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Abstract

The correlation between uncertainty shocks, as measured by changes in the VIX, and changes in break-

even inflation rates declined and turned negative after the Great Recession. This estimated time-varying

correlation is shown to be consistent with the predictions of a standard NewKeynesianmodel with a lower

bound on interest rates and a trend decline in the natural rate of interest. In one equilibrium of the model,

higher uncertainty raises the probability of large shocks that leave the central bank constrained by the lower

bound and unable to offset negative shocks. Resulting inflation shortfalls lower average inflation rates.
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I Introduction

Over the past quarter century, there has been a marked downward trend in the correlation between changes

in market-based measures of uncertainty and expected inflation in the United States. At the beginning of

this century, this correlation was essentially zero, but it has since turned negative. The emergence of a

negative relationship between uncertainty shocks and expected inflation raises the concern that uncertainty

shocks now have a more pronounced effect on the economy than two decades ago and thereby pose greater

challenges for the conduct of monetary policy.

In this paper, we document this significant repricing in financial markets reflected in changes to financial

correlations and analyze them within a macroeconomic model. Our main contributions are two-fold. The

first is a theoretical analysis of the effects of uncertainty shocks on expected inflation and interest rates within

a standard New Keynesian model. We show how the presence of a lower bound on interest rates affects

this correlation. The second is an empirical analysis of the predictions of the theory, which indicate that

the decline in the natural real rate of interest to low levels has contributed to the emergence of the negative

relationship between uncertainty and inflation expectations evident in the data.

In the theoretical section of the paper, we use a standard New Keynesian model with a lower bound on

nominal interest rates for an analytical derivation of the theoretical predictions. For simplicity, we focus on

demand shocks as the only source of disturbances. We show the implications of a change in the level of

interest rates, as determined by the natural rate of interest, on the joint behavior of uncertainty and inflation

expectations. The presence of the lower bound implies the existence of two distinct ergodic distributions for

endogenous variables. The distinguishing feature between these equilibria is the probability of a binding

lower bound which translates into different levels of inflation expectations. The equilibrium with the lower

probability, which we refer to as the target equilibrium, leaves the central bank mostly unconstrained and

able to stabilize inflation. In the second equilibrium, which we denote as the liquidity trap equilibrium, the

lower bound binds more often which results in more frequent and larger inflation shortfalls. The presence of

a lower bound and the type of equilibrium the economy is in are key determinants of the correlation between

uncertainty shocks and changes in inflation expectations.

Without a lower bound on interest rates, a mean-preserving increase in uncertainty has no systematic

effect on the unconditional means of expected inflation and interest rates. This is because the central bank

can use its interest rate policy in response to positive and negative shocks symmetrically to stabilize inflation.

In contrast, in the presence of an occasionally binding lower bound on interest rates, a mean-preserving
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spread to the distribution of shocks affects the unconditional mean rate of inflation, decreasing it in the

target equilibrium and increasing it in the liquidity trap equilibrium. In the case of the target equilibrium, an

increase in uncertainty implies that policy is constrained in a larger region of the state space. This asymmetric

constraint on the ability to respond to negative shocks results in a reduction in the unconditional means of

expected inflation and interest rates. In the case of the liquidity trap equilibrium, an increase in uncertainty

contracts the region in which the lower bound binds and thereby increases the unconditional means of

inflation and interest rates.

In the target equilibrium, a decline in the natural rate of interest leads to the observed effects of changes

in uncertainty on inflation expectations when the probability of a binding lower bound is sufficiently small

in the case of general distributions. Under additional assumptions such as Gaussian distributions, this result

holds for any probability in the target equilibrium.

Second, we empirically assess these theoretical predictions using data from the United States. Therefore,

we construct rolling-window correlations between changes in market-based measures of uncertainty, such as

the VIX, and changes in expectations of far-forward future inflation and interest rates. The New Keynesian

model predicts that, analogously to the correlation for inflation expectations, the correlation between uncer-

tainty shocks and changes in expected interest rates should turn negative as well. Indeed, this correlation

fell from close to zero to around -0.5 over the same time period. These changes took place as estimates of

the natural rate of interest declined and the incidence of monetary policy being near or at the lower bound

increased.

To test this prediction, we regress the correlations for interest rate and inflation expectations on estimates

of the natural rate of interest and find that the empirical evidence is qualitatively consistent with the U.S.

economy being in the target equilibrium, in line with evidence reported in Mertens and Williams (2021).

We furthermore establish the robustness of the results. We show that we obtain consistent results with the

target equilibrium of the model, including when removing term premia or using alternative measures of

uncertainty shocks and inflation expectations. For the latter, we show that our results are robust to using

survey-based measures of expected inflation from the Survey of Professional Forecasters and to using both

an aggregate econometric measure of economic financial uncertainty and a news-based economic policy

uncertainty index for uncertainty shocks (see Ludvigson et al. (2021) and Baker et al. (2016)).

Finally, we assess the implications of greater uncertainty about aggregate demand for the design of

monetary policy. We show that, in the target equilibrium, the benefits of average-inflation targeting relative
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to standard inflation targeting increase with greater macroeconomic uncertainty. We implement average-

inflation targeting through an adjustment in the level of the policy rule for nominal interest rates. Lowering

the intercept leads inflation to overshoot the target inflation rate during times when policy is unconstrained.

This policy framework thereby makes up for shortfalls in inflation at times when the lower bound on interest

rates is strictly binding.

We highlight one caveat to our analysis. To maintain analytical tractability, we do not model time

variation in correlations explicitly. Instead, we study changes in the derivative of expectations with respect

to uncertainty when there is an exogenous shift in the natural real rate of interest. Therefore, we do not

generalize these findings to models of monetary policy with richer dynamics nor address the potential

endogeneity of the decline in the natural real rate.

Our analysis relates to several strands of the literature. First, it relates to models that incorporate a lower

bound on interest rates into a New Keynesian economy, such as Fuhrer and Madigan (1997), Eggertsson and

Woodford (2003), Adam and Billi (2006), Campbell et al. (2012), and Cochrane (2018). Papers in this literature

that deal with the multiplicity of equilibria include Benhabib et al. (2001), Mendes (2011), Hills et al. (2016),

Nie and Roulleau-Pasdeloup (2021), Cuba-Borda and Singh (2022), and Bilbiie (2022). Our analysis relates to

the work by Swanson and Williams (2014) and Mertens and Williams (2021) in that it measures the effects

of the lower bound on interest rates from financial market data. Second, it relates to a literature that studies

changing correlations in financial markets and links them to macroeconomic outcomes. Baele et al. (2010),

Duffee (2022), and Pflueger (2023) document changing correlations between stocks and bonds. Campbell et

al. (2020) point out macroeconomic drivers behind this phenomenon. And Bilal (2017) and Gourio and Ngo

(2020) argue that the lower bound on interest rates might be behind this finding, while Datta et al. (2021)

link the lower bound to the changing equity-oil correlation. Third, this paper contributes to the large and

fast-growing literature on uncertainty shocks and their effects on the economy. Seminal contributions on the

measurement include Jurado et al. (2015) and Baker et al. (2016). Leduc and Liu (2016) study the effects of

uncertainty shocks in a New Keynesian economy while Basu and Bundick (2017), Plante et al. (2017) and

Nakata (2017) take the lower bound on interest rates into account.

II Stylized Fact

This section discusses a new stylized fact: Since the mid-2000s, the correlation between uncertainty shocks

and changes in long-run inflation expectations has turned negative from a level of close to zero. While we
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Figure 1: The dark blue line plots the five-year trailing-window correlation (Spearman correlation: solid
line, Pearson correlation: dashed line) of monthly changes in the VIX with monthly changes in the five-
year, five-year-forward breakeven inflation (BEI) rate; the underlying variables are monthly averages of daily
market-close values. The light blue line plots the five-year trailing-window Spearman correlation of quarterly
changes in the VIX with quarterly changes in the median SPF forecast of 10-year average CPI inflation. The
yellow line plots the caps-implied probability of the zero lower bound binding ten years out. The pink shaded
areas represent times when the zero lower bound was binding. The correlation between the probability of
a binding lower bound (yellow line) and the baseline correlation (solid dark blue line) is -0.68. The sample
period ranges from January 2004 until July 2020.

purposefully keep this section brief, Section V discusses the robustness of these findings.

To demonstrate these patterns, we measure uncertainty shocks as changes in expected volatility in the

stock market via the VIX volatility index. For expected inflation, we use market-implied breakeven inflation

(BEI) rates, measured as the difference between yields of nominal and inflation-protected Treasury bonds. We

use five-year inflation expectations five years ahead to focus on expectations of inflation in the longer term.

We retrieve daily time series on each of these variables from Bloomberg.1 To get monthly observations, we

construct changes in monthly averages of the daily market-close values and compute the correlation between

these monthly changes in the VIX and changes in inflation expectations for five-year rolling windows. The

overall sample for the monthly changes is restricted by the introduction of Treasury inflation-protected

securities (TIPS) in 1999, such that the five-year trailing-window correlations begin in January 2004. We

1Appendix D.A summarizes the sources and details of all data used in this paper.
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end the sample in July of 2020 before the Federal Reserve’s announcement of its average-inflation targeting

framework (FOMC (2020)).

Figure 1 plots the Spearman and conventional (Pearson) correlations between these measures of uncer-

tainty shocks and changes in inflation expectations at the monthly frequency. Spearman correlations are the

conventional (Pearson) correlations of the rank of each observation in the sample. Since they use the rank

rather than the observation itself, Spearman correlations are more robust to outliers and thus our preferred

measure.2 The decline in this correlation occurred during the mid-2000s and accelerated as the federal funds

ratewas lowered to the effective lower bound. It remained highly negative throughout the initial lower bound

period and increased after liftoff from the lower bound. After the onset of the COVID-19 pandemic and the

ensuing recession, the correlation turned highly negative again.

These changes in the correlation do not seem to be primarily driven by risk premia. Figure 1 contrasts

the baseline correlation which uses breakeven inflation expectations as the main measure with the analogous

correlation that uses the Survey of Professional Forecasters as ameasure of inflation expectations. Specifically,

we use the median forecast for 10-year CPI inflation. The two time series comove quite closely, suggesting

that there is a structural reason behind their movements.

In this paper, we argue that the lower boundon interest rates can lead to the observedpatternwithin a basic

New Keynesian model. In such an environment, increases in uncertainty raise the possibility that monetary

policy is unable to eliminate inflation shortfalls. Concerns about an increased likelihood of a binding zero

lower bound and its impact on inflation arose in the late 1990s and early 2000s (see, e.g., Bernanke (2002)).

Figure 1 puts the changing correlation and zero lower bound risk ten years out into perspective. Zero lower

bound risk is measured as the probability of the 3-month LIBOR rate being at zero ten years out.3 We focus

on long-term zero lower bound risk to ensure that transition dynamics are not driving the results, consistent

with the model we present in the next section. As the figure shows, far-out zero lower bound risk tended

to be high at times when the break-even inflation-uncertainty correlation was low. Regressing the inflation

expectation-uncertainty correlation on the lower bound probability results in a regression coefficient of -1.07

with a Newey-West standard error of 0.54 which is statistically significant at the 5% level.

In the following section, we formalize the link between changing correlation in this section and the lower

bound on interest rates.
2For the remainder of the paper, we only report Spearman correlations. The analogous charts for conventional Pearson correlations

are in Internet Appendix B.A.
3The measure is taken from the Center for Monetary Research (2024).
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III Model

In this sectionwe study a standard log-linearized three-equationNewKeynesianmodel, as in, e.g., Woodford

(2003), to which we add a lower bound on interest rates. For analytical tractability, our model features only

demand shocks that are independent and identically distributed (i.i.d.) over time. The model is a simplified

version of the one in Mertens andWilliams (2021) in that it abstracts from supply-side shocks.4 Compared to

that paper, the model solution in this paper is more concise and facilitates the analysis of uncertainty shocks.

The Phillips curve describes the evolution of inflation πt

πt = κxt + βEtπt+1, (1)

where κ > 0 is the sensitivity of inflation to changes in the output gap, β ∈ (0, 1) is the discount factor, and

inflation expectations are based on the information set available at time t.

The IS relation describes the behavior of the output gap xt

xt = εt − α(it − Etπt+1 − r∗) + Etxt+1, (2)

where α > 0 is the responsiveness of the output gap to deviations of the real interest rate from its long-run

natural rate, r∗.

We specify the demand shock as εt = ε̄ + νt such that we can take comparative statics with respect to its

mean ε̄.5 The noise component νt has mean zero, is assumed to be i.i.d. over time, and follows a distribution

with infinite support, probability density function g(·), and cumulative density function G(·) that satisfies

lim
ν→−∞

νG(ν) = 0.6

The central bank sets the nominal rate it optimally under discretion but is constrained by a lower bound

iLB that lies below the natural real rate of interest; that is, iLB < r∗. The central bank aims to minimize a loss

function L that penalizes output gaps as well as deviations of inflation from its target, which is normalized

4The addition of supply-side shocks delivers consistent results but makes the exposition more cumbersome.
5While changes in this mean can capture changes in the outlook for the economy, all results around the uncertainty go through if

we set the mean to zero.
6While the results hold more generally, we work with an infinite support of the shock to avoid the distinction of the cutoff for a

binding lower bound lying within or outside the support of the distribution.
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to zero,7

min
it≥iLB

L = min
it≥iLB

(1− β)E0

[ ∞∑
t=0

βt(π2
t + λx2

t )

]
, (3)

where λ ≥ 0 is the relative weight the central bank places on the output gap relative to deviations of inflation

from target. We focus on optimal monetary policy under discretion, when the central bank lacks the ability

to commit to future actions and thus takes inflation expectations as given.8 The central bank and private

sector are assumed to have full knowledge of the model, including the distribution of the shock processes.

