10 (heading into the dotcom bust), 2016.M12 (following

the surprise U.S. presidential victory of Donald Trump), and 2020.M3 (coinciding with the

onset of the COVID pandemic in the U.S.).

Table 3 shows split-sample regression results. The first split sample runs from 1990.M1

to 2005.M12 while the second runs from 2006.M1 to 2020.M12. The regression results for the

first split sample are similar to the full-sample results, with the exception that noise is not

significant in the first split sample which does not include the Great Recession. As discussed

further below, noise is only significant in sample periods that include the Great Recession.

The results for the second split sample show that pd is only significant in Specification 4

that includes noise. The contemporaneous correlation between pd and noise in the second
14For details, see Lansing and Tubbs (2019).
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split sample is −0.76 whereas the two variables are essentially uncorrelated in the first split

sample. Notice also that the regression coeffi cient on pd is much larger in magnitude in the

second split sample. This is because pd exhibits a lower average value from 2006 onward. In

Specification 3, the variable ∆sent12×∆ersf is statistically significant in both split samples,

but the significance is stronger in the first split sample. In going from Specification 3 to

Specification 4 which includes noise, the adjusted R-squared statistic for the second split

sample increases from 2.62% to 13.6%.

Tables 4 and 5 show how recession periods influence the statistical significance of each

predictor variable. In Table 4, the dummy variableGR, dated month-t, is equal to 1 during the

Great Recession from 2007.M12 to 2009.M6 and equal to 0 otherwise. In Table 5, the dummy

variable R, dated month-t, is equal to 1 during recessions and equal to 0 otherwise. Unlike

the values of the predictor variables themselves, the values of the dummy variables would not

have been available in real time at the end of month-t. Nevertheless, these regressions provide

a way of examining the sensitivity of the results to selected sample periods that are identified

ex post.15

Table 4 shows that noise is only significant when GR = 1, confirming that clear evidence

of market ineffi ciency is confined to a narrow sub-sample of data that coincides with the global

financial crisis. Table 5 shows that the variables pd, iv, rv, and ∆sent12×∆ersf are not

significant when R = 1, which serves to include the COVID recession data from 2020.M3 to

2020.M5. Setting R = 0 excludes the COVID recession data, thereby helping to improve the

statistical significance of all four of these variables.

Figures 3 and 4 show the results of 120-month rolling regressions using Specification 4.

Only three predictor variables, namely, pd, iv, and ∆sent12×∆ersf, are significant across a

diverse set of sample periods. The variables rv, term, and noise are intermittently significant.

The variable∆sent12 is rarely significant while the variable∆ersf is never significant. For the

most recent 120-month sample period that runs from 2011.M1 to 2020.M12 and includes the

COVID-influenced data, the only significant predictor variable is pd. The results of the rolling

regressions highlight the diffi culty of identifying any robust predictors of excess stock returns.

The intermittent or short-lived significance of some of our predictor variables is consistent with

the findings of “pockets of predictability”by Farmer et al. (2022). Using model simulations,

they demonstrate that a departure from rational expectations about future cash growth, in

the form of “sticky expectations,”can produce such outcomes.

15An alternate way of showing how recessions influence the results would be to add recession interaction
variables (e.g., pd×R) to the regression specification in Table 2. The R-squared statistic for such a regression
would be the same as in Table 4 or 5, but the estimated coeffi cient on the interaction variable would now
represent the difference between the regression coeffi cients for each of the two regimes. Our interest here is not
whether the regression coeffi cients are statistically different across the two regimes, but instead whether the
statistical significance of a given predictor variable derives from one regime or the other.
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Table 6 compares goodness-of-fit statistics for predictive regressions that include the vari-

able noise versus otherwise similar regressions that omit this variable. An asterisk (*) indicates

the superior goodness-of-fit statistic for the two regressions being compared. The goodness of

fit statistics are: (1) the root mean squared forecast error (RMSFE ), (2) the mean absolute

forecast error (MAFE ), (3) the correlation coeffi cient between the forecasted excess return

and the realized excess return (Corr), (4) the percentage of forecasted excess returns with the

same sign as the realized excess return (Sign), and (5) either the adjusted R-squared statistic

(for in-sample forecasts) or the out-of-sample R-squared statistic (for out-of-sample forecasts).

The out-of-sample R-squared statistic compares the performance of the predictive regression

to a benchmark forecast model that assumes constant excess stock returns. The statistic is

defined as one minus the ratio of summed squared residuals from the predictive regression to

summed squared deviations of realized excess returns from the mean excess return of the esti-

mation sample. We consider two out-of-sample forecasting exercises. In the first exercise, the

out-of-sample period runs from 2006.M1 to 2020.M12, which includes the Great Recession. In

the second exercise, the out-of-sample period runs from 2010.M1 to 2020.M12, which excludes

the Great Recession.

