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Abstract

Using price quote data that underpin the official U.K. consumer price index (CPI), we

analyze the effects of the unexpected passing of the Brexit referendum to the dynamics

of price adjustments. The sizable depreciation of the British pound that immediately

followed Brexit works as a quasi-experiment, enabling us to study the transmission of a

large common marginal cost shock to inflation as well as the distribution of prices within

granular product categories. A large portion of the inflationary effect is attributable to

the size of price adjustments, implying that a time-dependent price-setting model can

match the response of aggregate inflation reasonably well. The state-dependent model

fares better in capturing the endogenous selection of price changes at the lower end of the

price distribution, however, it misses on the magnitude of the adjustment conditional on

selection.

JEL classification codes: E31, D40, F31.

Keywords: inflation, price dynamics, micro data, menu cost, time-dependent pricing, state-

dependent pricing.
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1 Introduction

On June 23, 2016 a small majority of 51.9 percent of voters in Great Britain voted in favor

of a British exit, “Brexit,” from the European Union. The outcome of this referendum was a

major surprise. Opinion polls, political prediction markets, as well as foreign exchange futures

all signaled a broad consensus, even on the morning of the vote, that the “remain” vote would

prevail (The Economist, 2016). The referendum results astonished the public, rocked careers

of politicians in the “remain” camp, and, most importantly for this paper, shocked the foreign

exchange market. The result was a sharp depreciation of the British pound (GBP).

In the aftermath of the referendum the trade-weighted effective exchange rate of the GBP

depreciated by more than 10 percent. Even by the end of 2016, the Pound had depreciated by

more than 6 percent against the currencies of Britain’s major trading partners. Because the

U.K. is a very open economy, with imports amounting to about 30 percent of its GDP, such a

negative terms of trade shock increases the cost of many products in the U.K. that are either

imported or produced using imported intermediates. The Brexit shock propagated through the

distribution of prices for different items in the British Consumer Price Index (CPI) and resulted

in an acceleration of inflation after June 2016.

In this paper we use the Brexit shock to study the dynamics of price adjustments. The

Brexit shock works as a quasi-experiment that enables us to study the transmission of a large

common shock to marginal costs through the distribution of prices and inflation. This allows

us to distinguish between different types of price setting models with nominal rigidities.

We uncover two key features of the response of prices to the Brexit shock. First, the shock

induces an increase in log prices which is mostly driven by an increase in the magnitude of

price adjustments rather than the incidence of price changes. Second, price dispersion does not

change very much. This is so because, even though the variance of inflation increases, there

is a sizable mean reversion of prices. This mean reversion is largely driven by the selection in

which prices change in that the incidence of price changes increases more for lower prices than

for higher prices. The result is that lower prices increase faster than higher ones.

Our paper is part of a long tradition of analyzing exchange rate pass-through on inflation,

e.g., Gagnon (2009), Gopinath and Itskhoki (2010) Auer and Schoenle (2016), Auer, Burstein

and Lein (2017), among others. Our analysis differs from these studies in two dimensions.

First, we use an explicit quasi-experimental setup in which we split the British CPI micro-

data sample up into “treatment” and “control” groups. The “treatment” group includes items

whose cost is directly affected by the unanticipated movement in the exchange rate because they

are either imported or their production relies on imported intermediates. The “control” group

2



Brexit and the Nature of Price Rigidities Hobijn, Nechio, Shapiro

includes goods and services that are domestically produced with low import content. We then

use local projections (Jordà, 2005) to estimate the impact of the shock through its differential

effect on the dynamics of the distribution of log prices of the “treatment” compared to the

“control” group.

Second, this dynamic differences-in-differences (DID) approach allows us to explicitly focus

on the effects of the shock on the distribution of log prices over time and relate our estimates to

the transitional dynamics of commonly-used models of price setting under nominal rigidities.

Thus, our analysis adds to the extensive literature that uses micro data on prices to doc-

ument certain empirical properties of the distribution of inflation rates and map them into

canonical macroeconomic models of price adjustment.1 We make two contributions to this

literature.

The first is that we use data on the level of the log prices in the micro data in addition

to the information on the change of the log prices, i.e., the inflation rate, that is used in the

studies above. The reason we can use these price level data is because we construct a panel

of separate log-price distributions within the elementary item categories. Specifically, these

items are classified in very detailed categories at the regional level by type of shop over time—

what we refer to as a “bin.”2 Thus, the products within each of these bins are very similar

and this makes differences in their price levels directly interpretable. We use the cross-sectional

dimension, across the log-price distributions within a bin for a given month, for our construction

of the “treatment” and “control” groups in our quasi-experimental setup.

Our second contribution to this strand of the literature is that we consider a larger set of

empirical properties of the distribution of log prices than previous studies have done. In this

respect, we build on Berger and Vavra (2017) and Berger and Vavra (2018), who study the

variance of inflation rates on top of the, most commonly analyzed, mean of the inflation rate

that is driven by the incidence and magnitude of price changes. We use a new decomposition

of the first- and second-order moments of the distribution of log prices that nests the existing

analyses of both the mean and the variance of inflation rates. This decomposition contains

several, never before analyzed, components that exploit the information on the relationship

between the level of log prices and the incidence and magnitude of price changes. These new

components turn out to be readily interpretable in that they can be used to directly distinguish

between different types of models of price setting under nominal rigidities.

1For example, Bils and Klenow (2004), Dhyne et al. (2006), Klenow and Malin (2010), and Nakamura and
Steinsson (2008), Nakamura and Steinsson (2010), Midrigan (2011), Kehoe and Midrigan (2015), and Alvarez,
Lippi and Passadore (2016). In particular, for the U.K. Kryvtsov and Vincent (2014) and Dixon and Tian
(2017).

2An example of such a bin would be marmalade at supermarket chains in the Southwest of England.
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The tight link between the empirical components of the distribution of log prices in our

decomposition and canonical theoretical models of price setting under nominal rigidities allows

us to use the Brexit shock to identify important aspects of the nature of price rigidities in

the data. Our second key empirical finding, namely that of a mean reversion in price setting

because lower prices change more frequently in response to the shock, is direct evidence of

state-dependent price setting by British firms. Previous studies (Alvarez, Lippi and Passadore,

2016; Klenow and Kryvtsov, 2008) pointed out that, under small shocks, time-dependent and

state-dependent price setting models are observationally equivalent. However, our results seem

to reject the time-dependent models. This means that, in the context of these papers, the

Brexit shock, which amounts to an average 4 percent cost increase for the items in our “treat-

ment” group, is a large shock.

However, it turns out that the off-the-shelf state-dependent menu-cost model, as used in

Golosov and Lucas (2007) for example, misses on the magnitude of the adjustment conditional

on selection. In the state-dependent model, the narrowing of the price adjustment bands

implies that prices at the higher end of the distribution change by larger amounts, which is

inconsistent with the data. The result is that the menu-cost model implies a counterfactually

rapid adjustment of the log-price level.

Even though a basic time-dependent model, based on Calvo (1983), cannot match our second

key empirical finding of state-dependent price setting, it outperforms the canonical menu-cost

model in terms of matching the speed of the dynamics of the adjustment of the log price level.

This largely reflects our first key empirical finding that these dynamics are mostly driven by

the changes in the magnitude of the price changes rather than the incidence. Hence, what is

most important is to have a model that does well in terms of matching the magnitude of price

changes rather than the incidence.

The bottom line is that the time-dependent model better captures the response of the

magnitude of price changes, and hence, it better matches the dynamic response of inflation

to the Brexit shock than the canonical menu-cost model. The latter model, however, better

captures the endogeneity of the decision to change prices but does not match the magnitude of

price changes conditional on changing prices.

2 U.K. economic performance and the Brexit referendum

To understand the macroeconomic context within which we analyze the transmission of the

exchange rate shock associated with Brexit, in this section we look at the exchange rate, eco-

nomic activity, and inflation in Great Britain before and after the referendum. We then focus,
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in more detail, on the increase in inflation in the U.K. following the Brexit vote and show that

it is concentrated in goods and services with a large import content.

Figure 1 shows three main macroeconomic indicators for the U.K. economy, namely; the

exchange rate, real GDP growth, and CPI inflation. To put the macroeconomic conditions

during the Brexit vote in context it is worthwhile to consider the 15 years leading up to it.

From 2001 through 2007 the British economy performed well. The exchange rate was

relatively stable, real GDP growth came in at an average annualized rate of 2.9 percent, and

inflation hovered between 1 and 3 percent.

Because of the global financial crisis of 2008 and the ensuing euro crisis in 2011, the British

economy had seen turbulent times in the eight years preceding the Brexit referendum. British

banks were hit hard by the financial crisis, including the bankruptcy of Northern Rock, and

the financial crisis resulted in a 30 percent depreciation of the exchange rate and a 6 percent

decline in real GDP. The depreciation of the GBP, combined with a spike in global commodity

and food prices, caused an initial spike in inflation to 5 percent.

However, a subsequent cut in Value Added Tax (VAT) rates and the economic slack during

the recession resulted in CPI inflation retreating to 1 percent. A reversal of the VAT cuts of

2009 and an additional VAT hike in 2011 as an “emergency budget” measure led to another

spike in inflation in 2011. After that, inflation declined. Just like in many other industrialized

countries, largely driven by declining energy prices in 2014 and 2015, inflation dropped well

below 1 percent in the two years preceding the Brexit vote. As can be seen from Figure 1, in

the 12 months leading up to the Brexit referendum, CPI inflation had only been 0.3 percent in

the United Kingdom, real GDP growth had been 2 percent, and GBP had depreciated in light

of diverging monetary policy expectations in the United Kingdom and the United States.

Then the surprise outcome of the Brexit referendum happened in June 2016. As can be

seen from Figure 1a, immediately following the referendum, the GBP depreciated more than

10 percent against the currencies of the U.K.’s main trading partners. This depreciation of the

GBP was a surprise to the extent that the outcome of the Brexit referendum was a surprise.

Economic forecasts had predicted a substantial depreciation of the GBP in case the “Yes” vote

would prevail (International Monetary Fund, 2016), but the referendum outcome surprised the

public, market participants and policymakers (The Economist, 2016).

Figure 2 more clearly illustrates the effect of the surprising referendum result by plotting

the daily value of the GBP against the dollar and the euro. The GBP sharply depreciated

against both currencies on the day of the Brexit referendum.

Forecasts of the short-run effect of a “Yes” vote on economic activity varied substantially.

Some forecasters predicted a recession in the U.K., while others foresaw only a slight slowdown in
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GDP growth. The International Monetary Fund (IMF), for example, entertained two scenarios;

an adverse and a limited scenario (International Monetary Fund, 2016). The former had the

U.K. slip into a recession after the Brexit “Yes” vote in 2017, resulting in about a five percent

in decline in the level of GDP compared to the baseline. The latter scenario included a small

decline in real GDP growth in the U.K. after a “Yes” vote, resulting in a 1.5 percent decline in

the level of GDP compared to the baseline.

In hindsight, as can be seen from Figure 1b, the IMF’s limited impact scenario turned out

to be relatively accurate. In the 18 months after the Brexit referendum, 4-quarter GDP growth

in the U.K. decelerated from 2 percent to 1.2 percent. Of course, it is hard to know what the

counterfactual would have been. However, over the same period, GDP growth in other G-7

economies, accelerated rather than decelerated. Thus, in the wake of the Brexit referendum,

the British economy has underperformed compared to other economies. Born et al. (2017)

estimate this underperformance to add up to 1 percent of GDP.3

Most importantly for this paper is that, even though the Brexit vote has induced some

slowdown in the growth of economic activity in the U.K., it has not resulted in a major downturn

or recession. That is, the immediate effects on the real side of the British economy have been

limited, and in line with the IMF’s limited scenario.