The state space of the system consists only of the current realization of the shock εt and expectations

about inflation and output gaps. Due to the shock being purely temporary, its current realization has no

predictive content for future realizations of the shock process. As a result, conditional expectations of future

variables based on the current information set coincide with unconditional expectations. We thus drop the

time subscript t from the expectations operator and solve for the full dynamic equilibriumwith unconditional

expectations.

It is convenient to define a shadow rate it as

it = θ + r∗ + ψEπt+1 +
1

α
εt,

where ψ = 1 + 1
ακ −

βλ
ακ(κ2+λ)

> 1. For θ = 0, the shadow rate is the optimal policy rate under discretion

without the lower bound constraint. In a later section, we use the parameter θ to introduce differentmonetary

policy frameworks.

In the presence of a lower bound, the optimal discretionary policy is to set the interest rate equal to the

shadow rate whenever feasible and to the lower bound otherwise:

it = max{it, iLB} = it + i∆t . (4)

We furthermore define the interest rate wedge i∆t as the difference between the policy rate and the shadow

rate, i∆t = it − it, as in the second part of the above equation. Since the policy rate it is either equal to the

shadow rate it or set above the shadow rate at iLB when the shadow rate falls below the lower bound, the

interest rate wedge i∆t is always nonnegative.

Equipped with this notation, we rewrite the model equations in terms of the interest rate wedge by

7More generally, the same results follow if we assume a nonzero inflation target, with πt then representing deviations in inflation
from target.

8The logic of this paper also applies when the central bank follows a Taylor rule.
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substituting it + i∆t for the nominal rate it. The system of equations (1) and (2) then becomes

πt =
λ

κ2 + λ
βEtπt+1 − ακ(i∆t + θ) (5)

and

xt = − κ

κ2 + λ
βEtπt+1 − α(i∆t + θ).

In these equations for inflation and the output gap, written in terms of the interest rate wedge, the first

terms reflect what holds when the lower bound is not binding and when θ = 0, as in the standard New

Keynesian model (see Clarida et al. (1999)). Abstracting from the second terms for the moment, the demand

shock is fully offset and there is no tradeoff between stabilizing inflation and output, i.e., “divine coincidence”

holds. However, the second terms in these equations show that a binding lower bound leads, ceteris paribus,

to lower inflation and a negative output gap. Moreover, monetary policy can raise inflation on average by

lowering interest rates on average, that is, by setting θ to be negative.

III.A Model Solution

Absent a lower boundandassuming θ = 0, there is a unique equilibrium to equation (5). Takingunconditional

expectations of both sides of the equation yields an equilibrium where inflation is at target, Eπt = 0, and the

nominal interest rate equals the long-run natural rate, it = r∗.

The presence of a lower bound on interest rates in the model gives rise to the possibility of a second

equilibrium.9 To see this, we split equation (5) into parts depending on whether the lower bound binds in

the current period or not

πt =


βλ

κ2 + λ
Etπt+1 − ακθ if it ≥ iLB

κεt − ακ(iLB − θ − r∗) + (1− ακ)Etπt+1 if it < iLB.

(6)

In the deterministic version of our model, each part of equation (6) delivers one equilibrium. When

θ = 0, the deterministic steady state stemming from the upper equation is characterized by inflation equal

to its target of zero (π = 0) and the nominal interest rate equal to the long-run natural real rate (it = r∗).

The lower equation gives rise to an equilibrium in which monetary policy is constrained such that the

interest rate is permanently at the lower bound, it = iLB , as in Benhabib et al. (2001). The corresponding

9The optimal interest rate rule in equation (4) depends on expectations and is optimal in both equilibria.
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steady-state inflation is equal to the difference between the lower bound and the long-run natural real rate,

π = iLB − r∗ < 0, and thus below its target of zero when θ = 0.

Characterizing the equilibrium in the stochastic environment with demand shocks requires solving for

expectations of future inflation, the output gap, and the interest rate wedge. To this end, we recognize that

these expectations are linked in the model via

Eπt+1 =
κ

1− β
Ext+1 = − 1

ψ − 1
(Ei∆t+1 + θ). (7)

Furthermore, the Fisher equation holds

Eπt = Eit − r∗ −
1

α
ε̄.

Appendix A contains details on the derivation of these equations.

Equation (7) and the Fisher equation imply that it is sufficient to characterize one of the expectations. In

the following analysis, we focus on solving for the expected interest rate wedge Ei∆, which translates into

inflation expectations and, by the Fisher equation, into expected interest rates. We start by expressing the

expected interest rate wedge as the integral over iLB − it, which is the value of i∆t when policy is at the lower

bound and the interest rate wedge is non-zero. The expected interest rate wedge can then be expressed as

Ei∆ =

∫ ν̄LB

−∞
(iLB − it)g(νt)dνt =

1

α

∫ ν̄LB

−∞
G(νt)dνt =

1

α
G (ν̄LB), (8)

where

ν̄LB = α

(
iLB − θ − r∗ +

ψ

ψ − 1
(Ei∆ + θ)

)
− ε̄ (9)

defines the cutoff for the innovation to the demand shock below which the lower bound binds.

The reasoning behind equation (8) is as follows. The interest rate wedge is zero whenever policy is

unconstrained. When the innovation for the demand shock νt falls below the threshold ν̄LB , given by

equation (9), policy becomes constrained and the interest rate wedge is iLB−it = 1
α(ν̄LB−νt). Integration by

parts leads us from the second term to the third term in equation (8) which is the integral over the cumulative

distribution function of the demand shock.

As a result, expected interest rate wedges are the integral over the cumulative distribution function which

we label the super-cumulative distribution function G , evaluated at the cutoff value ν̄LB (fourth term in
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(8)). This is to say that G ′(ν) = G(ν) where G(·) is the cumulative distribution function associated with the

probability density function g(·). As such, the function G is pinned down by the choice of the underlying

distribution and does not depend on other parameter values.

Interest rate wedges arise only when the value of νt falls below the threshold ν̄LB . In that case, the interest

rate wedge rises linearly as νt falls. And the wedge is zero whenever the innovation to demand shocks νt is

above the threshold. Consequently, the expected interest rate wedge is driven by the probabilities of shock

realizations below the threshold ν̄LB which can be captured by the super-cumulative distribution function.

Translating this into the process for inflation, shocks above ν̄LB get fully offset by policy and have no effect

on inflation, as equation (6) shows. For shock realizations below the threshold, however, demand shocks

affect inflation. In particular, the further the demand shock falls below the threshold, the lower inflation will

be below target (second part of equation (6)). The super-cumulative distribution function again captures the

average effect from these negative shocks.

The super-cumulative distribution function has several properties that facilitate the analysis of the model.

First, since one can obtain this function by integrating over the cumulative distribution function, the function

converges to zero for ν̄LB → −∞ and to infinity for ν̄LB → ∞. Since its second derivative is the probability

density function, it is nonnegative and G is convex. The comparative statics with respect to uncertainty can

be fully characterized as we show below.

Furthermore, the super-cumulative distribution function is available in explicit form for a range of distri-

butions. For example, in the case of a normal distribution for the shock, the super-cumulative function takes

the form

G norm(ν̄LB) = ν̄LBΦ

(
ν̄LB

σ

)
+ σ2φ

(
ν̄LB

σ

)
, (10)

where Φ(·) denotes the cumulative distribution function (c.d.f.) of the standard normal distribution, φ(·) the

corresponding probability density function (p.d.f.), and σ is the standard deviation of the demand shock.

Importantly, there is a single fixed-point equation involving the function G that pins down the solution

of the model. To see this, we plug the expected interest rate wedge in (8) into the definition of the cutoff and

obtain the equilibrium correspondence

G (ν̄LB) =
ψ − 1

ψ
α

(
1

α
(ν̄LB + ε̄)− iLB − 1

ψ − 1
θ + r∗

)
. (11)

Solving this equation for cutoff values delivers the solution to the model as the cutoff determines expected
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interest rate wedges via equation (8). Appendix A.A contains the derivations and more details.

Figure 2 depicts both sides of equation (11) assuming a normal distribution for the demand shock. The

blue line shows the super-cumulative distribution on the left-hand side. The right-hand side is linear in the

cutoff ν̄LB and depicted in the black line.

Figure 2: Equilibrium correspondence. The solid straight black line plots G (ν̄LB) as a linear function of ν̄LB ,
as given by equation (11). The other lines plot the super-cumulative distribution function G norm(ν̄LB) for the
case of a normal distribution, as given by equation (10), with mean zero and varying standard deviations
σ. The intersection points with the solid black line indicate equilibria for these various values of σ under
normality.

Due to the convexity of the super-cumulative distribution function, there can be either zero, one (a knife-

edge case), or two equilibria. As we saw above, the deterministic case features two equilibria. We label

the equilibrium to the left the target equilibrium. In the deterministic case, it turns into the equilibrium in

which the lower bound does not bind. With uncertainty, however, the lower boundmay become occasionally

binding. The equilibrium to the right is a liquidity trap equilibrium and is associated with the deterministic

equilibrium in which the lower bound binds.

The probability with which the lower bound binds is given by

PLB = G(ν̄LB) =

∫ ν̄LB

−∞
g(ν)dν. (12)
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With this definition, we get the following lemma.

Lemma 1 Depending on the amount of uncertainty, there exist two, one, or zero equilibria in this economy. Furthermore,

in the case of two distinct equilibria, there is a threshold ψ−1
ψ such that the probability of a binding lower bound is always

below the cutoff in the target equilibrium and always above the cutoff in the liquidity trap equilibrium.

Appendix A.A.2 contains the proof.

In the presence of uncertainty, the lower bound on interest rates may be occasionally binding in both

equilibria. When there are two equilibria, the probability of a binding lower bound in the target equilibrium

always falls below the cutoff value whereas it exceeds it in the liquidity trap equilibrium. In the knife-edge

case of a unique equilibrium, the probability of a binding lower bound is ψ−1
ψ . We denote the corresponding

cutoff by ν̄∗. Increasing uncertainty beyond this knife-edge case, any further increase in uncertainty leads to

non-existence of equilibria.

Figure 3 depicts the distributions for shadow rates in the case with uncertainty. The target equilibrium

(blue line) endogenously has a higher mean than in the liquidity trap (red line). In the target equilibrium,

there is a cutoff for the demand shock belowwhich the central bank becomes constrained by the lower bound.

This is because the central bank aims at offsetting the demand shock and lower realizations cause it to cut

interest rates. With the demand shock being sufficiently low, the shadow rate falls below the lower bound.

In the liquidity trap equilibrium, the lower bound always binds in the deterministic steady state. Adding

uncertainty results in situations where the demand shock is so high that the shadow rate is above the lower

bound and the central bank finds itself unconstrained. The anticipation of a lower probability of a binding

lower bound in the future raises inflation expectations which, through the forward-looking Phillips curve,

already raise inflation today. As a result, the comparative statics in the liquidity trap go in the opposite

direction compared to the ones in the target equilibrium.

The predictions of the liquidity trap equilibrium are not borne out by the data (see Mertens andWilliams

(2021)). In fact, the evidence presented in this paper can be interpreted as additional evidence against the

liquidity trap equilibrium. We therefore present our theoretical findings only for the target equilibrium of

the model.

To summarize, without a lower bound on interest rates, the New Keynesian model results in a unique

equilibrium where inflation expectations are anchored at the target level. Introducing a lower bound adds a

liquidity trap equilibrium that is characterized by a higher probability of a binding lower bound compared

to the target equilibrium. We now turn to analyzing the effects of changes in uncertainty on the economy.
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Figure 3: Shadow interest rate distributions in the target (blue) and liquidity trap (red) equilibria. The lower
bound on interest rates (dashed line) truncates these shadow rate distributions in the model.

III.B The effects of uncertainty and demand shocks

This section studies the impact of an increase in uncertainty on the economy. It shows that the lower bound

plays a crucial role: Without it, an increase in uncertainty has no effect on inflation and output. With a lower

bound, higher uncertainty increases the region of the state space in which the lower bound is binding in the

target equilibrium. The comparative statics in the liquidity equilibrium have the opposite sign and are at

odds with the data. We therefore omit the discussion of this equilibrium here.10

In the absence of a lower bound, uncertainty has no effect on the economy since demand shocks can be

fully offset. Optimal interest rate policy shields inflation and output from the effect of demand shocks. More

volatile demand leads to more volatile interest rates but does not transmit to prices or the real economy.

The lower bound on interest rates changes these predictions. We show that the expected interest rate

wedge increases in the target equilibrium. We demonstrate these effects for general distributions with

unbounded support for which we consider increases in uncertainty. Let ϕt = νt + sηt be a series of mean-

preserving spreads of νt, indexed by s ≥ 0, where E[ηt|νt] = 0. A larger value of s implies a higher variance

10The results for the liquidity trap equilibrium are in Internet Appendix A.C.

14



of the mean-preserving spread.

A general increase in uncertainty through a mean-preserving spread pushes mass into the tails. In that

case, the distribution for the more volatile demand shock is said to second-order stochastically dominate the

distribution without the mean-preserving spread. Consequently, the cumulative distribution function rises

in the left tail, thereby increasing its integral, and shifting the super-cumulative distribution function up.11.

Figure 2 depicts these effects for the case of the normal distribution. While the linear relationship between

expected interest rate wedges and the cutoff ν̄LB in the black line is unaffected by an increase in uncertainty,

the super-cumulative distribution function increases and the two equilibria move closer together. Further

increases in uncertainty eventually lead to a unique equilibrium and non-existence for yet higher levels of

uncertainty.

From this figure, it is also evident that the cutoff ν̄LB rises with uncertainty in the target equilibrium (the

point of intersection to the left) and, as a result, the lower bound binds over a larger portion of the support

for the demand shock. Proposition 1 summarizes these results.