The top panel of Table 6 shows the results for the in-sample predictive regressions. The

bottom two panels shows the results for the out-of-sample forecasting exercises. In all cases in

Table 6, including noise in the predictive regression serves to improve forecast performance as

measured by the goodness-of-fit statistic. But the improved forecast performance in the second

out-of sample exercise is relatively minor. This is because the out-of-sample period excludes

the Great Recession which accounts for the statistical significance of the noise variable.

Our predictive regressions identify clear evidence of market ineffi ciency only during the

Great Recession. But other evidence suggests that investors’forecasts of future stock returns

are not fully-rational. Figure 5, adapted from Lansing (2020), shows that the degree of investor

optimism or pessimism about the stock market is strongly linked to recent movements in stock

prices. The figure plots the results of a University of Michigan survey that asks people to

assign a probability that stock prices will increase over the next year.16 Movements in the

mean probability response from the survey are strongly correlated with movements in the

predictor variable pd.

In our regressions, higher values of pd predict lower excess stock returns. But the survey

respondents fail to take this empirical relationship into account. Instead, the survey respon-

dents assign a higher probability of a price increase (implying a higher expected excess stock

16The data is available from June 2002 onward from https://data.sca.isr.umich.edu/tables.php. The survey
question reads: “Suppose that tomorrow someone were to invest one thousand dollars in a type of mutual fund
known as a diversified stock fund. What do you think is the percent chance that this one thousand dollar
investment will increase in value in the year ahead, so that it is worth more than one thousand dollars one year
from now?”
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return) when pd is higher. During both the 2008-2009 financial crisis and the onset of the

COVID-19 pandemic in early 2020, the value of pd was very low. Rational investors with time-

varying risk premiums should expect higher excess stock returns when pd is very low. But

in contrast, the survey respondents were very pessimistic about future stock prices when pd

was very low. The pattern in Figure 5 is suggestive of extrapolative expectations rather than

rationally time-varying risk premiums. Our theoretical results in Section 4.1 demonstrate that

investors’use of extrapolative expectations will give rise to predictable excess stock returns.

6 Conclusion

This paper shows that realized excess returns on risky assets can be represented by an ad-

ditive combination of conditional variance terms and investor forecast errors. As a result,

the predictability of realized excess returns can arise from only two sources: (1) stochastic

volatility of fundamental variables, or (2) departures from rational expectations that give rise

to predictable investor forecast errors.

Motivated by our theoretical results, we run predictability regressions for 1-month-ahead

excess stock returns using data from 1990.M1 to 2020.M12. We look for evidence of market

ineffi ciency while controlling for the presence of stochastic volatility. The predictor variable

that we use to detect market ineffi ciency is a measure of non-fundamental noise in the Treasury

yield curve. We acknowledge, however, that disentangling the two sources of predictability is

diffi cult because departures from rational expectations could influence the predictor variables

that we use to control for stochastic volatility.

We find that the statistical significance of the stochastic volatility control variables is typ-

ically sensitive to the sample period. For example, measures of implied and realized stock

return variance cease to be significant when the COVID-influenced data from early 2020 on-

ward is included. The Treasury yield curve noise variable is statistically significant only during

sample periods that include the Great Recession. Overall, we interpret our empirical results

as providing evidence that the predictability of excess stock returns, when present, can come

from both of the two sources identified by the theory.
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A Appendix: Rational solution with stochastic volatility

This appendix derives an approximate analytical solution to the rational model with exoge-

nous stochastic volatility described in Section 3.1. Gelain and Lansing (2014) employ similar

methods to derive an approximate analytical solution to a rational asset pricing model for

housing that exhibits exogenous stochastic volatility in fundamental rent growth.17 Substi-

tuting the functional forms for Mt and dt/dt−1 into the transformed first-order condition for

stocks (5) yields

zst = β exp
[
(1− α)xt + vt + αηt − αηt−1

] (
1 + Etz

s
t+1

)
, (A.1)

where xt ≡ log (ct/ct−1) . A conjectured solution to (A.1) takes the form

zst = a0 exp
[
a1 (xt − x) + a2

(
σ2t − σ2

)
+ a3vt + a4 (ηt − η) + a5

(
ηt−1 − η

)]
. (A.2)

Iterating ahead the conjectured solution (A.2) and then taking the conditional expectation

yields

Etz
s
t+1︸ ︷︷ ︸

= pst/dt

= a0 exp
[
a1ρx (xt − x) + 1

2 (a1)
2 σ2t + a2ρσ

(
σ2t − σ2

)
+ 1

2 (a2)
2 σ2u + 1

2 (a3)
2 σ2v

]
× exp[(a4ρη + a5) (ηt − η) + 1

2 (a4)
2 σ2ω], (A.3)

where pst/dt = Etz
s
t+1 from equation (4). The above expression shows that pst/dt is a function

of the fundamental state variable σ2t that drives the stochastic volatility of consumption and

dividend growth. This analytical result motivates the inclusion of the price-dividend ratio as

an indirect control for stochastic volatility in the predictability regressions of Section 5.