What has also come in line with the IMF’s limited scenario has been the effects of Brexit

on British CPI inflation. Because about a fifth of the expenditures in the British CPI is

on directly imported goods and services or on high-import content goods and services due

to imported intermediates, the 10 percent surprise depreciation of the pound resulted in a

substantial increase in the cost of final goods and services sold to consumers.4 This resulted

in a run-up of inflation from 0.7 percent in the year before the referendum to 3.1 percent by

November 2017 (Figure 1c).

The post-Brexit acceleration of inflation was due to an increase in the inflation rate of

tradables goods and services. Figure 3 shows this by plotting the time series of the overall

CPI inflation rate from Figure 1c together with the inflation rates of the two-digit Classifica-

tion of Individual Consumption According to Purpose (COICOP) tradables and nontradables

categories as classified by Allington, Kattuman and Waldmann (2005). Figure 3 reveals that

the inflation rate of nontradables did not change much after the Brexit referendum, and what

increased was the inflation rate of tradable goods and services.5 We rely on this different re-

3Estimates of long-run effects of Brexit on the level of U.K. GDP range from this 1 percent, based on static
trade effects (Reenen, 2016), to even larger than 10 percent (International Monetary Fund, 2016), depending on
what one assumes about the structure of post-Brexit trade relationships between the U.K. and European Union

4The 2014 Analytical Input-Output tables published by the Office for National Statistics (ONS) estimate
the import content of British domestic consumption to be 19.4 percent. See Table 1 for details.

5Other studies have noted that goods and services with a high import content have seen higher inflation
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sponse of prices of tradables and nontradable goods for our identification strategy to uncover

the nature of price rigidities in the U.K.

3 Quasi-experimental setup using British CPI micro-data

The above observation that the increase in British inflation after the Brexit referendum was

solely driven by tradables and that the inflation rate of nontradables barely responded, it the

basis for the quasi-experimental setup that we use in the rest of this paper.

Our main approach is to split up the sample of goods and services covered in the micro-

data with price quotes underlying the British CPI published by the ONS into “treatment” and

“control” groups. These data have been used in previous research by Kryvtsov and Vincent

(2014) and Dixon and Tian (2017), among others.6 We then study the differential impact of

the Brexit shock on the distributions of log prices in these two groups.

The “treatment” group consists of a set of goods and services that are part of the tradable

COICOPs plotted in Figure 3. These are goods and services whose cost of production increased

due to the depreciation of the GBP and that drove the increase in aggregate inflation in the

U.K. plotted in the figure.

The “control” group consists of a sample of goods and services that are domestically pro-

duced using few or no imported intermediates. These are part of the nontradable COICOPs in

Figure 3 and their inflation rate was hardly affected by the unanticipated passing of the Brexit

referendum.

To understand how we categorize goods and services in these “treatment” and “control” groups,

it is useful to consider an example of how a particular price quote is classified in the micro-data

we use. Figure 4 illustrates how a “price quote of a jar of Marmalade at a Tesco supermarket

in Southampton” is classified.

The ONS collects price quotes for goods and services grouped at the elementary item level.

The jar of marmalade is part of the elementary item “Jar of jam, 340-454g.” These jars of jam

are themselves part of the 3-digit COICOP group 01.1.8 “Sugar, jam, honey, chocolate, and

confectionary.” This group is part of the 2-digit COICOP classification 1.1 “Food” in Table 1.

Price quotes for the British CPI are collected in 12 regions across the United Kingdom.

Southampton is in the Southeast region. Some price quotes, such as the ones from online

stores, are not particularly associated with an outlet in a specific region and are, instead,

after Brexit: “. . . for each 10 percentage point rise in a product group’s import share, inflation increased by 0.71
percentage points in the year after the vote” (Breinlich et al., 2017).

6A comparison of the aggregated price quote data with the published CPI measure is available in Appendix
B.2.
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classified as “nationwide.”

The outlets where the price quotes are collected are split into two shop types ; independent

outlets, and shops that are part of a chain with multiple outlets. Each specific outlet is as-

signed a shop code as its unique identifier. That is, in our example from Figure 4, Tesco is a

supermarket chain with multiple outlets, and the particular Tesco in Southampton where the

price quote was collected has the unique, fictitious, shop code of 123.

We use the sampling structure explained above and depicted in Figure 4 to construct a panel

of distributions of prices of elementary items by region and shop type. We refer to each unique

combination of these three variables, (item, region, shop type), as a bin. For each month, we

construct the distribution of log prices for all price quotes in each bin. The result is that we

have data on a panel of distributions of log prices, each distribution associated with a particular

bin in our data.7

It is these bins that we group into our “treatment” and “control” samples. We do so based on

the degree of tradability of the item, e.g., the jar of marmalade in our example above, covered

in the bin. We consider two sources of information to assess the degree of tradability of goods

and services. The first is are the 2014 Analytical Input-Output tables for the U.K. published

by the ONS. These tables provide the import content of goods and services based on the U.K.

input-output tables The second source is Allington, Kattuman and Waldmann (2005), that we

also used in, Figure 3. They provide a binary classification of COICOPs into tradables versus

nontradables. Table 1 summarizes the findings of both sources. The import content column of

Table 1 shows the fraction of the cost of the expenditures of the different COICOPs that can

be traced back to imports. The second column reports Allington, Kattuman and Waldmann

(2005)’s classification.

Note from Table 1 how, at the 2-digit level of aggregation, the tradability classification and

import shares are closely aligned. This 2-digit level of aggregation is the lowest level that both

these measures have in common. Because we exploit differences in the inflationary effect of the

Brexit shock across COICOPs at a lower levels of aggregation in the rest of this paper, we use

a combination of both the tradability classification from Allington, Kattuman and Waldmann

(2005) at lower levels of aggregation, and the import content shares at the level of aggregation

reported in the table.

With this in mind, we split our cross-section of bins up into treatment, control, and am-

biguous groups. We do so by jointly evaluating two criteria related to the elementary item in

each bin. The first is whether the low-level COICOP group that the item with which the bin is

associated is classified as tradable or nontradable (as reported in the last column of Table 1).

7For more detailed information on how bins were constructed please see Appendix B.1.
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The second is the import-content tertile of the 2-digit COICOP group, from Table 1, that the

item belongs to. The joint evaluation of these two criteria allows us to split our sample of bins

up into a 2-by-3 grid, which we report in Table 2.8

As our treatment sample we use price quotes for tradable items with a high import content.

This sample consists of the bins in the lower-right cell of Table 2. These are the bins for

elementary items that are both classified as tradable by Allington, Kattuman and Waldmann

(2005) and are in the top tertile of import content shares in Table 1. This covers 529 bins with

region-shop-type-specific distributions of prices for 40 different elementary items.

As our control sample, we use bins associated with items that are classified as nontradable

and are in the bottom tertile in terms of the import share. This sample consists of bins in

the upper-left cell of Table 2 and covers 938 bins with distributions of prices for 80 different

elementary items.

Thus, we choose the treatment and control samples to include the items whose costs are the

most and the least affected by imports, respectively. We do so to maximize the difference in

the impact of the surprise depreciation of the GBP after Brexit on the distributions of prices

in both samples. We exclude the bins in the other cells of Table 2 for which the importance of

imports for the costs of the items is more ambiguous.9

Of course, for any quasi-experimental setup one needs to not only define the treatment and

control samples, but also the outcomes one considers to measure the impact of the treatment.

Our samples consist of distributions of log prices by bin. So, the outcomes we consider are

the differences in the dynamics of the distributions of log prices of the treatment and control

samples after the Brexit referendum. In the next section, we introduce a new decomposition of

these dynamics, the components of which we use as our outcome measures in the rest of our

analysis.

4 Components of dynamics of the distribution of log prices

One of the contributions of our analysis is that we use a new decomposition of the changes

in the distribution of log prices in a bin in our data to assess the impact of Brexit on prices

8The price quotes we include are “regular” prices and exclude sales. We do so because regular prices are
best captured by the dynamics of price-setting models with nominal rigidities (Kehoe and Midrigan, 2015).
Moreover, we also exclude petrol (due to its high price volatility) and clothing because, as Liegey (1993) pointed
out, many matched price quotes are not for identical items but for close substitutes. Results do not substantially
change when these categories are not excluded in the analysis. See Appendix B.3 for full details of how the data
were cleaned.

9The specific numbers and estimates that we present in the rest of our analysis do, of course, depend on
this split of our sample. However, the qualitative conclusions from our analysis do not change when we alter
our sample split shown in Table 2.
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in the U.K. This decomposition is general and can be applied to other micro-data sets. In

addition, there are many aspects of the distribution of prices that one can track over time. Our

decomposition, in particular, applies to the change in the average log price and the change in

the variance of log prices following the Brexit shock. The reason we this decomposition is that

it splits the changes in these first- and second-order moments of the distribution of log prices

in components whose dynamics are distinct under different price setting models.

Because most theoretical models of price setting under nominal rigidities abstract from entry

and exit of items in the market, the decomposition described below, as well as our empirical

analysis in Section 5, relies on matched price quotes. These are price quotes for which we do

observe the price both in two consecutive months.10 Other empirical studies of CPI micro-data

also have focused on a matched sample (e.g., Bils and Klenow, 2004; Gagnon, 2009; Dixon and

Tian, 2017).

We denote the number of price quotes in a bin in month t by nt and index these price quotes

by j = 1 . . . nt. We denote the log of the price j in month t as pj,t. For each of these matched

observations we can approximate the percent change in the price, πj,t, by the change in the log

of the price level, i.e., πj,t = pj,t − pj,t−1.
We consider the sample mean and variance of these matched log prices and write them,

respectively, as:

p̄t =
1

nt

nt∑
j=1

pj,t and σ2
t =

1

nt

nt∑
j=1

(pj,t − p̄t)2 . (1)

Our focus in this paper is on the change in these two sample moments of the distribution of

log prices between months t− 1 and t, i.e., on ∆p̄t = p̄t − p̄t−1 and ∆σ2
t = σ2

t − σ2
t−1.

We focus on ∆p̄t = p̄t − p̄t−1 because the inflation rate for an item in our sample (in the

CPI), πt, is measured using an equally-weighted geometric price index over all matched price

quotes. That is, the item-level inflation rate in the CPI is the sample mean of the percent

change in prices for all matched observations, i.e.,

πt =
1

nt

∑
j∈M

πj,t = ∆p̄t, (2)

which equals the change in the mean of log prices of the matched price quotes. Thus, we focus

on the mean of the log price levels by bin for our analysis.
10We present our decomposition here for matched price quotes and derive a generalized decomposition that

takes into account entry and exit in Appendix A, where we denote the set of these matched price quotes by M .
In practice, most entry and exit of price quotes in the CPI micro-data has little to do with economic concepts
of entry and exit. Instead, it largely reflects seasonal item rotations in stores and sample rotation of outlets and
items. In our data, some exit is due to ONS price collectors not being able to find the same item in the store
in two consecutive months.