Proposition 1 (Effects of uncertainty)

Neither a mean-preserving spread nor lower average demand have an effect on inflation expectations absent the lower

bound; in the presence of a lower bound, higher uncertainty raises the expected interest rate wedge in a target equilib-

rium.12

Wenowanalyze the derivative of inflation expectationswith respect to an increase in themean-preserving

spread dEi∆/ds. We interpret this expression as the model’s analogue of the correlation of changes in

expectations due to an uncertainty shock, as measured by a change in the mean-preserving spread. This

expression formalizes the discussion of the effects of changes in uncertainty. When there is no lower bound,

the function G (νt) is zero everywhere for all values of s. Thus, the derivative of the wedge vanishes as well,

and changes in uncertainty have no effects on the inflation expectations absent the lower bound.

With a lower bound on interest rates, the sign of the effects of changing uncertainty on expectation is

determined by the type of equilibrium the economy is in. Proposition 1 demonstrates that increases in

uncertainty raise interest rate wedges and thus lower inflation expectations.

We interpret an increase in the VIX as reflecting an increase in uncertainty. There is a literature docu-

menting a negative relationship between increases in the VIX and stock prices. We show that the mechanism

11Lemma 3 in Internet Appendix A shows these implications.
12Appendix A.B contains the proof.
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in our model applies both when the mean of the shock is lower and when uncertainty is higher. Therefore,

either potential driver of the VIX triggers the same mechanism in the model. And a negative correlation

between uncertainty shocks and average demand would reinforce the effects of the lower bound. With a

fall in the mean of the demand shock, inflation expectations fall in the target equilibrium due to a higher

probability of a binding lower bound.

dPLB

dε̄
= −ψ − 1

ψ

1
ψ−1
ψ − PLB

g(ν̄LB)

The impact of changes in uncertainty on the probability of a binding lower bound is more subtle. While

the region of the state space expands with higher uncertainty in the target equilibrium, the probability of

a binding lower bound does not always change in the same direction. The reason is that there can be two

opposing forces. The cutoff ν̄LB increases with uncertainty, suggesting that the probability of a binding lower

bound should increase. However, a mean-preserving spread has a direct effect on the distribution function

that can result in a lower cutoff value.

Lemma 2 establishes that the lower bound probability and the cutoff always move in the same direction

in response to increases in uncertainty when the probability of a binding lower bound is sufficiently low.

Lemma 2 There are values
¯
ν and ν̄ such that an increase in uncertainty raises the probability of a binding lower bound

whenever ν̄LB <
¯
ν in the target equilibrium. When the demand shock is normally distributed, these results hold globally,

i.e.,
dPLB

ds
≥ 0 for ν̄LB < ν̄∗.

For any continuous distribution, lower average demand raises PLB in the target equilibrium.

Appendix A.D contains a proof.

Intuitively, in the target equilibrium, the probability of a binding lower bound increases in the tails

with uncertainty since the likelihood of large movements increases. When the demand shock follows a

normal distribution, any increase in volatility raises the probability of a binding lower bound, i.e., when the

probability of a binding lower bound falls below the cutoff (ψ − 1)/ψ.13

Together these results indicate that changes in uncertainty should have an effect on inflation expectations

13A similar set of results holds under more stringent assumptions. When the distribution is unimodal and symmetric and ψ = 2,
the results hold globally. When ψ ∈ (1, 2), we can show that the lower bound probability rises with uncertainty for all target
equilibria and, when ψ > 2, the lower bound probability declines for higher uncertainty across all liquidity trap equilibria. Internet
Appendix A.B contains details.
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only in close proximity to the lower bound. Looking at the stylized fact about changing correlations of

uncertainty shocks and inflation expectations through this lens, the model is consistent with close to zero

correlations in the early 2000s when the lower bound had a low probability of binding. Later in the sample,

when the lower bound became a more salient concern, the correlation between uncertainty shocks and

inflation expectations turned negative. The following comparative statics show within the model that a

decline in the natural real rate of interest is the most likely source of these developments.

III.C Changes in the effects of uncertainty on expectations

This section explores the effects of a change in the natural real rate of interest on the relationship between

uncertainty and inflation expectations. We find that, without the lower bound, our model cannot generate

the observed change in the effects of increased uncertainty on expected inflation and interest rates. With a

lower bound, the equilibrium of the economy again determines the sign of the effects. In the general case, we

find that the target equilibrium is consistent with the stylized facts of Section II, provided that the probability

of a binding lower bound is sufficiently small. With normally distributed shocks, the results hold for any

probability.

We now explore the changing impact of uncertainty on expectations when the natural real rate of interest

falls. Therefore, we continue to interpret the correlation between expectations and changes in uncertainty as

the derivative of expected interest rate wedges with respect to uncertainty.

Proposition 2 (Changes in the natural real rate and the effects of changes in uncertainty) Changes inuncer-

tainty do not affect expected interest rate wedges in the absence of a lower bound on interest rates, independent of the

level of the natural rate of interest r∗. In the presence of a lower bound, the sensitivity of the expected interest rate wedge

to changes in uncertainty declines when the natural real rate of interest falls

dEi∆
ds

dr∗
=
d2Ei∆

dr∗ds
= −

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

ds
. (13)

The analogous expression for average demand d2Ei∆
dr∗dε̄ is unambiguously positive in the target equilibrium.

Appendix A.E contains the proof of these results.

This proposition allows us to sign the direction in which a fall in the natural rate pushes the sensitivity

of the expected interest rate wedge to changes in uncertainty. The determining factor is whether uncertainty
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raises the probability of a binding lower bound. Using Lemma 2, the right-hand side of equation (13) is always

negative in the target equilibrium, provided that shocks are normally distributed. The results furthermore

hold for any distribution if the likelihood of being constrained is sufficiently low.

As a consequence, the sensitivity of inflation expectations with respect to uncertainty declines as the

natural real rate of interest falls. In the liquidity trap equilibrium, this sensitivity rises. Measuring this

sensitivity through the correlation of changes in inflation expectations and uncertainty shocks therefore

shows that the results in Section II are consistent with the theoretical model presented here. We investigate

this connection more formally in Section IV. In other words, a decline in the natural real rate of interest both

increases the probability of a binding lower bound and lowers the correlation of inflation expectations with

uncertainty shocks in the target equilibrium.

Intuitively, when the natural real rate falls, the policy rate is closer to the lower bound, making it more

likely to bind. When shocks display higher uncertainty, the probability of a binding lower bound increases,

constraining the ability to offset negative demand shocks. As a consequence, the mean inflation rate declines.

A similar intuition applies to shifts in the distribution of the shock via its mean ε̄. Both an increase in un-

certainty and a lowermean, i.e., a leftward shift, raise the probability of a binding lower bound. Consequently,

both changes in the distribution have the same effect on expectations, as Proposition 2 demonstrates.

We now turn to the question ofwhether themonetary policy framework has an impact on the transmission

of uncertainty to the real sector. Here, we allow the central bank to permanently commit to any policy

parameter θ but follows optimal discretionary policy otherwise. Adjusting this parameter amounts to static

average-inflation targeting, as laid out in Mertens and Williams (2019, 2020) and Diwan et al. (2020).

Through lowering the interest rate intercept, the central bank provides more stimulus whenever it is not

constrained by the lower bound. Consequently, it runs inflation above its target level during times when it

is unconstrained to correct for the downward bias in inflation expectations due to the lower bound. That

is, the central bank makes up for shortfalls during recessions by overshooting the inflation target during

expansions. In that sense, it averages over the business cycle.

We are interested in the effect static average-inflation targeting has on the effects of changes in uncertainty

on inflation expectations. We get the following result.

Proposition 3 (Static average-inflation targeting and the effects of changes in uncertainty)

Changes in uncertainty do not affect expected interest rate wedges in the absence of a lower bound on interest rates,

independent of the level of the policy intercept θ. In the presence of a lower bound, the following expression determines
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whether the sensitivity of the expected interest rate wedge to changes in uncertainty increases or falls with the policy

intercept θ
d2Ei∆

dθds
=

1

ψ − 1

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

ds
.

The analogous expression for average demand d2Ei∆
dθdε̄ is unambiguously negative in the target equilibrium.

Appendix A.F contains the proof of these results.

Proposition 3 demonstrates that a change in the policy intercept can prevent the effects of a fall in the

natural rate. A negative intercept θ lowers the expected interest rate wedge and increases inflation on average.

This is because the central bank raises inflation above its target when unconstrained to make up, on average,

for shortfalls during episodes of a binding lower bound.

As a result, the derivative of the expected interest rate wedge with respect to uncertainty rises when the

central bank lowers the intercept of the policy rule. These results hold globally for normally distributed

shocks and for low probabilities of a binding bound for any distribution.

III.D Discussion

Themodel in the previous section features demand shocks as a single source of disturbances. We intentionally

leave out markup or other supply-side shocks to highlight a simple set of assumptions that gives rise to the

mechanism discussed in this paper. The link between uncertainty shocks and inflation expectations would,

however, survive in a model with both demand and markup shocks.

Adding markup shocks would lead to a negative correlation between inflation and the output gap absent

a lower bound. Currently, the baseline case has no correlation since interest rate policy can perfectly offset

demand shocks away from the lower bound, a feature often referred to as “divine coincidence.” The lower

bound leads the output gap and inflation to comove together, irrespective of whether supply-side shocks are

present or not.

Increases in uncertainty, as measured by the VIX, might be correlated with negative news about the

economic outlook. To the extent that this is occuring, the propositions in the previous sections show that the

mechanisms for higher uncertainty and a lower mean are mutually reinforcing. Therefore, negative shocks

to the first moment and higher second moments can lead to similar changes in correlations.

Although we do not study these implications here, these changing correlation patterns have implications

for the correlation of stocks and bonds, a subject of significant attention in the macro-finance literature (see,
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e.g., Campbell et al. (2020), Duffee (2022), and Pflueger (2023)). The basic finding is that during the 1960s to

mid-1990s, the correlation between stock returns and changes in interest rates was negative. This correlation

flipped sign in the mid-1990s such that high stock returns have been associated with increasing interest rates

since. This latter correlation is consistent with the lower bound being a more salient constraint. Negative

shocks close to the lower bound lead to below-target inflation and negative output gaps, consistent with the

positive correlation since the mid-1990s (see also Bilal (2017)).

Another issue in comparing themodel to the data is that increases in uncertaintymeasured by theVIX and

other similar measures are typically short-lived. The empirical evidence suggests that temporary bursts of

uncertainty affect longer-term expectations. For this to be the case in ourmodelwith i.i.d. shocks, uncertainty

would need to be elevated for a long time. A simple extension of the model with highly persistent shocks

could bridge that gap.14

In the following section, we document the empirical patterns around inflation expectations and expected

interest rates and link them to movements in the natural real rate of interest.

IV Empirical Implications

We approach the empirical tests of the theoretical model in three steps. First, we recognize that the New

Keynesian model predicts that the stylized fact should appear in the correlation of uncertainty shocks and

changes in expectations of interest rates. After confirming this, we provide evidence that the natural real rate

of interest fell during our sample period. Consistent with the theoretical predictions of our model, we show

that the correlations of interest rates fell with it. And, lastly, we perform formal tests that link changes in the

correlations with the natural real rate of interest.

IV.A Stylized fact for interest rates

The theoreticalmodel of the previous section shows that the stylized fact for inflation expectations should also

apply to interest rate expectations. The reason behind this prediction is the Fisher equation: As uncertainty

changes inflation expectations, interest rate expectations adjust accordingly.

Figure 4 demonstrates that, as the correlation between uncertainty shocks and changes in inflation expec-

tations turned negative, so did the correlation between uncertainty shocks and changes in expected interest

14Internet Appendix C presents a highly stylized extension of the model in which short-lived increases in inflation expectations
have lasting effects on inflation expectations.
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rates. Here, expected interest rates are measured as the five-year ahead five-year Treasury forward rate (TFR)

that we compute using constant maturity Treasury yields.

Figure 4: Five-year trailing-window Spearman correlation of monthly changes in the VIX with monthly
changes in the five-year ahead five-year forward Treasury constant maturity rate. The sample period ranges
from January 1995 until July 2020.

We interpret this declining correlation as the economy initially being shielded from uncertainty shocks,

while over time their impact spills over increasingly to the real sector. With monetary policy serving as the

primary tool to guard the economy against adverse shocks, the negative correlation between uncertainty

shocks and changes in interest rates and inflation expectations, respectively, suggest that the lower bound

affected the ability to respond to negative shocks using the policy rate over the sample period.

IV.B The Macroeconomic Driver Behind Changing Correlations

There are two potential drivers behind the declining correlation in the model: The uncertainty of shocks and

the natural real rate of interest, r∗. We investigate the plausibility of a change in either parameter.

For the uncertainty to play an increasing role and lead to a larger probability of a binding lower bound,

the distribution of shocks would need to widen. There are at least two ways to see that this is an unlikely

source of variation in the data. First, the covariance between inflation expectations and uncertainty shocks
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is consistent with the one for the correlation. While we do not report any further results on this here, there

is no obvious sign that there was a trend increase in uncertainty from this analysis.15 Second, estimates from

options data show a decline in uncertainty after the Great Recession, the opposite of what would be necessary

to explain the stylized facts in this paper (see Mertens and Williams (2021).

Instead, we explore time variation in r∗. In recent years, a body of research has documented a decline in

the natural real rate of interest in the United States and other advanced economies over the past few decades

(Williams, 2017).16 Figure 5 plots the natural interest rate from 1999 to 2020, using daily estimates of the

real natural rate from Christensen and Rudebusch (2019a) and daily five-year forward zero-coupon TIPS

yields five years ahead from Gürkaynak et al. (2010) as a proxy for the natural rate. Over the sample period,

estimates of the natural real rate of interest from Christensen and Rudebusch (2019a) declined by 8 basis

points per year on average and five-year five-year forward zero-coupon TIPS yields started out from a higher

level and declined by 18 basis points per year on average. The persistent downward trend over time resulted

in historically low levels of the natural rate at the end of the sample period.