The conditional forecast (A.3) is substituted into the transformed first order condition

(A.1) which is then log-linearized to obtain

zst = F
(
xt, σ

2
t , vt, ηt, ηt−1

)
,

' a0 exp
[
a1 (xt − x) + a2

(
σ2t − σ2

)
+ a3vt + a4 (ηt − η) + a5

(
ηt−1 − η

)]
, (A.4)

where a0 through a5 are Taylor-series coeffi cients with a0 ≡ exp {E [log (zst )]} . After some
manipulation, it can be shown that the Taylor series coeffi cients must satisfy the following

17Lansing (2010) demonstrates the accuracy of this solution method for the level of the price-dividend ratio by
comparing the approximate analytical solution to the exact theoretical solution for the model version without
stochastic volatility (σ2u = 0) and without time-varying risk aversion (σ2ω = 0).
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system of nonlinear equations

a0 = β exp[(1−α)x]
1−β exp[(1−α)x+(a1)2 σ2/2+(a2)2σ2u/2+(a3)2σ2v/2+(a4)2σ2ω/2]

, (A.5)

a1 = (1−α)
1−ρxβ exp[(1−α)x+(a1)2 σ2/2+(a2)2σ2u/2+(a3)2σ2v/2+(a4)2σ2ω/2]

, (A.6)

a2 =
[(a1)2/2]β exp[(1−α)x+(a1)2 σ2/2+(a2)2σ2u/2+(a3)2σ2v/2+(a4)2σ2ω/2]
1−ρσβ exp[(1−α)x+(a1)2 σ2/2+(a2)2σ2u/2+(a3)2σ2v/2+(a4)2σ2ω/2]

, (A.7)

a3 = 1, (A.8)

a4 =
α{1−β exp[(1−α)x+(a1)2 σ2/2+(a2)2σ2u/2+(a3)2σ2v/2+(a4)2σ2ω/2]}
1−ρηβ exp[(1−α)x+(a1)2 σ2/2+(a2)2σ2u/2+(a3)2σ2v/2+(a4)2σ2ω/2]

(A.9)

a5 = −α, (A.10)

provided that β exp
[
(1− α)x+ (a1)

2 σ2/2 + (a2)
2 σ2u/2 + (a3)

2 σ2v/2 + (a4)
2 σ2ω/2

]
< 1. From

equations (A.2) and (A.3), we can compute log[zst+1/(Etz
s
t+1)], yielding equation (27) in the

text.

In the case of Epstein-Zin preferences, we haveMt+1 = βω exp [−ω xt/ψ]
(
Rct+1

)ω−1
, where

Rct+1 = exp(xt)
(
1 + pct+1/ct+1

)
/(pct/ct) is the gross return on an consumption claim, ψ is the

elasticity of intertemporal substitution, and ω ≡ (1− α) /
(
1− ψ−1

)
. When vt = 0 (such that

ct = dt) and ηt = ηt−1 (such that risk aversion is constant), the first-order condition (A.1)

becomes

zct = βω exp [(1− α)xt] [1 + (Etz
c
t+1)

1/ω]ω, (A.11)

where the composite variable zct is defined as z
c
t ≡ βω exp [(1− α)xt] (1 + pct/ct)

ω. In this case,

we have pct/ct = (Etz
s
t+1)

1/ω.

The investors’s stochastic discount factor for the Epstein-Zin case can be rewritten as

Mt+1 = β exp[(1− α− ω)xt+1/ω]
[
zct+1/(Etz

c
t+1)

](ω−1)/ω
. (A.12)

An approximate analytical solution to equation (A.11) can be obtained using methods

similar to those employed in solving equation (A.1) above. Using the analytical solution for

zct , an approximate analytical solution for the risk free rate of return can be obtained by

computing Rft+1 = 1/(EtMt+1) where Mt+1 is given by equation (A.12).