10



Brexit and the Nature of Price Rigidities Hobijn, Nechio, Shapiro

We also consider ∆σ2
t = σ2

t − σ2
t−1 because the degree of price dispersion in many models

with nominal rigidities is directly related to the welfare losses due to nominal rigidities (Eusepi,

Hobijn and Tambalotti, 2011; Nakamura et al., 2016). Moreover, considering the dynamics of

this second moment helps us distinguish between several models of price setting under nominal

rigidities in the data.

We split the matched observations up into two groups. The first are those price quotes for

which the price stays the same between t−1 and t. These nSt observations, which we denote by

the set S, are those, j, for which pj,t−1 = pj,t. The second set, which we denote by C, consists

of those nCt price quotes for which the price changes, i.e., pj,t−1 6= pj,t. Note that nt = nSt +nCt .

The fraction of matched items for which the price changes over a given month t, i.e., δt =
nCt
nt
,

is known as the incidence of price changes.11 The size of the price changes, i.e., ∆p̄Ct , is the

magnitude of price changes. The variance of log prices, i.e., σ2
t , is a measure of price dispersion.

The variance of inflation rates for the items whose price change, i.e., (σCπ,t)
2, is a measure of

inflation dispersion. Our decomposition also encompasses a covariance term, σCπ,pt−1,t−1, that

allows us to quantify the degree of mean reversion in log prices in the data. To see how

this covariance term implies a mean reversion, note that the ratio
σCπ,pt−1,t−1

(σCt−1)
2 is the regression

coefficient for a regression of the percent change in prices that change (∆p̄Ct ) on the initial log

prices (pt−1). In the case in which all prices in C are set to the same reset price, then there is

perfect mean reversion in prices that change, and this coefficient is equal to −1.

These unconditional and conditional first- and second-order moments are either measures

that are commonly analyzed in empirical studies of price rigidities or are directly related to

theoretical concepts from and implications of models of price setting under nominal rigidities.12

4.1 Decomposition of the inflation rate

Splitting the sample of matched price quotes up into these two subsets allows us to write

inflation as the product of the incidence and magnitude of price change, i.e.,

πt = ∆p̄t = δt∆p̄
C
t . (3)

11This incidence of price changes is the focus of many studies of nominal rigidities (Bils and Klenow, 2004;
Nakamura and Steinsson, 2010; Dhyne et al., 2006, for example), including for the United Kingdom (Dixon and
Tian, 2017).

12Our decomposition divides ∆p̄t and ∆σ2
t into conditional moments are listed in the Appendix Table A1.

The note below the table provides examples of how these moments are defined. Before we use them in our
decomposition, it is useful to first consider the economic interpretation of some of them.
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This allows us to use a shift-share-type decomposition to analyze the variation in the inflation

rate in the bin over time.

Equation (4) rewrites the previous one to yield an additive decomposition that allows us to

both analyze cumulative inflation, i.e., the log change in the price index since a base period,

as well as the variance of inflation. It shows that inflation can be high, relative to its average,

for three reasons. First, because the magnitude of price changes is high. Second, because

the incidence of price changes is high and many items change prices. Third, because of the

positive interaction between times when many prices change, and times when prices change by

a lot. These three reasons are, respectively, captured in the second through fourth terms on

the right-hand side of:

πt = δ̄π̄C + δ̄
(
πCt − π̄C

)︸ ︷︷ ︸
Magnitude

+ π̄C
(
δt − δ̄

)︸ ︷︷ ︸
Incidence

+
(
δt − δ̄

) (
πCt − π̄C

)︸ ︷︷ ︸
Interaction

, (4)

where π̄ and δ̄ are, respectively, average inflation and average incidence over the sample period

t = 1 . . . T , such that, π̄C = 1
T

∑T
1 π

C
t and δ̄ = 1

T

∑T
1 δt.

Cumulative inflation can be built and split into the same parts as πt in equation (4) by

summing both the left- and right-hand sides over the relevant time period. We use this decom-

position of cumulative inflation in our empirical analysis.

4.2 Decomposition of the change in price dispersion

In Appendix A, we show that the change in the dispersion of the matched price quotes in a

month can be split up into four parts:

∆σ2
t =

Variance of inflation︷ ︸︸ ︷
σ2
π,t +

Mean reversion of inflation︷ ︸︸ ︷
2σπ,pt−1,t

= δt
(
σCπ,t
)2︸ ︷︷ ︸

Variance of
magnitude

+ (1− δt) δt
(
πCt
)2︸ ︷︷ ︸

Variance of incidence

+ 2δtσ
C
π,pt−1,t︸ ︷︷ ︸

Mean reversion of
magnitude

+ 2δtπ
C
t

(
p̄Ct−1 − p̄t−1

)︸ ︷︷ ︸
Mean reversion of incidence

.
(5)

The first line in this equation shows that the increase in the variance of log prices is due to the

dispersion in inflation rates, i.e., σ2
π,t, plus the extent to which these price changes revert to

the mean, i.e., σπ,pt−1,t. The latter term is best understood by realizing that if high prices tend

to increase faster than low ones, then this causes the spread in the distribution of log prices to

increase (and vice versa). The higher the variance and the less the mean reversion (i.e., the

more the price expansion) will act to increase the dispersion of prices.

12
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The variance and mean reversion terms can be further decomposed into “magnitude” and

“incidence” components. The first term on the second line captures the the variance of magni-

tude of the changes in the price quotes in C. The variance of inflation will be smaller the more

similar the magnitudes of price changes. The second term captures the variance of incidence of

price changes. Whether or not a matched price quote changes between months t− 1 and t can

be interpreted as a draw from a Bernoulli distribution with mean δt. The associated variance

is, hence, δt (1− δt). This term will be maximized when half of the prices in the distribution

adjust. The next two terms are decompositions of the mean reversion of inflation. The term,

δtσ
C
π,pt−1,t

, reflects the degree to which inflation reduces (or magnifies) initial differences in log

prices among the prices that change. We call this the mean reversion of magnitude of price

changes. If prices at the bottom the distribution increase by a larger amount than prices at the

top of the distribution then there will be more mean reversion (i.e., less price expansion). The

last term reflects the extent to which the fact that the prices that change are not randomly

selected from the matched price quotes reduces (or magnifies) price differences. We call this

the mean reversion of incidence of price changes. If prices are more apt to adjust from the

bottom of the distribution than the top of the distribution than mean reversion will increase

(and dispersion will expand less).

We are not the first study to use CPI micro-data to split up inflation into parts due to the

incidence and magnitude of price changes (e.g., Bils and Klenow, 2004, Dhyne et al., 2006,

Gagnon, 2009, and Dixon and Tian, 2017). Previous analyses of price dispersion have also

focused on specific components of equation (5).13 However, we are the first study to decompose

the changes in price dispersion in a comprehensive fully additive fashion. This full decomposi-

tion allows us to quantify which components drive the response of price dispersion to a large

shock, which can then be compared to different price-setting models.

What enables us to calculate this full decomposition is that we can use the information on

price levels necessary to calculate the terms related to the mean reversion of inflation in (5).

This is because we consider the distributions for very specific items, in particular regions, sold

at specific types of stores, which makes price quotes in each bin comparable to each other.

13Most studies have analyzed the dispersion of price changes, i.e., the variance of the inflation rates, σ2
π,t

(e.g., Bils and Klenow, 2004, Gagnon, 2009, Klenow and Kryvtsov, 2008, Berger and Vavra, 2017, and Berger
and Vavra, 2018). However, many studies in the industrial organization literature, e.g., Cornia, Gerardi and
Shapiro (2012), have examined the dispersion of price levels.
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5 Key empirical findings

In this section we use a dynamic DID method, based on Jordà (2005), to estimate the difference

in the impact of the unexpected passing of the Brexit referendum on the distributions of log

prices of our treatment and control samples. This yields two main findings. First, the Brexit

shock is followed by an increase in log prices, which is mostly driven by the size of price

adjustments rather than the frequency (incidence) of price changes. Second, price dispersion

does not change significantly. This is so because although the variance of inflation increases,

there is a sizable mean reversion of prices, i.e., lower prices increase faster than high ones,

which offsets the former increase. The second-moment decomposition shows that the data

features endogenous selection of the incidence of price adjustments, which help explain the

small (dynamic) response of the variance of log prices.

Summary statistics before and after Brexit referendum

Before we turn to our regression analysis, we first compare our treatment (Treat.) with our

control sample (Cont.) as well as with the whole sample (All) before the Brexit shock occurred

in Table 3. The table provides summary statistics for three periods, pre-Brexit, post-Brexit

and a longer benchmark sample that allows for a comparison of price statistics further away

from the shock.

The pre- and post-Brexit years together are the period we consider in our empirical analysis

in this section. The benchmark period was chosen based on the fact that the GBP effective

exchange rate, GDP growth, and CPI inflation volatility were relatively stable over this time

frame (see Figure 1). We use this period for calibration of our models in the next section.

The top half of Table 3 reports the contributions of the magnitude of price changes, πCt ,

and the incidence of price changes, δt, to the log of price changes.14 Similarly, the bottom half

of the table reports the contributions of the variance, σ2
π,t, and mean reversion, 2σπ,pt−1,t, of

inflation to the change in dispersion of prices, based on (5).15 In addition, the table contains

the variance of log prices as well as the number of price quotes used to calculate the statistics

reported.

Note that for almost all combinations of periods and measures, the point estimates for the

whole sample (all) is in between those for the treatment (treat.) and control (cont.) samples.

This is because the whole sample also includes the items classified as ambiguous. Note that for

14The constributions are calculated by applying a variance decomposition to (3), i.e., Var [πt] =
Cov

[
πt, π̄

C
(
δt − δ̄

)]
+ Cov

[
πt, δ̄

(
πCt − π̄C

)]
+ Cov

[
πt,
(
δt − δ̄

) (
πCt − π̄C

)]
.

15In the Appendix Table A3, we expand Table 3 to include all subcomponents from these decompositions (as
described in equation (3) and the second line of equation (5)).
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all the three subsamples and periods the mean reversion of inflation is negative, indicating that

higher prices exhibit lower inflation than lower prices across the whole sample in our data.

When we look across the three subperiods, the control sample shows relatively similar

magnitudes of the contributions of the subcomponents of (3) and (5). This is not the case for

the treatment sample. For the treatment sample the contributions of the components of (3) and

(5) during the benchmark and pre-shock periods are of comparable magnitude. However, in

the post-shock period the magnitude of price changes, i.e., ∆p̄Ct , the variance of inflation, i.e.,

σπ,t, and the mean reversion of inflation, i.e., 2σπ,pt−1,t, are all much larger than in the other

two periods reported. This is indicative of the significant effect of Brexit on the price setting

in the treatment sample that we quantify using our dynamic DID below.

When we compare the treatment with the control sample, we find significant differences be-

tween them in the benchmark and pre-shock periods. This is reflective of the quasi-experimental

nature of our analysis. If we would have been able to assign the treatment randomly across

items in the British CPI then we could have made sure that these two samples looked the same

in terms of the summary statistics in Table 3 during the benchmark and pre-shock periods.

However, this is not feasible in our setup. To make sure these differences are not driving our

key results, we account for these types of pre-treatment differences between the treatment and

control items in a robustness check that uses a synthetic-control approach at the end of this

section.

Dynamic DID specification using local projection method

We apply the local projection method of Jordà (2005) to the change in the mean of log prices,

∆p̄t, and the change in price dispersion, ∆σt, as well as their components from (3) and (5)

respectively. This method allows us to estimate the differential impact of the Brexit shock on

these variables between the treatment and control samples over different horizons.