Figure 5: The green line depicts the effective federal funds rate at the daily frequency, while the dark blue
line shows daily estimates of the natural real rate of interest from Christensen and Rudebusch (2019a) (CR),
and the light blue line shows the five-year ahead five-year forward zero-coupon TIPS rate (TIPS) computed
by Gürkaynak et al. (2010) from Treasury real yields. The sample period ranges from January 2004 until July
2020.

15See Figure A4 in Section B.B of the Internet Appendix for a chart.
16See, for example, Laubach and Williams (2003), Kiley (2015), Lubik and Matthes (2015), Johannsen and Mertens (2016), Holston

et al. (2017), Crump et al. (2017), Del Negro et al. (2017) and Christensen and Rudebusch (2019a). Estimates from these models for
r∗ show a decline consistent with that from the measure used in this paper.
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The level of natural rates of interest tends to persist and expectations of future rates should thus, to a

significant degree, reflect their current level. There are several reasons for this observation. First, measures

of historical levels of r∗ display a significant amount of persistence. The estimates aim to capture the low

frequency component of real short-term interest rates and, as such, are highly persistent. For example,

Holston et al. (2017) show that their estimates of the natural rate are nonstationary. Second, as a case in point,

even well into the recovery from the Great Recession of 2007-2009, r∗ had not returned to historically normal

levels. Therefore, it is likely that long-term influences were holding the natural rate of interest down. Third,

many possible explanations for the level of r∗, not only in the United States but internationally, reflect highly

persistent forces affecting the global supply and demand for savings. For example, one potential explanation

for the decline in r∗ during our sample period is a dramatic slowdown in trend real GDP growth in many

advanced economies. For a more detailed discussion of the decline in the natural rate, see Williams (2017).

To investigate the possibility of a structural break in the level of r∗, we apply the Andrews (1993) test,

which shows the existence of a structural break in all measures of the natural rate.17 The test identifies July

2011 as the breakpoint for both the CR and TIPS measures of the natural rate. Based on this dating of the

structural break in r∗, in the remainder of this subsection we split our overall sample into two subsamples:

January 1999 through June 2011, and July 2011 through July 2020. We end the sample in July 2020 before the

announcement of the flexible average-inflation targeting framework by the Federal Reserve. Our theoretical

analysis suggests that the new framework should lead to a different data-generating process for our variables

of interest.

Table 1 reports the average r∗ and the average correlation of changes in expected inflation and interest

rates with changes in the VIX for each subsample. To test for differences across subsamples, we compute

the t-statistic for the null hypothesis that the estimates are the same across subsamples, controlling for serial

correlation using the methodology outlined by Wilks (1997).18 In the earlier subsample, the natural real rate

of interest is higher than in the later sample. This feature allows us to assess the theoretical predictions of

the model. In the target equilibrium of our theoretical model, a decline in the natural real rate lowers the

correlation between uncertainty shocks and changes in expectations about inflation and interest rates further

into negative territory, at least in the tails of the distribution. In the liquidity trap equilibrium, the predictions

are reversed.
17For the CR measure of the natural rate, the supF value is 621.55 which occurs in July 2011, and for the TIPS measure, the supF

value is 662.94 which also occurs in July 2011. In both cases, the null hypothesis of structural stability in the level of r∗ is rejected at
the 1% level.

18Appendix B.A outlines the details of constructing the t-statistic as applied in this context.
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Table 1: Differences in moments across subsamples

mean r∗ mean correlation
with ∆VIX

r∗CR r∗TIPS BEI BEI TFR TFR
frequency monthly monthly daily monthly daily monthly

Jul 2011 - Jul 2020 0.54 0.83 -0.27 -0.33 -0.31 -0.26
Jan 1999 - Jun 2011 1.47 2.88 -0.08 0.00 -0.15 -0.10

difference -0.93∗∗∗ -2.05∗∗∗ -0.19∗∗∗ -0.33∗∗∗ -0.16∗∗∗ -0.16∗∗

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlations are the trailing-
window Spearman correlation of the change in the variable with the change in the VIX (here referred to
as ∆VIX). Spearman correlations are computed over one-year windows at the daily frequency and over
five-year windows at the monthly frequency. r∗CR denotes estimates of the natural rate from Christensen and
Rudebusch (2019a), and r∗TIPS is the five-year ahead five-year forward zero-coupon TIPS rate computed from
Gürkaynak et al. (2010) used as a proxy for the natural rate. BEI is the five-year ahead five-year forward
breakeven inflation rate, while TFR is the five-year ahead five-year forward Treasury constant maturity yield.

Consistent with the target equilibrium of our theoretical model, the mean daily correlation, measured

over a one-year trailing-window, between changes in five-year ahead five-year forward breakeven inflation

expectations (BEI) and changes in the VIX declined from -0.08 in the earlier subsample to -0.27 in the later

subsample. This decline is statistically significant at the 1% level.

The analogous mean correlation, again measured at the daily frequency over a one-year trailing-window,

between changes in five-year five-year forward Treasury constant maturity yields (TFR) and changes in the

VIX declined from -0.15 in the earlier subsample to -0.31 in the later subsample. This difference across

subsamples is significant at the 1% level.

These changes in the link between uncertainty shocks and interest rates and inflation, respectively, hold

up at different frequencies. As Table 1 shows, the corresponding monthly correlation for breakeven inflation

rates, measured over a five-year trailing window, fell from 0.00 to -0.33 across subsamples, a statistically

significant decline at the 1% level. Similarly, the correlation for interest rates declined as well with the

changes being statistically significant at the 5% level.
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IV.C Lower Natural Rates and the Effects of Uncertainty Shocks on Inflation and Interest Rates

This section tests the empirical prediction of our theoretical model that the correlation between uncertainty

shocks and movements in inflation expectations and interest rates changes as the natural real rate of interest

falls. The target equilibrium of our model predicts a fall in the correlation with a decline in the natural real

rate.

To test this prediction, we run a time series regression of the correlation between changes in the VIX

and changes in inflation expectations on the real natural rate of interest and an intercept. We repeat this

regression for both the nominal and real interest rates.

Table 2: Regression of correlation between changes in VIX and BEI/TFR/TRR on the natural rate of interest

r∗CR r∗TIPS

Dependent Variable:
corr(∆VIXt,∆yt) BEIt TFRt TRRt BEIt TFRt TRRt

(1) (2) (3) (4) (5) (6)
r∗ 0.161∗∗∗ 0.129∗∗∗ 0.075∗ 0.077∗∗∗ 0.071∗∗∗ 0.041∗∗

(0.039) (0.046) (0.04) (0.018) (0.021) (0.018)

constant −0.317∗∗∗ −0.334∗∗∗ −0.221∗∗∗ −0.298∗∗∗ −0.335∗∗∗ −0.222∗∗∗
(0.048) (0.058) (0.049) (0.043) (0.051) (0.043)

Frequency daily daily daily daily daily daily
Sample Start Jan 1999 Jan 1998 Jan 1999 Jan 1999 Jan 1999 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,374 5,625 5,374 5,371 5,381 5,371
R2 0.054 0.035 0.013 0.059 0.048 0.017

Note: The dependent variable in the regression is the time series correlation between changes in the VIX
and changes in various variables yt, denoted corr(∆VIXt,∆yt), where yt stands for BEIt, TFRt, and TRRt
across columns as labeled. BEI is the five-year forward breakeven inflation rate five years ahead, TFR is the
five-year forward Treasury constant maturity rate five years ahead, and TRR is the analogous real rate. The
independent variable in the regression is the natural rate of interest, using the Christensen and Rudebusch
(2019b) measure in columns (1)-(3) or the TIPS-based measure in columns (4)-(6). Estimated coefficients are
reported with Newey-West (HAC) standard errors in parentheses. ∗∗∗, ∗∗, and ∗ signify that the difference
in means across subsamples is statistically significant at the 1% level, 5% level, and 10% level, respectively,
accounting for serial correlation.

The correlation between uncertainty shocks and changes in breakeven inflation rates (BEI) serving as
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the dependent variable is our baseline correlation. We compute it as the correlation from daily data over a

14-day rolling window. Despite obtaining a noisier measure, we choose a short window for computing the

correlation to avoid having a highly persistent regressor. We further compute the analogous correlation for

changes in the VIX and changes in nominal interest rates as measured by five-year ahead five-year forward

Treasury constant maturity yields (TFR). Lastly, we obtain a corresponding correlation for real interest rates.

Ourmeasure for the expected real rate (TRR) is the forward real interest rate obtained from Treasury Inflation

Protected Securities (TIPS) prices. It is calculated as the difference between the nominal Treasury forward

rate (TFR) and break-even inflation (BEI) over the same horizon.

Data for the natural rate of interest, r∗, are the daily estimates of Christensen and Rudebusch (2019a) and

daily data on the five-year ahead five-year forward zero-coupon TIPS yield computed from Gürkaynak et al.

(2010). The sample period for these regressions is January 1999 to July 2020.

Table 2 shows the regression results for the three dependent variables regressed on the Christensen-

Rudebusch measure – in Columns (1), (2), and (3) – as well as the TIPS proxy for r∗ – in Columns (4), (5), and

(6). It reports the estimated coefficients with Newey-West standard errors for serial correlation.

Together, all empirical specifications show highly significantly positive coefficients on the natural rate of

interest. This finding implies that, on average, the correlation between uncertainty shocks and changes in

inflation expectations or interest rates falls when the natural rate declines. Column (1) reports the results

for the regression of the two-week trailing-window correlation between changes in the VIX and changes in

inflation expectations on the CR estimates of r∗. The coefficient on the natural rate is estimated to be 0.161

with a standard error of 0.039. Column (4) runs the analogous specifications using the five-year five-year

zero-coupon TIPS rates as a proxy for r∗ and yields the same conclusions. The estimated coefficients on the

TIPS-measure of r∗ in these regressions are slightly lower due to larger fluctuations in this measure compared

to the Christensen-Rudebusch r∗ over the sample period.

As shown in Column (2) of the table, the regression of the two-week trailing-window correlation between

changes in the VIX and changes in long-term expected interest rates on the CR estimates of r∗, we estimate

a positive and statistically significant relationship between the responsiveness of interest rate expectations

to uncertainty shocks and the natural rate of interest. The estimated coefficient of 0.129 on the CR r∗ is

statistically significant at the 1% level. The same result holds for the regression on the TIPS proxy for r∗ at

the daily frequency, shown in Column (5) of the table, with an estimated coefficient on the natural rate lower

in magnitude but nonetheless positive and statistically significant.
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The analogous regressions for forward real rates show a positive, yet somewhat smaller estimated coef-

ficient on r∗.19 To investigate whether the theory is informative about this correlation, we compute expected

real interest rates from the difference between nominal interest rates and inflation expectations

E [it − E[πt+1]] = − 1

ψ − 1
θ + r∗ +

1

α
ε̄− 1

ψ − 1
Ei∆ − E[πt+1]

= r∗ +
1

α
ε̄,

where the Fisher equation in the second line follows directly from equation (7).

As the theory section demonstrated, real interest rates are higher at the lower bound compared to amodel

without a lower bound. However, the presence of a lower bound lowers inflation expectations overall and

thus leads to lower real rates away from the lower bound. What the Fisher equation tells us is that, on net, the

two effects cancel and the model does not speak directly to a correlation with uncertainty shocks. In other

words, the expected real rate is pinned down by the exogenously given natural real rate of interest, r∗.

These results establish a significantly positive link between the natural real rate of interest and the impact

of uncertainty shocks on inflation expectations and interest rates, in line with the theoretical model in this

paper. The positive sign of the coefficient indicates that this correlation between changes in uncertainty and

changes in inflation expectations or interest rates tends to decline when r∗ falls, as we observe broadly in the

data over our sample period.

IV.D Uncertainty Shocks and the Stock Market

TheNewKeynesianmodel is amodel for themacroeconomy and, as such, has implications for the real side of

the economy. Specifically, one would expect a distribution of output skewed to the downside when the lower

bound is likely to bind as the economy moves along the Phillips curve. While there is no liquid financial

market that would allow us to observe expectations about real side variables in our model, we can look at

close proxies. In this section, we explore whether the link between uncertainty shocks and the stock market

changed as the lower bound on interest rates became a more salient concern.

Following the literature on the stock-bond comovement (e.g., Campbell et al. (2017) and Campbell et al.

(2020)), we focus on a time series of slope coefficients from rolling-window regressions.20 We therefore run

19The sign of the relationship between the natural rate and the measured correlation between changes in the five-year five-year
forward Treasury real rate and uncertainty shocks depends on the frequency at which the correlation is measured (see Internet
Appendix B.C). Future research might be able to shed further light on our understanding of real rates.

20For comparison, we report the analogous correlations in Internet Appendix Figure A6.
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the following regression

∆VIXt−h = αt + βt∆ log(S&P 500t−h) + ηt−h

for daily data over the 12-month period leading up to time t where ∆ represents the daily change in the

variable. ∆VIXt−h is the daily change in the VIX at date t − h where h runs through all the days over the

prior year. ∆ log(S&P 500t−h) is the daily return as measured through the daily change in the logarithm of

the S&P 500 valuation. The regression slope βt captures the time-varying relationship between uncertainty

shocks and changes in stock market valuation.

Figure 6 shows the regression slopes over time. Throughout the sample, increases in theVIX are associated

with a decline in stock market valuations. This pattern is in line with the standard risk-return trade-off.

Figure 6: One-year trailing-window estimated slope coefficient for the regression of daily changes in the VIX
on daily changes in the logarithm of the S&P 500 stock price index. The sample period ranges from January
2004 until July 2020.