Substituting pct/ct = (Etz
s
t+1)

1/ω (from the first-order condition) and 1 + pct+1/ct+1 =

β−1(zct+1)
1/ω exp[−(1 − α)xt+1/ω] (from the definition of zct+1) into the expression for R

c
t+1

confirms that

Rct+1 =
zct+1
Etzct+1

1

Mt+1
. (A.13)
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The excess return on the consumption claim is given by

log(Rct+1/R
f
t+1) = log

[
zct+1/(Etz

c
t+1)

]
− log [Mt+1/(EtMt+1)] , (A.14)

which is a special case of equation (10) in the text.

B Appendix: Endogenous stochastic volatility

Endogenous stochastic volatility can arise from the nonlinear nature of the model’s functional

forms. Consider the time-separable exponential utility function U = 1 − exp (−αct) which
exhibits constant absolute risk aversion such that −Ucc/Uc = α. The investor’s stochastic

discount factor is given by

Mt+1 = β exp [−α (ct+1 − ct)] = β exp (−αct xt+1) , (B.1)

xt+1 = x+ ρx (xt − x) + εt+1, |ρx| < 1, εt ∼ NID
(
0, σ2ε

)
, (B.2)

where xt+1 ≡ (ct+1 − ct) /ct is real consumption growth that evolves as an AR(1) process with
constant innovation variance σ2ε.

Under rational expectations, we have

Rft+1 = 1/(EtMt+1) = β−1 exp
{
ct [αx+ αρx (xt − x)]− 1

2α
2σ2εc

2
t

}
, (B.3)

log [Mt+1/(EtMt+1)] = −αct εt+1 − 1
2α

2σ2εc
2
t , (B.4)

which shows that the left side of equation (B.4) will be predictable because c2t is time-varying

and helps to partly determine the realized excess stock return at time t + 1. Similarly, the

term log
[
zst+1/(Etz

s
t+1)

]
that appears in the excess stock return equation (10) will also be

predictable.

C Appendix: Solution with extrapolative expectations

This appendix derives an approximate analytical solution for zst+1/(Êtz
s
t+1) under extrapola-

tive expectations. Substituting the extrapolative forecast Êtzst+1 = Aszt together with the

functional forms for Mt and dt/dt−1 into the transformed first-order condition for stocks (5),

and then solving for zst yields

zst =
β exp

[
(1− α)xt + vt + αηt − αηt−1

]
1−Asβ exp

[
(1− α)xt + vt + αηt − αηt−1

] , (C.1)

where xt ≡ log (ct/ct−1) . The denominator of equation (B.1) can be approximated as

1−Asβ exp
[
(1− α)xt + vt + αηt − αηt−1

]
'

b0 exp[b1 (xt − x) + b2vt + b3 (ηt − η) + b4
(
ηt−1 − η

)
], (C.2)
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where b0 through b4 are Taylor-series coeffi cients. The Taylor series coeffi cients are given by

b0 = 1−Asβ exp [(1− α)x] , (C.3)

b1 =
−Asβ(1− α) exp [(1− α)x]

1−Asβ exp [(1− α)x]
, (C.4)

b2 =
−Asβ exp [(1− α)x]

1−Asβ exp [(1− α)x]
, (C.5)

b3 =
−Asβα exp [(1− α)x]

1−Asβ exp [(1− α)x]
(C.6)

b4 =
Asβα exp [(1− α)x]

1−Asβ exp [(1− α)x]
(C.7)

provided that Asβ exp [(1− α)x] < 1.

Using equations (C.1) and (C.2), we have

log[zst+1/(A
szst )] = − logAs + (1− α− b1)(xt+1 − xt) + (1− b2)(vt+1 − vt)

+ (α− b3)(ηt+1 − ηt) − (α+ b4)(ηt − ηt−1), (C.8)

which can be transformed to obtain equation (32) in the text.

D Appendix: Data sources

Monthly data on the end-of-month nominal S&P 500 stock index, nominal dividends, and the

nominal risk free rate of return are from Welch and Goyal (2008). Updated data through the

end of 2020 are available from Amit Goyal’s website.18 The gross nominal return on the S&P

500 stock index in month t is defined as (Pt +Dt/12) /Pt−1, where Pt is the end-of-month

nominal closing value of the index and Dt is cumulative nominal dividends over the past 12

months. The price-dividend ratio in month t is defined as Pt/Dt. Data on the implied variance

and realized variance of the S&P 500 stock index are from Zhou (2018). Updated monthly

data through the end of 2020 are available from Hao Zhou’s website.19 The implied variance is

measured by the end-of-month VIX-squared, de-annualized (i.e., VIX2/12). Realized variance

is measured by the sum of squared 5-minute log returns of the S&P 500 stock index over the

month. Both variance measures are expressed in percentage-squared terms and are available in

real time at the end of the observation month. The monthly average spread in percent between

the 10-year and 3-month constant maturity Treasury yields is from the FRED database of the

18www.hec.unil.ch/agoyal/.
19https://sites.google.com/site/haozhouspersonalhomepage/.
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Federal Reserve Bank of St. Louis. The University of Michigan consumer sentiment index is

from www.sca.isr.umich.edu/tables.html. The Treasury yield curve noise measure is from Hu,

Pan, and Wang (2013). Updated daily data through the end of 2020 are available from Jun

Pan’s website.20 The noise measure employed in the regressions is the monthly average of the

daily noise measures. Similar results are obtained using the end-of-month noise measure.