The Brexit shock is captured by the dummy variable Bt that equals one from June 2016

onwards. We differentiate between the treatment and control samples using the dummy variable

Ti which is one if item i is classified as tradable, as in Table 2, and is part of our treatment

sample. The horizon is the number of months over which we capture the impact of the shock.

We denote it by h ∈ {0, . . . , 12} and study the response of the cumulative change in the first-

and second-order moments of the distribution of log prices, and their components, over the year

following the Brexit referendum.
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We quantify this response using the regression equation:

yi,t+h − yi,t−1 = γi + δhBt + βhBt ∗ Ti +
C∑
c=1

12∑
k=1

(
αhc,k∆Cc,i,t−k + φhc,k∆Cc,i,t−k ∗ Ti

)
+ εi,t. (6)

We estimate equation (6) for two sets of dependent variables yi,t:16

(i) the log price level, pi,t, and its three time-varying components described in equation (4),

(ii) the variance of log prices, σ2
i,t, and its components described in equation (5).

The coefficients of interest are the estimates of βh, which trace out the path of yi,t+h for

the treatment group items relative to control group items in the h months following Brexit.

Under the null hypothesis, the coefficients βh all equal zero, meaning that the treatment and

control groups remained on the same relative pre-Brexit path during the post-Brexit period.

Therefore, our identification assumption attributes any deviation of βh away from zero as being

caused by the exchange rate shock. Note that since our analysis relies on matched (by shop)

price quotes between months t−1 and t, the dependent variable for each horizon h is measured

as the sum of monthly changes for each type of variable yi,t+h, providing the cumulative effect

of the shock on variable yi,t+h by time t+ h.17

We include a set of control variables, Cc,i,t, aimed to remove pre-Brexit trends. In particular,

we include 12 lags of the time-varying components of equations (4) and (5), depending on the

dependent variable being used. That is, C = 3 in case (i) when we consider components of

equation (4), and C = 4 in case (ii) when yi,t is one of the components of equation (5). We also

include 12 lags of each component interacted with the treatment-group dummy, which allows

for different pre-trends for treatment- and control-group items. To account for Nickell bias we

employ the Arellano-Bond estimator.18 We cluster standard errors at the 64 lowest (three-digit)

levels of aggregation in the COICOP classification.

Although all measures are constructed at the bin level, regressions are run at the more

aggregated elementary-item level to reduce attenuation bias, such that i in the regression indi-

cates an elementary item. To do so, we aggregate the bin measures up to the elementary-item

16See Appendix C for detailed regression specifications. In that we also consider a third set of dependent
variables given by the 10th, 50th and 90th percentiles of the log price level. Results are reported in the Appendix
Figure A3.

17For example, for the log price level we have pi,t+h − pi,t−1 =
∑h
τ=1 πi,t+τ . The inflation rate for item i is

πi,t =
∑
ωb,iπb,i,t, where ωb,i is the bin weight and πb,i,t =

∑
ωs,b,i(ps,b,i,t − ps,b,i,t−1) is the matched-shop log

change in prices for item i in b and shop s, and ωs,b,i are shop weights provided by ONS.
18Results did not substantially change using OLS or replacing the Arellano-Bond instruments with their

principal components (Bai and Ng, 2010).
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level using bin-specific weights provided by ONS.19

The regression is estimated for the sample period from June 2015 to June 2017, and we take

the first year of the sample (June 2015 to May 2016) as the pre-Brexit period, and the second

year of the sample (July 2016 to June 2017) as the post-shock period. The results obtained

using this regression specification are plotted in Figures 5 and 6.

Impact of Brexit on price-setting decisions for tradable CPI items

The solid black line in the top panel of Figure 5 shows the estimated βh for regressions in

which the variable yi,t+h corresponds to the mean log price level. In the bottom three panels,

the figure reports the estimated βh for regressions in which the variable yi,t+h corresponds to

the three time varying components of the change in log prices; i.e., magnitude, incidence and

interaction. Because we include the same explanatory variables in all regressions underlying the

panels in Figure 5, the estimated βh’s in the bottom three panels add up to the one reported

in the top panel.

The top panel shows the accumulated effect of the Brexit shock on the mean log prices of

tradable CPI items (relative to nontradables). It reveals a significant, but delayed, impact that

peaks about 8 months after the referendum. The decomposition in the bottom panels shows

our first key finding. The bulk (about 75 percent) of the increase in log prices of tradables after

the Brexit shock is associated with an increase in the magnitude of price adjustments, while

the incidence of price changes rises by a stastically-significant but economically small amount.

The solid line in the top panel of Figure 6 shows the estimated βh for regressions in which

the variable yi,t+h corresponds to the variance in log prices. Our second key finding can be seen

from the middle and bottom panels of the figure. They report the estimated βh for regressions

in which the variable yi,t+h corresponds to the components of the change in the variance of

log prices as described in equation (5). The top panel shows a very limited effect of Brexit

on price dispersion. The middle panels explain this finding by showing that, while there is an

increase in the variance of inflation, this effect is more than offset by the covariance term, i.e.,

the mean reversion in prices. The negative and relatively sizable mean reversion indicates that

it is lower prices that increased by more in response to the shock, compressing the distribution

of log prices. The net effect, if anything, is a small decline in price dispersion rather than an

increase (as seen on the top panel). The bottom panels complement this analysis by reporting

the remaining components of the decomposition described in equation (5). It shows that the

19For example, the inflation rate for item i is πi,t =
∑
ωb,iπb,i,t, where ωb,i is the weight for bin b and item

i. Bin weights are provided by ONS which refers to them as “stratum” weights. See Appendix B.1 for more
details on bin construction and Figure 4 for an illustrative example of the data structure.
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mean reversion of incidence more than offsets the small but positive effects of the increases in

the variance of magnitude and incidence.

Note that the finding that the variance of magnitude increases is in line with the results

of Berger and Vavra (2017), who also find that, in the U.S. data, σCπ,t increases in response to

exchange rate shocks. Of course, our decomposition implies that this only partially captures the

impact of the exchange rate on the disparity of price levels. By focusing only on σCπ,t in equation

(5), one might conclude that price disparities increase when the disparity of inflation rates

increases. However, the addition of the terms that involve the price levels, most importantly,

the covariance term σCπ,pt−1,t
, reveals that that is not the case. The increase in the variance of

inflation rates of prices that change, i.e., of σCπ,t, in response to the shock, is more than offset

by the mean-reversion term.

Robustness and validation

One possible concern about our empirical findings is that there is substantial heterogeneity

between goods and services even at the bin level. This heterogeneity would be reflected in

terms of disparities in (log) prices that are not necessarily related to differences in markups or

marginal costs but instead to quality differences across goods. This is the reason that researchers

have mostly ignored the micro-data on price levels. However, if this heterogeneity was of first-

order importance in the data, one would not expect movements in the covariance between

inflation and the initial price level to be such an important component of price dynamics, as

Figure 6 shows, because this heterogeneity would drive the term related to this covariance in

the decomposition to zero.

Another source of concern regarding our empirical findings and methodology may arise from

the intrinsic differences between the tradable and nontradable sectors. In an ideal experiment,

the treated and control units are identical, on average, in the absence of the treatment. However,

the summary statistics, reported in Tables 3, indicate some differences in the treatment and

control items in the nontreatment periods (i.e., the benchmark and pre-Brexit periods). Most

notably, the treated group (tradables) includes items whose prices change more frequently than

those in the control group. Although the local projection method used in this study includes

controls aimed to correct for pre-Brexit trends, it does not account for differential effects of

the treatment in the post-Brexit period. For example, flexibly-priced items may react to a cost

shock differently than sticky-priced items do. Such differences in characteristics of the treated

group from the comparison group could potentially convolute the empirical results.

To alleviate the latter concern, we apply the synthetic control method of Abadie, Diamond
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and Hainmueller (2010) to our data. More specifically, we construct a “synthetic” control group

as a convex combination of control items that most closely resembles the characteristics of the

treated group. The synthetic control group is build such that it matches the frequency of price

changes (δt), the inflation of price changes (πCt ), the variance of inflation (σ2
π,t), and the mean

reversion of price changes (2σπ,pt−1,t) of the treated group over the pre-Brexit period (2015m6-

2016m5). The synthetic control matches the statistics of the treatment group quite well (see

Tables A4 and A5). We then perform our empirical approach to obtain the relative response of

the treated group to the Brexit shock.

The results from the synthetic control method, reported in Appendix Section C.1, reinforce

our main empirical findings and show that the effect of the exchange rate shock on tradables

through local projections and the synthetic control methods are quite close to one another

across all variables.

6 Comparison with canonical models of price rigidities

To understand what the estimated impulse responses teach us about the nature of nominal

rigidities underlying the British CPI, we compare the empirical impulse responses with those

obtained from two canonical models of price setting. They are the basic model of price set-

ting with time-dependent nominal rigidities, based on Calvo (1983), and a model with state-

dependent price setting under menu costs, as in Golosov and Lucas (2007) for example. Our

analysis is definitely not the first to compare these two models.20 What is new here is that

we study the differences between these two models in terms of their transitional dynamics of

the components of price setting dynamics, from equations(4) and (5), in response to a perma-

nent cost shock. We compare these transitional dynamics with the estimates from the previous

section.

In both models, we consider an economy composed of two sectors, i = 1, 2 that differ in the

extent to which the exchange rate affects the marginal cost of production through imported

intermediates. We index these sectors by i to emphasize that they are the equivalent of an

elementary item in our data. We interpret the sector i = 1, where the marginal cost does not

depend on imported intermediates, as part of our control sample. The other sector, i = 2, is

part of the treatment sample in the lower-right cell of the same table. Just like in our empirical

analysis, we study the difference in the responses of these two sectors to a change in the cost

of imported intermediates, induced by a surprise change in the nominal exchange rate.

20 Most of the existing studies focus on differences in steady-state properties of these two models under
various rates of steady-state inflation (e.g., Alvarez, Lippi and Passadore, 2016; Nakamura et al., 2016).
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6.1 Model with nominal rigidities and permanent cost shock

Both sectors are made up of a continuum of monopolistic competitors of mass one that produce

varieties. We index these producers by j ∈ (0, 1) and interpret the prices they set as the

theoretical counterparts of the price quotes we measure in the data. The inputs used in the

production distinguish the two types of output, i = 1, 2. The first type, i = 1, is produced solely

using labor, while the second, i = 2, is produced using both labor and imported intermediates.

In both sectors, producers of different varieties have different total factor productivity (TFP)

levels, which we denote by Ai,j,t.

Variety j in sector 1 is produced using a linear production technology in labor:

Y1,j,t = A1,j,tL1,j,t. (7)

Variety j in sector 2 is produced using a Cobb-Douglas technology in labor and imported

intermediates:

Y2,j,t = A2,j,tÃL
1−α
2,j,tM

α
j,t, where Ã =

[(
1− α
α

)α
+

(
α

1− α

)1−α
]
. (8)

In both sectors, producers of each variety can flexibly adjust their input choices. All pro-

ducers take the prices of the inputs as given. In particular, Wt is the nominal wage and P ∗t is

the price of imported intermediates denominated in GBP. Because of constant returns to scale

for each producer, the average cost equals marginal cost, which are given by:

MCi,j,t =


Wt

Ai,j,t
if i = 1

1
Ai,j,t

W 1−α
t (P ∗t )α if i = 2

. (9)

Note that the marginal cost of production in sector 2 is directly impacted by the price of

imported intermediates, which, in turn, is directly affected by changes in the exchange rate.