This relationship between uncertainty shocks and changes in stock market valuations becomes more

negative around the time that the correlationbetweenuncertainty shocks andchanges in inflation expectations

turns negative. These movements are consistent with the theoretical model in this paper. As the lower bound

becomes more likely to bind, higher uncertainty worsens the average outlook for the economy and stock

valuations decline.

To show that the decline in the slopes of the regression of the VIX on stock market valuations is consistent
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with the model, we link the regression slopes to the natural rate of interest. We therefore run the analogous

regression to the ones in Table 2 where we regress the regression slopes on the natural rate of interest. As

before, we measure r∗ both through the Christensen-Rudebusch as well as the TIPS measures. In the case of

Christensen-Rudebusch, we obtain a regression coefficient of 0.36 with a Newey-West standard error of 0.16,

which is statistically significant at the 5% level. For the TIPS measure, the regression coefficient is 0.17 with

a Newey-West standard error of 0.06, which is statistically significant at the 1% level.

In sum, all the empirical results in this paper are consistent with the theoretical prediction of the target

equilibrium described in the theoretical section of this paper, and inconsistent with being in a liquidity trap

equilibrium. These results supporting the U.S. economy being in a target equilibrium are consistent with the

findings of Mertens and Williams (2021) using data from derivatives markets.

V Robustness of Empirical Results

We assess the robustness of our main empirical results along two dimensions, using alternative measures

of uncertainty and of inflation expectations. Overall, we find that our qualitative results are robust to these

alternative measures, although the level of statistical significance is weaker in some instances.

Our first robustness concerns the length of the sample period that was determined by data availability.

To extend the time dimension, we use 5-year forward Treasury yields five years out as in Figure 4. Instead

of changes in the VIX, we study changes in realized volatility, a close substitute to the VIX.21 We compute

realized volatility as the backward-looking moving average over 30 days (21 trading days) of squared daily

returns in the S&P 500 index starting in 1962.

Figure 7 shows the Spearman correlation between changes in realized volatility and changes in five-year

five-year ahead Treasury yield. This correlation broadly hovered around zero between themid-sixties and the

Great Recession. A small correlation is consistent with the natural real rate of interest being sufficiently large

for the lower bound not to be a significant constraint on equilibrium quantities. Note that this prediction

is only consistent with the target equilibrium. The correlation only turned substantially negative in the

aftermath of the Great Recession when the correlation between uncertainty shocks and inflation expectations

turned negative as well.

Our second robustness exercise examines alternative measures of inflation expectations. The breakeven

21Figure A1 in Internet Appendix B.A shows the close relationship between the VIX and realized volatility during the periodwhen
both measures are available.
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Figure 7: Five-year trailing-windowSpearmancorrelationofmonthly changes in realizedvolatility [computed
as the backward-looking moving average over 30 days (21 trading days) of squared daily returns in the S&P
500 index]withmonthly changes in the five-year five-year ahead Treasury constantmaturity rate. The sample
period ranges from January 1967 until July 2020.

inflation measure analyzed earlier is potentially contaminated by time-varying liquidity and risk premiums.

To assess the importance of these premiums on our results, we consider twomeasures of inflation expectations

that are arguably less prone to this type of mismeasurement.

The first alternative measure of inflation expectations is the five-year, five-year forward expected inflation

rates, which are constructed to remove estimated risk and liquidity premiums byD’Amico et al. (2018) (DKW).

The third column of Table 3 reports the subsamplemean correlations between changes in the VIX and changes

in this measure of inflation expectations at the daily frequency over one-year trailing windows. These results

are similar to those using the breakeven inflation rates, and the difference in the mean correlations across

subsamples is statistically significant.

The time series for the DKW measure is available at the daily frequency going back in time further than

the BEI series. Consistent with our baseline specifications, we turn the DKWmeasure into monthly averages.

This longer time series allows us see how the correlation between changes in long-run inflation expectations

and uncertainty shocks behaved in the 1990s. Figure 8 shows that this correlation using the DKW estimates

of inflation expectations was positive in the late 1990s, before trending downward over the subsequent two
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Figure 8: Spearman correlation between changes in the VIX and changes in the five-year, five-year forward
expected inflation rate, adjusted for risk premia and the liquidity premium using the estimates of D’Amico et
al. (2018): monthly frequency, five-year trailing-window correlation. The sample period ranges from January
1995 until July 2020.

decades.

Our second alternative measure of inflation expectations is the median ten-year CPI inflation expectation

from theFederalReserveBankofPhiladelphia’s SurveyofProfessional Forecasters (SPF).22 Unlike thefinancial

market data that can be analyzed at higher frequencies, the SPF data are collected quarterly. Therefore, for

this measure, we average the VIX over each quarter up through the first month of the quarter to be broadly

consistent with the information set available to survey participants. We compute five-year trailing-window

correlations with changes in the VIX for this survey-based measure of expected inflation.

The fourth column of Table 3 shows that the results using the SPF measure of inflation expectations are

broadly consistent with those using market-based measures. The difference in the mean correlations across

subsamples using the SPF is both of similar size to those using market-based measures and is statistically

significant. Figure 1 shows the time series of the correlation using the SPF measure of inflation expectations,

which declines starting in the mid-2000s and thus follows the same pattern as our baseline correlation.

22The SPF also collects five-year ahead forecasts on CPI inflation, but this measure is only available for a shorter sample. We use
ten-year inflation expectations for consistency with the sample used throughout this paper.
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Third, becauseVIXmaybeaffectedby riskpremia and technical factors likedealer positioning,we consider

two alternativemeasures of uncertainty: the one-year-ahead estimate of economic financial uncertainty (EFU)

from Ludvigson et al. (2021) and the economic policy uncertainty (EPU) index of Baker et al. (2016). Unlike

the VIX, which is priced in financial markets, the EFU index is a weighted average of conditional standard

deviations of one-year-ahead forecast errors across a variety of financial indicators, while the EPU index is a

news-based measure. The final two columns of Table 3 report subsample comparisons using these measures

of uncertainty. These statistics are constructed as in Table 1.

Table 3: Differences in moments across subsamples.

mean correlation
with ∆VIX

mean correlation
with ∆BEI

BEI BEI DKW SPF EFU EPU
frequency daily monthly monthly quarterly monthly monthly

Jul 2011 - Jul 2020 -0.27 -0.33 -0.30 -0.24 -0.23 -0.18
Jan 1999 - Jun 2011 -0.08 0.00 -0.15 -0.02 -0.09 -0.09

difference -0.19∗∗∗ -0.33∗∗∗ -0.15∗∗ -0.22∗∗∗ -0.14∗ -0.09

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlation is the trailing-
window correlation of the change in the variablewith the change in the breakeven inflation rate (here denoted
as ∆BEI) or the change in the VIX (here denoted as ∆VIX), as labeled. Correlations are computed over one-
year windows at the daily frequency and over five-year windows at the monthly and quarterly frequencies.
EFU is the one-year ahead estimate of economic financial uncertainty from Ludvigson et al. (2021), and EPU
is the economic policy uncertainty index of Baker et al. (2016). BEI is the five-year ahead five-year forward
breakeven inflation rate, and DKW is the five-year ahead five-year forward breakeven inflation rate from
D’Amico et al. (2018) which removes risk premia and liquidity premia from the Treasury-implied rate. SPF
is the median ten-year ahead CPI inflation rate from the Survey of Professional Forecasters conducted by the
Federal Reserve Bank of Philadelphia.

As seen in the table, the subsample changes in mean correlations using these alternative measures of

uncertainty are qualitatively consistent with those using the VIX as the measure of uncertainty (shown in the

first two columns of the table). That said, the magnitudes of the declines in the mean correlations are smaller

than in the case of the VIX.

These robustness exercises demonstrate that our key findings are not sensitive to the presence of liquidity

or risk premiums in breakeven inflation expectations. Although the results using these alternative measures

of uncertainty are not as quantitatively or statistically strong as for the market-based measure, qualitatively
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they are in the same direction and consistent with the model prediction for the target equilibrium.

VI Conclusion

This paper documents a marked downward trend in the correlation between changes in market-based mea-

sures of uncertainty and changes in expected inflation and expected interest rates over the past quarter

century. These changing correlations have occurred at the same time that estimates of the natural rate of in-

terest declined significantly and the incidence of monetary policy being near or at the lower bound increased.

In this paper, we show that this constellation of observations is consistent with the predictions of a standard

New Keynesian model with a lower bound on interest rates when the economy is in the target equilibrium.

The lower bound on interest rates is crucial because, absent the lower bound, the correlations studied here

would be zero. We also show that average-inflation targeting policies can mitigate the effects of uncertainty

shocks on the unconditional means of inflation and output.

Throughout this paper, we focus on the theoretical predictions for unconditional moments and empirical

counterparts of far-forward expectations. A future extension of this analysis is to examine business-cycle

frequency comovements between uncertainty and inflation and interest rate expectations in the presence of

persistent shocks to the economy.
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Appendix

A Lemmas and Proofs

A.A Effects of higher uncertainty

A mean-preserving spread is directly linked to the super-cumulative distribution function via the following

lemma. The lemma further illustrates that a mean-preserving spread pushes mass into the tails of the

distribution.

Lemma 3 (Mean-preserving spread and second-order stochastic dominance)

The following statements are equivalent:

1. ϕt is a mean-preserving spread of νt with p.d.f. g(s, ϕt) and c.d.f. G(s, ϕt).

2. G(s, ϕt) second-order stochastically dominates G(νt) for all s > 0.

3. G (s, ϕ) ≥ G (ϕ) for all ϕ and s > 0.

4. There exist
¯
ϕ and ϕ̄ such that G(s, ϕt) ≥ G(ϕt) for all ϕt ≤

¯
ϕ and G(s, ϕt) ≤ G(ϕt) for all ϕt ≥

¯
ϕ.

Proof: For a proof, see Rothschild and Stiglitz (1970). �

A.B Proof of Proposition 1

Proof: Denote the super-cumulative distribution function of ϕt by G (s, ϕt). We analyze the derivative of

inflation expectations with respect to an increase in the mean-preserving spread

dEi∆

ds
=

1

α

ψ − 1

ψ

G ϕ
1 (s, ν̄LB)

ψ−1
ψ − PLB

.

The numerator is positive, G1(s, νt) > 0 (see Lemma 3 in Internet Appendix A.A).We furthermore established

that the lower boundprobability is below the threshold (ψ−1)/ψwhen the economy is in a target equilibrium.

For the comparative statics with respect to the mean-preserving spread, take the derivative with respect
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to s.

dEi∆

ds
=

d

ds

1

α
G ϕ(s, ν̄LB)

=
1

α
G ϕ

1 (s, ν̄LB) + G ϕ
2 (s, ν̄LB)

ψ

ψ − 1

dEi∆

ds

=
1

α

G ϕ
1 (s, ν̄LB)

1− ψ
ψ−1G ϕ

2 (s, ν̄LB)

=
1

α

ψ − 1

ψ

G ϕ
1 (s, ν̄LB)

ψ−1
ψ − G ϕ

2 (s, ν̄LB)

�

Turning to changes in average demand, we compute the comparative statics with respect to ε̄. From the

equilibrium correspondence,

G2(ν̄LB)
dν̄LB

dε̄
=
ψ − 1

ψ

(
dν̄LB

dε̄
+ 1

)
⇐⇒ dν̄LB

dε̄
= −ψ − 1

ψ

1
ψ−1
ψ − PLB

From the equation for the cutoff,

dν̄LB

dε̄
= −1 + α

ψ

ψ − 1

dEi∆

dε̄

Together,
dEi∆

dε̄
=

1

α

ψ − 1

ψ

(
1− ψ − 1

ψ

1
ψ−1
ψ − PLB

)
.

To see that the sign of this expression switches depending on the equilibrium, notice that the sign is

determined by the expression in parentheses. In the target equilibrium, this expression

1− ψ − 1

ψ

1
ψ−1
ψ − PLB

= 1− 1

1− ψ
ψ−1P

LB

is negative: for 0 < PLB < ψ−1
ψ , the denominator in the rightmost expression less than 1 and the whole

expression is thus negative.
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A.C Derivation of comparative statics to lower bound probability

Differentiating the equilibrium correspondence in equation (11) on both sides with respect to s yields

G1(s, ν̄LB) +G(s, ν̄LB)
dν̄LB

ds
=
ψ − 1

ψ

dν̄LB

ds
.

Consequently, we get
dν̄LB

ds
=

G1(s, ν̄LB)
ψ−1
ψ −G(s, ν̄LB)

.

To sign the derivative dPLB/ds, we plug the expression for the derivative of the cutoff into the derivative of

PLB to get

dPLB

ds
= G1(s, ν̄LB) + g(s, ν̄LB)

dν̄LB

ds

= G1(s, ν̄LB) + g(s, ν̄LB)
G1(s, ν̄LB)

ψ−1
ψ −G(s, ν̄LB)

.
(14)

The analogous expression for the derivative with respect to ε̄ is

dPLB

dε̄
= g(ν̄LB)

dν̄LB

dε̄
= −ψ − 1

ψ

1
ψ−1
ψ − PLB

g(ν̄LB). (15)

A.D Proof of Lemma 2

We start by differentiating the equilibrium correspondence in (11) to get

ψ − 1

ψ

dν̄LB

ds
= G2(s, ν̄LB)

dν̄LB

ds
+ G1(s, ν̄LB).

Rewriting this expression, we get

(
ψ − 1

ψ
− PLB

)
dν̄LB

ds
= G1(s, ν̄LB) > 0.

Consequently, (ψ−1
ψ − PLB) and dν̄LB

ds are of the same sign. The cutoff is thus increasing in the target

equilibrium and decreasing in the liquidity trap equilibrium.