E Appendix: Bootstrapped critical values

Stambaugh (1999) and Mankiw and Shapiro (1986) show that the estimated slope coeffi cient

and its associated t-statistic exhibit finite-sample bias when one regresses stock returns (or

excess stock returns) on the lagged price-dividend ratio, which is highly persistent. They fur-

ther illustrate that the bias in the estimated slope coeffi cient depends on the contemporaneous

correlation between innovations to excess stock returns and innovations to the price-dividend

ratio. Upward movements in the stock price tend to drive up the excess stock return and the

price-dividend ratio simultaneously, implying a positive correlation between the two innova-

tions. The bias in the estimated slope coeffi cient is proportional to the bias in the estimate

of the AR coeffi cient for the price-dividend ratio. Kendall (1954) shows that there is a large

downward finite-sample bias in the estimate of the AR coeffi cient when the variable in ques-

tion is highly persistent, as with the price-dividend ratio. The upshot is that the least squares

estimate of the slope coeffi cient and its associated t-statistic in predictive regressions for excess

stock returns can have non-trivial biases. Use of the standard asymptotic critical values for

t-statistics can lead investigators to reject the null hypothesis more often than they should.

Table 1 shows that the predictor variables pd, iv, term, ∆sent12, and noise are highly

persistent. We wish to gauge the magnitude of potential size distortions of the standard t-

statistic in our specific application where we regress excess stock returns in month t+ 1 on a

constant and all eight predictor variables in month t. We address this issue using a slightly

modified bootstrap procedure as laid out in Nelson and Kim (1993), Mark (1995), and Rapach

and Wohar (2006). We postulate that the data under the null hypothesis are generated by

the following system:

log(Rst+1/R
f
t+1) = a0 + ε1t+1, (E.1)

xit+1 = b0 + b1x
i
t + ...+ bjx

i
t−j+1 + εi2t+1, (E.2)

where xit denotes one of the eight predictor variables. The innovation to excess stock returns

ε1t+1 and the innovation to each of the eight predictor variables εi2t+1 are allowed to be

contemporaneously correlated.

20http://en.saif.sjtu.edu.cn/junpan/
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To obtain the bootstrapping parameters, we first estimate equation (E.1) using excess

stock returns. We then estimate equation (E.2) for each of the eight predictor variables. The

number of lags in equation (E.2) for each predictor variable is determined using the AIC, with

a maximum of four lags. Given the parameter estimates from equations (E.1) and (E.2), we

compute and store the residuals. Next, we take random draws (with replacement) of these

OLS residuals in tandem, preserving the contemporaneous correlations between these residuals

as in the original sample. For each simulation, we obtain a bootstrapped data of sample size

N×1.25, where N = 372 is the sample length of monthly U.S. data from 1990.M1 to 2020.M12.

We drop the first 25% of the bootstrapped data to remove any potential impact of the initial

values, thus keeping the length of the pseudo-sample equal to the length of the U.S. data

sample. Following Shaman and Stine (1988), we also implement a bias correction procedure

for the estimated AR coeffi cients in equation (E.2). We use the bias-corrected parameter values

and the randomly-drawn correlated residuals to generate bootstrapped data from equations

(E.1) and (E.2).

We carry out the bootstrap procedure by simulating excess stock returns using equation

(E.1) and simulating the evolution of the eight predictor variables using the eight versions of

equation (E.2). We then use this simulated pseudo-sample to regress excess stock returns in

month t+ 1 on a constant and all eight predictor variables in month t. For each bootstrapped

sample, we compute and store the t-statistics for the eight slope coeffi cients. The t-statistics

are computed using Newey-West HAC corrected standard errors. We repeat the process 1000

times and obtain an empirical distribution of the bootstrapped t-statistics. We report the

2.5% and 97.5% percentiles of the empirical distribution as the 5% empirical critical values.

The bootstrapping results are reported in Table E.1.

The two-sided 5% asymptotic critical values of a t-statistic that adheres to a standard

normal distribution are −1.96 and +1.96. The bootstrapped critical values in Table E.1 are

not substantially different from the asymptotic ones, but there are some noticeable shifts in

either direction for the persistent predictor variables, depending upon the direction of the

underlying correlation between the simulated innovations.