Producers of varieties in each of these two markets face Constant Elasticity of Substitution

(CES) demand functions, elasticity of substitution between these varieties ε, given by:

Yi,j,t =

(
Pi,j,t
Pi,t

)−ε
Yi,t, where Pi,t =

[∫ 1

0

P 1−ε
i,j,t di

] 1
1−ε

(10)

Demand for each of the goods is determined by their price, Pi,t, relative to the aggregate price

level, Pt, and the level of aggregate demand, Yt. The sector-specific demand functions are given
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by:

Yi,t =

[∫ 1

0

Y
ε−1
ε

i,j,t dj

] ε
ε−1

=

(
Pi,t
Pt

)−θ
Yt, where i = 1, 2 and 0 < θ < ε. (11)

To simplify notation in the rest of our exposition, we introduce Pi,j,t =
Pi,j,t
Pi,t

, Pi,t =
Pi,t
Pt

, and

P∗t =
P ∗
t

Pt
for the relevant relative prices, as well as Wt = Wt

Pt
for the real wage. This notation,

along with the cost and demand functions above, allows us to write the real profits of varieties’

producers as

Πi (Pi,j,t;Ai,j,t,Pi,t,St) =

Yt
(
P−θi,t P−εi,j,t

) (
Pi,tPi,j,t − 1

Ai,j,t
Wt

)
if i = 1

Yt
(
P−θi,t P−εi,j,t

) (
Pi,tPi,j,t − 1

Ai,j,t
(Wt)

1−α (P∗t )α
)

if i = 2
, (12)

where St = {Wt,P∗t , PtYt} are the aggregate variables that firms take as given when they make

their price-setting decisions.

Evolution of Ai,j,t , Pi,t , and St

The log of the firm-specific productivity level, ai,j,t, evolves independently across firms over

time according to an AR(1)-process of the form

ai,j,t = ρai,j,t−1 + ui,j,t, where ui,j,t ∼ N (0, σu) . (13)

We introduce this firm-specific productivity shock to match the substantial level of price dis-

parities we find during the benchmark period, reported in the bottom row of Table 3.

The relative price level of sector i, Pi,t, is an equilibrium variable that is determined by the

price-setting choices of all the firms in sector i. Hence, we solve for a fixed point in which the

price-setting response of firms to the path of Pi,t aggregates to.
To keep our analysis focused on the first-order effect of the change in P∗t on the distribution

of prices in the two sectors, we abstract from general equilibrium effects of the shock to P∗t on

the aggregate variables, Pt, Yt, Wt , and P∗t .
Similar to Hobijn, Ravenna and Tambalotti (2006), we assume that relevant aggregate

variables are constant along the equilibrium path. In particular, we assume that aggregate

inflation is constant at the target rate, i.e., πt = Pt+1

Pt
−1 = π̄. The real interest rate is constant

such that rt = r. In addition, we abstract from growth in overall activity such that output, Yt,

and the real wage, Wt, are constant over time.21

21We abstract from growth, because adding growth to the model only complicates the math and does not
materially change the results.
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Most importantly, we assume that there is a surprise increase in the relative price of imported

intermediates at time t. Consistent with our assumptions about other aggregate variables, P∗t
is constant along the equilibrium path except that it jumps at time t = 0, i.e.,

P∗t =

P
∗
t for t < 0

P∗t for t ≥ 0
, (14)

where P∗t > P∗t . This jump reflects a permanent shock to the exchange rate that leads to

an increase in the GBP-denominated price of imported intermediates.22 As can be seen from

Figures 1a and 2, this simplifying assumption of the permanent shock to P∗t aligns with the

depreciation of the GBP exchange in the year following the Brexit referendum.

Two types of nominal rigidities

We consider the price-setting decisions of firms in the two sectors i = 1, 2 in this model under

two different forms of nominal rigidities. Both of them involve the firms spending an amount

of time, `i,j,t, in case they decide to adjust their prices. Because the menu cost is in terms of

time, the actual cost of changing prices is given by `i,j,tPtWt.

Following Dotsey, King and Wolman (1999), this menu cost is independently drawn in each

period and across producers of varieties from the distribution function Λ (`) : [0,∞) → [0, 1].

In the time-dependent price-setting model, based on Calvo (1983), that we consider

Λ (`) = δ for 0 < ` <∞, (15)

such that firms can freely adjust their prices with a probability δ and otherwise adjusting prices

is infinitely expensive. In the state-dependent menu cost model

Λ (`) =

0 for ` < ¯̀

1 for ` ≥ ¯̀
. (16)

Thus, in this case, the menu cost distribution is degenerate and all firms face a certain (fixed)

menu cost equal to ¯̀.

In both cases, firms set their prices in order to maximize the expected present discounted

value of their current and future profits. They do so in response to the path of the sector-

22We assume this shock is permanent in order to avoid having to make specific assumptions about the
stochastic process that drives P∗t . Our results can be interpreted as the limiting case in which this process
becomes increasingly persistent in the P∗t state.
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specific relative price level, Pi,t. Equilibrium is that path of Pi,t for which the firms’ price

setting decisions aggregate to this path of the sector-specific relative price level.23

6.2 Transitional dynamics in response to a Brexit-like shock

To compare these two models with the data, we consider the difference in impulse response

of the two sectors with respect to the various components of the dynamics of the distribution

of log prices that we introduced to a permanent 10% increase in the price of imports.24 This

increase is in line with the depreciation of the GBP we observed in the data following the Brexit

referendum.

We present the impulse responses for a set of parameters that is chosen as follows. We

choose the elasticities of substitution, ε and θ, as well as the cost share of imports in sector

i = 2, α, based on evidence from other data. In particular, consistent with the evidence from

Hobijn and Nechio (2018) on the inflation response to VAT changes in the E.U., we set ε = 3

to θ = 1. The cost share of imports in sector i = 2 is α = 0.4 to match the evidence in Table

1. We set the steady-state rate of inflation, π̄ to 2 percent annualized, which is the Bank of

England’s inflation target as of 2016.25

The remaining parameters of the model are the persistence, ρ, and standard deviation,

σu, of the idiosyncratic productivity shocks as well as the menu cost parameters, δ for the

time-dependent and ¯̀ for the state-dependent model. We choose them to match the model’s

steady-state properties in terms of the components of (3) and (5) with the summary statistics

for the whole sample (All) over the benchmark period reported in Table 3. In particular,

we match the average incidence of price changes, δt, the variance of inflation, σ2
π,t, and price

disparities, σ2
p,t.26

The resulting impulse response functions are reported in Figures 5 and 6 for equations

(3) and (5) respectively. The blue short-dashed line with square markers shows those for the

menu-cost model and the red dashed line with diamond markers for the Calve model.

Figure 5 shows that both the Calvo and the menu cost models map well the dynamics of the

23The associated Bellman equations as well as the solution method we apply to solve for the transitional
dynamics of these models are discussed in Appendix Section A.2.

24In terms of the model parameters this means that P∗t = 1 for all periods before June 2016 and P∗t = 1.10
for all periods after that date in equation (14).

25This choice of steady-state inflation rate yields a slightly higher than average inflation in our sample over
the benchmark period (2001m1-2007m12). This does not affect the qualitative properties of our results. Small
changes in the other parameters neither do as well.

26Because the steady-state inflation rates is set to 2% annualized, matching the incidence of price changes
pins down the steady-state magnitude of price changes. Similarly because in the steady state, variance of log
prices is constant (i.e., its change is zero), matching the variance of inflation pins down the mean reversion of
inflation. The matched moments and parameter calibration are reported in the Appendix Table A6.
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mean log price in response to shocks. The Calvo model, however, performs better in matching

the movements of the magnitude of price adjustments, as evidenced by panel (c). The menu

cost model implies a speedier adjustment than the data suggests.

Figure 6 shows that that both the Calvo and the menu models are able to decently match

the dynamics of the variance of log prices. However, because of the importance of the response

of the mean reversion of inflation in determining the dynamics of this variance, the menu cost

model fares better than the Calvo model. The bottom panels of the Figure help understand

why. The data shows that the importance of the adjustment through the endogenous selection

of the incidence of price changes (panel (g)), which by definition is zero in the Calvo model.

Note however, that while the state dependent model captures well the response of the mean

reversion of incidence, it completely misses the response of the mean reversion of the magnitude.

This is so because in the data low prices adjust faster than higher ones, while inherently in a

menu cost model it is the higher prices that adjust faster due to the narrowing of the SS bands.

The comparison between empirical and model-based impulse responses functions depicted

in Figures 5 and 6 suggest that the data exhibits properties of both types of models. On the

one hand, a time-dependent pricing model performs relatively well in replicating the dynamics

of some of the first-order moments of mean log prices. In particular, that model matches

particularly well the response of the magnitude of price adjustments, which corresponds to the

bulk of the response of mean log prices in the data. This finding suggest that if one’s interest is

to estimate the effects of a shock on aggregate inflation, relying a Calvo model is appropriate,

even when the shock is as large as the one we consider in our exercise. On the other hand, if

one’s interest is to match the response of the variance of log prices, a state dependent model

would fare better since this model is able to capture the endogenous selection in the incidence

of price changes, which seems to be of particular relevance in the data.

Finally, we note that the fact that we can clearly distinguish between models and match

the data with a state-dependent pricing model has to do with the size of the shock we focus

on. The fact that the Brexit shock is large is important because, as Klenow and Kryvtsov

(2008) and Alvarez, Lippi and Passadore (2016) have argued, many of these models are almost

observationally equivalent, and thus indistinguishable, under small shocks.

7 Conclusion

In this study, we exploit the quasi-experiment that stemmed from the depreciation of the British

pound following the unexpected passing of the Brexit referendum. Using micro-level price quote

data that underpins the official U.K. CPI, we develop a novel methodology to decompose the
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change in the dispersion of prices at the granular item, region, and shop level which allows us to

quantify how the cost shock transmits through to the distribution of prices as well as inflation.

Our results show that a large portion (about 75 percent) of the inflationary effect effect from

Brexit was attributable to the magnitude of price changes, conditional on the price adjusting.

Due to the importance of the magnitude-effect, we show that a time-dependent price-setting

model can match the dynamics of the inflation response following the cost shock fairly well.