By Lemma 3, the function G (·) shifts up when uncertainty increases. We furthermore know that

lim
ν→−∞

G (ν) = 0 since G is obtained by integrating over the cumulative density function. Furthermore,
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for the same reason, the slope of G converges to 1 for large values

lim
ν→∞

G ′(ν) = 1.

Lastly, since G ′′(ν) = g(ν) is the probability density function and thus non-negative, the function G (·) is

convex. At the same time, the right-hand side of the equilibrium correspondence in (11) is independent of

uncertainty.

The G -function intersects the right-hand side of the equilibrium correspondence from above to below in

the target equilibrium (see Figure 2 for an illustration).

As a result, increasing uncertainty will weakly shift the intersection to the right in the target equilibrium.

That is, the equilibrium cutoff ν̄LB shifts to the right in the target equilibrium, thereby weakly increasing the

part of the state space in which the lower bound binds.

Under normality, these results hold globally. The term that determines the sign of the change in the lower

bound probability in response to higher uncertainty is

dPLB

ds
= G1(s, ν̄LB) + g(s, ν̄LB)

G1(s, ν̄LB)
ψ−1
ψ −G(s, ν̄LB)

.

Assuming a normal distribution of the demand shock, i.e. ν ∼ N(0, σ2), we write this term as

dPLB

ds
=

1

2πσ

 e
−
(
ν̄LB

σ

)2

ψ−1
ψ − Φ

(
ν̄LB

σ

) −√2π
ν̄LBe

− 1
2

(
ν̄LB

σ

)2

σ

 ,

where Φ(·) is the c.d.f. of the standard normal distribution. Substituting ν̄LB = −
√

2σε and recognizing that

the term outside the bracket is always positive, we analyze the term in the bracket

K(ε) =
1

2

1
ψ−1
ψ − Φ(−

√
2ε)

+ eε
2√
πε

that is independent of the volatility parameter σ.

We now show that the sign of K(ε) is negative for ε < ε∗ where ε∗ = Φ−1
(
ψ−1
ψ

)
is the point of the

singularity and positive for ε > ε∗. To this end, we proceed in the following steps.

First, when ε approaches negative infinity, K(ε) < 0 approaches negative infinity, i.e. lim
ε→−∞

K(ε) = −∞.

Both terms in the expression are negativewith one of thembeingbounded. On the other end,K(ε) approaches
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infinity for large values of ε, i.e. lim
ε→∞

K(ε) =∞.

Next, approaching the singularity from the left leads the function value to approach negative infinity,

lim
ε→−ε̄∗

K(ε) = −∞. Approaching the singularity from the right leads to positive unbounded function values

lim
ε→+ε̄∗

K(ε) =∞.

Third, the function has only one singularity where the denominator of the first term is zero. It is analytic

otherwise. Therefore, the function starts from unbounded negative values, reaches a maximum, and then

converges to negative infinity when approaching the singularity. On the right-hand side of the singularity,

the function starts from a high value, falls to a minimum, and then converges to positive infinity. Next we

compute the two extrema and show that the maximum to the left of the singularity sits below zero and the

minimum to the right above zero.

To compute the extrema, we take first-order conditions and set them to zero, i.e.,K ′(ε) = 0, which results

in

2πe2ε2
(
1 + 2ε2

)
− 1(

ψ−1
ψ − Φ(−

√
2ε)
)2 = 0.

Rearranging the equation and taking the square root results in two conditions that hold at the extrema

1
ψ−1
ψ − Φ(−

√
2ε1)

= −eε21
√

2π(1 + 2ε2
1)

and
1

ψ−1
ψ − Φ(−

√
2ε2)

= +eε
2
2

√
2π(1 + 2ε2

2).

Since the left-hand side is negative in the first and positive in the second equation, the two extrema are on

opposite sides of the singularity at ε∗.

Evaluating the function value shows that the function value at themaximum to the left of the singularity is

below zero. Therefore, replace the first expression inK(·) with the expression from the first-order condition

to arrive at

K(ε1) =
√
πeε

2
1

(
ε1 −

√
1

2
+ ε2

1

)
< 0.

As a result,K(ε1) < 0 for all ε < ε∗. For ε > ε∗, we get

K(ε2) =
√
πeε

2
2

(
ε2 +

√
1

2
+ ε2

2

)
> 0.
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Since themaximum to the left of the singularity lies below zero, all function values for ε < ε∗ are negative.

And since the minimum to the right is above zero, all function values for ε > ε∗ are positive.

The results for lower average demand follow directly from equation (15).

A.E Proof of Proposition 2

Proof: We start from the derivative of the expected wedge with respect to the natural rate

dEi∆

dr∗
=

1

α
G2(s, ν̄LB)

dν̄LB

dr∗
. (16)

Now, computing the second mixed derivative as

d2Ei∆

dr∗ds
=

1

α
G1,2(s, ν̄LB)

dν̄LB

dr∗
+

1

α
G2,2(s, ν̄LB)

dν̄LB

dr∗
dν̄LB

ds
+

1

α
G2(s, ν̄LB)

d2ν̄LB

dr∗ds
,

where we get the last term by computing

dν̄LB

dr∗
= −α

(
1− ψ

ψ − 1

dEi∆

dr∗

)
(17)

and
d2ν̄LB

dr∗ds
= α

ψ

ψ − 1

d2Ei∆

dr∗ds
.

Plugging these expressions into the second mixed derivative yields

d2Ei∆

dr∗ds
=

1

α

ψ − 1

ψ

1
ψ−1
ψ − PLB

(
G1,2(s, ν̄LB) + g(s, ν̄LB)

dν̄LB

ds

)
dν̄LB

dr∗
. (18)

We combine equations (16) and (17) to get

ψ − 1

ψ

(
1 +

1

α

dν̄LB

dr∗

)
=

1

α
G2(s, ν̄LB)

dν̄LB

dr∗
,

or, rewritten,
dν̄LB

dr∗
= −α

ψ−1
ψ

ψ−1
ψ − PLB

. (19)
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Taken together and using equation (14) results in

d2Ei∆

dr∗ds
= −

(
ψ−1
ψ

ψ−1
ψ − PLB

)2(
G1,2(s, ν̄LB) + g(s, ν̄LB)

dν̄LB

ds

)

= −

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

ds
.

�

To extend this proof to the mixed derivative with respect to r∗ and ε̄, start again from equation (16) and

differentiate:
d2Ei∆

dr∗dε̄
=

1

α

dPLB

dε̄

dν̄LB

dr∗
+

1

α
PLB

d2ν̄LB

dr∗dε̄
.

Using equation (17), we get
d2ν̄LB

dr∗dε̄
= α

ψ

ψ − 1

d2Ei∆

dr∗dε̄
.

Combining these equations with equation (15) to solve for the mixed derivative gives

d2Ei∆

dr∗dε̄
= − 1

α

ψ − 1

ψ

1
ψ−1
ψ − PLB

g(ν̄LB)

(
−α

ψ−1
ψ

ψ−1
ψ − PLB

)
+

1

α
PLB

(
α

ψ

ψ − 1

d2Ei∆

dr∗dε̄

)

=

(
ψ−1
ψ

ψ−1
ψ − PLB

)3

g(ν̄LB)

= −

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

dε̄
.

A.F Proof of Proposition 3

Proof: We follow analogous steps as in Section A.E. We start from the derivative of the expected wedge

with respect to the intercept θ in the policy rule

dEi∆

dθ
=

1

α
G2(s, ν̄LB)

dν̄LB

dθ
. (20)

Now, computing the second mixed derivative as

d2Ei∆

dθds
=

1

α
G1,2(s, ν̄LB)

dν̄LB

dθ
+

1

α
G2,2(s, ν̄LB)

dν̄LB

dθ

dν̄LB

ds
+

1

α
G2(s, ν̄LB)

d2ν̄LB

dθds
,
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where we get the last term by computing

dν̄LB

dθ
= α

(
1

ψ − 1
+

ψ

ψ − 1

dEi∆

dθ

)
(21)

and
d2ν̄LB

dθds
= α

ψ

ψ − 1

d2Ei∆

dθds
.

Plugging these expressions into the second mixed derivative yields

d2Ei∆

dθds
=

1

α

ψ − 1

ψ

1
ψ−1
ψ − PLB

(
G1,2(s, ν̄LB) + g(s, ν̄LB)

dν̄LB

ds

)
dν̄LB

dθ
.

We combine equations (20) and (21) to get

dν̄LB

dθ
=

α

ψ − 1
+

ψ

ψ − 1
G(s, ν̄LB)

dν̄LB

dθ
,

or, rewritten,
dν̄LB

dθ
=
α

ψ

1
ψ−1
ψ − PLB

.

Taken together and using equation (14) results in

d2Ei∆

dθds
=

1

ψ − 1

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

ds
.

�

Extending this proof to the mixed derivative of the interest rate wedge with respect to θ and ε̄

d2Ei∆

dr∗dε̄
=

1

α

dPLB

dε̄

dν̄LB

dθ
+

1

α
PLB

d2ν̄LB

dθdε̄
,

where
d2ν̄LB

dθdε̄
= α

ψ

ψ − 1

d2Ei∆

dθdε̄
.
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Therefore,

d2Ei∆

dθdε̄
=

1

α

ψ−1
ψ

ψ−1
ψ − PLB

dPLB

dε̄

dν̄LB

dθ

=
1

ψ − 1

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

dε̄

= − 1

ψ − 1

(
ψ−1
ψ

ψ−1
ψ − PLB

)3

g(ν̄LB).

B Technical Details on Time Series Analysis

B.A Controlling for Serial Correlation in Hypothesis Testing on Sample Means

Above we compute sample means of various time series in adjacent subsamples and test the null hypothesis

that these estimated means are the same across subsamples. Because the time series for which we compute

the mean – both the raw time series for r∗ and the trailing-window correlations – are highly persistent, we

control for serial correlation to conduct valid inference. To this end, we construct the following t-statistic for

this null hypothesis:

t =
ȳ2 − ȳ1√

Var(ȳ2 − ȳ1)

which is the ratio of the difference in subsample means to the standard error of this difference, where y1 is the

first subsample with n1 observations and y2 is the second subsample with n2 observations, with ȳi denoting

the sample mean of subsample i.

Following Wilks (1997), we use a scaling factor approach to control for serial correlation in our setting.

Hence, we compute the variance of the difference in means as follows:

Var(ȳ2 − ȳ1) = ϑ̂2
s2

2

n2
+ ϑ̂1

s2
1

n1

with s2
i denoting the sample variance of subsample i. For each subsample i, the scaling factor ϑi given by

ϑi = 1 + 2
∑ni−1

k=1 [1 − k/ni]ρk accounts for serial correlation ρk at various lags k, and the modified scaling

factor ϑ̂i = ϑi exp(2ϑi/ni) corrects for potential bias in estimating this scaling factor.
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Internet Appendix

A Model Derivations: The New Keynesian Model with a Lower Bound

Equations (1) and (2) describe the textbook log-linearized New Keynesian model on which we impose the

restriction that demand shocks εt are i.i.d. With this assumption, we can express these two equations in terms

of inflation expectations and without expected output gaps. To this end, we solve equation (1) for the output

gap as

xt =
1

κ
(πt − βEtπt+1), (22)

iterate forward, and take conditional expectations to get

Ext+1 =
1

κ
(Etπt+1 − βEtπt+2).

Using the law of iterated expectations, we simplify EtEt+1πt+2 = Etπt+2. Substituting these expressions for

xt and Etxt+1 in equation (2) yields

πt − Etπt+1 = κ[εt − α(it − Etπt+1 − r∗)] + β(Etπt+1 − Etπt+2).

Taking unconditional expectations and using that Eπt = Eπt+j = Eπ yields

πt − Etπt+1 = κ[εt − α(it − Etπt+1 − r∗)]. (23)

The Fisher relation Ei = r∗ + Eπ follows.

Minimizing the central bank’s loss function, taking expectations as given, results in optimal discretionary

policy

it = max{it, iLB}.

Policy thus follows the shadow rate whenever feasible, and the policy rate is at the lower bound otherwise.

To write the model in terms of the interest rate wedge, substitute it + i∆t for the nominal interest rate

it in equation (23) to yield equation (5). Then substitute equation (5) for πt in equation (22) to yield the

corresponding equation for the output gap.

To derive the Fisher equation, take unconditional expectations of equation (23), again using that Eπt =
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Eπt+j = Eπ.

To derive the first and second equalities in equation (7), take unconditional expectations of (1) and (5),

respectively, using that Eπt = Eπt+1.

A.A Derivation for Cutoff of Binding Lower Bound

Start from the following equations:

PLB = G(ν̄LB); (24)

ν̄LB = α

(
iLB − θ − r∗ +

ψ

ψ − 1
(Ei∆ + θ)

)
− ε̄; (25)

Ei∆ =
1

α

∫ ν̄LB

−∞
(ν̄LB − ν)g(ν)dν. (26)

A.A.1 Link between expectations, cutoff, and lower bound probability

Equation (25) implies that the link between expectations in equation 7 can be written as

− 1

ψ − 1
(Ei∆ + θ) =

1

ψ

(
iLB − θ − r∗ − 1

α

[
ε̄+ ν̄LB

])
=

1

ψ

(
iLB − θ − r∗ − 1

α

[
ε̄+G−1(PLB)

])
.

A.A.2 Critical value for PLB

We rewrite equation (25) as

− ψ

ψ − 1
Ei∆ = iLB − r∗ − 1

α

[
ε̄+ ν̄LB

]
+

(
ψ

ψ − 1
− 1

)
θ

This equation gives us an affine relationship between the expected wedge Ei∆ and the cutoff ν̄LB . The slope
1
α
ψ−1
ψ is positive.