For example, the 2.5% percentile of the bootstrapped t-statistic for pd is −2.936. This

value is larger in absolute value than the asymptotic value of −1.96, thus raising the bar for

one to reject the null hypothesis in favor of a negative coeffi cient. At the same time, the 97.5%

percentile of the bootstrapped t-statistic for pd is 1.394, less than the asymptotic value of 1.96.

This left-skewed distribution of the test statistics results from the positive correlation between

innovations to excess stock returns and innovations to pd, which gives rise to downward bias

in the slope coeffi cient and the associated t-statistic. On the other hand, the 2.5% and 97.5%

percentiles of the bootstrapped t-statistic for iv are −1.783 and 2.478, respectively, indicating

a slightly right-skewed distribution. The right-skewed distribution is consistent with a negative
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correlation between innovations to excess stock returns and innovations to iv.

The distributions of the t-statistics for the remaining six predictor variables in Table E.1

appear less skewed and closer to the standard normal distribution. The 2.5% and 97.5%

percentiles of the bootstrapped t-statistic for noise, our key variable of interest, are both

larger in magnitude than 1.96. But the bootstrapped distribution is quite symmetric around

zero.

Table E.1: Bootstrapped critical t-statistics

Predictor variable 2.5% percentile 97.5% percentile
pd −2.936 1.394
iv −1.783 2.478
rv −2.461 2.751
term −2.269 2.340
∆sent12 −2.144 1.986
∆ersf −1.937 2.038
∆sent12×∆ersf −2.090 2.170
noise −2.331 2.258
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Table 1: Summary statistics: 1990.M1 to 2020.M12

Variable Mean Std. Dev. Skewness Kurtosis Autocorr. Corr. with noise
ersf 0.59 4.28 −0.74 4.59 0.03 −0.20
pd 52.1 13.6 0.53 3.32 0.98 −0.18
iv 36.7 34.8 3.46 19.9 0.77 0.61
rv 21.9 48.1 9.24 106.9 0.44 0.42
term 1.69 1.14 −0.05 1.93 0.98 0.27
∆sent12 −0.36 10.1 −0.63 3.46 0.85 −0.29
∆ersf 0.01 5.95 0.58 4.45 −0.47 0.05
∆sent12×∆ersf −5.07 68.1 −2.31 26.7 −0.26 −0.05
noise 2.88 2.03 4.08 26.8 0.95 1.00

Notes: ersf = excess return on S&P 500 stock index relative to the risk free rate in percent as measured by
the return on a 3-month Treasury bill, pd = price-dividend ratio for the S&P 500 index defined as the end-of-
month nominal closing value of the index divided by cumulative nominal dividends over the past 12 months,
iv = implied variance in percent-squared from options on the S&P 500 stock index, rv = realized variance of
the S&P 500 stock index in percent-squared using 5-minute return intervals over the month, term = monthly
average spread in percent between the 10-year and 3-month constant maturity Treasury yields, ∆sent12 =
12-month change in the University of Michigan consumer sentiment index, ∆ersf = excess return momentum
defined as the 1-month change in ersf, noise = monthly average root mean squared deviation between the daily
Treasury yield curve and a daily model-fitted, no-arbitrage yield curve.
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Table 2: Predicting excess returns on stocks: Full sample results

1990.M1 to 2020.M12 1 2 3 4

pd
−0.036
(−1.990)

−0.045
(−2.120)

−0.046
(−2.326)

−0.054
(−2.709)

iv
0.010

(0.480)
0.010

(0.419)
0.031

(1.448)

rv
−0.005

(−0.238)
−0.002

(−0.108)
−0.006

(−0.360)

term
−0.261

(−1.207)
−0.326

(−1.403)
−0.102

(−0.437)

∆sent12
0.042

(1.570)
0.026

(1.135)

∆ersf
0.001

(0.016)
0.016

(0.408)

∆sent12×∆ersf
−0.013
(−3.371)

−0.012
(−2.975)

noise
−0.551
(−3.164)

Adj. R2 1.06% 0.90% 4.81% 8.30%

Notes: Dependent variable is ersf for month t+1. All regressions include a constant term with regressors dated
month t. Newey-West HAC corrected t-statistics in parentheses. Boldface indicates significant at the 5% level
using asymptotic critical values. See Table 1 for variable definitions.
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Table 3: Predicting excess returns on stocks: Split sample results

1990.M1 to 2005.M12 1 2 3 4

pd
−0.034
(−2.191)

−0.053
(−2.298)

−0.051
(−2.308)

−0.051
(−2.337)

iv
0.033
(1.989)

0.030
(1.910)