Our results assessing the response of the distribution of prices allow us to assess which firms

adjust prices, and by how much, following a cost shock. The data show that selection effects

occur in response to a cost shock. Specifically, firms at the lower end of the price distribution—

that is, firms with relatively low prices—are more apt to adjust their price. Time-dependent

models inherently do not allow for any selection effects, meaning these types of models will

misrepresent how the distribution of prices evolves following a cost shock. The state-dependent

pricing model is better able to match some of these distributional effects, as it accurately

captures the selection of price changes from the lower end of the price distribution. However, the

state-dependent model misses on where in the distribution magnitude of price changes is largest,

predicting that high-price firms (low productivity) adjust by more conditional on changing their

price, while the data suggest the opposite is true. This result in the state-dependent model is

at least partly attributable to the constant-elasticity of substitution assumption, which leads

to the SS bands narrowing at higher levels of productivity (see Appendix Figure A6b). It is

plausible that models allowing for nonconstant elasticity of substitution and other price-setting

mechanisms may alleviate this discrepancy of the model with the data. More generally, a

potentially interesting avenue for future research would be to better uncover why the state-

dependent model misses on this front.
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Table 1: COICOP classifications, their import content, and tradability

Coicop Description Import content Tradable

0.0 Total 19.4 —

1.1 Food 25.4 True
1.2 Non-alcoholic beverages 24.0 True
2.1 Alcoholic beverages 20.0 True
2.2 Tobacco 20.0 True
2.3 Narcotics 25.8 True
3.1 Clothing 22.9 True
3.2 Footwear 26.6 True
4.1 Actual rentals for households 4.8 False
4.2 Imputed rentals for households 4.6 False
4.3 Maintenance and repair of the dwelling 24.6 True
4.4 Water supply and miscellaneous dwelling services 8.7 False
4.5 Electricity, gas and other fuels 36.5 True
5.1 Furniture, furnishings, carpets etc 27.2 True
5.2 Household textiles 34.6 True
5.3 Household appliances 35.2 True
5.4 Glassware, tableware and household utensils 32.9 True
5.5 Tools and equipment for house and garden 34.3 True
5.6 Goods and services for household maintenance 10.7 False
6.1 Medical products, appliances and equipment 26.8 True
6.2 Out-patient services 7.6 False
6.3 Hospital services 7.6 False
7.1 Purchase of vehicles 41.7 True
7.2 Operation of personal transport equipment 45.3 True
7.3 Transport services 19.3 False
8.1 Postal services 14.4 False
8.2 Telephone and telefax equipment 36.3 True
8.3 Telephone and telefax services 23.2 False
9.1 Audio-visual, photo and info processing equipment 32.4 True
9.2 Other major durables for recreation and culture 37.2 True
9.3 Other recreational equipment etc 24.4 True
9.4 Recreational and cultural services 15.1 False
9.5 Newspapers, books and stationery 18.9 False
10.0 Education 3.6 False
11.0 Restaurants and hotels 16.9 False
12.0 Miscellaneous goods and services 16.8 False

Note: Import content based on the 2014 Analytical Input-Output tables published by the ONS. Classification
of trabability based on Allington, Kattuman and Waldmann (2005). COICOP 9.6, “package holidays”, has no
import content data and is omitted.
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Table 2: Observation counts for quasi-experiment sample 2015:6 to 2017:6

Import share tertile
Tradability classification Low Middle High Total

0-21 21 - 34 34 - 100 0 - 100

Nontradable (obs) 331,122 16,956 44,814 392,892
(bins) 938 58 149 1,145

(items) 80 5 13 98
Tradable (obs) 341,870 1,034,287 113,980 1,490,137

(bins) 1,250 4,062 532 5,844
(items) 97 283 40 420

Total (obs) 672,992 1,051,243 158,794 1,883,029
(bins) 2,188 4,120 681 6,989

(items) 177 288 53 518

Note: Classification of trabability based on Allington, Kattuman and Waldmann (2005) and at a lower level
of aggregation than the import content calculated from the 2014 analytical input-output tables for the U.K..
Second row of import share header is ranges of import content shares in percent included in tertiles
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Figure 1: U.K. inflation, GDP growth, and exchange rate

(a) GBP effective exchange rate, trade-weighted
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Figure 2: Daily exchange rate of GBP against USD and EUR
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Figure 3: U.K. CPI inflation total, for tradable COICOPs, and non-tradable COICOPs
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Figure 5: Model and data impulse responses: First-order moments

(a) Mean log price
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(b) Incidence
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(d) Interaction
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Figure 6: Model and data impulse responses: Second-order moments

(a) Variance of log prices
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(b) Variance of inflation
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(c) Mean reversion of inflation
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(d) Variance of magnitude
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(e) Mean reversion of magnitude
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(f) Variance of incidence
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(g) Mean reversion of incidence
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Appendix:

“Using Brexit to Identify the Nature of Price Rigidities”

A Mathematical details

A.1 Details on decomposition of price dynamics

We derive the decompositions of the change in the mean of the log prices and price disparity

including entry into and exit out of the sample of price quotes. We then show how these

generalized decompositions nest the those in the main text for matched models when there is

no such entry and exit.

To do so, we introduce notation to capture the potential existence of non-matched price

quotes in the sample of quotes in a bin in month t. Let the set A denote all region-store-type-

store-code-specific price quotes we have on an elementary item in a bin in months t − 1 and

t. These quotes include the matched sample, M = S ∪ C, that we focus on in the main text.

They also include two additional sets of quotes. The first are those for which we have a price

quote in month t − 1 but not in month t. These are the nXt−1 quotes that have exited, E, the

sample of quotes for the bin. The second are those price quotes for which we observe the price

in month t but for which no price was reported in t − 1. These are the nEt quotes that enter

the sample in month t. These set of all price quotes is A = M ∪X ∪ E.

However, with entry and exit, we decompose the change in the mean and variance of the

distribution of all price quotes. The set of nAt−1 price quotes in month t− 1 is made up of the

matched, M , and exiting, X, quotes, i.e., nAt−1 = nMt + nXt−1. The set of price nAt quotes in

month t is made up of the matched, M , and entering, E, quotes, i.e., nAt = nMt + nEt . So, what

the additional notation for entry and exit allows us to do is to specifically account for sample

turnover.

Decomposition of the change in the sample mean of log prices

The notation that includes entry, E, and exit, X, allows us to define the sample mean of these

price quotes in months t− 1 and t as

p̄At−1 =
1

nAt−1

∑
j∈{M,X}

pj,t−1 and p̄At =
1

nAt

∑
j∈{M,E}

pj,t. (A.1)
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Our focus here is on decomposing the change in this mean between months t−1 and t, i.e ∆p̄At ,

in terms of the sample means conditional on changing prices, M , keeping prices the same, S,

entering, E, and exiting, X.

These conditional means are defined as

p̄St−1 =
1

nSt

∑
j∈S

pj,t, p̄Ct−1 =
1

nCt

∑
j∈C

pj,t−1, and p̄Xt−1 =
1

nXt−1

∑
j∈X

pj,t−1 (A.2)

at t− 1 and as

p̄St =
1

nSt

∑
j∈S

pj,t, p̄Ct =
1

nCt

∑
j∈C

pj,t, and p̄Et =
1

nEt

∑
j∈E

pj,t (A.3)

at t. Note that, because for j ∈ S the price does not change such that pj,t = pj,t−1, it is also

the case that p̄St−1 = p̄St .

Using these conditional means and sample sizes, we can write

p̄At−1 =
nMt
nt−1

p̄Mt−1 +
nXt−1
nt−1

p̄Xt−1, (A.4)

and

p̄At =
nMt
nt
p̄Mt +

nEt
nt
p̄Et . (A.5)

Of course, because we do not observe prices in adjacent months for the non-matched quotes

in the bin, we can only calculate the inflation rate πj,t = pj,t−pj,t−1 for matched items. The ONS

uses the equally-weighted matched-model geometric price index inflation rate as the inflation

rate for bin:

πt =
1

nMt

∑
j∈M

∆pj,t = p̄t − p̄t−1 (A.6)

=

(
nSt
nt
p̄St +

nCt
nt
p̄Ct

)
−
(
nSt
nt
p̄St−1 +

nCt
nt
p̄Ct−1

)
=
nCt
nt

∆p̄Ct = δt∆p̄
C
t . (A.7)

This is what we as the bin-specific inflation rate in the main text and it shows how it is the

product of the incidence and magnitude of price changes in the sample of matched price quotes.

This then allows us to rewrite

p̄At =
nt
nAt
p̄At−1 +

nt
nAt
πt +

nEt
nAt
p̄Et (A.8)

=
nAt−1
nAt

p̄At−1 −
nXt−1
nAt

p̄Xt−1 +
nt
nAt
πt +

nEt
nAt
p̄Et . (A.9)
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In terms of the change in the conditional means of log price, this yields

∆p̄At = p̄At − p̄At−1 =
nt
nAt
πt −

nXt−1
nAt

(
p̄Xt−1 − p̄At−1

)
+
nEt
nAt

(
p̄Et − p̄At−1

)
. (A.10)

This equation captures the following intuition. The mean log price level can changes for three

reasons. First, the mean of the matched price quotes changes. This is captured by the first

terms that is directly related to measured inflation. Second, the mean log price of the items

that drop out of the sample is not equal to that of those who remain. Third, items enter the

sample at a mean log price that is different from the goods in it.

Note how when there is not entry and exit, i.e., nEt = NX
t−1 = 0, the second and third terms

of the above equation are zero and nt = nAt . Thus, in that case, (A.10) simplifies to (A.7) used

in the main text.

Decomposition of the change in price dispersions

A similar derivation can be done for the variance of log prices, i.e., price disparities. We denote

this sample variance by

σ2
A,t =

1

nAt

∑
j∈A

(
pj,t − p̄At

)2 . (A.11)

Our decomposition splits the change in this variance, ∆σ2
A,t, into parts related to conditional

means and variances based on the four subsamples, {S,C,E,X}. In particular, we consider

σ2
π,t =

1

nt

∑
j∈M

(πj,t − πt)2 , (A.12)

σπpt−1,t =
1

nt

∑
j∈M

(πj,t − πt) (pj,t−1 − p̄t−1) , (A.13)

σ2
X,t−1 =

1

nXt−1

∑
j∈X

(
pj,t−1 − p̄Xt−1

)2 (A.14)

σ2
E,t =

1

nEt

∑
j∈E

(
pj,t − p̄Et

)2 . (A.15)

Given this notation, we can write

σ2
π,t =

nAt−1
nAt

σ2
A,t−1 +

nt
nAt
σ2
π,t + 2

nt
nAt
σπpt−1,t −

nXt−1
nAt

σ2
X,t−1 +

nEt
nAt
σ2
E,t (A.16)

+
nt
nAt

(
p̄t − p̄At

)2 − nt
nAt

(
p̄t−1 − p̄At−1

)2 − nXt−1
nAt

(
p̄Xt−1 − p̄At−1

)2
+
nEt
nAt

(
p̄Et − p̄At

)2 .(A.17)
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Writing this in terms of the first difference of the sample variance yields

σ2
A,t − σ2

A,t−1 =
nt
nAt
σ2
π,t + 2

nt
nAt
σπ,pt−1,t −

nXt−1
nAt

(
σ2
X,t−1 − σ2

A,t−1
)

+
nEt
nAt

(
σ2
E,t − σ2

A,t−1
)
(A.18)

+
nt
nAt

(
p̄t − p̄At

)2 − nt
nAt

(
p̄t−1 − p̄At−1

)2 (A.19)

−
nXt−1
nAt

(
p̄Xt−1 − p̄At−1

)2
+
nEt
nAt

(
p̄Et − p̄At

)2 .
The interpretation of the above equation is as follows. The variance in the log prices changes

for the following reasons:

• σ2
π,t: Because prices do not go up at the same rate.

• σπ,pt−1,t: Because prices that were already high increased more than low prices (or vice

versa). This is what this covariance captures.

•
(
σ2
X,t−1 − σ2

A,t−1
)
: Because there was more (or less) variation in the prices of the items

that exited than in the matched items.

•
(
σ2
E,t − σ2

A,t−1
)
: Because there was more (or less) variation in the prices of the items that

entered than in the matched items.

The last four terms capture the effect locational shift effects on the variance when the mean

log price of exiting and entering items is different from those that are matched. Notice that,

in the absence of entry and exit, i.e nt = NA
t and nXt−1 = nEt = 0, all but the first two terms of

the above expression are zero. These remaining two terms in the absence of entry and exit are

the variance of inflation, σπ,t, and the mean reversion of inflation, i.e., σπ,pt−1,t.