Equation (26) is zero for ν̄LB → −∞. It is monotonic since the integrand is nonnegative. Furthermore, it

is concave as we shall see below. And it tends to infinity for ν̄LB → ∞. As a result, it can intersect with the

previous line twice, once, or not at all. Now note that

dEi∆

dν̄LB
=

d

dν̄LB

[
1

α

∫ ν̄LB

−∞
(ν̄LB − ν)g(ν)dν

]
=

1

α

∫ ν̄LB

−∞
g(ν)dν =

1

α
PLB

by Leibniz’s rule. This derivative is always positive and increasing in ν̄LB . The two lines thus have the same
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slope when

P̄LB =
ψ − 1

ψ
.

The two intersections between the two lines must thus be to the left and right of the value for ν such that

PLB = P̄LB . In the case with one intersection, it coincides with the critical lower bound probability.

A.A.3 Expression for expected interest rate wedge through integration by parts

We start from equation (26) and compute the integral over the first term of the integrand:

Ei∆ =
1

α

(
ν̄LBPLB −

∫ ν̄LB

−∞
νg(ν)dν

)
. (27)

For the second term of the integrand, use the formula for integration by parts to simplify this expression

further:

∫ ν̄LB

−∞
νg(ν)dν = [νG(ν)]ν̄

LB

−∞ −
∫ ν̄LB

−∞
G(ν)dν = [νG(ν)]ν̄

LB

−∞ − [G (ν)]ν̄
LB

−∞ = ν̄LBG(ν̄LB)− G (ν̄LB), (28)

where G(·) denotes the cumulative distribution function and G (·) denotes the super-cumulative distribution

function, i.e. the primitive of the c.d.f. Plugging this into the previous expression results in

Ei∆ =
1

α
G (ν̄LB). (29)

A.B Details on Symmetric and Unimodal Distributions

For symmetric and unimodal distributions, we get following result.

Lemma 4 (Global result for symmetric unimodal distributions)

In the case of ψ = 2 and a unimodal symmetric distribution, a lower natural real rate of interest implies a more negative

impact of increased uncertainty on inflation expectations across all target equilibria. Across all liquidity trap equilibria

in this special case, a lower natural rate renders the impact of higher uncertainty on inflation expectations less negative.

The result also holds for all target equilibria when ψ ∈ (1, 2) and all liquidity trap equilibria for ψ > 2.
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Proof: We start by showing that the result of Proposition 2 holds globally for unimodal symmetric distri-

butions when ψ = 2. Therefore, start with the observation that, in this case,

PLB =
ψ − 1

ψ
=

1

2
.

Due to the symmetry of the distribution, this case corresponds to a cutoff ν̄LB = 0. An increase in uncertainty

for a symmetric unimodal distribution exhibits the single-crossing property for the distributions. As a result,

the c.d.f. of the riskier distribution lies above the less risky distribution for all negative values and below for

all positive values.

Due to single-crossing of the distributions, the probability of a binding lower bound increases for all

negative values and decreases for all positive values with higher uncertainty. Formally, G1,2(s, ν) > 0 for all

ν < 0 and G1,2(s, ν) < 0 for all ν > 0. Consequently the steps in the proof of Proposition 2 hold globally.

By the same logic, when ψ ∈ (1, 2), the critical value for the lower bound ψ−1
ψ < 1

2 . As a result, all

the target equilibria have a lower bound probability of less than 50% and, with a symmetric distribution,

the corresponding critical cutoff is in the negative territory. With single crossing, G1,2(s, ν) > 0 for all target

equilibria. Whenψ > 2, the critical cutoff is in positive territory and the results for the liquidity trap equilibria

hold globally. �

A.C Results for liquidity trap equilibria

This section extends the theoretical results of Sections III.B and III.C by including a discussion of liquidity

trap equilibria. The comparative statics for liquidity trap equilibria go in the opposite direction as those

for the target equilibrium. Since the paper shows that the empirical evidence is consistent with the target

equilibrium, one can interpret the data as evidence against the liquidity trap equilibrium.

The cutoff ν̄LB rises with uncertainty in the target equilibrium as discussed in Proposition 1 and, as a

result, the lower bound binds over a larger portion of the support for the demand shock. The opposite

prediction holds in a liquidity trap equilibrium. Proposition 4 summarizes these results.

Proposition 4 (Effects of uncertainty)

Neither a mean-preserving spread nor lower average demand have an effect on inflation expectations absent the lower

bound; in the presence of a lower bound, higher uncertainty raises (lowers) the expected interest rate wedge in a target
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(liquidity trap) equilibrium.23

Proof: From the proof of 1, we get

dEi∆

dε̄
=

1

α

ψ − 1

ψ

(
1− ψ − 1

ψ

1
ψ−1
ψ − PLB

)
.

To see that the sign of this expression switches depending on the equilibrium, notice that the sign

is determined by the expression in parentheses. This expression is clearly positive in the liquidity trap

equilibrium since there PLB > ψ−1
ψ . �

Next, we extend Lemma 2. Lemma 5 establishes that the lower bound probability and the cutoff always

move in the same direction in response to increases in uncertainty when the probability of a binding lower

bound is sufficiently low (high) in the target (liquidity trap) equilibrium.

Lemma 5 There are values
¯
ν and ν̄ such that an increase in uncertainty raises the probability of a binding lower bound

whenever ν̄LB <
¯
ν in the target equilibrium and lowers it for all ν̄LB > ν̄ in the liquidity trap equilibrium. When the

demand shock is normally distributed, these results hold globally, i.e.,

dPLB

ds
=


> 0 for ν̄LB < ν̄∗ (target equilibria).

< 0 for ν̄LB > ν̄∗ (liquidity trap equilibria).

For any continuous distribution, lower average demand raises (lowers) PLB in the target (liquidity trap) equilibrium.

Proof: (
ψ − 1

ψ
− PLB

)
dν̄LB

ds
= G1(s, ν̄LB) > 0.

Consequently, (ψ−1
ψ − PLB) and dν̄LB

ds are of the same sign. The cutoff is thus increasing in the target

equilibrium and decreasing in the liquidity trap equilibrium. By the same logic as in the proof of Lemma

2, the equilibrium cutoff ν̄LB shifts to the left in the liquidity trap equilibrium, thereby weakly lowering the

probability of a binding lower bound. �

Proposition 5 extends Proposition 2 to include liquidity trap equilibria:

Proposition 5 (Changes in the natural real rate and the effects of changes in uncertainty) Changes inuncer-

23Appendix A.B contains the proof.
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tainty do not affect expected interest rate wedges in the absence of a lower bound on interest rates, independent of the

level of the natural rate of interest r∗. In the presence of a lower bound, the following expression determines whether the

sensitivity of the expected interest rate wedge to changes in uncertainty increases or falls with the natural real rate of

interest
dEi∆
ds

dr∗
=
d2Ei∆

dr∗ds
= −

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

ds
. (30)

The analogous expression for average demand d2Ei∆
dr∗dε̄ is unambiguously positive (negative) in the target (liquidity trap)

equilibrium.

The proof follows directly from Appendix A.E.

Proposition 5 allows us to sign the direction in which a fall in the natural rate pushes the sensitivity of

the expected interest rate wedge to changes in uncertainty. The determining factor is whether uncertainty

raises the probability of a binding lower bound. Using Lemma 2, the right-hand side of equation (30) is

always negative in the target equilibrium and always positive in the liquidity trap equilibrium, provided that

shocks are normally distributed. The results furthermore hold for any distribution if the likelihood of being

constrained is sufficiently low (high) in the target (liquidity trap) equilibrium.

As a consequence, the sensitivity of inflation expectations with respect to uncertainty declines in the

target equilibrium as the natural real rate of interest falls. In the liquidity trap equilibrium, this sensitivity

rises. Measuring this sensitivity through the correlation of changes in inflation expectations and uncertainty

shocks therefore shows that the results in Section II are consistent with the target equilibrium and at odds

with the liquidity trap equilibrium.

Both an increase in uncertainty and a lower mean of the distribution ε̄, i.e., a leftward shift, raise the

probability of a binding lower bound in the target equilibrium and lower it in a liquidity trap equilib-

rium. Consequently, both changes in the distribution have the same effect on expectations, as Proposition 5

demonstrates.

Proposition 6 extends the effects of static average-inflation targeting in Proposition 3 to liquidity equilibria:

Proposition 6 (Static average-inflation targeting and the effects of changes in uncertainty)

Changes in uncertainty do not affect expected interest rate wedges in the absence of a lower bound on interest rates,

independent of the level of the policy intercept θ. In the presence of a lower bound, the following expression determines

whether the sensitivity of the expected interest rate wedge to changes in uncertainty increases or falls with the policy
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intercept θ
d2Ei∆

dθds
=

1

ψ − 1

(
ψ−1
ψ

ψ−1
ψ − PLB

)2
dPLB

ds
.

The analogous expression for average demand d2Ei∆
dθdε̄ is unambiguously negative (positive) in the target (liquidity trap)

equilibrium.

The proof follows immediately from Section A.F.

B Robustness of Empirical Estimates

In this part of the appendix, we show the robustness of our empirical estimates. We first present evidence

that the choice of Spearman correlations is not the driving force behind the changing correlation. We further

show that the use of regression slopes delivers identical insights relative to using correlations.

B.A Empirical Estimates for Pearson Correlations

This section presents evidence that the conclusions of this paper do not rest on the usage of Spearman

correlations. While regular Pearson correlations are more strongly affected by outliers present in the data,

they do deliver consistent results. To make this point, we replicate each result using the standard correlation

measure. While the results for the correlation between uncertainty and inflation expectations showed the

Spearman correlation in the main body of the paper, we show both Pearson and Spearman correlations in

Figures A1 andA2 below. Table A1 shows, analogously to Table 1, the estimates for the subsample split based

on Pearson correlations. The following two tables show robustness of the main regression specifications. The

chart on the DKWmeasure and the following table show that the robustness exercises are also robust to using

Pearson correlations.

B.B Covariance between Changes in Inflation Expectations and Uncertainty Shocks

Figure A4 shows the evolution of the covariance between changes in the five-year ahead five-year-forward

breakeven inflation ratewith changes in the VIX at themonthly frequency. The solid line shows theminimum

covariance determinant, used to control for outliers, and the dashed line is the conventional covariance. The

figure for the covariance displays the same pattern as the figure for the correlation, indicating that there is

no obvious trend in the level of uncertainty that can explain the results.
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Figure A1: Five-year trailing-window correlation of monthly changes in the VIXwith monthly changes in the
five-year ahead five-year forward break-even inflation rate rate: Spearman correlation (solid line), Pearson
correlation (dashed line). The sample period ranges from January 2004 until July 2020.

Table A1: Differences in moments across subsamples

mean r∗ mean Pearson correlation
with ∆VIX

r∗CR r∗TIPS BEI BEI TFR TFR
frequency monthly monthly daily monthly daily monthly

Jul 2011 - Jul 2020 0.54 0.83 -0.29 -0.35 -0.33 -0.23
Jan 1999 - Jun 2011 1.47 2.88 -0.09 -0.08 -0.16 -0.08

difference -0.93∗∗∗ -2.05∗∗∗ -0.20∗∗∗ -0.27∗∗∗ -0.17∗∗∗ -0.15∗∗

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlations are the trailing-
window Pearson correlation of the change in the variable with the change in the VIX (here referred to as
∆VIX). Pearson correlations are computed over one-year windows at the daily frequency and over five-
year windows at the monthly frequency. r∗CR denotes estimates of the natural rate from Christensen and
Rudebusch (2019a), and r∗TIPS is the five-year ahead five-year forward zero-coupon TIPS rate computed from
Gürkaynak et al. (2010) used as a proxy for the natural rate. BEI is the five-year ahead five-year forward
breakeven inflation rate, while TFR is the five-year ahead five-year forward Treasury constant maturity yield.
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Table A2: Regression of Pearson correlation between changes in VIX and BEI on the natural rate of interest

Dependent variable:
corr(∆VIXt,∆BEIt)

r∗CR r∗TIPS

(1) (2) (3) (4) (5) (6)
r∗ 0.192∗∗∗ 0.313∗∗∗ 0.190∗∗∗ 0.092∗∗∗ 0.134∗∗∗ 0.091∗∗∗

(0.038) (0.078) (0.039) (0.018) (0.036) (0.019)

constant −0.356∗∗∗ −0.493∗∗∗ −0.362∗∗∗ −0.334∗∗∗ −0.432∗∗∗ −0.341∗∗∗
(0.045) (0.106) (0.042) (0.040) (0.098) (0.036)

Frequency daily monthly within daily monthly within
Sample Start Jan 1999 Jan 2004 Jan 1999 Jan 1999 Jan 2004 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,374 199 259 5,371 199 259
R2 0.072 0.483 0.120 0.078 0.463 0.132

Note: Newey-West (HAC) standard errors. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table A3: Regression of Pearson correlation between changes in VIX and TFR on the natural rate of interest

Dependent variable:
corr(∆VIXt,∆TFRt)

r∗CR r∗TIPS

(1) (2) (3) (4) (5) (6)
r∗ 0.158∗∗∗ 0.129 0.167∗∗∗ 0.086∗∗∗ 0.035 0.090∗∗∗

(0.042) (0.107) (0.051) (0.020) (0.043) (0.024)

constant −0.396∗∗∗ −0.277 −0.417∗∗∗ −0.395∗∗∗ −0.218 −0.415∗∗∗
(0.051) (0.194) (0.058) (0.045) (0.175) (0.050)

Frequency daily monthly within daily monthly within
Sample Start Jan 1998 Jan 1998 Jan 1998 Jan 1999 Jan 1999 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,625 271 271 5,381 259 259
R2 0.049 0.119 0.087 0.066 0.043 0.117

Note: Newey-West (HAC) standard errors. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure A2: Five-year trailing-window correlation of monthly changes in the VIXwith monthly changes in the
five-year ahead five-year forward Treasury constant maturity rate: Spearman correlation (solid line), Pearson
correlation (dashed line). The sample period ranges from January 1995 until July 2020.