0.032
(2.071)

rv
−0.008

(−0.240)
−0.013

(−0.432)
−0.013

(−0.437)

term
−0.218

(−0.645)
−0.301

(−0.915)
−0.275

(−0.826)

∆sent12
0.033

(1.248)
0.029

(1.102)

∆ersf
−0.028

(−0.701)
−0.028

(−0.687)

∆sent12×∆ersf
−0.017
(−4.043)

−0.017
(−4.001)

noise
−0.246

(−0.832)

Adj. R2 2.26% 3.50% 7.02% 6.82%

2006.M1 to 2020.M12 1 2 3 4

pd
−0.053

(−0.465)
−0.126

(−1.146)
−0.115

(−1.048)
−0.339
(−3.658)

iv
−0.155

(−0.449)
−0.013

(−0.333)
0.019

(0.497)

rv
0.005

(0.200)
0.007

(0.302)
−0.002

(−0.109)

term
−0.240

(−0.789)
−0.308

(−0.854)
−0.059

(−0.149)

∆sent12
0.051

(1.105)
−0.001

(−0.036)

∆ersf
0.052

(0.806)
0.087

(1.238)

∆sent12×∆ersf
−0.009
(−2.027)

−0.008
(−1.375)

noise
−1.019
(−5.484)

Adj. R2 0.00% −0.97% 2.62% 13.6%
Notes: See Table 2.
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Table 4: Predicting excess returns on stocks: Great Recession results

1990.M1 to 2020.M12 1 2 3 4

pd×GR −0.220
(−1.390)

−0.187
(−0.689)

0.101
(−0.327)

−0.603
(−1.933)

pd× (1−GR) −0.043
(−2.748)

−0.060
(−2.814)

−0.059
(−2.689)

−0.057
(−2.706)

iv ×GR 0.007
(0.245)

0.016
(0.324)

0.051
(1.816)

iv × (1−GR) 0.023
(1.383)

0.020
(1.061)

0.023
(1.193)

rv ×GR −0.028
(2.221)

−0.024
(−0.936)

−0.031
(2.109)

rv × (1−GR) 0.006
(0.623)

0.007
(0.684)

0.005
(0.510)

term×GR 2.976
(1.607)

3.731
(1.940)

2.257
(1.336)

term× (1−GR) −0.220
(−0.938)

−0.226
(−0.877)

−0.153
(−0.573)

∆sent12×GR 0.196
(2.544)

−0.033
(−0.341)

∆sent12× (1−GR) 0.009
(0.335)

0.006
(0.226)

∆ersf ×GR 0.773
(3.304)

0.604
(1.375)

∆ersf × (1−GR) −0.007
(−0.212)

−0.006
(−0.166)

∆sent12×∆ersf ×GR 0.021
(1.963)

0.006
(0.304)

∆sent12×∆ersf × (1−GR) −0.008
(−2.161)

−0.008
(−2.121)

noise×GR −1.508
(−4.417)

noise× (1−GR) −0.231
(−1.025)

Adj. R2 3.92% 7.97% 11.0% 12.8%
Notes: See Table 2. The dummy variable GR, dated month-t, is equal to 1 during the Great Recession from
2007.M12 to 2009.M6 and equal to 0 otherwise. All regressions include constant ×GR and constant × (1−GR).
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Table 5: Predicting excess returns on stocks: All recession results

1990.M1 to 2020.M12 1 2 3 4

pd×R −0.031
(−0.626)

−0.038
(−0.710)

−0.048
(−0.950)

−0.080
(−1.700)

pd× (1−R) −0.046
(−2.790)

−0.076
(−3.991)

−0.075
(−3.886)

−0.071
(−3.950)

iv ×R −0.032
−0.900)

−0.043
(−1.499)

0.021
(0.685)

iv × (1−R) 0.060
(4.470)

0.057
(4.146)

0.064
(4.324)

rv ×R 0.019
(0.850)

0.025
(1.350)

0.008
(0.380)

rv × (1−R) −0.044
(−2.083)

−0.043
(−2.003)

−0.048
(2.152)

term×R 0.783
(0.531)

0.925
(0.666)

2.995
(2.047)

term× (1−R) −0.389
(−1.916)

−0.395
(−1.849)

−0.296
(−1.315)

∆sent12×R 0.062
(0.483)

0.077
(0.797)

∆sent12× (1−R) 0.003
(0.106)

0.002
(0.067)

∆ersf ×R 0.514
(1.664)

0.913
(2.907)

∆ersf × (1−R) −0.013
(−0.358)

−0.010
(−0.287)

∆sent12×∆ersf ×R 0.005
(0.331)

0.024
(1.797)