The decomposition of the change in price disparities in the main text, which abstracts from

entry and exit divides the the variance of inflation, σπ,t, up into two parts. In particular, it uses

that

σ2
π,t =

1

nt

∑
i

(
πj,t − πCt + πCt − πt

)2 (A.20)

=
1

nt

∑
i

(
πj,t − πCt

)2
+ 2

1

nt

∑
i

(
πj,t − πCt

) (
πCt − πt

)
+

1

nt

∑
i

(
π̄Ct − π̄t

)2 (A.21)

=
nt − nCt
nt

(
πCt
)2

+
1

nt

∑
i∈C

(
πj,t − πCt

)2 − (πCt − πt)2 (A.22)

=
nCt
nt

(
σCπ,t
)2 − (πCt − πt)2 +

nt − nCt
nt

(
πCt
)2 (A.23)

= δt
(
σCπ,t
)2

+ (1− δt) δt
(
πCt
)2 . (A.24)
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The first term on the last line captures that the variance of inflation across all matched items

is increasing in the variance of magnitude of the changes in the price quotes in C. The second

term captures that the variance of inflation also depends on the variance of incidence of price

changes. Whether or not a matched price quote changes between months t − 1 and t can be

interpreted as a draw from from a Bernoulli distribution with mean δt. The associated variance

is δt (1− δt) which is what is included in the second term of the last line above.

As for the mean reversion of inflation, i.e., σπ,pt−1,t, we use that it can be split up as follows:

σπ,pt−1,t =
1

nt

∑
j∈M

(πj,t − πt) (pj,t−1 − p̄t−1) =
1

nt

∑
j∈M

(
πj,t − πCt

)
(pj,t−1 − p̄t−1) (A.25)

= −nt − n
C
t

nt
πCt

1

nSt

∑
j∈S

(pj,t−1 − p̄t−1) +
nCt
nt

1

nCt

∑
j∈C

(
πj,t − πCt

)
(pj,t−1 − p̄t−1)(A.26)

= δtσ
C
π,pt−1,t

− (1− δt) πCt
(
p̄St−1 − p̄t−1

)
= δtσ

C
π,pt−1,t

+ δtπ
C
t

(
p̄Ct−1 − p̄t−1

)
(A.27)

The first term here, δtσCπ,pt−1,t
, reflects the degree to which inflation reduces (or magnifies)

initial differences in log prices among the prices that change. We call this the mean reversion

of magnitude of price changes. The second term reflects the extent to which the fact that

the prices that change are not randomly selected from the matched price quotes reduces (or

magnifies) price differences. We call this the mean reversion of incidence of price changes.

Combining the above two results with equation (A.18) without entry and exit yields that

σ2
t − σ2

t−1 = σ2
π,t + 2σπ,pt−1,t (A.28)

= δt
(
σCπ,t
)2

+ (1− δt) δt
(
πCt
)2

+ 2δtσ
C
π,pt−1,t

+ 2δtπ
C
t

(
p̄Ct−1 − p̄t−1

)
,

which is equation (5) in the main text.

A.2 Details of model

Bellman equations and value functions

The ex-ante, i.e., before observing the menu cost, real value function of a firm in sector i with

productivity level Ai,j,t that charged the relative price Pi,j,t−1 in the previous period, and faces

the sectoral relative price Pi,t and the aggregate state St, is given by:

Vi (Pi,j,t−1;Ai,j,t,Pi,t,St) =

∫ ∞
0

Ṽi (Pi,j,t−1;Ai,j,t,Pi,t,St; `) dF (`) . (A.29)
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The value function Ṽ (.) is the ex-post value function evaluated after the stochastic menu cost,

`i,j,t, has been realized. In particular, it is the maximum value of the two options of either

keeping (K) the price fixed or changing (C) it net of the menu cost. That is:

Ṽi (Pi,j,t−1;Ai,j,t,Pi,t,St) = max
{
V K
i (Pi,j,t−1;Ai,j,t,Pi,t,St) , V C

i (Ai,j,t,Pi,t,St)
}
, (A.30)

where

V K
i (Pi,j,t−1, Ai,j,t,Pi,t,St) = Πi

(
Pi,j,t−1
1 + πi,t

, Ai,j,t,Pi,t,St
)

+
1

1 + r
EtVi

(
Pi,j,t−1
1 + πi,t

, Ai,j,t+1,Pi,t+1, ,St+1

)
,

(A.31)

and

V C
i (Pi,j,t−1, Ai,j,t,Pi,t,St) = max

Pi,j,t

{
Πi (Pi,j,t, Ai,j,t,Pi,t,St)− `Wt +

1

1 + r
EtVi (Pi,j,t, Ai,j,t+1,Pi,t+1,St+1)

}
,

(A.32)

where πi,t =
Pi,t
Pi,t−1

−1 is the inflation rate of varieties from sector i and Et denotes the expectation
conditional on information at time t.

Solution method

The solution method that we use is a version of the Extended Path method, based on Fair

and Taylor (1983). As done in Knotek and Terry (2008), we track the distribution of firms

over a detailed grid over the state space (Ai,j,t,Pi,j,t). Because our interest is especially in the

dynamics of the distribution of prices over, i.e., the marginal distribution of Pi,j,t over this state
space, we use an especially fine grid along the price dimension. In particular, our grid has the

dimension (250, 2500) and our results are very similar if we use a slightly coarser approximation.

The Extended Path solves the transitional dynamics of the model under the assumption

that the economy is in steady state for t ≥ T , where we have used T = 100 in our solu-

tion.27 The solution method involves iterating over backwards and forwards recursions over

the transitionpath until the firms’ decisions aggregate to the path of the sectoral price level

{Pi,t}t=Tt=0 .

Backwards recursions For a given path of the sectoral price {Pi,t}t=Tt=0 this step involves

solving the firms’ price setting decisions. The resulting price-setting decisions do not necessarily

add up to the path of the sectoral price {Pi,t}t=Tt=0 .

Forward recursion For a given set of price-setting decisions, we update the path of the

distribution of firms over the state space (Ai,j,t,Pi,j,t). The resulting distribution of firms over

27This choice of T is so large that it does not materially affect the solution that we present.
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this state-space might not add up to the path of the sectoral price level {Pi,t}t=Tt=0 that their

price-setting decisions are based on.

The solution method iterates over these two recursions until the path of the sectoral price

level is consistent with the firms’ price setting decisions.

B Data Appendix

B.1 Bin construction

Shop price quotes are collected in the United Kingdom by the Office of National Statistics (ONS)

to measure inflation at a monthly rate. ONS classifies each shop price quote by: month, item,

region, and shop type. A region refers to the 12 geographic regions (defined by ONS) and shop

type refers to either “multiples” (chain stores with 10 or more outlets) or “independents” (less

than 10 outlets). ONS defines another layer of classification, called stratification which divides

the data into different “stratum.” They refer to four different “stratum types:” not stratified,

region, region and shop type, and shop type. They also refer to “stratum cells” which track

subgroups within a stratum type.28 They provide a region identifier for all price quotes, even

those with stratum type “shop type.” In order to control for any regional heterogeneity across

the entire data set, we added a region identifier to ONS stratum types “not stratified” and

“shop type.” For any given item, this places each shop quote into one of 72 “bins:”29

Stratum Type # of bins per item

Not stratified (with region identifier) 12 bin (1 per region)

Region 12 bins (1 per region)

Shop type (with region identifier) 24 bins (12 regions × 2 shop types)

Region and Shop type 24 bins (12 regions × 2 shop types)

For a given region, there will be up to 6 separate bins. For example, for a given item sold

in a shop in London there is a bin called “London, not stratified,” “London, stratified by re-

gion,” “London, multiple, stratified by shop type,” “London, multiple, stratified by region/shop

type,” “London, independent, stratified by shop type,” and “London, independent, stratified

by region/shop type.”

28For example, stratum type “region” has 12 cells, while stratum type “shop type” has 2 cells.
29Note that not all items are in every bin in the data.
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B.2 Comparison of price quote data with published CPI

The price quotes collected are aggregated up a tree of item groupings and weighting systems

to eventually arrive at an overall aggregate measure of national inflation, the consumer price

index (CPI). The aggregation tree from shop price quotes to headline CPI is below:

shop price quotes → item-stratum → item → COICOP Class → COICOP Group →
COICOP Division → Headline

where at higher levels of aggregation, the Classification of Individual Consumption According to

Purpose (COICOP) system is used. Price quotes are not available for all items in the published

CPI. Specifically, price quotes are available for 61 percent of the UK data, representing 69 of the

85 COICOP classes (see columns 1 through 3 of Table A2).30 Figure A1 shows three inflation

series:31 (1) the headline CPI inflation published by the ONS; (2) published item-index inflation,

for all items that are available in the price quote data32; and (3) price quote inflation, using

the price-quotes published by the ONS. The available price quote data does a fairly good job of

representing the headline published CPI data. Furthermore, the differences between series (2)

and (3) are minimal, showing the consistency of the price quote and weighting methods used

in this study.

B.3 Data cleaning

We removed sales and recoveries, as well as the COICOP categories of petrol (70202) and

clothing (30102-04, 30200). We then removed price quotes that were likely errors or that we

did not have enough data per bin. Specifically, we cleaned the data with the following steps:

• Removed prices quotes ONS deemed invalid or non-comparable.

• Removed noisy bins:

– Removed all observations with less than 4 shop quotes (not frequency weighted by

shop weight) in an item-bin-month.

– Dropped item-bin-months with very large confidence intervals. Construct a 95 per-

cent confidence interval around the variance of log prices using the χ2 distribution,
30These 16 excluded COICOP classes are insurance connected with dwelling, insurance connected with health,

insurance connected with transport, other financial services, water supply, sewage collection, electricity, gas, new
cars, second hand cars, passenger transport by railway, passenger transport by air, passenger transport by sea,
postal services, newspapers and books, package holidays.

31All series are year-over-year percentage change in the index.
32ONS publishes indexes aggregated up to the item level
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for each item-bin-month. We then drop item-bin-months with confidence intervals

in the top 1 percent of all confidence intervals.

• Winsorized on the variable ∆σ2
t at the item-bin level at the 1st and 99th percentile.

• Corrected for an error found in the price quote data where base prices were incorrectly

inputed as the value .0004. All price quotes with base price equal to .0004 are removed.

• Removed incorrect quotes from the January 1999 release. The item IDs of items removed

are: 510209, 510226, 510121, 510206, 510220, 510230, 510231, 510428, 510506, 510511,

510514, 510521, 510523.

• Removed other items from the January 1999 release. These item indices created from the

price quote data were significantly greater than the item indices published by the ONS.

We remove items in the top 15 percent of the distribution of item indices created from

price quotes relative to item indices published by the ONS.

• Removed observations in which shops have the same identification code in the same region

and stratum. The ONS is not authorized to release the remaining variables to uniquely

identify shops.

• Dropped observations from May 2005, for which most price quote data are missing.

• Exclude price changes due to sales from the sample.

Figure A2 illustrates the effects of data cleaning on the inflation series: the time series

labeled as (1) reproduces the price quote inflation series (PQ data) in Figure A1, the series

labeled as (2) removes sale and recoveries, (3) removes sale and recoveries as well as clothing

and petrol, and (4) reports the final cleaned data. Most of the discrepancy between the final

data (series 4) and the original PQ series (series 1) stems from dropping sales. However, this is

mainly a level shift as the time series patterns remain similar.