B.C Changes in Natural Rates and Effects of Uncertainty: Additional Evidence

In this section, we provide additional evidence for the link between changes in the effects of uncertainty as

natural rates declined. We repeat the daily regressions in Table 2 for different frequencies. First, we report

the same specifications using monthly data. And second, we compute the correlations between uncertainty

shocks and changes in inflation expectations from daily data within the calendar month and use these as

monthly observations.

Table A5 shows the regression of the breakeven inflation BEI-uncertainty shock correlation on the natural

rate of interest in various specifications. Columns (1)-(3) show the estimates using theChristensen-Rudebusch

measure for the natural rate, columns (4)-(6) show the corresponding estimates using the TIPS measure

of the natural rate. Compared to the daily frequency results reported in the main text, the regression

labeled “within” using correlations run within calendar months has almost identical magnitude, while

the “monthly“ regression using correlations computed using monthly average values for both the trailing-

window correlations as well as r∗ has higher magnitude estimated coefficients across r∗ measures. All

specifications have a positive sign, and the daily and within specifications are statistically significant at the
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Figure A3: Pearson correlation between changes in the VIX and changes in the five-year, five-year forward
expected inflation rate, adjusted for risk premia and the liquidity premium using the estimates of D’Amico
et al. (2018): daily frequency, one-year trailing-window correlation. The sample period ranges from January
1995 until July 2020.

1% level.

Table A6 shows analogous results for the regression of the Treasury forward rate TFR-uncertainty shock

correlationon thenatural rate of interest in various specifications. The estimated coefficients for the “monthly”

and “within” specifications are consistent in sign and magnitude with our “daily” specification reported in

the main text. The “monthly” specification is statistically significant at the 10% level using the CR measure

of r∗, and the “daily” and “within” specifications are statistically significant at the 1% level.

Table A7 shows analogous results for the regression of the real Treasury forward rate TRR-uncertainty

shock correlation on the natural rate of interest in various specifications. The estimated coefficients for

the “within” specification have the same sign and quantitatively similar magnitude as our baseline “daily”

specification reported in the body of the paper and all are significant at the 5% or 10% level. The “monthly“

specification here yields an opposite sign but the estimated coefficient is not statistically significantly different

from zero.
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Table A4: Differences in moments across subsamples for Pearson correlations.

mean Pearson correlation
with ∆VIX

mean Pearson correlation
with ∆BEI

BEI BEI DKW SPF EFU EPU
frequency daily monthly monthly quarterly monthly monthly

Jul 2011 - Jul 2020 -0.29 -0.35 -0.31 -0.12 -0.24 -0.10
Jan 1999 - Jun 2011 -0.09 -0.08 -0.16 0.01 -0.14 -0.06

difference -0.20∗∗∗ -0.27∗∗∗ -0.15∗∗∗ -0.13∗ -0.10 -0.04

Note: ∗∗∗, ∗∗, and ∗ signify that the difference in means across subsamples is statistically significant at the
1% level, 5% level, and 10% level, respectively, accounting for serial correlation. Correlation is the trailing-
window correlation of the change in the variablewith the change in the breakeven inflation rate (here denoted
as ∆BEI) or the change in the VIX (here denoted as ∆VIX), as labeled. Correlations are computed over one-
year windows at the daily frequency and over five-year windows at the monthly and quarterly frequencies.
EFU is the one-year ahead estimate of economic financial uncertainty from Ludvigson et al. (2021), and EPU
is the economic policy uncertainty index of Baker et al. (2016). BEI is the five-year ahead five-year forward
breakeven inflation rate, and DKW is the five-year ahead five-year forward breakeven inflation rate from
D’Amico et al. (2018) which removes risk premia and liquidity premia from the Treasury-implied rate. SPF
is the median ten-year ahead CPI inflation rate from the Survey of Professional Forecasters conducted by the
Federal Reserve Bank of Philadelphia.

Table A5: Regression of correlation between changes in VIX and BEI on the natural rate of interest

Dependent variable:
corr(∆VIXt,∆BEIt)

r∗CR r∗TIPS

(1) (2) (3) (4) (5) (6)
r∗ 0.161∗∗∗ 0.395 0.167∗∗∗ 0.077∗∗∗ 0.157 0.081∗∗∗

(0.039) (0.540) (0.040) (0.018) (0.202) (0.019)

constant −0.317∗∗∗ −0.520 −0.330∗∗∗ −0.298∗∗∗ −0.423 −0.313∗∗∗
(0.048) (0.608) (0.045) (0.043) (0.444) (0.038)

Frequency daily monthly within daily monthly within
Sample Start Jan 1999 Jan 2004 Jan 1999 Jan 1999 Jan 2004 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,374 199 259 5,371 199 259
R2 0.054 0.590 0.100 0.059 0.483 0.112

Note: Newey-West (HAC) standard errors. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table A6: Regression of correlation between changes in VIX and TFR on the natural rate of interest

Dependent variable:
corr(∆VIXt,∆TFRt)

r∗CR r∗TIPS

(1) (2) (3) (4) (5) (6)
r∗ 0.129∗∗∗ 0.198∗ 0.144∗∗∗ 0.071∗∗∗ 0.069 0.079∗∗∗

(0.046) (0.107) (0.049) (0.021) (0.081) (0.023)

constant −0.334∗∗∗ −0.372∗∗∗ −0.373∗∗∗ −0.335∗∗∗ −0.310 −0.373∗∗∗
(0.058) (0.132) (0.059) (0.051) (0.197) (0.051)

Frequency daily monthly within daily monthly within
Sample Start Jan 1998 Jan 1998 Jan 1998 Jan 1999 Jan 1999 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,625 271 271 5,381 259 259
R2 0.035 0.443 0.071 0.048 0.329 0.097

Note: Newey-West (HAC) standard errors. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Table A7: Regression of correlation between changes in VIX and TRR on the natural rate of interest

Dependent variable:
corr(∆VIXt,∆TRRt)

r∗CR r∗TIPS

(1) (2) (3) (4) (5) (6)
r∗ 0.075∗ −0.093 0.085∗∗ 0.041∗∗ −0.048 0.045∗∗

(0.040) (0.366) (0.041) (0.018) (0.107) (0.018)

constant −0.221∗∗∗ −0.073 −0.246∗∗∗ −0.222∗∗∗ −0.079 −0.245∗∗∗
(0.049) (0.372) (0.048) (0.043) (0.214) (0.041)

Frequency daily monthly within daily monthly within
Sample Start Jan 1999 Jan 2004 Jan 1999 Jan 1999 Jan 2004 Jan 1999
Sample End Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020 Jul 2020
Observations 5,374 199 259 5,371 199 259
R2 0.013 0.085 0.031 0.017 0.117 0.041

Note: Newey-West (HAC) standard errors. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure A4: Five-year trailing-window covariance of monthly changes in the VIX with monthly changes in the
five-year ahead five-year-forward breakeven inflation (BEI) rate. The solid line is the minimum covariance
determinant, and the dashed line is the conventional covariance. The sample period ranges from January
2004 until July 2020.

B.D Regression Slopes as Measures of Comovement

The empirical facts in the paper are based on the correlations of changes in uncertainty and changes in

inflation expectations (Figure 1) and interest rates (Figure 4), respectively. Instead of computing correlations

that are, by definition, standardized by the standard deviation, we can measure the comovement between

these financial market prices using regression slopes. Both measures are in line with the finance literature

that focuses on comovements of stock and bond markets. Parts of the literature studies covariances and

regression slopes (e.g., Campbell et al. (2017)) while another part has focused on stock-bond correlations

(e.g., Duffee (2022)). Therefore, consider the regression

π̂5Y5Yt+1 − π̂5Y5Yt = β0 + β1 (VIXt+1 − VIXt) + ηt+1,

where π̂5Y5Yt+1 is the five-year expected inflation rate five years out, as measured by breakeven inflation.

The left panel in Figure A5 shows the time series of the regression coefficients β1 for monthly regressions

over a 5-year rolling window. The time-series pattern for the regression coefficient β1 follows that of the

61



Figure A5: Analogues of Figure 1 and Figure 4 using regression slopes instead of correlations.

correlation. Therefore, the standardization by the level of the standard deviation is not the driving force

behind the results.

The right panel in Figure A5 shows the analogous regression coefficients for interest rates. The qualitative

pattern for the regression slopes over time is consistent with that for the correlations shown in Figure 4. We

therefore conclude that the results of this paper are robust to measuring them via the slopes of a regression.

B.E Correlation between Changes in the S&P 500 and Uncertainty Shocks

This section shows the analogue of Figure 6. Instead of the regression slopes used in the main text, it shows

correlations of changes in the log S&P 500 index with changes in the VIX index. Both measures are in line

with the finance literature on this topic. For example, Duffee (2022) shows stock-bond correlations while

Campbell et al. (2017) show regression slopes. Campbell et al. (2012) show both measures for the stock-bond

relation.

Figure A6 shows the time series of the correlation between changes in the stock market and uncertainty

shocks. The broad pattern mimics that for other correlations and comovements shown in the paper and is

consistent with the theoretical model. While there is a small increase in the correlation at the beginning of

the sample, the correlation is generally only mildly negative during the 1990s. It then drops precipitously in

the early 2000s and remains strongly negative (below -0.5) until the end of the sample period.
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Figure A6: Five-year trailing-window correlation (Spearman correlation: solid dark blue line, Pearson corre-
lation: dashed light blue line) of monthly changes in the VIX with monthly changes in the logarithm of the
S&P 500 stock price index. The sample period ranges from January 1995 until July 2020.

C Lasting Effects of Uncertainty Shocks

This section extends the i.i.d. model of the main text with a simple way to capture serial correlation.

This version of the model shows that short-lived spikes in uncertainty can have lasting effects on inflation

expectations. Since the general problem with serially correlated shocks is notoriously hard to solve, we

restrict our analysis to a one-time spike in uncertainty and leave the analysis of a more general model with

persistent shocks to future research.

We start from the i.i.d. model with a lower bound on interest rates that plays out in all periods starting in

period zero, i.e., t = 0, . . . ,∞. To thismodel, we add three periods. In the first period,−3, we simplymeasure

uncertainty about future variables. In the second period, −2, the demand shock is realized according to the

same distribution as in the i.i.d. model. Howerver, the shock realization now lasts for two periods. That is

to say that during −1 and −2, the shocks are perfectly serially correlated. As a result, the uncertainty about

the periods −2 and −1 resolves in period −1 and there is no uncertainty about period −1 shocks one period

ahead. Figure A7 depicts this shock process graphically.

Let us solve this model backwards. Because the model switches to the i.i.d. model from period 0 on,

expectations, the lower bound cutoff, and thus policy functions coincide with those in the i.i.d. model in
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Figure A7: Graphical representation of shocks that persist for two periods without any conditional uncer-
tainty.

period −1. In period −2, however, since next period’s shock is know, next period’s inflation and output gap

are then perfectly predictable:

E−2[π−1] = π−1 and E−2[x−1] = x−1.

We get the following results. First, there is a spike in uncertainty in period −3 because shocks in −2 last

for two periods. This spike in volatility is short-lived since, conditionally, there is no uncertainty in t − 2

about t− 1 variables. Second, as a result of the absence of uncertainty in period −2, the cutoff for the shock ε

at which the lower bound starts to bind, ε̄LB−2 , falls in the target equilibrium. One way to see this is to study

the shock realization at which the lower bound starts to bind in the i.i.d. model: ε−2 = ε−1 = ε̄LB . In the i.i.d.

case, while inflation expectations are below target as usual, inflation can be stabilized. With this logic, we

know in period −2 that inflation will be stabilized in period −1. As a result, inflation expectations are more

benign and the lower bound cutoff must be lower, leading to overall higher inflation expectations.

Taking these two findings together, a short-lived increase in uncertainty in period −3 can impact future

inflation expectations — in this case, inflation expectations in period −2 about period −1 inflation.
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D Data Sources and Measures

This section presents the data sources and compares our measure of realized volatility to the VIX.

D.A Data Sources

variable description frequency sample source

Measures of uncertainty
VIX CBOE Volatility Index daily 1990- Bloomberg: VIX Index
EFU economic financial uncertainty monthly 1960- Jurado et al. (2015)24
EPU news-based policy uncertainty index daily 1985- Baker et al. (2016)25

Measures of long-term inflation expectations
BEI Treasury-implied breakeven inflation rate daily 1999- Bloomberg: USGG5Y5Y Index
DKW dynamic factor model daily 1983- D’Amico et al. (2018)26
SPF Survey of Professional Forecasters quarterly 1991- Philadelphia Fed - SPF: CPI10 27

Measures of long-term interest rate expectations
TFR five-year ahead five-year forward

Treasury constant maturity rate
daily 1962- Federal Reserve Board

Measures of the real natural rate of interest (r∗)
CR no-arbitrage model-implied daily 1998- Christensen and Rudebusch (2019a)11
TIPS five-year ahead five-year forward

zero-coupon TIPS rate
daily 1999- Gürkaynak et al. (2010)11

24Updated data downloaded from the authors’ website: www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
25Updated data downloaded from the authors’ website: www.policyuncertainty.com/us_monthly.html - Daily News Index
26Data from: www.federalreserve.gov/econres/notes/feds-notes/DKW_updates.csv
27Data from: www.philadelphiafed.org/surveys-and-data/data-files
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D.B Realized volatility

Figure A1 shows the close connection between VIX and realized volatility during the sample period when

both measures are available.

Figure A1: Monthly time series of VIX and realized volatility [computed as the backward-looking moving
average over 30 days (21 trading days) of squared daily returns in the S&P 500 index]; both series computed
as monthly averages of daily values. The sample period ranges from January 1990 until July 2020.
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