∆sent12×∆ersf × (1−R) −0.010
(−2.139)

−0.009
(−2.048)

noise×R −1.124
(−5.802)

noise× (1−R) −0.323
(−1.485)

Adj. R2 2.48% 6.86% 12.7% 15.9%
Notes: See Table 2. The dummy variable R, dated month-t, is equal to 1 during recessions and equal to 0
otherwise. All regressions include constant × R and constant × (1−R).
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Table 6: Goodness-of Fit Statistics

1-month ahead forecast RMSFE MAFE Corr Sign Adj. R2 OOS R2

In-sample with noise 4.03%∗ 2.99%∗ 0.32∗ 65.0%∗ 8.30%∗

In-sample without noise 4.11% 3.09% 0.26 63.1% 4.81%
Split out-of-sample I with noise 4.30%∗ 3.13%∗ 0.25∗ 68.9%∗ — 5.30%∗

Split out-of-sample I without noise 4.44% 3.24% 0.17 65.6% — −0.01%
Split out-of-sample II with noise 4.46%∗ 3.11%∗ 0.00∗ 65.0%∗ — −0.17%∗

Split out-of-sample II without noise 4.69% 3.30% −0.09 63.1% — −0.29%

Notes: RMSFE = Root mean squared forecast error, MAFE = Mean absolute forecast error, Corr = corre-
lation coeffi cient between forecasted excess return and realized excess return, Sign = percentage of forecasted
excess returns with same sign as realized excess return, Adj. R2 = Adjusted R-squared statistic for in-sample
regressions, OOS R2 = Out-of-sample R-squared statistic defined as 1−SSR/SST , where SSR is the sum of the
squared residuals from the predictive regression and SST is the sum of the squared deviations of realized excess
returns from the mean excess return of the estimation sample. The in-sample regression equations correspond
to columns 3 and 4 in Table 2 and cover the period from 1990.M1 to 2020.M12. For the split out-of-sample I
regressions, the same equations are estimated for the period from 1990.M1 to 2005.M12 and then used to forecast
excess stock returns for the period from 2006.M1 to 2020.M12. For the split out-of-sample II regressions, the
same equations are estimated for the period from 1990.M1 to 2009.M12 and then used to forecast excess stock
returns for the period from 2010.M1 to 2020.M12. An asterisk ∗ indicates the superior goodness-of-fit statistic
for the two regressions being compared.
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Figure 1: Predictor Variables
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Notes: The predictor variables for one-month-ahead excess stock returns include the price-dividend ratio (pd),
the implied stock return variance (iv), the realized stock return variance (rv), and the treasury term spread
(term). These variables are included to control for the presence of stochastic volatility.
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Figure 2: Predictor Variables
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Notes: The predictor variables for one-month-ahead excess stock returns include a measure of shifts in consumer
sentiment (∆sent12), a measure of excess return momentum (∆ersf ), a sentiment-momentum interaction
variable (∆sent12×∆ersf ), and a measure of non-fundamental noise in the treasury yield curve (noise). The
first three of these variables are included to control for the presence of stochastic volatility whereas the noise
variable is included to detect market effi ciency.
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Figure 3: Rolling Regression Coeffficients
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Notes: Thin red lines represent 95% confidence intervals using the asymptotic critical values. The rolling
regression coeffi cient on pd exhibits a consistent negative sign and is mostly significant from the early 2000s
onwards. The rolling regression coeffi cients on iv and rv exhibit mostly positive and negative signs, respectively.
The rolling regression coeffi cient on term is rarely significant.
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Figure 4: Rolling Regression Coeffficients
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Notes: Thin red lines represent 95% confidence intervals using the asymptotic critical values. The rolling
regression coeffi cient on ∆sent12 is rarely significant while the rolling regression coeffi cient on ∆ersf is never
significant. The rolling regression coeffi cient on ∆sent12×∆ersf exhibits a mostly negative sign that is often
significant. The rolling regression coeffi cient on noise is negative and significant for sample periods that include
the Great Recession than runs from 2007.M12 to 2009.M6.
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Figure 5: Optimism or Pessimsim About Stocks is Strongly Linked to Recent Price Movements
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Notes: The predictor variable pd is plotted together with a gauge of investors’expectations about future stock
returns from a University of Michigan survey. The survey records investors’perceived probability of an increase
in stock prices over the next year. In predictive regressions, a higher value of pd forecasts lower excess stock
returns. But the survey respondents fail to take this empirical relationship into account. Instead, the survey
respondents assign a higher probability of a price increase (implying higher expected excess returns) when pd is
higher. The pattern in Figure 5 is suggestive of extrapolative expectations rather than rationally time-varying
risk premiums.
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