Table A2 shows the effects of data cleaning on the sample size. The final price quote data

represents 54 percent of the headline CPI number, but approximately 90 percent (i.e., .54/.61)

of the available price quote data.

C Estimation details

We estimate equation (6) on three sets of dependent variables (yi,t+h):
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(i) the log price level, pi,t, and its three time-varying components described in equation (4):

pi,t+h − pi,t−1 = βhBt ∗ Ti + δhBt + γi +
3∑
c=1

12∑
k=1

(
αhc,k∆Cc,i,t−k + φhc,k∆Cc,i,t−k ∗ Ti

)
+ εi,t,

(C.33)

Cc,i,t+h−Cc,i,t−1 = βhBt ∗Ti + δhBt +γi +
3∑
c=1

12∑
k=1

(
αhc,k∆Cc,i,t−k + φhc,k∆Cc,i,t−k ∗ Ti

)
+ εi,t,

(C.34)

where c = 1, 2, 3.

(ii) the variance of log prices, σi,t, and its components described in equation (5),

σi,t+h − σi,t−1 = βhBt ∗ Ti + δhBt + γi +
4∑
c=1

12∑
k=1

(
αhc,k∆Cc,i,t−k + φhc,k∆Cc,i,t−k ∗ Ti

)
+ εi,t,

(C.35)

Cc,i,t+h−Cc,i,t−1 = βhBt ∗Ti + δhBt +γi +
4∑
c=1

12∑
k=1

(
αhc,k∆Cc,i,t−k + φhc,k∆Cc,i,t−k ∗ Ti

)
+ εi,t,

(C.36)

where c = 1, 2, 3, 4. Note that, although we take the 4 subcomponents of equation (5)

as dependent and control variables, we also consider the variance of inflation (σ2
π,t) and

σπ,pt−1,t as dependent variables.

(iii) the log price level (pzi,t+h) of the z ∈ {10th, 50th, 90th} price percentile firm

pzi,t+h − pzi,t−1 = βhBt ∗ Ti + δhBt + γi +
12∑
k=1

(
αhkπ

z
i,t−k + φhkπ

z
i,t−k ∗ Ti

)
+ εi,t, (C.37)

for z = {10th, 50th, 90th} percentiles.

For each horizon h the dependent variables are constructed as such that, for the log price

level we have pi,t+h − pi,t−1 =
∑h

τ=1 πi,t+τ . The inflation rate for item i is πi,t =
∑
ωb,iπb,i,t,

where ωb,i is the bin weight and πb,i,t =
∑
ωs,b,i

ps,b,i,t
ps,b,i,t−1

is the matched-shop log change in prices

for item i in b and shop s, and ωs,b,i are shop weights provided by ONS.

For the components in equations (4) and (5), Cc,i,t+h − Cc,i,t−1 =
∑h

τ=1 ∆Cc,i,t+τ for each

c ∈ {1, 2, 3} and c ∈ {1, 2, 3, 4}, respectively.
Finally, πzi,t =

∑
ωb,iπ

z
b,i,t and πzb,i,t is the change in log price for the shop whose price was

the zth percentile in bin b at time t − 1 and ωb,i are bin-weights provided by ONS. That is,

πzb,i,t = [
ps,b,i,t
ps,b,i,t−1

|ps,b,i,t−1 = pzs,b,i,t−1], where pzs,b,i,t−1 represents the zth percentile price (frequency

weighted) in bin b for item i. It follows that the dependent variable is the sum of the monthly
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price changes: pzi,t+h − pzi,t−1 =
∑h

τ=1 π
z
i,t+τ . Since we do not decompose this variable, the

controls include lags of the dependent variable as opposed to the components.

Results for the estimation of the regressions described in items (i) and (ii) are reported in

the main text. Results for the estimation of the regresions described in item (iii) are reported

in the Appendix Figure A3. The latter set of plots confirm the shrinking of the distribution of

prices as the prices at lower percentiles are adjusted by more.

C.1 Synthetic control approach

In an ideal experiment, the treated and control units are identical, on average, in the absence

of the treatment. However, the summary statistics, reported in Tables 3 and A3, indicate some

differences in the treatment and control items in the nontreatment periods (i.e., the benchmark

and pre-Brexit periods). Most notably, the treated group, i.e. tradables, includes items whose

prices change more frequently than those in the control group. Although the local projection

method used in this study includes controls aimed to correct for pre-Brexit trends, it does not

account for differential effects of the treatment in the post-Brexit period. For example, flexibly-

priced items may react to a cost shock differently than do sticky-priced items. Such differences

in characteristics of the treated group from the comparison group could potentially convolute

the empirical results.

In this section, we implement the synthetic control method of Abadie, Diamond and Hain-

mueller (2010) which alleviates the possible concern that the treated and control items have dif-

ferent characteristics. The authors propose a “synthetic” control group that can be constructed

as a convex combination of control items that most closely resembles the characteristics of

the treated group. They refer to this set of goods as the “donor pool,” which, in our context,

includes items are that are both nontradable and in the lower tertile import share.33

To construct the synthetic control group, one needs to choose the set of characteristics to be

matched with the treated group. We include as predictors the frequency of price changes (δt),

the inflation of price changes (πCt ), the variance of inflation (σ2
π,t), and the mean reversion of

price changes (2σπ,pt−1,t). The statistics of interest are obtained by averaging over the pre-Brexit

period (2015m6-2016m5). By construction, the synthetic control group closely resembles the

treated group in the pre-Brexit period.

Tables A4 and A5 compare pre-Brexit mean characteristics of tradables (the treated group)

33The synthetic approach is known to be sensitive to the set of items included in the donor poll. For that
reason, we exclude “books” from the donor pool, as the synthetic control method are particularly sensitive to
this group of items. None of our main results of Section 5 (using local projections) change when books are
excluded from that sample.
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and the synthetic control group. By construction, the synthetic control group closely resembles

the treated group.34 Notably, Table A4 shows that the frequency of adjustment for the synthetic

control and the treated group are approximately the same for almost all variables of interest.

The effect of the exchange rate shock is measured as the difference between the treated and

control groups in the post Brexit period. We plot this difference in Figures A4 and A5 as a red

dashed line along with the main results of our study. The results from the synthetic control

method reinforce our main empirical findings. Figures A4 and A5 show that the effect of the

exchange rate shocks on tradables through local projections and the synthetic control methods

are quite close to one another across all variables.

34Note that the means of the treated group shown in Tables A4 and A5 are weighted (by ONS provided item
weights) and therefore do not match the summary statistics in Tables 3 and A3 which are ordinary arithmetic
means.
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Table A1: Sample set up for price quotes at bin level at times t− 1 and t

Panel (a): First-order unconditional and conditional moments
log prices sample size sample mean inflation incidence

Category Name t− 1 t t− 1 t t− 1 t t t

M matched pj,t−1 pj,t nt nt p̄t−1 p̄t πt = ∆p̄t δt
C price change pj,t−1 pj,t nCt nCt p̄Ct−1 p̄Ct πCt = ∆p̄Ct 1
S same price pj,t pj,t nSt nSt p̄St p̄St 0 0

Entry and exit of price quotes (Appendix A)
A All pj,t−1 pj,t nAt−1 nAt p̄At−1 p̄At - -
E entering items - pj,t 0 nEt - p̄Et - -
X exiting items pj,t−1 - nXt−1 0 p̄Xt−1 - - -

Panel (b): Second-order unconditional and conditional moments
sample variance sample covariance

of log prices of inflation between πj,t and pj,t−1
Category Name t− 1 t t t

M matched σ2
t−1 σ2

t σ2
π,t σπ,pt−1,t−1

C price change σ2
C,t−1 σ2

C,t σ2
C,π,t σC,π,pt−1,t−1

S same price σ2
S,t σ2

S,t 0 0

Entry and exit of price quotes (Appendix A)
A All σ2

A,t−1 σ2
A,t σ2

A,π,t -
E entering items - σ2

E,t - -
X exiting items σ2

X,t−1 - - -

Note: For example, p̄Xt−1 = 1
nX
t−1

∑
j∈X pj,t−1, δt =

nC
t

nM
t
σ2
S,t = 1

nS
t

∑
j∈S

(
pj,t − p̄St

)2,
σ2
C,π,t = 1

nC
t

∑
j∈C

(
πj,t − πCt

)2 , and σπ,pt−1,t = 1
nt

∑
j∈M (πj,t − πt) (pj,t−1 − p̄t−1).

Table A2: Effects of Data Cleaning on Sample Size

Published Aggregated Data Price Quote (PQ) Data
Item Indexes No Sales, Petrol,

CPI in PQ data All or Clothing Final
Weighted Share 1 0.61 0.61 0.53 0.52
Num. Coicop Class 85 69 69 64 64
Num. Item 1446 1163 1163 968 941
Num. Bins - - 2,322,346 1,816,291 1,599,894
Num. Obs - - 26,629,004 19,523,777 15,190,383
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Figure A1: Published UK CPI Inflation vs. Inflation based on available price quotes
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Source: ONS and authors’ calculations
Note: Series (1) is the published UK CPI inflation series. Series (2) is the inflation series for all items available
in the price quote data, generated using the published item indexes. Series (3) is the inflation series generated
from aggregating up the price quote data. All series are year-over-year percentage changes.
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Figure A2: Effects of Data Cleaning on Price Quote Inflation
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Source: ONS and authors’ calculations
Note: Series (1) is the inflation series generated from aggregating up the price quote data (i.e., series (3) in
Figure A1). Series (2) removes sales/recoveries. Series (3) removes sales/recoveries, petrol, and clothing. Series
(4) is the final data set.

Figure A3: Brexit treatment effect on percentile of price quotes (at beginning of month) in bin.
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Note: Treatment effect in terms of average log price of xth percentile. Plotted are 90 percent confidence bands.
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Figure A4: Treated group minus synthetic control, first moment variables
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Figure A5: Treated group minus synthetic control, second moment
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Table A6: Steady-state calibration of model parameters

Description Parameter Data Model
Menu cost Calvo

(i) Literature- and data-based parameters

Elasticity of substitution across varieties ε — 3 3
Elasticity of substitution across sectors θ — 1 1
Cost-share of imports in sector 2 α — 0.4 0.4

(ii) Calibrated parameters

Persistence of idiosyncratic productivity shock ρ — 0.99 0.9825
Standard deviation of idiosyncratic productivity shock σu — 0.045 0.0625
Menu cost ¯̀ — 0.025 —
Probability of changing prices — 0.12

(iii) First and second moments of inflation and log prices

Inflation π̄ 0.194 0.167 0.167
Incidence δ̄ 0.107 0.108 0.110
Magnitude ∆p̄C 2.3344 1.546 1.515
Change in the variance of log prices ∆σ2 0.015 0.000 0.000
Variance of inflation σ2

π 0.184 0.194 0.203
Mean reversion of inflation 2σπ,p -0.195 -0.239 -0.204
Variance of log prices σ2

p 0.122 0.108 0.118

The first two parameters on item (i) are set according to the literature, while the third matches the data
described on Table 2. Parameters on item (ii) are chosen such that the models nearly matches the gray
shaded row parameters on item (iii). The “Data” column corresponds to the “Benchmark” column from
Table 3. Steady-state inflation, π̄, is calibrated to 2 percent annualized, which is slightly higher than average
inflation in our sample over the benchmark period (2001m1-2007m12).
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Figure A6: Steady-state distribution of log prices and price-setting rules
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